
Digital avatar customization using Cycle
Generative Adversarial Networks

Lucía González García

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 3, 2023

Supervised by: Rafael Fernández Beltrán

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my future self, to be used as motivation and inspiration for
future projects.

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Rafael Fernández
Beltrán, for his dedication, help, orientation and advice that have made possible the
elaboration of this project.

To my parents, for their support and education, and for the strength they have given
me to get to where I am.

To Xavi for his support and advice, and for accompanying me throughout this pro-
cess.

And to my family and friends for making me the person I am today.
I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their

inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents the Final Degree Work report of the Video Games Design and
Development Degree by Lucía González García.

The primary aim of this project is to enhance the creation and personalization of
digital avatars using Deep Learning techniques, particularly Generative Adversarial Net-
works (GAN) technology. The objective is to enable users to generate avatars based on
their own photographs, such as selfies, and apply various desired image styles. To achieve
this, an application will be developed, allowing users to upload their images and apply
predefined styles such as manga, cartoons, and more. The outcome will be a harmonious
combination of the original image and the selected style, resulting in a coherent visual
output.

Keywords:

• Artificial Intelligence

• Deep Learning

• Generative Adversarial Networks (GAN)

• CycleGAN

• Image translation

• Digital avatars

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 7

3 System Analysis and Design 11
3.1 Theoretical Framework . 11
3.2 Requirement Analysis . 17
3.3 System Design . 18
3.4 System Architecture . 22
3.5 Interface Design . 22

4 Work Development and Results 25
4.1 Work Development . 25
4.2 Results . 35

5 Conclusions and Future Work 41
5.1 Conclusions . 41
5.2 Future work . 42

Bibliography 43

A Source code 45
A.1 Neural Network Model . 45
A.2 User Application . 59

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

This chapter reflects what the purpose of the work was in the beginning, why and
how this project was going to be developed, which were the objectives initially fixed and
how the idea started to be developed.

1.1 Work Motivation
The representation of people through digital avatars is a very important aspect of im-
mersive user participation in many interactive applications, especially in entertainment-
oriented applications such as video games [1][2][3]. Many users are attracted by the idea
of being able to represent themselves in a virtual environment and make the character
they control look like them in order to feel that they are the ones inside the game uni-
verse. This produces a sense of belonging and cohesion with the game, and gives the
player a much more personal, immersive and satisfying experience. However, the design
and customization of avatars are aspects that are often limited to a reduced set of images
or pre-defined options. In this context, algorithms based on deep artificial intelligence
have transformed the creation and manipulation of images by allowing the automated
generation of realistic visual content, improving the quality of existing images, trans-
ferring artistic styles, recognizing and classifying objects in images, and facilitating the
automatic editing and manipulation of images. For this reason I decided to investigate
the application of these techniques, particularly the use of generative Neural Networks

1

2 Introduction

and their derivatives, which have gained great relevance in recent times, with the aim of
achieving this self-representation that the player is looking for his characters.

1.2 Objectives
Based on the motivation of the work, there are some goals to achieve:

• Learn how Generative Adversarial Networks technology and its derivatives work
for digital image processing.

• Choose the most appropriate deep learning-based model for image-to-image trans-
lation

• Choose origin images and target images for translation

• Implement the selected model and evaluate its performance level for the proposed
problem.

• Develop an application that allows the user to generate his own avatar with cus-
tomized style.

1.3 Environment and Initial State
The original project idea was proposed by the supervisor along with a list of other
project ideas from other teachers. This idea consisted of applying GAN technology (see
Section 3.1.3) to perform an image transfer from a human face to a face with a predefined
style, e.g. anime. Reviewing the different project ideas proposed by the teachers, without
a doubt this was the one that caught my attention the most, since it combined two of
the topics that most interested me, character/avatar customization and the different
applications of deep learning.

As a player I consider that the customization of our characters is especially important
for a correct immersion in the game, in fact, it is something to which players spend a lot of
time trying to refine it as much as possible. Therefore, I find the idea of automating and
simplifying this process very attractive. In addition, after almost finishing my degree, I
have been able to discover that the Artificial Intelligence field is something I would like
to dedicate myself professionally, for this reason, I am also interested in working with
the different applications of deep learning and neural networks.

Currently, image generation with Deep Learning models has a variety of practical ap-
plications in industries such as graphic design, medicine, virtual reality, product design,
image enhancement, data synthesis and artistic expression. These applications range
from generating unique visual content to training diagnostic algorithms, creating virtual
environments, and enhancing low-resolution images. In addition, Deep Learning mod-
els provide opportunities for creativity and artistic exploration. As research progresses,
new applications and opportunities are expected to be discovered in this ever-developing

1.3. Environment and Initial State 3

field. Specifically, image-to-image translation[4], which is the problem to be covered, is
a growing and developing field with a variety of approaches and techniques. Some of
these techniques are Generative Adversarial Networks (GANs), which consist of a gener-
ator and a discriminator that compete to produce realistic images; the cycle-consistency
technique [5], which seeks to maintain consistency between the bidirectional translation
of domains; Convolutional Neural Networks (CNNs), which stand out for their ability to
capture visual features and complex patterns; or even pixel transformation as a common
technique applied directly to image pixels.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 7

This chapter deals with a technical part of the work. It also shows the planning that
has been followed to complete the project and the resources used to accomplish that
purpose.

2.1 Planning

In this section, the detailed time planning of the work, including all its tasks and subtasks
are shown.

The main tasks that were planned at the beginning, in order to achieve the main
objective of transforming a human face into a face of the chosen style, are the following
in the Table 2.1.

Below is a Gantt Chart (see Figure 2.1) showing in detail the initial organization of
the project along with its estimated duration, as well as the breakdown into subtasks.
Throughout the development there have been some modifications with respect to the
original planning. Some tasks have taken more hours than expected, such as the research
and choice of the most appropriate type of GAN model for this project. And some others
have taken less time, such as the development of the application. But in general, the
tasks are quite close to the original planning.

To follow up the work Trello tool has been used to organize the wanted tasks (see
Figure 2.2) to do and the wanted milestones to achieve, although as mentioned before,

5

6 Planning and resources evaluation

Figure 2.1: Gantt chart

2.2. Resource Evaluation 7

TASK TIME
Study and learning of the GAN and styleGAN technology 30 h
Analysis of alternatives and choice of the deep learning based model 30 h
Implementation of the selected model 80 h
Elaboration of a dataset for the generation of avatars 10 h
Training and analysis of the model for the customization of digital avatars 30 h
Development of the user interface 60 h
Documentation and presentation 60 h

Table 2.1: Main tasks

along the process there have been modifications in the initial planning and therefore in
the deadlines of the tasks and milestones. In addition, follow-up meetings have been
held with the tutor both in person and remotely via Google Meet for the resolution of
doubts and monitoring of the project.

2.2 Resource Evaluation
In this section, the resources evaluation (the human resources and the equipment neces-
sary to develop and implement the work) are described, as well as the estimated cost of
this resources.

• Hardware: Personal computer. Its initial cost was about 1000€, although, after
5/6 years, its current price will be much lower.

– CPU: Intel Core i7-8750H
– GPU: NVIDIA GeForce GTX 1050

∗ Dedicated video memory: 4GB GDDR5
∗ CUDA cores: 640

– RAM: 16GB
– OS: Microsoft Windows 10 Pro

The GPU together with the CUDA cores will be the most important part to be
able to perform the necessary computations of the deep learning model.

8 Planning and resources evaluation

Figure 2.2: Trello

2.2. Resource Evaluation 9

• Software:

– Google Colab (Free)[6]: Execution virtual platform for performing net-
work training, tests, trials and annotations. The free version has been used
although it has some GPU usage limitations and therefore Some drawbacks
have been found to be able to train the model. There are also several paid
versions that include some improvements.

– Jupyter Notebook (Free)[7]: Also an execution platform for performing
network training, tests, trials and annotations. This tool has been used as a
complement together with Google Colab to be able to perform the training
of the model from the personal computer.

– Anaconda (Free) [8]: For managing packages, libraries and programming
environments.

– PyCharm (Free)[9]: Programming environment to implement the applica-
tion in Python.

– TensorFlow and Keras (Free)[10][11]: Open Source Neural Network li-
braries written in Python for the implementation of the neural network model.

– Tkinter (Free)[12]: Graphical library for the creation and development of
desktop applications in python for the development of the user interface.

– OpenCV (Free)[13]: Free library of artificial vision for image capture for
the application.

– GitHub (Free)[14]: Website for hosting projects using the Git version con-
trol system. It is primarily used for creating source code for computer pro-
grams.

– Trello (Free)[15]: Project management and task organization software.
– TeXstudio (Free)[16]: LaTeX editor for writing this report.
– Google Docs (Free): Google tool for creating and editing documents that

did not require too much quality.

• Human resources: Regarding human resources, the author of this project has
been the only person in charge of the development of the project and therefore it
has not implied any additional cost. However, the following is an estimate of the
economic cost that would have been necessary to pay one person for the work done
and the hours spent, if this had been a professional project.
In the development of the project, two very important profiles stand out: data
engineer for the development, research and analysis of the neural network model,
whose average salary in Spain is 19 €/h according to Indeed website [17]; and a
programmer, in this case a junior programmer, whose average salary in Spain is
10.59 €/h according to Indeed website [18]. The hours dedicated to this project
have been 260 hours approx. as a data engineer and 50 hours approx. as a junior
programmer. Therefore, the total cost would be 5470 € approx.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Theoretical Framework . 11
3.2 Requirement Analysis . 17
3.3 System Design . 18
3.4 System Architecture . 22
3.5 Interface Design . 22

This chapter first presents a contextualization and definition of some terms to facili-
tate the understanding of the model that has been developed for this project and which
will be explained in Section 4.1.1. It also presents the requirements analysis, the design
and architecture of the proposed work, as well as the design of its interface.

3.1 Theoretical Framework
First, a brief explanation of some terms is shown in order to better understand the
concept of neural networks and how they are specialized to arrive at the model that has
been chosen.

3.1.1 Artificial Neural Network

A neural network is a method of artificial intelligence that teaches computers to process
data in a way that is inspired by the way the human brain does. It is a type of machine
learning process called deep learning, which uses interconnected nodes or neurons in a
layered structure that resembles the human brain (see Figure 3.1). It creates an adap-
tive system that computers use to learn from their mistakes and continuously improve.

11

12 System Analysis and Design

In this way, artificial neural networks attempt to solve complicated problems, such as
summarizing documents or recognizing faces, with greater accuracy.

In this context, an artificial neuron consists of three main components: inputs,
weights and an activation function. Inputs represent the signals or input values that
the neuron receives from other neurons or the environment. Each input is associated
with a weight, which determines the relative importance or impact of that input on the
output of the neuron. The activation function is a mathematical function that takes the
weighted sum of the inputs multiplied by their respective weights and transforms it into
an output. This function introduces nonlinearities and defines how the neuron responds
and generates an output depending on the inputs received. The output of an artificial
neuron can be used as input for other neurons in the network, thus forming a network of
connections that allows parallel information processing and the performance of complex
tasks, such as pattern recognition, data classification or decision making.

The way an artificial neural network learns to perform these tasks is through what
is known as training. The training cycle of a neural network can be summarized in the
following steps:

• Data preparation: Training data are collected, cleaned, and divided into training
and test sets.

• Neural network design and construction: The network architecture is de-
fined, including the number of hidden layers, the number of neurons per layer
and the activation functions. Then, the network is built using a library or a deep
learning framework, such as TensorFlow or PyTorch.

• Initialization of the weights: Before training, the weights of the network are
initialized randomly or by some other method.

• Forward propagation: A training data set is taken and passed through the
neural network from the input layer to the output layer. Calculations are performed
on each neuron and the corresponding activation functions are applied.

• Loss function calculation: The output predicted by the network is compared to
the real output of the training set using a loss function to measure the discrepancy.

• Error backpropagation: The gradient of the loss function with respect to the
network weights is calculated and propagated backward through the network to
adjust the weights of each neuron using optimization methods such as gradient
descent. This allows the network to "learn" and adjust to improve its performance.

• Repetition of the previous 3 steps: The steps of forward propagation, loss
function calculation, error backpropagation and weight update are repeated for
several iterations or epochs, using different batches of training data at each itera-
tion.

• Model evaluation: After training, the performance of the model is evaluated
using test or validation data to determine its generalizability.

3.1. Theoretical Framework 13

• Model tuning and optimization: If the model performance is not satisfactory,
adjustments are made to the network architecture, hyperparameters (values that
are set before training the model and control the behavior and performance of the
network) or dataset to improve its accuracy.

Figure 3.1: Layer diagram of a neural network

3.1.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks or CNN is a type of multilayered Artificial Neural Net-
work with supervised learning that processes its layers by mimicking the visual cortex
of the human eye to identify different features in the inputs that ultimately enable it
to identify objects and "see". To do this, the CNN contains several specialized hidden
layers with a hierarchy. This means that the first layers can detect lines, curves and
become specialized until they reach deeper layers that recognise complex shapes such as
a face or the silhouette of an animal. This architecture is useful in several applications,
mainly in image processing as well as video recognition and natural language processing
tasks.

CNNs work as follows: To obtain the input layer, the network takes pixels from an
image, each one will be an input neuron. It then performs a convolution that consists of
applying a set of kernels to groups of nearby pixels, and generates a new layer of hidden
neurons. Finally, it reduces the number of neurons using subsampling before performing

14 System Analysis and Design

a new convolution (see Figures 3.2 and 3.3). It performs several convolutions until
obtaining the output layer that will have the number of neurons corresponding to the
classes we are classifying, for example, if we classify dogs and cats, there will be 2 neurons
(see Figure 3.4).

Figure 3.2: First convolution of a CNN

3.1.3 Generative Adversarial Network (GAN)

Generative Adversarial Networks or GANs, are networks that can learn to create samples,
similar to the data we feed them with. The idea behind GAN is to have two competing
neural network models. One, called Generator, initially takes "junk data" as input and
generates samples. The other model, called the Discriminator, receives both samples
from the Generator and the real training set and should be able to differentiate between
the two sources. These two networks play a continuous game where the Generator
learns to produce more realistic samples and the Discriminator learns to distinguish
between real data and artificial samples (see Figure 3.5). These networks are trained
simultaneously to finally achieve that the generated data cannot be distinguished from
real data. Its main applications are the generation of realistic images, but also the
improvement of existing images.

3.1. Theoretical Framework 15

Figure 3.3: Other convolutions of a CNN

The Different Types of Generative Adversarial Networks (GANs) are:

• Vanilla GAN: The Vanilla GAN is the simplest type of GAN.The generator
captures the data distribution meanwhile , the discriminator tries to find the prob-
ability of the input belonging to a certain class, finally the feedback is sent to both
the generator and discriminator after calculating the loss function , and hence the
effort to minimize the loss comes into picture.

• Conditional Gan (CGAN): In this GAN the generator and discriminator both
are provided with additional information that could be a class label or any modal
data. As the name suggests the additional information helps the discriminator in
finding the conditional probability instead of the joint probability.

• Deep Convolutional GAN (DCGAN): This is the first GAN where the gen-
erator used deep convolutional networks , hence generating high resolution and
quality images to be differentiated.

• CycleGAN: This GAN is made for Image-to-Image translations, meaning one
image to be mapped with another image.

16 System Analysis and Design

Figure 3.4: Architecture of a CNN

Figure 3.5: Architecture of a GAN

3.2. Requirement Analysis 17

• Generative Adversarial Text to Image Synthesis: In this the GANs are
capable of finding an image from the dataset that is closest to the text description
and generate similar images.

• Style GAN: Other GANs focused on improving the discriminator in this case we
improve the generator. This GAN is generated by taking a reference picture.

• Super Resolution GAN (SRGAN): The main purpose of this type of GAN is
to make a low resolution picture into a more detailed picture. This is one of the
most researched problems in Computer vision.

3.2 Requirement Analysis

In this section, the functional and non-functional requirements of the presented work will
be detailed, but first, let’s clarify how the application works, and then the requirements
will be clearer.

As the importance of the project lies in the development of the Neural Network,
which will be explained later (see Section 4.1.1), the application is not too complex and
shows, in a basic way, an example of how the developed system works.

The application has been developed for Windows and when starting it, the user can
choose whether to take a picture using the camera or upload it from the device (see
Figure 3.10), then there is a loading period in which the new image is generated with
the predefined style, and then it is displayed on the screen. Finally, the user can save
the generated image on the device.

3.2.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
Once the previous explanation is clear, it is easy to identify which are the functional
requirements in this project:

• R1: The user can take a photo.

• R2: The user can upload an image.

• R3: The Neural Network model can generate a new image.

• R4: The user can save de new image generated.

3.2.2 Non-functional Requirements

Non-functional requirements impose conditions on the design or implementation. In this
project, the non-functional requirements are:

18 System Analysis and Design

• R5: The User Interface is simple.
The application is not too complex, but gives the user the necessary information
to understand how the application works.

• R6: The application can be run on PC.
Implementation and testing has been performed on Windows OS.

• R7: The image is quickly generated.
The image-to-image translation is very fast since only the weights of the pre-trained
model are loaded to generate the new image.

• R8: The generated image will be anime style.
The style chosen for training the model is applied to the user’s image.

3.3 System Design

This section presents the (logical or operational) design of the system to be carried out.
In the following pages are defined the cases of use taken from the functional requirements
(Tables 3.1, 3.2, 3.3 and 3.4), a case use diagram (see Figure 3.6), a class diagram (see
Figure 3.7) and an activities diagram (see Figure 3.8). As the application is quite
simple, they are not very complex. In addition, the application is composed of a user
interface and a pre-trained model, however, the Neural Network model, for simplicity, is
considered as a "Black Box", i.e., its operation is not known, only its input and output
are known.

Requirement: R1

Actor: User

Description: The user can take a picture of his face using de camera of de
device.

Preconditions: 1. The user must be on the title screen.
2. The user must have clicked the "Take photo" button.

Steps normal sequence: 1. The user clicks the "Take photo" button.
2. Camera opens.
3. The user clicks the "Take photo" button.
4. The photo appears on the screen.

Alternative sequence: None.

Table 3.1: Case of use «CU01. Take photo»

3.3. System Design 19

Requirement: R2

Actor: User

Description: The user can upload an image of a human face from de device.

Preconditions: 1. The user must be on the title screen.
2. The user must have clicked the "Upload image" button.

Steps normal sequence: 1. The user clicks the "Upload image" button.
2. The file directories open.
3. The user selects the image he wants to upload.
4. The image appears on the screen.

Alternative sequence: None.

Table 3.2: Case of use «CU02. Upload image»

Requirement: R3

Actor: Neural Network model

Description: The Neural Network model generates a new image by com-
bining the user’s photo with the predefined style.

Preconditions: 1. The user must have clicked the "Generate image" button.
2. There is an image of a human face.
3. There is a pretrained neural network with predefined style.

Steps normal sequence: 1. The model preprocesses the image.
2. The weights of the network are applied to the added image
and the style transfer is performed.
3. The new generated image is returned.

Alternative sequence: None.

Table 3.3: Case of use «CU03. Generate image»

20 System Analysis and Design

Requirement: R4

Actor: User

Description: The user can save in the device the image generated by the
Neural Network model.

Preconditions: 1. the Neural Network model must have generated the image.
2. The user must have clicked the "Save image" button.

Steps normal sequence: 1. The user clicks the "Save image" button.
2. The file directories open.
3. The user selects the directory where the image is going to
be saved.
4. The image saves on the device.

Alternative sequence: None.

Table 3.4: Case of use «CU04. Save image»

Figure 3.6: Case use diagram

3.3. System Design 21

Figure 3.7: Class diagram

Figure 3.8: Activities diagram

22 System Analysis and Design

3.4 System Architecture
For network training these are the minimum system requirements:

• Windows, Linux or macOS (in this case Google Colab and Jupyter Notebook
execution platforms have been used)

• Python 3

• CPU or NVIDIA GPU + CUDA CuDNN

And in particular, to use the TensorFlow and Keras libraries, both for training the
network and for generating the new image in the application (and therefore, for the
application to work):

• Python 3.7–3.10

• Ubuntu 16.04 or later

• Windows 7 or later

• macOS 10.12.6 (Sierra) or later.

Although these are the minimum requirements to be able to train the model, for
an efficient and fast training it is important to have a GPU with high capacity (CUDA
cores are very relevant, as they can process tasks in parallel much faster and significantly
accelerate the training time of neural networks [19]) or to have access to a virtual exe-
cution platform with more advanced GPUs such as Google Colab, or servers equipped
with graphics cards with much more dedicated memory.

In addition, to use the application it is advisable to have a webcam to take the photo
that we will convert, although it is not strictly necessary since it also offers the option
of uploading an image from the computer.

3.5 Interface Design
As mentioned before, the most important part of this project is the implementation of
the neural network and its training to achieve the most accurate results possible. The
application is therefore a complement whose utility is to show the results obtained with
Neural Network model. That is why the interface design is simple and precise, but
gives the user the necessary information to understand how the application works. To
implement the user interface, UI, the Python programming language has been used in
the Pycharm programming environment together with the Tkinter library, which is in
charge of the user interfaces. Section 4.1.2 explains in detail how the application has
been implemented. In this section the aesthetics and design of the application will be
explained.

3.5. Interface Design 23

All the elements of the application are combined to create a black and white aesthetic.
The opening scene and the second scene, in which the choice between uploading an
image and taking a photo is given, have a black and white image of a girl in anime
style as a background (see Figures 3.9 and 3.10). This image is downloaded from the
WallpaperBoat website [20] for free. To design the title (see Figure 3.9) it has been
used the virtual tool CoolText [21] to manually customize the style, color and text. For
the design of some buttons it has been used the virtual tool ButtonOptimizer [22] to
also customize manually the style, color and typography of the buttons (see Figure 3.10).
And the buttons with the camera and house icons (see Figure 3.11) are both downloaded
from the Flaticon website [23][24] for free.

Figure 3.9: First screen of the application

24 System Analysis and Design

Figure 3.10: Second screen of the application. Choice between uploading image or taking
photo.

Figure 3.11: Take photo screen

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 25
4.2 Results . 35

This chapter is an explanation of how the project has been developed since his start
until the end of it. It also includes an assessment of the results and the deviations from
the initial planning.

4.1 Work Development
This section shows in depth the work done and the decisions that have been taking
along the process. It begins by explaining the work done with respect to the neural
network, saying what type of model have been chosen. And then, the development of
the application will be explained.

4.1.1 Neural Model Proposal

In this section it is going to be explained which neural network model has been imple-
mented and how it has been done.

Despite the fact that to carry out this kind of projects we work with existing material
and contents, this project was also directly oriented to research, since its importance also
lies in finding out what kind of neural network is best suited to what is wanted to be
achieved. This is one of the reasons why some modifications have arisen along the way.

Initially, together with the supervisor, it was decided to work with StyleGAN, which
is a type of neural network that progressively increase the resolution of the generated

25

26 Work Development and Results

images and incorporate style features in the generative process. The main idea was to
use a human face and apply anime style to it to generate a new image. While other
GANs focus on improving the discriminator, StyleGAN tries to improve the generator
by redesigning its architecture in a way that exposes novel ways to control the image
synthesis process. This generator starts from a learned constant input and adjusts
the "style" of the image at each convolution layer based on the latent code, therefore
directly controlling the strength of image features at different scales. StyleGAN uses the
baseline progressive GAN architecture and proposed some changes in the generator part
of it. However, the discriminator architecture is quite similar to baseline progressive
GAN. Traditionally the latent code is provided to the generator through an input layer,
i.e., the first layer of a feedforward network (see Figure 4.1(a)). The StyleGAN model
departs from this design by omitting the input layer altogether and starting from a
learned constant instead (see Figure 4.1(b)).

Figure 4.1: Architecture of a StyleGAN.

It started by working with the implementation provided by Nvidia [25], however, this
implementation generated many errors due to version incompatibility between Google
Colab and the Tensorflow library. After trying to solve these errors in a failed way, it
was decided to try other sources and among them, work began with Soon Yau Cheong’s
implementation [26], which worked perfectly. However, after doing some tests with
the code and after talking with the supervisor, it was concluded that StyleGAN could
not achieve the desired results, since what wanted to be done was an Image-to-image
translation, and although StyleGAN is a widely used generative neural network (GAN)

4.1. Work Development 27

architecture for generating realistic images, it is not specifically designed for image-to-
image translation due to the lack of matched training data, the ability to capture and
align accurate features, and several other limitations. So, finally, it was decided that
it was more appropriate to use CycleGAN, which is explained below. There are also
other architectures and approaches specifically designed for this type of problem, such
as JoJoGAN, Pix2Pix and UNIT, which may offer better results and deal with some of
the limitations mentioned, and which are still under development.

CycleGAN

This project has implemented Cycle Generative Adversarial Network model, or Cyce-
GAN for short, which was first proposed in the paper "Unpaired Image-to-Image Trans-
lation using Cycle-Consistent Adversarial Networks" by Jun-Yan Zhu, Taesung Park,
Phillip Isola, and Alexei A. Efros in 2017 [5].

Image-to-image translation is a class of vision and graphics problems where the goal
is to learn the mapping between an input image and an output image using a training
set of aligned image pairs. However, for many tasks, paired training data will not be
available. CyceGAN presents an approach for learning to translate an image from a
source domain X to a target domain Y in the absence of paired examples. This method,
basically, can learn to capture special characteristics of one image collection and figuring
out how these characteristics could be translated into the other image collection.

As illustrated in Figure 4.2(a), this model includes two mappings G : X− > Y and
F : Y − > X. In addition, it introduces two adversarial discriminators DX and DY
, where DX aims to distinguish between images x and translated images F (y); In the
same way, DY aims to discriminate between y and G(x). Also, it works whit two types
of losses, adversarial losses for matching the distribution of generated images to the data
distribution in the target domain; and cycle consistency losses to prevent the learned
mappings G and F from contradicting each other. Adversarial losses alone cannot guar-
antee that the learned function can map an individual input xi to a desired output yi.
To further reduce the space of possible mapping functions, we argue that the learned
mapping functions should be cycle-consistent: as shown in Figure 4.2(b), for each image
x from domain X, the image translation cycle should be able to bring x back to the
original image, i.e., x− > G(x)− > F (G(x)) ≈ x. We call this forward cycle consis-
tency. Similarly, as illustrated in Figure 4.2(c), for each image y from domain Y , G and
F should also satisfy backward cycle consistency: y− > F (y)− > G(F (y)) ≈ y.

28 Work Development and Results

Figure 4.2: (a) This model contains two mapping functions G : X− > Y and F :
Y − > X, and associated adversarial discriminators DY and DX. DY encourages G to
translate X into outputs indistinguishable from domain Y , and vice versa for DX and
F . To further regularize the mappings, we introduce two cycle consistency losses that
capture the intuition that if we translate from one domain to the other and back again
we should arrive at where we started: (b) forward cycle-consistency loss: x− > G(x)− >
F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y− > F (y)− > G(F (y)) ≈ y.

Datasets

Initially, a search of the existing datasets of the possible domains to translate was made,
the target being a "cartoon" model (anime, disney style, 3D model, etc.) after reviewing
the content of the main sources to obtain this information, it was finally found that the
anime style was the one with the most content and wealth of datasets on the Internet
and therefore open to more possible adjustments, so it was decided to apply this style.

To feed the system and train the neural network, a dataset containing 4 subsets has
been created. One subset with 3000 images of anime faces for training (see Figure 4.3),
another with 3000 images of human faces also for training (see Figure 4.4), and two
others with 100 images each for testing, one with anime faces and the other with human
faces.

To create this dataset it have been used as a base the images from 3 internet datasets,
Anime Faces vs Human Faces from Kaggle [27] which contains both anime and human
faces, Human Faces from Kaggle too [28] which contains human faces, and the last
one from a GitHub project by Lmtri1998 [29], from which only the anime faces have
been used. From these datasets it have been selected the most appropriate images and
discarded some images with excessively low resolution or that could contain noise (see
Figure 4.5) and negatively affect the training, for example sunglasses, masks or other
elements that could hide part of the facial features, although the images with vision
glasses have been kept to see how the model works with those elements. On the other
hand, these images with noise have not been discarded from the test set for future
analysis of model accuracy. In addition, the images of human faces contained in the
dataset created and used for training the model are very varied, both men and women,
elderly, young and children. However, the images of anime faces are somewhat more

4.1. Work Development 29

limited, and although it has been tried to have as much variety as possible, female faces
predominate over male faces, and this could slightly affect the learning of the model.
The choice of dataset is very important, as it affects the way the model learns during
training and the quality of the final result.

Figure 4.3: Sample of human face images from the used dataset

Software and Development

For the development of the Neural Network it has been used Python on the Google
Colab execution platform and on the Jupyter Notebook execution platform, where it
have been performed network trainings, tests, trials and annotations, together with the
TensorFlow and Keras (for neural networks and deep learning), Numpy (for high-level
mathematical operations, vectors and large multidimensional matrices) and Matplotlib
(for two-dimensional graphics generation) libraries.

As a base it has been used A-K-Nain’s implementation of the CycleGan neural net-
work [30] where he solves the image-to-image translation problem by converting images
of horses to images of zebras. On this base, modifications have been made to adjust the
CycleGAN model and its parameters to our requirements and our dataset.

Throughout the process it has been followed a cyclic work strategy, this means that
the tasks have not been developed one after the other, but we are constantly going back
on what is already worked to adjust and improve the model and make it more and more
accurate. The detailed code explained in detail can be found in Appendix A.1.

30 Work Development and Results

Figure 4.4: Sample of anime face images from the used dataset

Figure 4.5: Sample of images discarded because they contain noise

4.1. Work Development 31

The first step was to create the dataset with the appropriately selected images and
then converting it into the Tensorflow Dataset type so that the images can be processed
by the TensorFlow library and subsequently be used in training. This last is implemented
in the model and does it automatically by passing it a path to any set of images with
well specified subsets. Since two different programming environments (Google Colab
and JupyterNotebook) were used to carry out this project, the paths to the dataset were
different for each too. For Google Colab, the dataset was stored in Google Drive, while
for Jupyter Notebook, the dataset was stored in the computer’s local directories. This
dataset has also been modified throughout the development of the project to better fit
the requirements of the model and its different trainings.

After this, some parameters were adjusted in the code and the training sessions
were started. For each training it was possible to choose the number of epochs to be
performed. An epoch refers to a complete pass of the entire training dataset during
the training process of a model. During an epoch, the model processes and adjusts
its parameters using all examples in the training dataset. After an epoch, the model’s
performance is evaluated using a validation or test dataset, and metrics such as accuracy,
loss, or other relevant metrics are recorded. These metrics provide an indication of how
the model is improving as the training process progresses. The number of epochs used
in training depends on the problem, the size of the data set and other factors; and it
is important to adjust the number of epochs to obtain a balance between model fit and
generalizability to new data, since a very high number of epochs can lead to overtraining
the model and distorting the results (see Figure 4.6). For this reason, in this project,
different trainings have been performed with different number of epochs (from 10 to 240)
to see which one fits better to this model. In addition, in each training some parameters
are modified , such as the batch size that specifies the number of training samples to
be used in each training step to update the model parameters. It is common to divide
the training dataset into smaller batches instead of using all samples at once. Having a
larger batch size can speed up training since fewer weight updates are performed, but
it can also require more GPU memory. On the other hand, a smaller batch size can
lead to more frequent weight updates and can allow for more stable training. And this
is where a problem has arisen in the development of this project, since for training in
JupyterNotebook the GPU of the personal computer was somewhat limited and only
supported batch of size 1 and therefore the model did much slower training, while the
Google Colab GPU supported at most a batch of 6. This is one of the reasons why it was
decided to use two different programming environments, as well as to perform several
trainings simultaneously. Other parameters that have been modified in the different
trainings are the sizes of the input and output images, and the buffer size for data
shuffling or randomization operations.

Finally, after each training, the results were analyzed, both the quality and accuracy
of the generated images, as well as the loss, which is a measure that quantifies the
discrepancy between the model predictions and the real values of the training data. Loss
is a function that is used during training to guide the model toward better predictive
ability. The objective of the model is to minimize the loss, i.e. to reduce the discrepancy

32 Work Development and Results

Figure 4.6: Example of results of some training sessions that ended in overtraining

4.1. Work Development 33

between the predictions and the actual values. Depending on the results obtained, some
parameters of the model were modified and another training was performed and so on
until the result obtained was as close as possible to what we wanted to achieve with this
project.

As this model is a slow convergence model, the training processes are slow and very
long. The time spent only in the training for this project is approximately 520 hours
approx., which may seem like a lot, but a project of this magnitude requires many more.
In Section 4.2 the results of some of these trainings are explained in more detail, as well
as the final result that has been possible to achieve with the limitations of hardware,
software and time.

4.1.2 User Application Development

This section explains how the application has been developed and in Appendix A.2 the
most relevant code fragments are shown.

Since the neural network training has been performed in Python, the PyCharm
programming environment has been used to implement the application in Python. In
addition, the Tkinter tool has been used for the development of the graphical user
interface and the OpenCV library for camera detection and other image interactions.
In this project, the application is a tool to show the user the work done by the model
trainings. The application is responsible for applying the weights generated by the model
to an image of a human face that can be either taken with the computer’s webcam or
uploaded from the device, and transform it to anime style.

As mentioned above, the Tkinter library and some of its elements have been used
to design the user interface. Some of the elements that have been used are the buttons
with the Button() function, the labels with the Label() function to add text or images,
and for reading these images the PhotoImage() function. In order to upload an image
from the computer, the function filedialog.askopenfilename() has been used, which
opens a new window to select files from the local directories (see Figure 4.7). In this case
it has been specified to detect only PNG files since the PhotoImage() function does not
allow other image formats such as JPG or JPEG. To take a picture with the computer’s
webcam (if available, if not, an error message is displayed on the screen. See Figure 4.8)
it has been used the OpenCV library which is in charge of starting the webcam with
the function cv2.VideoCapture(0) (in this case, 0 refers to the first camera detected by
default) and generate an image for each frame to later display it on the screen with the
Tkinter library in a loop and thus generate the video effect in real time. To take the
picture, simply save the last generated frame and interrupt the loop. Finally, to generate
the new image with the anime style the TensorFlow and Keras libraries are used again
to read the weights of the pre-trained model and do the image-to-image translation, for
this the CycleGan model class and some of its functions must be defined again. This
process is performed four times to provide the user with four different transformations
by applying four different weights.

34 Work Development and Results

Figure 4.7: File selection window generated by filedialog.askopenfilename() Tkinter
function

Figure 4.8: Error message when webcam is not available

4.2. Results 35

4.2 Results

A total of over 40 training sessions have been conducted and examined, exploring various
combinations of parameter values such as the number of epochs, batch size, image size,
and more. The outcomes of selected training sessions are presented below, along with
the altered parameters and their impact on the model. Finally, the conclusions drawn
from these experiments are summarized.

Figure 4.9 shows two of the first trainings that were performed in Google Colab, the
first one (A) is the result of 10 epochs with 1000 sample images, while the second one (B)
is the result of 8 epochs with 2000 samples. In the example it can be seen that a higher
number of samples leads to a higher quality result, however increasing the number of
samples also increases the time it takes for the model to learn (the first one took 2 hours
and the second one 4 hours).

Figure 4.9: (a): 10 epochs - 1000 samples - 2h approx. (b): 8 epochs - 2000 samples -
4h approx

Figure 4.10 shows two of the trainings that were performed in Jupyter Notebook,
both are the result of 56 epochs with 2000 sample images, but this time we introduce a
new modification in the learning_rate variable. The learning_rate of the first one (A) is
2e-4 , while the learning_rate of the second one (B) is 2e-3. The learning rate determines
the step size that the optimization algorithm takes to update the model weights during
training. If the learning rate is too high, the algorithm may skip local minima and
diverge. If it is too low, the model may take a long time to converge to an acceptable

36 Work Development and Results

solution. Therefore, finding an appropriate learning rate is important to ensure that the
model converges quickly and accurately. After different trainings with different learning
rate values, it has been concluded that the default value in the base implementation of
the model (2e-4) was quite adequate.

Figure 4.10: (a): 56 epochs - 2000 samples - learning_rate=2e-4 - 65h approx. (b): 56
epochs - 2000 samples - learning_rate=2e-3 - 61h approx

During the development of the project, the dataset was modified to make it more
efficient and 1000 more samples were added, since with 2000 samples it reached over-
training very quickly (around epoch 60). Figure 4.11 shows the results of training 60
epochs with 2000 samples (A) and the results of training 80 epochs with 3000 samples
(B). In addition, in training B the value of image size and buffer size have also been
modified to half the value of training A, which significantly reduces the training time.

As mentioned above, two different programming environments (Google Colab and
Jupyter Notebook) were used to train the model. This is due to the limitations that
each of them has and that has been a drawback in the development of the project.
Google Colab has GPU usage limitations and therefore it was only possible to train in
4-hour intervals and leaving 24 hours between each training. On the other hand, Jupyter
Notebook did not have this limitation, but the GPU capacity of the personal computer
was more reduced and therefore the trainings took longer to complete. In addition, for
the same reason, only batch size 1 trainings could be performed, while in Google Colab

4.2. Results 37

Figure 4.11: (a): 60 epochs - 2000 samples - learning_rate=2e-4 - buffer_size=256
- input_img_size=(256, 256, 3) - 70h approx. (b): 80 epochs - 3000 samples -
learning_rate=2e-4 - buffer_size=128 - input_img_size=(128, 128, 3) - 53h approx

the batch size could be up to 6. Figure 4.12 shows a training in Google Colab (A) of 30
epochs with batch_size=2, and another training in JupyterNotebook (B) of 30 epochs
with batch_size=1.

Finally, it has been concluded that the best results are obtained in batch 1 train-
ing, between 130 and 180 epochs, with 3000 samples and with the following parameters:
learning_rate=2e-4, buffer_size=128 and input_img_size=(128, 128, 3). Figure 4.13
shows one of the best results obtained.

All the tasks and subtasks that were initially planned have been completed and the
proposed milestones have been achieved. However, due to time constraints, the training
results are not of the best possible quality, although if more time were available and
longer training sessions could be carried out, they would be significantly improved.

This project could be applied as an API or plugin to be used as a tool for the
automatic generation of avatars in video games and other interactive applications.The
complete project (model implementation and user application) is available at GitHub.

https://github.com/al395603/Face2Anime-Translation

38 Work Development and Results

Figure 4.12: (a): 30 epochs - 3000 samples - learning_rate=2e-4 - buffer_size=128 -
input_img_size=(128, 128, 3) - batch 2 - 8h approx. (b): 30 epochs - 3000 samples -
learning_rate=2e-4 - buffer_size=128 - input_img_size=(128, 128, 3) - batch 1 - 20h
approx

4.2. Results 39

Figure 4.13: 180 epochs - 3000 samples - learning_rate=2e-4 - buffer_size=128 - in-
put_img_size=(128, 128, 3) - batch 1

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 41
5.2 Future work . 42

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

Although this project had the added difficulty that it was a totally new field for me and
that nothing has been studied in the career about it, it has been very interesting for me
to investigate and learn how this type of neural network models work. And although the
results are not what I expected to get at the beginning of the project, this has not been
a demotivation for me, on the opposite, I consider that I underestimated the difficulty
of embracing a field like this and that it really is a terrain where it is difficult to move
without any previous knowledge. For that reason, I am satisfied with the results since I
have invested a great effort to achieve them.

Regarding report, it has been somewhat complicated for me to explain the technical
concepts of the implementation of this model, since they should be simple enough to
be understood by a person without knowledge in this area, but at the same time they
should be technical enough for a project of this magnitude. In summary, it was difficult
to find the middle ground between the unintelligible and the vulgar.

41

42 Conclusions and Future Work

Currently, there exist numerous ethical dilemmas surrounding artificial intelligence
as a result of its rapid advancement and the potential consequences it may bring to
society. Personally, I hold the belief that artificial intelligence is making a positive impact
on technological advancements, offering us a multitude of applications to enhance our
products and overall quality of life. Undoubtedly, its utilization can greatly benefit
society, enabling us to surpass limitations that would otherwise be insurmountable for
human beings. Therefore, it remains crucial to persist in research and advancements
within this field, striving for continual improvement.

5.2 Future work
In terms of improving this project, I would like to spend more hours training and tuning
the model, as well as improving the dataset to achieve more accurate results. To improve
the dataset I would add more samples and make a more meticulous selection of the
images. In addition, I would include classifications of faces by gender, age, and other
determining features, to help the model better associate both domains (human-anime).
I would also like to add new domains (such as cartoon images like Disney, etc) to do the
image-to-image translation of human faces to other styles.

Another improvement I could add would be to use a deep learning model in the user
application to discriminate images uploaded or photos taken that are not human faces,
in order to avoid erroneous translations. And as I mentioned before, I would like to use
this project as an API so that it can be used by third party applications.

In addition to working on improving this own project, as I mentioned at the begin-
ning, the customization and the self-representation of avatars in video games is something
that especially attracts my attention, as well as the different applications of deep learn-
ing and neural networks. That is why in the future I would like to continue researching
this field, and in particular, to investigate how to apply this system to 3D models in
order to modify automatically the polygonal mesh of the characters in 3D video games.

Bibliography

[1] Szolin, K., Kuss, D. J., Nuyens, F., & Griffiths, M. D. Exploring the user-
avatar relationship in videogames: A systematic review of the proteus effect.
https://doi.org/10.1080/07370024.2022.2103419. Accessed: 2023-06-23.

[2] Turkay, S., & Kinzer, C. K. The effects of avatar-based customization on player
identification. https://doi.org/10.4018/ijgcms.2014010101. Accessed: 2023-06-23.

[3] Rahill, K. M., & Sebrechts, M. M. Effects of avatar player-similarity and player-
construction on gaming performance. https://doi.org/10.1016/j.chbr.2021.100131.
Accessed: 2023-06-23.

[4] Pang, Y. Image-to-Image Translation: Methods and Applications.
https://arxiv.org/abs/2101.08629. Accessed: 2023-06-23.

[5] J. Zhu. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. https://arxiv.org/abs/1703.10593. Accessed: 2023-06-23.

[6] Google colaboratory. https://colab.research.google.com/.

[7] Project jupyter. https://jupyter.org/.

[8] Anaconda | The world’s most popular data science platform.
https://www.anaconda.com/.

[9] Pycharm: el ide de python para desarrolladores profesionales, por jetbrains.
https://www.jetbrains.com/es-es/pycharm/.

[10] Tensorflow. https://www.tensorflow.org/?hl=es-419.

[11] Keras: Deep learning for humans. https://keras.io/.

[12] Tkinter — Interface de python para tcl/tk.
https://docs.python.org/es/3/library/tkinter.html.

[13] Opencv - Open computer vision library. https://opencv.org/.

[14] Github: Let’s build from here. https://github.com/.

[15] Manage your team’s projects from anywhere | Trello. https://trello.com/.

43

44 Bibliography

[16] Texstudio - A latex editor. https://www.texstudio.org/.

[17] Sueldo de data engineer/a en españa. https://es.indeed.com/career/data-
engineer/salarie. Accessed: 2023-06-23.

[18] Sueldo de programador/a junior en españa. https://es.indeed.com/career/programador-
junior/salaries. Accessed: 2023-06-23.

[19] Tecnopc. ¿Qué son los núcleos CUDA? • Tarjetas Gráficas PC.
https://tarjetasgraficaspc.com/que-son-nucleos-cuda/. Accessed: 2023-06-23.

[20] Admin. 30 Anime Black and White Wallpapers - Wallpaperboat.
https://wallpaperboat.com/anime-black-and-white-wallpapers. Accessed: 2023-06-
23.

[21] Generador de Logos y Gráficos. https://es.cooltext.com/.

[22] Call-to-Action Button Generator - Design buttons & download as CSS PNG.
https://buttonoptimizer.com/.

[23] Flaticon. Photo camera interface symbol for button Icon - 45010.
https://www.flaticon.com/free-icon/photo-camera-interface-symbol-for-
button_45010. Accessed: 2023-06-23.

[24] Flaticon. Home button Icon - 61972. https://www.flaticon.com/free-icon/home-
button_61972. Accessed: 2023-06-23.

[25] T. Karras. A Style-Based Generator Architecture for Generative Adversarial Net-
works. https://arxiv.org/abs/1812.04948. Accessed: 2023-06-23.

[26] K. Team. Keras documentation: Face image generation with StyleGAN.
https://keras.io/examples/generative/stylegan/. Accessed: 2023-06-23.

[27] Anime Faces vs Human Faces. https://www.kaggle.com/datasets/sanyam1992000/anime-
faces-vs-human-faces. Accessed: 2023-06-23.

[28] Human Faces. https://www.kaggle.com/datasets/ashwingupta3012/human-faces.
Accessed: 2023-06-23.

[29] Lmtri. Face2Anime-using-CycleGAN/datasets at main · lmtri1998/Face2Anime-
using-CycleGAN. https://github.com/lmtri1998/Face2Anime-using-
CycleGAN/tree/main/datasets. Accessed: 2023-06-23.

[30] K. Team. Keras documentation: CycleGAN.
https://keras.io/examples/generative/cyclegan/. Accessed: 2023-06-23.

A
p

p
e

n
d

ix A
Source code

A.1 Neural Network Model
This section explains in detail the structure of the implemented model and how it works.

Setup

1 import os

2 import numpy as np

3 import matplotlib.pyplot as plt

4
5 import tensorflow as tf

6 from tensorflow import keras

7 from tensorflow.keras import layers

8
9 import tensorflow_addons as tfa

10 autotune = tf.data.AUTOTUNE

This code snippet imports the following libraries: os, numpy (renamed as np), mat-
plotlib.pyplot (renamed as plt), tensorflow (renamed as tf), and tensorflow_addons (re-
named as tfa). It also configures the autotune variable to use TensorFlow’s "AUTO-
TUNE" option.

These libraries are used for different purposes:

• os: Provides functions for interacting with the operating system, particularly for
file and directory-related operations.

• numpy: A popular library for numerical computations in Python, commonly used
for manipulating arrays and performing efficient mathematical operations.

45

46 Source code

• matplotlib.pyplot: A visualization library in Python that provides a MATLAB-
like interface for creating plots and visualizations.

• tensorflow: An open-source machine learning library developed by Google. It is
used for building and training machine learning models, especially neural networks.

• tensorflow.keras.layers: A sub-module of TensorFlow’s Keras API that offers
pre-defined layers used for constructing neural network models.

• tensorflow_addons: An additional library for TensorFlow that provides extra
implementations of advanced algorithms and layers to enhance and extend Ten-
sorFlow’s capabilities.

• autotune: A variable set to utilize TensorFlow’s "AUTOTUNE" option, which
automatically selects the best performance configuration based on the execution
context.

Prepare the dataset

1 # Define the path of our local dataset

2 dataset_path = "./Data"

3
4 # Function to obtain image paths

5 def get_image_paths(dataset_dir):

6 image_paths = []

7 for root, _, files in os.walk(dataset_dir):

8 for file in files:

9 if file.endswith(".jpg") or file.endswith(".png"):

10 image_path = os.path.join(root, file)

11 image_paths.append(image_path)

12
13 return image_paths

14
15 # Obtain the routes of the training and test images.

16 train_human_paths = get_image_paths(os.path.join(dataset_path, "trainA"))

17 train_anime_paths = get_image_paths(os.path.join(dataset_path, "trainB"))

18 test_human_paths = get_image_paths(os.path.join(dataset_path, "testA"))

19 test_anime_paths = get_image_paths(os.path.join(dataset_path, "testB"))

20
21 # Create the datasets for training and testing

22 train_human_ds = tf.data.Dataset.from_generator(lambda: train_human_paths, output_types=tf.string)

23 train_anime_ds = tf.data.Dataset.from_generator(lambda: train_anime_paths, output_types=tf.string)

24 test_human_ds = tf.data.Dataset.from_generator(lambda: test_human_paths, output_types=tf.string)

25 test_anime_ds = tf.data.Dataset.from_generator(lambda: test_anime_paths, output_types=tf.string)

26
27
28
29 # Define the standard image size.

30 orig_img_size = (158, 158)

31 # Size of the random crops to be used during training.

A.1. Neural Network Model 47

32 input_img_size = (128, 128, 3)

33 # Weights initializer for the layers.

34 kernel_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)

35 # Gamma initializer for instance normalization.

36 gamma_init = keras.initializers.RandomNormal(mean=0.0, stddev=0.02)

37
38 buffer_size = 128

39 batch_size = 1

40
41
42 def normalize_img(img):

43 img = tf.cast(img, dtype=tf.float32)

44 # Map values in the range [-1, 1]

45 return (img / 127.5) - 1.0

46
47
48 def preprocess_train_image(path):

49 img = tf.io.read_file(path)

50 img = tf.image.decode_jpeg(img, channels=3)

51
52 # Random flip

53 img = tf.image.random_flip_left_right(img)

54 # Resize to the original size first

55 img = tf.image.resize(img, [*orig_img_size])

56 # Random crop to 256X256

57 img = tf.image.random_crop(img, size=[*input_img_size])

58 # Normalize the pixel values in the range [-1, 1]

59 img = normalize_img(img)

60 return img

61
62
63 def preprocess_test_image(path):

64 img = tf.io.read_file(path)

65 img = tf.image.decode_jpeg(img, channels=3)

66
67 # Only resizing and normalization for the test images.

68 img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])

69 img = normalize_img(img)

70 return img

This code fragment is responsible for loading and preparing images for use in the
training and testing process of the machine learning model. First, image paths are ob-
tained within a specific directory and datasets are created using the obtained image
paths. These datasets are used for training and testing the model. Then, image prepro-
cessing functions are defined for training and testing. These functions read the images
from the paths, apply preprocessing operations such as random flipping, resizing and
normalization, and return the preprocessed images.

Create Dataset objects

1 # Apply the preprocessing operations to the training data

48 Source code

2 train_human = (

3 train_human_ds.map(preprocess_train_image, num_parallel_calls=autotune)

4 .cache()

5 .shuffle(buffer_size)

6 .batch(batch_size)

7)

8 train_anime = (

9 train_anime_ds.map(preprocess_train_image, num_parallel_calls=autotune)

10 .cache()

11 .shuffle(buffer_size)

12 .batch(batch_size)

13)

14
15 # Apply the preprocessing operations to the test data

16 test_human = (

17 test_human_ds.map(preprocess_test_image, num_parallel_calls=autotune)

18 .cache()

19 .shuffle(buffer_size)

20 .batch(batch_size)

21)

22 test_anime = (

23 test_anime_ds.map(preprocess_test_image, num_parallel_calls=autotune)

24 .cache()

25 .shuffle(buffer_size)

26 .batch(batch_size)

27)

Here the preprocessing operations are applied together with the cache() method
to cache the data in memory to improve performance and the shuffle(buffer_size)

method to randomize the data with a specified buffer size. Finally, the data is batched
(batch_size) using the batch() method.

Visualize some samples

1 _, ax = plt.subplots(4, 2, figsize=(10, 15))

2 for i, samples in enumerate(zip(train_human.take(4), train_anime.take(4))):

3 human = (((samples[0][0] * 127.5) + 127.5).numpy()).astype(np.uint8)

4 anime = (((samples[1][0] * 127.5) + 127.5).numpy()).astype(np.uint8)

5 ax[i, 0].imshow(human)

6 ax[i, 1].imshow(anime)

7 plt.show()

This fragment shows some examples of the images in the dataset.

Building blocks used in the CycleGAN generators and discriminators

1 class ReflectionPadding2D(layers.Layer):

2 """Implements Reflection Padding as a layer.

3
4 Args:

5 padding(tuple): Amount of padding for the

A.1. Neural Network Model 49

6 spatial dimensions.

7
8 Returns:

9 A padded tensor with the same type as the input tensor.

10 """

11
12 def __init__(self, padding=(1, 1), **kwargs):

13 self.padding = tuple(padding)

14 super().__init__(**kwargs)

15
16 def call(self, input_tensor, mask=None):

17 padding_width, padding_height = self.padding

18 padding_tensor = [

19 [0, 0],

20 [padding_height, padding_height],

21 [padding_width, padding_width],

22 [0, 0],

23]

24 return tf.pad(input_tensor, padding_tensor, mode="REFLECT")

25
26
27 def residual_block(

28 x,

29 activation,

30 kernel_initializer=kernel_init,

31 kernel_size=(3, 3),

32 strides=(1, 1),

33 padding="valid",

34 gamma_initializer=gamma_init,

35 use_bias=False,

36):

37 dim = x.shape[-1]

38 input_tensor = x

39
40 x = ReflectionPadding2D()(input_tensor)

41 x = layers.Conv2D(

42 dim,

43 kernel_size,

44 strides=strides,

45 kernel_initializer=kernel_initializer,

46 padding=padding,

47 use_bias=use_bias,

48)(x)

49 x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)

50 x = activation(x)

51
52 x = ReflectionPadding2D()(x)

53 x = layers.Conv2D(

54 dim,

55 kernel_size,

56 strides=strides,

57 kernel_initializer=kernel_initializer,

58 padding=padding,

59 use_bias=use_bias,

50 Source code

60)(x)

61 x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)

62 x = layers.add([input_tensor, x])

63 return x

64
65
66 def downsample(

67 x,

68 filters,

69 activation,

70 kernel_initializer=kernel_init,

71 kernel_size=(3, 3),

72 strides=(2, 2),

73 padding="same",

74 gamma_initializer=gamma_init,

75 use_bias=False,

76):

77 x = layers.Conv2D(

78 filters,

79 kernel_size,

80 strides=strides,

81 kernel_initializer=kernel_initializer,

82 padding=padding,

83 use_bias=use_bias,

84)(x)

85 x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)

86 if activation:

87 x = activation(x)

88 return x

89
90
91 def upsample(

92 x,

93 filters,

94 activation,

95 kernel_size=(3, 3),

96 strides=(2, 2),

97 padding="same",

98 kernel_initializer=kernel_init,

99 gamma_initializer=gamma_init,

100 use_bias=False,

101):

102 x = layers.Conv2DTranspose(

103 filters,

104 kernel_size,

105 strides=strides,

106 padding=padding,

107 kernel_initializer=kernel_initializer,

108 use_bias=use_bias,

109)(x)

110 x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)

111 if activation:

112 x = activation(x)

113 return x

A.1. Neural Network Model 51

This code fragment defines several functions and a class to implement the CycleGAN
style neural network architecture.

The ReflectionPadding2D() class implements the reflection padding method in two
dimensions. This layer is used to add the reflection padding to the convolution input,
which allows to better preserve the image features.

The residual_block() function implements a residual block of the neural network.
Residual blocks are important to help the network learn complex nonlinear transforma-
tions. In this case, two 2D convolutions with a ReLU activation function and an instance
normalization layer are used. The reflection padding layer is also applied to the residual
block input.

The downsample() and upsample() functions implement down-sample and up-sample
layers, respectively. Downsampling is used to reduce the image size and increase the
number of image features, while upsampling is used to increase the image size and
reduce the number of features.

Build the generators

The generator consists of downsampling blocks: nine residual blocks and upsampling
blocks. The structure of the generator is the following:

1 """

2 c7s1-64 ==> Conv block with ‘relu‘ activation, filter size of 7

3 d128 ====|

4 |-> 2 downsampling blocks

5 d256 ====|

6 R256 ====|

7 R256 |

8 R256 |

9 R256 |

10 R256 |-> 9 residual blocks

11 R256 |

12 R256 |

13 R256 |

14 R256 ====|

15 u128 ====|

16 |-> 2 upsampling blocks

17 u64 ====|

18 c7s1-3 => Last conv block with ‘tanh‘ activation, filter size of 7.

19 """

1 def get_resnet_generator(

2 filters=64,

3 num_downsampling_blocks=2,

4 num_residual_blocks=9,

5 num_upsample_blocks=2,

6 gamma_initializer=gamma_init,

7 name=None,

8):

52 Source code

9 img_input = layers.Input(shape=input_img_size, name=name + "_img_input")

10 x = ReflectionPadding2D(padding=(3, 3))(img_input)

11 x = layers.Conv2D(filters, (7, 7), kernel_initializer=kernel_init, use_bias=False)(

12 x

13)

14 x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)

15 x = layers.Activation("relu")(x)

16
17 # Downsampling

18 for _ in range(num_downsampling_blocks):

19 filters *= 2

20 x = downsample(x, filters=filters, activation=layers.Activation("relu"))

21
22 # Residual blocks

23 for _ in range(num_residual_blocks):

24 x = residual_block(x, activation=layers.Activation("relu"))

25
26 # Upsampling

27 for _ in range(num_upsample_blocks):

28 filters //= 2

29 x = upsample(x, filters, activation=layers.Activation("relu"))

30
31 # Final block

32 x = ReflectionPadding2D(padding=(3, 3))(x)

33 x = layers.Conv2D(3, (7, 7), padding="valid")(x)

34 x = layers.Activation("tanh")(x)

35
36 model = keras.models.Model(img_input, x, name=name)

37 return model

The function starts by creating an image input using the Keras Input() class. Then,
a reflection padding is performed on the image using the ReflectionPadding2D() class.
A 7x7 convolutional layer with a number of filters is applied, followed by instance nor-
malization and ReLU activation.

Then, a number of downsampling blocks are applied, each reducing the spatial reso-
lution of the image by half. After the downsampling blocks, a number of residual blocks
are applied to allow for connection hops in the network.

After the residual blocks, a number of upsampling blocks are applied, each doubling
the spatial resolution of the image. Finally, a final padding reflection block is applied,
followed by a 7x7 convolutional layer with 3 filters and a hyperbolic tangent activation
(tanh).

The model is compiled using the image input and the output generated by the last
convolutional layer, and returned as an instance of the Keras Model() class.

Build the discriminators

The discriminators implement the following architecture: C64->C128->C256->C512
1 def get_discriminator(

2 filters=64, kernel_initializer=kernel_init, num_downsampling=3, name=None

A.1. Neural Network Model 53

3):

4 img_input = layers.Input(shape=input_img_size, name=name + "_img_input")

5 x = layers.Conv2D(

6 filters,

7 (4, 4),

8 strides=(2, 2),

9 padding="same",

10 kernel_initializer=kernel_initializer,

11)(img_input)

12 x = layers.LeakyReLU(0.2)(x)

13
14 num_filters = filters

15 for num_downsample_block in range(3):

16 num_filters *= 2

17 if num_downsample_block < 2:

18 x = downsample(

19 x,

20 filters=num_filters,

21 activation=layers.LeakyReLU(0.2),

22 kernel_size=(4, 4),

23 strides=(2, 2),

24)

25 else:

26 x = downsample(

27 x,

28 filters=num_filters,

29 activation=layers.LeakyReLU(0.2),

30 kernel_size=(4, 4),

31 strides=(1, 1),

32)

33
34 x = layers.Conv2D(

35 1, (4, 4), strides=(1, 1), padding="same", kernel_initializer=kernel_initializer

36)(x)

37
38 model = keras.models.Model(inputs=img_input, outputs=x, name=name)

39 return model

40
41
42 # Get the generators

43 gen_G = get_resnet_generator(name="generator_G")

44 gen_F = get_resnet_generator(name="generator_F")

45
46 # Get the discriminators

47 disc_X = get_discriminator(name="discriminator_X")

48 disc_Y = get_discriminator(name="discriminator_Y")

This code fragment defines a function to create a discriminator that takes an input
image and produces a single-valued output indicating whether the image is real or false.
The discriminator is constructed using a series of convolutional and down-sampling layers
that reduce the spatial resolution of the image and increase the number of channels.
Finally, a 1x1 convolution layer is used to produce a single-valued output.

54 Source code

After constructing the get_discriminator function, the code also defines two ResNet
generators, gen_G and gen_F, using the get_resnet_generator() function. Next, the
code creates two discriminators, disc_X and disc_Y, using the get_discriminator()

function.

Build the CycleGAN model

1 class CycleGan(keras.Model):

2 def __init__(

3 self,

4 generator_G,

5 generator_F,

6 discriminator_X,

7 discriminator_Y,

8 lambda_cycle=10.0,

9 lambda_identity=0.5,

10):

11 super().__init__()

12 self.gen_G = generator_G

13 self.gen_F = generator_F

14 self.disc_X = discriminator_X

15 self.disc_Y = discriminator_Y

16 self.lambda_cycle = lambda_cycle

17 self.lambda_identity = lambda_identity

18
19 def call(self, inputs):

20 return (

21 self.disc_X(inputs),

22 self.disc_Y(inputs),

23 self.gen_G(inputs),

24 self.gen_F(inputs),

25)

26
27 def compile(

28 self,

29 gen_G_optimizer,

30 gen_F_optimizer,

31 disc_X_optimizer,

32 disc_Y_optimizer,

33 gen_loss_fn,

34 disc_loss_fn,

35):

36 super().compile()

37 self.gen_G_optimizer = gen_G_optimizer

38 self.gen_F_optimizer = gen_F_optimizer

39 self.disc_X_optimizer = disc_X_optimizer

40 self.disc_Y_optimizer = disc_Y_optimizer

41 self.generator_loss_fn = gen_loss_fn

42 self.discriminator_loss_fn = disc_loss_fn

43 self.cycle_loss_fn = keras.losses.MeanAbsoluteError()

44 self.identity_loss_fn = keras.losses.MeanAbsoluteError()

45

A.1. Neural Network Model 55

46 def train_step(self, batch_data):

47 # x is Human and y is anime

48 real_x, real_y = batch_data

49
50 # For CycleGAN, we need to calculate different

51 # kinds of losses for the generators and discriminators.

52 # We will perform the following steps here:

53 #

54 # 1. Pass real images through the generators and get the generated images

55 # 2. Pass the generated images back to the generators to check if we

56 # we can predict the original image from the generated image.

57 # 3. Do an identity mapping of the real images using the generators.

58 # 4. Pass the generated images in 1) to the corresponding discriminators.

59 # 5. Calculate the generators total loss (adverserial + cycle + identity)

60 # 6. Calculate the discriminators loss

61 # 7. Update the weights of the generators

62 # 8. Update the weights of the discriminators

63 # 9. Return the losses in a dictionary

64
65 with tf.GradientTape(persistent=True) as tape:

66 # Human to fake anime

67 fake_y = self.gen_G(real_x, training=True)

68 # Anime to fake human -> y2x

69 fake_x = self.gen_F(real_y, training=True)

70
71 # Cycle (Human to fake anime to fake human): x -> y -> x

72 cycled_x = self.gen_F(fake_y, training=True)

73 # Cycle (Anime to fake human to fake anime) y -> x -> y

74 cycled_y = self.gen_G(fake_x, training=True)

75
76 # Identity mapping

77 same_x = self.gen_F(real_x, training=True)

78 same_y = self.gen_G(real_y, training=True)

79
80 # Discriminator output

81 disc_real_x = self.disc_X(real_x, training=True)

82 disc_fake_x = self.disc_X(fake_x, training=True)

83
84 disc_real_y = self.disc_Y(real_y, training=True)

85 disc_fake_y = self.disc_Y(fake_y, training=True)

86
87 # Generator adverserial loss

88 gen_G_loss = self.generator_loss_fn(disc_fake_y)

89 gen_F_loss = self.generator_loss_fn(disc_fake_x)

90
91 # Generator cycle loss

92 cycle_loss_G = self.cycle_loss_fn(real_y, cycled_y) * self.lambda_cycle

93 cycle_loss_F = self.cycle_loss_fn(real_x, cycled_x) * self.lambda_cycle

94
95 # Generator identity loss

96 id_loss_G = (

97 self.identity_loss_fn(real_y, same_y)

98 * self.lambda_cycle

99 * self.lambda_identity

56 Source code

100)

101 id_loss_F = (

102 self.identity_loss_fn(real_x, same_x)

103 * self.lambda_cycle

104 * self.lambda_identity

105)

106
107 # Total generator loss

108 total_loss_G = gen_G_loss + cycle_loss_G + id_loss_G

109 total_loss_F = gen_F_loss + cycle_loss_F + id_loss_F

110
111 # Discriminator loss

112 disc_X_loss = self.discriminator_loss_fn(disc_real_x, disc_fake_x)

113 disc_Y_loss = self.discriminator_loss_fn(disc_real_y, disc_fake_y)

114
115 # Get the gradients for the generators

116 grads_G = tape.gradient(total_loss_G, self.gen_G.trainable_variables)

117 grads_F = tape.gradient(total_loss_F, self.gen_F.trainable_variables)

118
119 # Get the gradients for the discriminators

120 disc_X_grads = tape.gradient(disc_X_loss, self.disc_X.trainable_variables)

121 disc_Y_grads = tape.gradient(disc_Y_loss, self.disc_Y.trainable_variables)

122
123 # Update the weights of the generators

124 self.gen_G_optimizer.apply_gradients(

125 zip(grads_G, self.gen_G.trainable_variables)

126)

127 self.gen_F_optimizer.apply_gradients(

128 zip(grads_F, self.gen_F.trainable_variables)

129)

130
131 # Update the weights of the discriminators

132 self.disc_X_optimizer.apply_gradients(

133 zip(disc_X_grads, self.disc_X.trainable_variables)

134)

135 self.disc_Y_optimizer.apply_gradients(

136 zip(disc_Y_grads, self.disc_Y.trainable_variables)

137)

138
139 return {

140 "G_loss": total_loss_G,

141 "F_loss": total_loss_F,

142 "D_X_loss": disc_X_loss,

143 "D_Y_loss": disc_Y_loss,

144 }

This code snippet defines a CycleGAN model in TensorFlow as a subclass of keras.Model.
The class constructor initializes the generators (gen_G and gen_F), discriminators
(disc_X and disc_Y), and other parameters such as lambda values for cycle loss and
identity loss. The call() method defines the forward pass of the model, where it
passes the input through the discriminators and generators, returning the outputs. The
compile() method sets up the optimizers and loss functions for training the model. The

A.1. Neural Network Model 57

train_step() method defines a single training step, where it performs operations for
training the CycleGAN model. This includes generating fake images, calculating losses
for generators and discriminators, calculating gradients, and updating the weights of the
networks. And finally, the method returns a dictionary containing the calculated losses
during the training step.

Create a callback that periodically saves generated images

1 class GANMonitor(keras.callbacks.Callback):

2 """A callback to generate and save images after each epoch"""

3
4 def __init__(self, num_img=4):

5 self.num_img = num_img

6
7 def on_epoch_end(self, epoch, logs=None):

8 _, ax = plt.subplots(4, 2, figsize=(12, 12))

9 for i, img in enumerate(test_human.take(self.num_img)):

10 prediction = self.model.gen_G(img)[0].numpy()

11 prediction = (prediction * 127.5 + 127.5).astype(np.uint8)

12 img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8)

13
14 ax[i, 0].imshow(img)

15 ax[i, 1].imshow(prediction)

16 ax[i, 0].set_title("Input image")

17 ax[i, 1].set_title("Translated image")

18 ax[i, 0].axis("off")

19 ax[i, 1].axis("off")

20
21 prediction = keras.preprocessing.image.array_to_img(prediction)

22 prediction.save(

23 "generated_img_{i}_{epoch}.png".format(i=i, epoch=epoch + 1)

24)

25 plt.show()

26 plt.close()

This code is a method that is executed at the end of each epoch during the training
of the deep learning model. The method generates a translated image (prediction) from
each input image (img), visualizes the images generated by the model during the training
process and saves each generated image in a PNG file using the Keras save() function.
This allows the user to observe how the model is improving as the training progresses.

Train the end-to-end model

1 # Loss function for evaluating adversarial loss

2 adv_loss_fn = keras.losses.MeanSquaredError()

3
4 # Define the loss function for the generators

5 def generator_loss_fn(fake):

6 fake_loss = adv_loss_fn(tf.ones_like(fake), fake)

7 return fake_loss

58 Source code

8
9

10 # Define the loss function for the discriminators

11 def discriminator_loss_fn(real, fake):

12 real_loss = adv_loss_fn(tf.ones_like(real), real)

13 fake_loss = adv_loss_fn(tf.zeros_like(fake), fake)

14 return (real_loss + fake_loss) * 0.5

15
16
17 # Create cycle gan model

18 cycle_gan_model = CycleGan(

19 generator_G=gen_G, generator_F=gen_F, discriminator_X=disc_X, discriminator_Y=disc_Y

20)

21
22 # Compile the model

23 cycle_gan_model.compile(

24 gen_G_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

25 gen_F_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

26 disc_X_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

27 disc_Y_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

28 gen_loss_fn=generator_loss_fn,

29 disc_loss_fn=discriminator_loss_fn,

30)

31
32 # Callbacks

33 plotter = GANMonitor()

34 checkpoint_filepath = "./model_checkpoints/cyclegan_checkpoints.{epoch:03d}"

35 checkpoint_dir = os.path.dirname(checkpoint_filepath)

36 model_checkpoint_callback = keras.callbacks.ModelCheckpoint(

37 filepath=checkpoint_filepath,

38 save_weights_only=True

39)

40
41 # Here we will train the model for 30 epochs.

42 cycle_gan_model.fit(

43 tf.data.Dataset.zip((train_human, train_anime)),

44 epochs=30,

45 callbacks=[plotter, model_checkpoint_callback],

46)

This code fragment defines the adversarial loss function and the loss functions of the
generators and discriminators. A cycle_gan_model object representing the CycleGAN
model is created and compiled, using the previously defined generators and discrimina-
tors, and callbacks are defined to display the images generated during training and to
store the model weights during training. Finally, the cycle_gan_model model is trained
using the training data (train_human and train_anime) for a number of epochs, in this
example 30.

Test the performance of the model.

1 # Load the checkpoints

A.2. User Application 59

2 latest = tf.train.latest_checkpoint(checkpoint_dir)

3 cycle_gan_model.load_weights(latest).expect_partial()

4 print("Weights loaded successfully")

5
6 _, ax = plt.subplots(4, 2, figsize=(10, 15))

7 for i, img in enumerate(test_human.take(4)):

8 prediction = cycle_gan_model.gen_G(img, training=False)[0].numpy()

9 prediction = (prediction * 127.5 + 127.5).astype(np.uint8)

10 img = (img[0] * 127.5 + 127.5).numpy().astype(np.uint8)

11
12 ax[i, 0].imshow(img)

13 ax[i, 1].imshow(prediction)

14 ax[i, 0].set_title("Input image")

15 ax[i, 1].set_title("Translated image")

16 ax[i, 0].axis("off")

17 ax[i, 1].axis("off")

18
19 prediction = keras.preprocessing.image.array_to_img(prediction)

20 prediction.save("predicted_img_{i}.png".format(i=i))

21 plt.tight_layout()

22 plt.show()

Finally, this code fragment loads the previously saved trained model weights using
tf.train.latest_checkpoint() to obtain the path to the most recent weights file, gen-
erates and displays the translated images using the CycleGAN model, and saves the
translated images as PNG files.

A.2 User Application

This section explains in detail some of the most important code fragments for the devel-
opment of the application.

Generate user interface

To generate a user interface, a root and its corresponding Frame() are created. Each
frame works as a box that contains elements of the Tkinter library, inside it the buttons,
labels, images, etc. are added.

1 root = Tk()

2 root.title("Face2Anime Translation")

3 root.geometry("1024x600")

4 root.resizable(False, False)

5 root.config(bg="#000a01")

6
7 initFrame = Frame()

8 initFrame.config(bg="#000a01", width="1024", height="600")

9 initFrame.pack()

10
11 root.mainloop()

60 Source code

Buttons and labels generation

Buttons and labels are generated as follows. First, images are assigned to each element
and then their parameters, such as background color, size and position, are modified. In
the case of adding an image, the Label() object is used, and to generate a button, the
Button() object is used together with the function that is called when it is pressed.

1 # Background image

2 imageBg = PhotoImage(file="imgs/ejemploFondo3.png")

3 bgLabel = Label(initFrame, image=imageBg, text="Background")

4 bgLabel.config(bg="#000a01")

5 bgLabel.place(x=60, y=0)

6
7 # Start button

8 imageBtStart = PhotoImage(file="imgs/buttonStart.png")

9 btnStart = Button(initFrame, text="Start", image=imageBtStart, command=startApp)

10 btnStart.place(x=130, y=380)

11 btnStart.config(bg="#000a01")

Start Camera

To start the camera, first a cameraObject is created using cv2.VideoCapture(0), which
represents the webcam and checks if the webcam could be opened correctly, if the camera
could not be opened an error window appears on the screen indicating that the camera
is not available. If the camera has been opened correctly, a new frame is loaded and
the displayCamera()) function is called. In this function, some transformations are
performed on the image, such as converting it from BGR to RGB, flipping it horizontally
and resizing it. Finally a recursive call to this function is scheduled after 10 milliseconds.
This allows to continuously update the captured image in real time.

1 def initCamera():

2 global captureFrame

3 global btnFrame

4 global captureLabel

5
6 global cameraObject

7
8 # Load webcam

9 messagebox.showinfo("Loading webcam",

10 "Wait while the webcam starts, it may take a few seconds.")

11 cameraObject = cv2.VideoCapture(0)

12 cameraObject.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

13 cameraObject.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

14
15 if cameraObject is not None:

16 retval, photo = cameraObject.read()

17 if retval == True:

18 # Hide Init Frame

19 initFrame.pack_forget()

20
21 # Create Capture Frame

A.2. User Application 61

22 captureFrame = Frame()

23 captureFrame.config(width="600", height="600")

24 captureFrame.pack()

25
26 captureLabel = Label(captureFrame)

27 captureLabel.config(width="600", height="600")

28 captureLabel.pack()

29
30 # Create Buttons Frame

31 btnFrame = Frame()

32 btnFrame.config(bg="#000a01", width="212", height="600")

33 btnFrame.place(x=812, y=0)

34
35 # Camera Button

36 btnCamera = Button(btnFrame, text="Camera",

37 image=imageBtCamera, command=takePhoto)

38 btnCamera.place(x=30, y=270)

39
40 # HomeButton

41 btnHome = Button(btnFrame, text="Home", image=imageBtHome, command=goHome)

42 btnHome.place(x=155, y=545)

43
44 displayCamera()

45
46 else:

47 messagebox.showerror("Error", "Not webcam available")

1 def displayCamera():

2 global photo

3 if cameraObject is not None:

4 retval, photo = cameraObject.read()

5 if retval == True:

6 photo = cv2.cvtColor(photo, cv2.COLOR_BGR2RGB) # Change color to rgb

7 photo = cv2.flip(photo, 1) # Flip horizontally

8 img = Image.fromarray(photo)

9 img = img.resize((800, 600)) # 640x480 -> 800x600

10 imgTk = ImageTk.PhotoImage(image=img)

11 captureLabel.configure(image=imgTk)

12 captureLabel.image = imgTk

13 captureLabel.after(10, displayCamera)

14 else:

15 captureLabel.image = ""

16 cameraObject.release()

Upload image

To upload an image, filedialog.askopenfilename() is used to display a file selection
dialog box, and where it is specified that only PNG files are allowed. This function
returns the path to the file.

1 def uploadImage():

2 file = filedialog.askopenfilename(title="Upload image",

62 Source code

3 filetypes=[("Archivos PNG", "*.png")])

Generate images

To generate the four images, a series of preprocessing is first performed on the input
image so that it can be used by the model to generate the output images. Then the
pre-trained model weights are loaded (four different weights), and the new images are
generated and assigned to a label for display on the user interface.

1 def generateImage(path):

2 global btnGenerate

3
4 input_img_size = (256, 256, 3)

5 messagebox.showinfo("Generating images...",

6 "Wait while images are being generated, it may take a few seconds.")

7
8 # Image preprocessing.

9 imgTF = tf.io.read_file(path)

10 imgTF = tf.image.decode_jpeg(imgTF, channels=3)

11 imgTF = tf.image.resize(imgTF, [input_img_size[0], input_img_size[1]])

12 imgTF = tf.cast(imgTF, dtype=tf.float32)

13 imgTF = (imgTF / 127.5) - 1.0

14 imgTF = tf.expand_dims(imgTF, 0)

15
16 # Get the generators

17 gen_G = get_resnet_generator(name="generator_G")

18 gen_F = get_resnet_generator(name="generator_F")

19
20 # Get the discriminators

21 disc_X = get_discriminator(name="discriminator_X")

22 disc_Y = get_discriminator(name="discriminator_Y")

23
24 # Create cycle gan model

25 cycle_gan_model = CycleGan(

26 generator_G=gen_G, generator_F=gen_F, discriminator_X=disc_X, discriminator_Y=disc_Y

27)

28
29 # Compile the model

30 cycle_gan_model.compile(

31 gen_G_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

32 gen_F_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

33 disc_X_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

34 disc_Y_optimizer=keras.optimizers.legacy.Adam(learning_rate=2e-4, beta_1=0.5),

35 gen_loss_fn=generator_loss_fn,

36 disc_loss_fn=discriminator_loss_fn,

37)

38
39 # Load the checkpoints

40 weight_file = "checkpoints/cyclegan_checkpoints.001"

41 cycle_gan_model.load_weights(weight_file).expect_partial()

42 print("Weights loaded successfully")

43 prediction1 = cycle_gan_model.gen_G(imgTF, training=False)[0].numpy()

A.2. User Application 63

44 prediction1 = (prediction1 * 127.5 + 127.5).astype(np.uint8)

45 prediction1 = keras.preprocessing.image.array_to_img(prediction1)

46 img1 = prediction1.resize((300, 300))

47 img1 = ImageTk.PhotoImage(img1)

48
49 weight_file = "checkpoints/cyclegan_checkpoints.020"

50 cycle_gan_model.load_weights(weight_file).expect_partial()

51 print("Weights loaded successfully")

52 prediction2 = cycle_gan_model.gen_G(imgTF, training=False)[0].numpy()

53 prediction2 = (prediction2 * 127.5 + 127.5).astype(np.uint8)

54 prediction2 = keras.preprocessing.image.array_to_img(prediction2)

55 img2 = prediction2.resize((300, 300))

56 img2 = ImageTk.PhotoImage(img2)

57
58 weight_file = "checkpoints/cyclegan_checkpoints.008"

59 cycle_gan_model.load_weights(weight_file).expect_partial()

60 print("Weights loaded successfully")

61 prediction3 = cycle_gan_model.gen_G(imgTF, training=False)[0].numpy()

62 prediction3 = (prediction3 * 127.5 + 127.5).astype(np.uint8)

63 prediction3 = keras.preprocessing.image.array_to_img(prediction3)

64 img3 = prediction3.resize((300, 300))

65 img3 = ImageTk.PhotoImage(img3)

66
67 weight_file = "checkpoints/cyclegan_checkpoints.012"

68 cycle_gan_model.load_weights(weight_file).expect_partial()

69 print("Weights loaded successfully")

70 prediction4 = cycle_gan_model.gen_G(imgTF, training=False)[0].numpy()

71 prediction4 = (prediction4 * 127.5 + 127.5).astype(np.uint8)

72 prediction4 = keras.preprocessing.image.array_to_img(prediction4)

73 img4 = prediction4.resize((300, 300))

74 img4 = ImageTk.PhotoImage(img4)

75
76
77 captureLabel = Label(captureFrame, image=img1)

78 captureLabel.image = img1

79 captureLabel.place(x=0, y=0)

80
81 captureLabel = Label(captureFrame, image=img2)

82 captureLabel.image = img2

83 captureLabel.place(x=300, y=0)

84
85 captureLabel = Label(captureFrame, image=img3)

86 captureLabel.image = img3

87 captureLabel.place(x=0, y=300)

88
89 captureLabel = Label(captureFrame, image=img4)

90 captureLabel.image = img4

91 captureLabel.place(x=300, y=300)

92
93
94 btnGenerate.destroy()

95 btnSave = Button(btnFrame, text="SaveImage", image=imageBtSave,

96 command=lambda: saveImage(prediction1, prediction2 ,prediction3 ,prediction4))

97 btnSave.place(x=70, y=270)

64 Source code

98 btnSave.config(bg="#000a01")

Save images

Finally, the four images are saved if the user clicks on the button "Save Images".
1 def saveImage(img1, img2, img3, img4):

2 messagebox.showinfo("Images saved", "Images saved successfully.")

3 img1.save("predicted_img_1.png")

4 img2.save("predicted_img_2.png")

5 img3.save("predicted_img_3.png")

6 img4.save("predicted_img_4.png")

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Theoretical Framework
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code
	Neural Network Model
	User Application

