
Joint Drops – Creation of a 3D
cooperative puzzle-solving multiplayer

video game

Érica Masmano Fons

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

May 22, 2023

Supervised by: Sandra Catalán Pallarés

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my parents,
whom I admire for their strength and determination.

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Sandra Catalán
Pallarés, for her support and dedication to my project. Her enthusiastic and attentive
listening every time I shared my game’s progress was invaluable, and her keen interest
in its development kept me highly motivated and enthusiastic throughout its preparation.

Additionally, I would like to express my deep gratitude to my dear family - my fa-
ther, mother, and grandmother, as well as my second little family - Gon and Rengar.
Their consistent encouragement, unwavering support, and faith in my abilities have been
a tremendous source of inspiration for me and have played an integral role in my success.

Moreover, I would like to take this opportunity to express my profound gratitude
to the Unity community, and especially to Code Monkey, for their remarkable efforts in
sharing top-notch knowledge, accessible to all, on a non-profit basis. Their dedication
and benevolence have been instrumental in enabling me to enhance my programming
skills, and have played a significant role in my growth and development as a game de-
veloper.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents the technical report of the Final Degree Project ‘Joint Drops’.
The project involves the development of a small-scale multiplayer video game that offers
cooperative puzzles, wherein the players’ interaction play a crucial role in overcoming
each level.

The purpose of this game is to distinguish itself from the others, as multiplayer games
have become a highly successful genre due to their ability to bring people together and
provide a fun experience. Currently, there is a noticeable shortage of cooperative and
enjoyable games in the video game industry, making this an opportune time to take
advantage of the market’s need for such games.

Nevertheless, the driving force behind this project is the desire to bring to life a
conceptual idea that originated from another subject within the degree program. At the
same time, the project aims to enhance the skills of creating clean and scalable code,
while also paying attention to the creative aspects of the project.

iii

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 3
1.4 Additional information . 3

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 8

3 Game Design Document 11
3.1 One Sheet . 12
3.2 Narrative . 13
3.3 Gameplay . 13
3.4 Level Design . 16
3.5 Graphics and Styling . 19

4 System Analysis and Design 21
4.1 Requirement Analysis . 21
4.2 System Design . 24
4.3 System Architecture . 39
4.4 Interface Design . 39

5 Work Development and Results 45
5.1 Work Development . 45
5.2 Results . 52

6 Conclusions and Future Work 53

v

vi Contents

6.1 Conclusions . 53
6.2 Future work . 54

Bibliography 55

A Source code 57

List of Figures

2.1 Gantt chart (made with Canva) [3]. 7

3.1 Complete Tutorial level preview (made with drawio) [5]. 17
3.2 Complete Level 1 preview (made with drawio) [5]. 18
3.3 Art style references, by Gustavo Henrique [6]. 19
3.4 Emote sprite sheet. 20

4.1 Case of use Diagram (made with Lucidchart) [10]. 36
4.2 Class Diagram (made with Lucidchart) [10]. 37
4.3 Activity Diagram (made with Lucidchart) [10]. 38
4.4 Joint Drops game title typed using Mikado Bold. 39
4.5 Main Menu screen with the game Splash Art (made with Krita) [8]. 40
4.6 Join tab. 41
4.7 Create tab. 41
4.8 UI elements (made with Krita) [8]. 41
4.9 Game screen showing the emote wheel. 42
4.10 Character Selection screen. 42
4.11 Pause screen for the player who pauses the game. 43
4.12 Pause screen for the rest of players. 43
4.13 Options screen. 43

5.1 Main character modeling (made with Blender) [2]. 50
5.2 Game world’s elements. 51

vii

https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN
https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN
https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN

List of Tables

3.1 Player controls for PC. 14

4.1 Case of use «R1. Lobby Screen» . 24
4.2 Case of use «R2. Options Screen» . 24
4.3 Case of use «R3. Credits Screen» . 25
4.4 Case of use «R4. Quit Game» . 25
4.5 Case of use «R5. Main Menu» . 25
4.6 Case of use «R6. Join Lobby» . 26
4.7 Case of use «R7. Create Lobby» . 26
4.8 Case of use «R8. Join Public Lobby» . 26
4.9 Case of use «R9. Refresh Lobby List» . 27
4.10 Case of use «R10. Quick Join» . 27
4.11 Case of use «R11. Join Lobby Code» . 27
4.12 Case of use «R12. Edit Name» . 28
4.13 Case of use «R13. Create Public Lobby» . 28
4.14 Case of use «R14. Create Private Lobby» . 29
4.15 Case of use «R15. Character Color» . 29
4.16 Case of use «R16. Player Ready» . 30
4.17 Case of use «R17. Game Start» . 30
4.18 Case of use «R18. Movement» . 30
4.19 Case of use «R19. Grab» . 31
4.20 Case of use «R20. Throw» . 31
4.21 Case of use «R21. Use Item» . 31
4.22 Case of use «R22. Emote» . 32
4.23 Case of use «R23. Pause» . 32
4.24 Case of use «R24. Resume» . 33
4.25 Case of use «R25. Level Selector» . 33
4.26 Case of use «R26. Warning Popup» . 34
4.27 Case of use «R27. Collect» . 34
4.28 Case of use «R28. Interact» . 34
4.29 Case of use «R29. Die» . 35

ix

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 3
1.4 Additional information . 3

The following paragraphs present a comprehensive rationale for the creation of the
proposed video game, outlining its purpose and defining a set of objectives that must be
fulfilled to validate its development.

1.1 Work Motivation
The present work has been motivated by the desire to bring together the knowledge
acquired and developed during the degree, including subjects related to art, narrative,
design, and programming. Despite covering a broad range of topics, one area that has
been underrepresented is the implementation of multiplayer features, particularly for
online games.

Multiplayer games have become an increasingly prominent part of our society [9],
as they tap into the innate human desire to compete and interact with others, either
in a friendly way or in a truly competitive way. However, until recently, Unity did not
provide a comprehensive solution for the development of multiplayer games.

The long-awaited Unity solution, Netcode for Gameobjects [19], was announced and
it has addressed this gap in the market, making it easier for developers to implement

1

2 Introduction

multiplayer features within the Unity engine. The full release version (1.1.0) became
available on October 10, 2022, presenting a valuable opportunity for programmers to
develop their skills in this area.

Overall, the development of a multiplayer game, using this new tool, presented an
excellent opportunity to take on a challenging project that would contribute to the final
degree work. Additionally, this project offered the potential to enhance programming
and modeling skills.

1.2 Objectives
This section is crucial to provide a clear understanding of the project’s goals and objec-
tives. These are presented below in descending order of significance:

1. Develop a game in Unity: This objective involves using the Unity game engine
to create a complete and functional game. This may include designing and im-
plementing the game mechanics, creating the game assets, and programming the
game functionality using Unity’s scripting language, C#. The focus of this objec-
tive is to gain experience in game development using Unity and to demonstrate
proficiency in creating a polished, playable game.

2. Online Multiplayer: The objective of implementing online multiplayer is to allow
players to connect and interact with each other in a shared virtual environment,
enabling a more engaging and immersive experience for players who are unable to
physically play together.

3. Good Programming practices: The objective of clean and scalable code pro-
gramming is to create high-quality, maintainable and efficient code that can be
easily modified, updated and extended as the project evolves. This will ensure
that the codebase is easy to work with, making it easier to identify and fix bugs,
and add new features in the future.

4. Stylized 3D modeling: The objective of stylized 3D modeling is to create visually
appealing and unique 3D assets that fit the aesthetic of the game. This will involve
designing and creating models, textures and other visual elements to convey the
desired style and atmosphere of the game.

5. Level Desing: The objective of level design is to create game levels that are both
challenging and engaging for players. This involves designing the layout, structure,
and mechanics of the game levels, as well as placing objects and other interactive
elements.

6. Efficient organization: The objective of efficient organization is to ensure that
the development process is well-organized and streamlined, allowing to work effi-
ciently and effectively. This includes managing tasks, schedules, and resources.

1.3. Environment and Initial State 3

1.3 Environment and Initial State
The project takes the conceptualized project made for the Video game Conceptual De-
sign (VJ1222) subject as an starting point. The project involved creating a Game Design
Document for a game that currently has undergone significant modifications compared
to its original version, while yet still preserving its essence.

As the release of Netcode for Gameobjects played a significant role in motivating
the arrange of the project, no other development tools were considered. However, the
tool required an extensive exploration of documentation and resources to acquire the
necessary knowledge to effectively use it before starting with the project.

To maintain code consistency, a set of naming conventions were established. Con-
stants are named using the ‘UpperCase SnakeCase’ convention, while properties, events,
and function names are named using the ‘PascalCase’ convention. Fields and function
parameters, on the other hand, are named using the ‘camelCase’ convention.

With that in mind, the work has been carried out individually, with a focus on
minimizing organizational tasks and maximizing attention and resources on essential
aspects. Approaching the project on my own helped to avoid any potential creative
conflicts or communication issues, leading to a smoother workflow.

1.4 Additional information

1.4.1 Key words

Video game, cooperative, online multiplayer, 3D, puzzles, Unity Netcode for Gameob-
jects

1.4.2 Related subjects

While most of the subjects covered in the degree have been relevant to the project,
certain ones have proven to be indispensable for the successful completion of the work.
The most significant aspects of each of them are detailed below:

1. Programming II (VJ1208): The course provided a comprehensive introduction
to object-oriented programming with the C# language, which is widely used by
the Unity game engine.

2. Game Engines (VJ1227): The course provided a deeper understanding of the
technical aspects of game engines, with a particular emphasis on Unity, along with
techniques for optimizing and improving performance.

3. Multiplayer Systems and Networks (VJ1228): The course provided an in-
troduction to different multiplayer architectures, such as client-server and peer-to-

4 Introduction

peer, and their respective advantages and disadvantages. Additionally, it covered
essential network protocols and technologies used in multiplayer games, including
TCP and UDP.

4. Graphics Communication (VJ1212): The course proved to be extremely valu-
able in the development of the game’s visual assets. With the basic understanding
of Blender’s features, it was learned to create complex 3D models, apply textures,
and render objects and environments with high quality. This enhanced the overall
aesthetics of the game, providing a visually appealing experience to the players.

5. Software Engineering (VJ1224): The course imparted effective work method-
ologies for better project organization, resulting in enhanced productivity. Addi-
tionally, it proved to be highly beneficial in terms of analyzing system requirements
and preparing the relevant diagrams.

6. Video game Conceptual Design (VJ1222): The course not only imparted
valuable knowledge for designing levels, objectives, worlds, and mechanics, as well
as gamification but also facilitated the use of methodologies that can expedite game
development considerably, including the creation of a game design document.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 8

This chapter outlines the planning and the necessary resources used in the develop-
ment of the project.

2.1 Planning
In this project, the SCRUM methodology has been used to plan and manage the de-
velopment process. This is an Agile project management framework used for software
development that involves breaking down the project into smaller parts called sprints
(see Figure 2.1).

The following section presents a detailed timeline for the project, including all tasks,
subtasks, and their interdependencies. The initial technical proposal’s planning was
followed, with the addition of an extra research and documentation phase required for
the development of the multiplayer component. As anticipated, the programming aspect
of the project took precedence over the artistic component as it follows:

• Game Design Document (10 hours): This task involves creating a detailed
document that outlines the overall vision and design of the game. It includes
information about the game mechanics, story, levels, characters, assets, and other
important details. The purpose of this document is to provide a clear and concise
guide for the rest of the development process.

5

6 Planning and resources evaluation

• Programming Game Core (90 hours): This task involves developing the core
functionality of the game. It includes programming the game mechanics, levels,
menus, user interface, and other essential features that make up the game. This is
a critical task, as it lays the foundation for the rest of the development process.

– Player actions and gamepad feature (30 hours)
– Emote wheel (5 hours)
– Collectibles, Interactables, Activables (10 hours)
– Items, Special Objects (20h)
– Game Screens adn Head-Up Display (20h)
– Game flow Manager, Health system, Sound and Music system (5 hours)

• Documentation and Research (40 hours): This task refers to the process
of researching and learning about the new Unity tool that is used for developing
multiplayer functionality in the game. The reason why this task may take longer
than expected is that the tool is a recent release, which means that there may not
be a lot of documentation or resources available yet.

• Programming Multiplayer System (60 hours): This task involves developing
the multiplayer functionality of the game. This can include synchronizing network
objects, including a lobby system, and allocating servers with Relay. It may also
require some programming code rework. Multiplayer functionality is essential and
it requires a significant amount of time.

• 3D Modelling and Animation (40 hours): This task involves creating the
3D models and animations for the game. This includes designing and modeling
the game assets, creating animations for characters and objects, and importing
these assets into the game engine. This is an important task for creating a visually
appealing game.

• Stylish the game (30 hours): This task involves adding the finishing touches to
the game’s visual and audio aspects. This includes composing the game’s assets,
designing shaders for visual effects, adding sound effects and music, and creating
visual effects. Styling is an important task that can greatly enhance the player’s
experience.

• Game feel, Optimization, and Testing (20 hours): This task involves polish-
ing the game to ensure it is fun to play and runs smoothly on different platforms.
This includes fine-tuning game mechanics to improve the overall feel of the game,
optimizing the game’s performance, and testing the game to identify and fix any
bugs or issues.

• Final report and Presentation (40 hours): This task involves documenting
the entire development process as well as the presentation.

2.1. Planning 7

Figure 2.1: Gantt chart (made with Canva) [3].

8 Planning and resources evaluation

2.2 Resource Evaluation
Before starting any project, it is important to estimate the costs involved. This includes
calculating both the human resources and equipment costs to assess the viability of the
project. In the case of this project, the estimated cost for a junior programmer working
300 hours would be approximately €3,400 plus taxes, based on an average salary of
€21,500 per year in Spain [7]. It is also important to consider the cost of necessary
hardware and software below:

2.2.1 Hardware

The development of this project involves the use of different hardware, including:

• Laptop: Msi GL62M 7REX (€1,200)

– CPU: Intel(R) Core(TM) i7-7700HQ CPU 2.80 GHz
– GPU: GeForce® GTX 1050 Ti with 2GB GDDR5
– RAM: DDR4-2400 8 GB
– Storage: M.2 SSD SATA 128GB + 1TB
– Cooling: Cooling Boost 4
– Power supply: 150W adapter

• Monitor: BenQ ZOWIE XL2411P 24" LED 144Hz (€130)

• Mouse: Razer DeathAdder V2 (€60)

• Keyboard: Newskill Suiko Ivory Mechanical Keyboard (€70)

• Gamepad: Sony Dual Shock 4 (€50)

• Graphic tablet: Huion Kamvas Pro 13 (€250)

2.2.2 Software

The development of this project involves the use of different software tools such as:

• Unity (2021.3.16f1): is a cross-platform game engine involving an integrated de-
velopment environment (IDE). This and the following tools will be used for: Mul-
tiplayer game development [24].

– Netcode for Game Objects: This tool allows for a connection to a host
through its IP and port. The host must be on the same network as its clients
[19].

– Relay: A server that enables players to connect through the internet with a
public IP that can be reached by both the host and its clients [22].

2.2. Resource Evaluation 9

– Lobby: This tool simplifies the initial connection between players by allowing
them to create lobbies, share data, and find other lobbies before establishing
a real-time network connection [25].

• Github Desktop (3.2.2): serves as an Internet hosting service for software de-
velopment and version control through Git. This tool will be used for: Project
back-ups [11].

• Blender (3.2.0): is a 3D modeling and sculpting software that is free, open source,
and compatible with multiple operating systems. This tool will be used for: 3D
modelling (player, environment and props), texturing and animation [2].

• Krita (5.0.0): is a free and open-source software for digital art that provides tools
and features for creating illustrations and paintings. This tool will be used for:
In-game illustrations [8].

• Trello (2.13.10): s a web-based application that follows the kanban-style approach
for organizing lists and tasks. This tool will be used for: Tasks organization [1].

• Canva: is a free graphic design website that allows you to create documents of any
kind with a professional result. This tool will be used for: Gantt chart creation
for task planning [3].

• Visual Studio Community 2022 (17.4.4): is an integrated development envi-
ronment (IDE) created by Microsoft that provides a range of tools and helpful
features for software development such as code completion, syntax highlighting,
and debugging tools. This tool will be used for: Code writing [12].

• Overleaf : is an online collaborative tool for writing, editing, and publishing doc-
uments in LaTeX, a document preparation system used for typesetting technical
and scientific documents. This tool will be used for: Final report making [13].

The estimated total cost of the project is €5,160, which includes the cost of free
software, hardware expenses of €1,760, and a salary cost of €3,400.

C
h

a
p

t
e

r

3
Game Design Document

Contents
3.1 One Sheet . 12
3.2 Narrative . 13
3.3 Gameplay . 13
3.4 Level Design . 16
3.5 Graphics and Styling . 19

This chapter aims to give an overview of the work, from a conceptual point of view
of the game, detailing in depth its narrative design, levels, mechanics, and artistic style.

11

12 Game Design Document

3.1 One Sheet

3.1.1 Concept Overview

Platform: PC
Target Age: 10-up
ESRB rating: Everyone 7+
Genre: Cooperative puzzle
Current status: In development

3.1.2 Game Summary

Recruit your friends to enter the walls of the dark castle. Some parasitic beings have
invaded Dayfud, infecting all its inhabitants and its king. Only by working as a team
you can defeat the infection and save the castle from its terrible fate. Will a few drops
make it to the end?

3.1.3 Game Outline

It is a small-scale 3D multiplayer video game with platformer elements. Each of the
three players will control one of the drops (Red, Blue or Green) and must collaborate
to solve the different challenges that each level offers. Each of those levels consists of
a medieval environment filled with traps and puzzles that impede the heroes’ progress.
Combining their wits and unique abilities, Red, Blue and Green will make their way to
the heart of the castle fortress, where a fight with the final boss awaits them: the king
of parasites.

3.1.4 Unique Selling Point

• Original puzzles only solvable as a team

• Wide variety of challenges

• Various objects to interact with

• Possibility to play online with friends or strangers

• Possibility of communicating through emotes

• Possibility to customize your character

3.1.5 Similar Competitive Products

The Legend of Zelda: Tri Force Heroes, Among Us, Boomerang Fu

3.2. Narrative 13

3.2 Narrative

3.2.1 Story

Dayfud was a small medieval town with a big castle surrounded by fortresses. It was
populated by small beings who watched over their safety, but one day, the sky open up
and something peculiar rained down upon them. They were not conventional drops, they
were dark. Soon, the inhabitants of Dayfud began to lose control of their bodies and
succumb to an evil influence. The king of the castle was not spared from this mysterious
rain, and his infection rapidly spread throughout the town.

After several years, the sky opened up once more, but this time the drops that fell
were clear and pure, like water. Amongst the falling drops, however, were Red, Blue and
Green, each with mission to stop the infection and restore Dayfud to its former glory. To
succeed, these droplets should gather their courage and join forces to reach the centre
of the castle and free the king from the dark parasite.

3.2.2 Main characters

Players will take control of one of the three colored blobs: Red, Blue and Green. These
characters have a friendly and cheerful appearance. They are diminutive, spherical
droplets characterized by their translucent appearance and short limbs.

It should be clarified that although these droplets are the main characters of the
story, players will have the ability to choose their preferred color for the character when
playing the game.

3.3 Gameplay

3.3.1 Core Mechanics

Players must work together to clear the levels. They must form towers of the necessary
height, throw teammates to the appropriate spots (be careful not to throw them into
the void!), activate Buttons, grab Special Objects, etc. All this must be done in the right
order, combining the 3 Items available at each level. There is a unique solution for each
puzzle. Some Special Objects, like the Bomb, can damage allies, and rushing into the
void will penalize. Health is common for all team members, if it reaches zero the game
is over.

14 Game Design Document

3.3.2 Actions

Players can perform a total of six actions:

• Move: Players can move in any direction (constrained to the X and the Z axes).

• Grab players or Special Objects: A single player can grab, and pick up, another
player right in front of them, forming a tower of two. Also, a single player can grab
two-player-tower, forming a tower up to three, but not vice versa. Additionally,
they can grab Special Objects that allow this feature.

• Throw players or Special Objects: A single player, located at the bottom of a tower,
can throw allies that have been previously picked up, up to one unit forward. It
can also throw Special Objects, as long as it has grabbed them previously.

• Use Item: Each player can make use of the Item selected at the beginning of each
level. If players are forming towers, only the one at the top will be able to use this
ability.

• Emote: Players can use the Emote Wheel (see Figure 4.9) to select an emote (see
Figure 3.4). This is an accessibility feature to provide a means of communication
among players. The eight available gestures are: “Over here”, “Item”, “Throw”,
“Pick me up”, “Celebration”, “Sorry”, “Nooo” and “OK”.

• Pause: Players have the ability to pause the game at any time. When a player
pauses the game, it triggers a pause for all players, meaning that the game is
temporarily halted for everyone.

3.3.3 Controls

The game has been designed with PC controls in mind, but it is also compatible with
gamepad. It supports a variety of controllers, including PlayStation, Xbox, and Switch.
In addition, players can rebind keys to suit their preferences.

For better understanding, the default controls are shown below:

Action Keyboard Gamepad
Move WASD/Arrow Keys Joystick
Grab E B
Throw Space A
Use Item Shift X
Emote Tab Y
Pause Escape Start

Table 3.1: Player controls for PC.

3.3. Gameplay 15

3.3.4 Game Entities

The game features various elements that players can interact with, either actively or pas-
sively. These include Interactables, Activables, Items, Special Objects, and Collectibles.

Interactables

These objects possess the unique ability to activate or deactivate Activables.

• Fix Button: This button can be triggered by players or Special Objects when
stepped on, and it only has the ability to activate (permanent).

• Pressure Button: This button can be triggered by players or Special Objects
when stepped on, and it has both the ability to activate and deactivate (reversible).

• Fix Sphere: This sphere can be triggered only by Items, and it only has the
ability to activate (permanent).

• End of Room Area: This invisible area can be triggered when the three players
get inside. It is placed at the end of each room and it only has the ability to
activate (permanent). Its main purpose is to serve as a barrier to prevent players
from moving back to the previous level and to allow access to the next level.

• End of Level Pressure Button: This big button is made of three pressure
buttons and it can be triggered when the three players has stepped on each of
them. Its main purpose is to announce the completion of the level.

Activables

These objects can be activated or deactivated by Interactables.

• Moving Platform: This platform can move along any axis, including X, Y, and
Z, and it has the capability to transport both players and Special Objects.

• Bridge: This static platform provides a safe passage for players to move from one
side to another without the risk of falling into the void.

Items

These objects grant the player a special ability. Each player can acquire one of these
items per game.

• Bomb generator: This object spawns a Bomb and automatically grabs it.

• Shooter: This object spawns bullets that travel in a forward direction.

16 Game Design Document

Special Objects

These objects are instantiated by a specific Item and can only exist as a result. One
notable feature is their grab-and-throw capability.

• Bomb: This object takes three seconds to detonate after being spawned. The
explosion reaches an area in one unit radius and it can cause harm to players as
well as breaking some structures.

Collectibles

These objects are an additional element of the game that is scattered throughout the
levels.

• Coin: This object increases the player’s score when collected.

• Life heart: This object has the ability to restore a player’s health when collected.

3.4 Level Design

The game’s levels are structured in a recognizable pattern, with each level comprising
multiple interconnected sub-levels or rooms. These sub-levels are unlocked sequentially
as the players solve the puzzles in each one. To progress to the next room, players must
reach the end-of-room area. The difficulty of the puzzles increases in each sub-level and
level, creating a scaling challenge for players.

• The first level or Tutorial consists of 3 rooms. In this scenario, players will learn
the most basic mechanics such as movement and interactions between players and
the environment. This will be achieved by presenting the mechanics in a safe
environment, or with a trivial solution, so the players can understand their use
and combine them with other mechanics in a more complex challenge. This level
has no Item selection yet.

• The second level or Level 1 consists of 3 rooms, as the following levels. At this
point, object selection will be introduced to the player. The available Items in this
level are two Shooters and one Bomb Generator.

The upcoming levels will follow the same structure as Level 1, but with different combi-
nations of Items. However, the scope of this project stage is limited to the development
of the levels described previously.

Below, the complete Tutorial level (see Figure 3.1) and the Level 1 are shown (see Figure
3.2).

3.4. Level Design 17

Figure 3.1: Complete Tutorial level preview (made with drawio) [5].

18 Game Design Document

Figure 3.2: Complete Level 1 preview (made with drawio) [5].

3.5. Graphics and Styling 19

3.5 Graphics and Styling
The game is set in a medieval world with floating 3D stylized low poly platforms in a
forest-like environment. The camera has a slight tilt, which provides a unique perspec-
tive for the game. The artistic direction draws inspiration from a minimalist aesthetic,
characterized by a refined color palette consisting of pastel hues, as well as the use of
rounded and simplified shapes (see Figures 3.3).

Figure 3.3: Art style references, by Gustavo Henrique [6].

20 Game Design Document

3.5.1 Music and Sound

In order to promote player concentration during puzzle-solving levels and facilitate effec-
tive communication, the game has deliberately incorporated ambient sound that is both
soothing and uplifting. Within the scope of this project, the main track will exclusively
play in the menus. However, to enhance immersion, specific player interactions such
as walking, throwing, shooting, collecting coins and hearts, bomb explosions, as well as
victory and game over screens, will feature unique sound effects. The game’s music [17]
and sound effects [18] have been sourced from the Unity Asset Store.

Figure 3.4: Emote sprite sheet.

C
h

a
p

t
e

r

4
System Analysis and Design

Contents
4.1 Requirement Analysis . 21
4.2 System Design . 24
4.3 System Architecture . 39
4.4 Interface Design . 39

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as an initial exploration of the graphical user interface’s usability.

4.1 Requirement Analysis

4.1.1 Functional Requirements

A functional requirement defines a function of the system to be developed, which can be
described as a set of inputs, a behavior, and a set of outputs. Such requirements provide
a means of defining the system’s behavior and enable users to understand its capabilities
at any given point in time. Based on this definition, it can be inferred that functional
requirements are:

R1. The player can move to the Lobby screen by pressing the Start button.

R2. The player can adjust the volume of the game and rebind keys by pressing the
Options button.

21

22 System Analysis and Design

R3. The player can see additional information about the game by pressing the Credits
button.

R4. The player can quit the game by pressing the Quit button.

R5. The player can return to the Main Menu in any screen of the game by press-
ing the Main Menu button.

R6. The player can move to the Join Lobby screen by pressing the Join tab.

R7. The player can move to the Create Lobby screen by pressing the Create Tab.

R8. The player can join a lobby buy pressing the corresponding lobby button on the
lobby list.

R9. The player can refresh the lobby list by pressing the Refresh button.

R10. The player can join a lobby directly by pressing the Quick Join button.

R11. The player can join a lobby with code by typing on the Code input field and
pressing the Join button.

R12. The player can edit their name by typing on the Name input field.

R13. The player can create a public lobby by typing on the Lobby Name input field
and pressing the Create button.

R14. The player can create a private lobby by typing on the Lobby Name input field,
checking the Private toggle and pressing the Create button.

R15. The player can change their character color by pressing the desired Color button.

R16. The player can move to the Tutorial screen by pressing the Ready button.

R17. The player can start the game by pressing the Grab key.

R18. The player can move by pressing Movement keys.

R19. The player can grab Players or Special Objects by pressing the Grab key.

R20. The player can throw Players or Special Objects by pressing Throw key.

R21. The player can use their equipped item by pressing the Use Item key.

4.1. Requirement Analysis 23

R22. The player can show an emote by holding the Emote key and selecting one.

R23. The player can pause the game by pressing the Pause key.

R24. The player can resume the game by pressing the Resume button.

R25. The player can select the level by picking one from the Dropdown button.

R26. The player can close warning popups by pressing the Close button.

R27. The player can collect Collectibles such as Coin and LifeHeart.

R28. The player can interact with Interactables such as FixButton, PressureButton,
EndOfLevel, EndOfRoom and FixSphere.

R29. The player can die falling into the void.

4.1.2 Non-functional Requirements

Non-functional requirements are conditions that affect the system’s operation, deploy-
ment, and maintenance, and cover aspects such as performance, reliability, scalability,
security, usability, and maintainability. They need to be carefully considered and ad-
dressed throughout the system development life cycle to ensure the system meets the
desired quality attributes. The following requirements can be categorized as such:

R30. The player needs access to the Internet connection.

R31. The player needs a minimum of 300 MB of storage for the installation of the game.

R32. The game should be intuitive with a player friendly interface and great visual
feedback.

R33. The player preferences, such as the name and the settings, should be saved so
they are not lost when the player quits the game.

R34. The player shall be free to join and leave games without penalty.

R35. Errors that may occur during the execution of the game must be notified to
the player in a brief and clear manner.

24 System Analysis and Design

4.2 System Design
In this section, the logical and operational design of the system is presented. The differ-
ent use cases, which were extracted from the functional requirements, are defined in the
following pages along with the Use case diagram (see Figure 4.1), Class diagram
(see Figure 4.2), and Activity diagram (see Figure 4.3)

Requirement: R1
Actor: Player
Description: The player can move to the Lobby screen by pressing the Start

button.
Preconditions: 1. The player is at the Main Menu screen
Normal sequence: 1. The player presses the Start button

2. The scene changes to the Lobby screen
Alternative sequence: None

Table 4.1: Case of use «R1. Lobby Screen»

Requirement: R2
Actor: Player
Description: The player can adjust the volume of the game and rebind keys

by pressing the Options button.
Preconditions: 1. The player is at the Main Menu screen

2. The player is at the Pause Menu screen
Normal sequence: 1. The player presses the Options button

2. The scene changes to show the Options screen
Alternative sequence: 1. The player changes the volume

2. The player rebinds a key

Table 4.2: Case of use «R2. Options Screen»

4.2. System Design 25

Requirement: R3
Actor: Player
Description: The player can see additional information about the game by

pressing the Credits button.
Preconditions: The player is at the Main Menu screen
Normal sequence: 1. The player presses the Credits button

2. The scene changes to the Credits screen
Alternative sequence: None

Table 4.3: Case of use «R3. Credits Screen»

Requirement: R4
Actor: Player
Description: The player can quit the game by pressing the Quit button.
Preconditions: The player is at the Main Menu screen
Normal sequence: 1. The player presses the Quit button

2. The system shutdowns and closes
Alternative sequence: None

Table 4.4: Case of use «R4. Quit Game»

Requirement: R5
Actor: Player
Description: The player can return to the Main Menu in any screen of the

game by pressing the Main Menu button.
Preconditions: 1. The player is at the Lobby screen

2. The player is at the Character Selection screen
3. The player is at the Pause Menu screen

Normal sequence: 1. The player presses the Main Menu button
2. The scene changes to the Main Menu screen for the player
who performed the action
3. A Warning Popup appears on screen notifying the discon-
nection to the rest of players (see Table 4.26)

Alternative sequence: None

Table 4.5: Case of use «R5. Main Menu»

26 System Analysis and Design

Requirement: R6
Actor: Player
Description: The player can move to the Join Lobby screen by pressing the

Join tab.
Preconditions: The player is at the Lobby screen
Normal sequence: 1. The player presses the Join tab

2. The scene changes to the Join Lobby screen
Alternative sequence: None

Table 4.6: Case of use «R6. Join Lobby»

Requirement: R7
Actor: Player
Description: The player can move to the Create Lobby screen by pressing

the Create Tab.
Preconditions: The player is at the Lobby screen
Normal sequence: 1. The player presses the Create tab

2. The scene changes to the Create Lobby screen
Alternative sequence: None

Table 4.7: Case of use «R7. Create Lobby»

Requirement: R8
Actor: Player
Description: The player can join a public lobby by pressing the correspond-

ing lobby button on the lobby list.
Preconditions: 1. There is at least one public lobby created

2. The lobby is not full
Normal sequence: 1. The player presses the corresponding lobby button

2. The scene changes to the Character Selection screen
Alternative sequence: 1. The player presses the corresponding lobby button

2. A network error occurs (see Table 4.26)

Table 4.8: Case of use «R8. Join Public Lobby»

4.2. System Design 27

Requirement: R9
Actor: Player
Description: The player can refresh the Lobby list by pressing the Refresh

button.
Preconditions: The player is at the Join Lobby screen
Normal sequence: 1. The player presses the Refresh button

2. The system updates the Lobby list
Alternative sequence: None

Table 4.9: Case of use «R9. Refresh Lobby List»

Requirement: R10
Actor: Player
Description: The player can join a lobby directly by pressing the Quick

Join button.
Preconditions: The player is at the Join Lobby screen
Normal sequence: 1. The player presses the Quick Join button

2. The system searches for a public available lobby
3. The system founds an available lobby, the player joins

Alternative sequence: The system does not found an available lobby, an error occurs
(see Table 4.26)

Table 4.10: Case of use «R10. Quick Join»

Requirement: R11
Actor: Player
Description: The player can join a lobby with code by typing on the Code

input field and pressing the Join button.
Preconditions: 1. The player is at the Join Lobby screen

2. The player has the corresponding join code
Normal sequence: 1. The player types the code on the Code input field

2. The player presses the Join button
3. The systems checks if the code is correct
4. The code is correct, the player joins

Alternative sequence: The code is not correct, an error occurs (see Table 4.26)

Table 4.11: Case of use «R11. Join Lobby Code»

28 System Analysis and Design

Requirement: R12
Actor: Player
Description: The player can edit their name by typing on the Name input

field.
Preconditions: The player is at the Lobby screen
Normal sequence: 1. The player presses the Name input field

2. The player types a new name
Alternative sequence: None

Table 4.12: Case of use «R12. Edit Name»

Requirement: R13
Actor: Player
Description: The player can create a public lobby by typing on the Lobby

Name input field and pressing the Create button.
Preconditions: The player is at the Create Lobby screen
Normal sequence: 1. The player types the name on the Lobby Name input field

2. The player does not check the Private toggle
3. The player presses the Create button
4. The systems checks if the name is valid
5. The name is valid, the system creates the lobby and gets
the player into the Character Selection screen

Alternative sequence: The name is not valid, the system does nothing.

Table 4.13: Case of use «R13. Create Public Lobby»

4.2. System Design 29

Requirement: R14
Actor: Player
Description: The player can create a private lobby by typing on the Lobby

Name input field, checking the Private toggle and pressing the
Create button.

Preconditions: The player is at the Create Lobby screen
Normal sequence: 1. The player types the name on the Lobby Name input field

2. The player checks the Private toggle
3. The player presses the Create button
4. The systems checks if the name is valid
5. The name is valid, the system creates the lobby and gets
the player into the Character Selection screen

Alternative sequence: The name is not valid, the system does nothing.

Table 4.14: Case of use «R14. Create Private Lobby»

Requirement: R15
Actor: Player
Description: The player can change their character color by pressing the

desired Color button.
Preconditions: 1. The player is at the Character Selection screen

2. The desired color is available
Normal sequence: 1. The player presses the desired Color button

2. The system changes the player’s character color
Alternative sequence: None

Table 4.15: Case of use «R15. Character Color»

30 System Analysis and Design

Requirement: R16
Actor: Player
Description: The player can move to the Tutorial screen by pressing the

Ready button.
Preconditions: The player is at the Character Selection screen
Normal sequence: 1. The player presses the desired Color button

2. The system checks if all the players in the lobby are ready
3. All the players are ready, the scene changes to the Tutorial
screen

Alternative sequence: Not all the players are ready, the system does nothing

Table 4.16: Case of use «R16. Player Ready»

Requirement: R17
Actor: Player
Description: The player can start the game by pressing the Grab key.
Preconditions: The player is at the Tutorial screen
Normal sequence: 1. The player presses the Grab key

2. The system checks if all the players in the Tutorial screen
have pressed the Grab key
3. All the players have pressed the Grab key, the scene changes
to the Game screen

Alternative sequence: Not all the players have pressed the Grab key, the system does
nothing

Table 4.17: Case of use «R17. Game Start»

Requirement: R18
Actor: Player
Description: The player can move by pressing Movement keys.
Preconditions: 1. The player is at the Game screen

2. The player’s state must be BOT
Normal sequence: 1. The player presses the Movement keys

2. The player moves
Alternative sequence: None

Table 4.18: Case of use «R18. Movement»

4.2. System Design 31

Requirement: R19
Actor: Player
Description: The player can grab by pressing the Grab key.
Preconditions: 1. The player is at the Game screen

2. The player’s state must be BOT
3. The player has something to grab in range

Normal sequence: 1. The player presses the Grab key
2. The player grabs

Alternative sequence: None

Table 4.19: Case of use «R19. Grab»

Requirement: R20
Actor: Player
Description: The player can throw by pressing Throw key.
Preconditions: 1. The player is at the Game screen

2. The player’s state must be BOT
3. The player is holding something

Normal sequence: 1. The player presses the Grab key
2. The player throws what is holding

Alternative sequence: None

Table 4.20: Case of use «R20. Throw»

Requirement: R21
Actor: Player
Description: The player can use their equipped item by pressing the Use

Item key.
Preconditions: 1. The player is at the Game screen

2. The player’s state must be BOT or TOP
3. The player has equipped an item

Normal sequence: 1. The player presses the Use Item key
2. The player uses their item

Alternative sequence: None

Table 4.21: Case of use «R21. Use Item»

32 System Analysis and Design

Requirement: R22
Actor: Player
Description: The player can show an emote by holding the Emote key and

selecting one.
Preconditions: The player is at the Game screen
Normal sequence: 1. The player presses the Emote key

2. The player selects an emote
3. The player displays the selected emote on the screen

Alternative sequence: 1. The player presses the Emote key
2. The player does not select an emote
3. The player displays the last selected emote, or default, on
the screen

Table 4.22: Case of use «R22. Emote»

Requirement: R23
Actor: Player
Description: The player can pause the game by pressing the Pause key.
Preconditions: The player is at the Game screen
Normal sequence: 1. The player presses the Pause key

2. The system pauses the Game screen
3. The system actives the Pause screen
4. The system notifies the other players that the game has
been paused

Alternative sequence: None

Table 4.23: Case of use «R23. Pause»

4.2. System Design 33

Requirement: R24
Actor: Player
Description: The player can resume the game by pressing the Resume but-

ton.
Preconditions: The player is at the Pause screen
Normal sequence: 1. The player presses the Resume button

2. The system unpauses the Game screen
3. The system disables the Pause screen

Alternative sequence: 1. The player presses the Pause key
2. The system unpauses the Game screen
3. The system disables the Pause screen

Table 4.24: Case of use «R24. Resume»

Requirement: R25
Actor: Player
Description: The player can select the level by picking one from the Drop-

down button.
Preconditions: The player is at the Create tab at the Lobby screen
Normal sequence: 1. The player presses the Dropdown button

2. The player selects a level
Alternative sequence: None

Table 4.25: Case of use «R25. Level Selector»

34 System Analysis and Design

Requirement: R26
Actor: Player
Description: The player can close Warning Popups by pressing the Close

button.
Preconditions: 1. An error has occurred during the Game scene

2. An error has occurred during the Lobby scene
Normal sequence: 1. The Warning Popups appears during the Game scene

2. The player presses the Close button
3. The player returns to the Main Menu screen

Alternative sequence: 1. The Warning Popups appears during the Lobby scene
2. The player presses the Close button
3. The Warning Popup closes

Table 4.26: Case of use «R26. Warning Popup»

Requirement: R27
Actor: Player
Description: The player can collect Collectibles such as Coin and LifeHeart.
Preconditions: The player is at the Game screen
Normal sequence: 1. The player collides with a Coin

2. The player earns a coin
Alternative sequence: 1. The player collides with a LifeHeart

2. The player gains health

Table 4.27: Case of use «R27. Collect»

Requirement: R28
Actor: Player
Description: The player can interact with Interactables such as FixButton,

PressureButton, EndOfLevel, EndOfRoom and FixSphere.
Preconditions: The player is at the Game screen
Normal sequence: 1. The player collides with a Interactable

2. The Interactable gets active
Alternative sequence: None

Table 4.28: Case of use «R28. Interact»

4.2. System Design 35

Requirement: R29
Actor: Player
Description: The player can die falling into the void.
Preconditions: 1. The player is at the Game screen

2. The player has fell into the void
Normal sequence: 1. The system removes a life from the players and checks new

players’ health
2. Players health is greater than zero, the player respawns in
the last safe position.

Alternative sequence: Players health is not greater than zero, The scene changes to
the Game Over screen

Table 4.29: Case of use «R29. Die»

36 System Analysis and Design

4.2.1 Use Case diagram

Figure 4.1: Case of use Diagram (made with Lucidchart) [10].

https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN

4.2. System Design 37

4.2.2 Class diagram

Figure 4.2: Class Diagram (made with Lucidchart) [10].

https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN

38 System Analysis and Design

4.2.3 Activity diagram

Figure 4.3: Activity Diagram (made with Lucidchart) [10].

https://drive.google.com/drive/u/1/folders/1poRTjnhG0bi9Nk2tvWH0fxgxbIwv0duN

4.3. System Architecture 39

4.3 System Architecture
The system requirements of a computer play a crucial role in determining whether it
can run specific software or games. Due to the limited number of computers on which
the game has been tested, its functionality cannot be guaranteed under circumstances
other than the following suggested:

• Operating System: Windows 10 64-bit

• CPU: Intel Core i7 7th Gen

• GPU: Nvidia GeForce GTX 1050 Ti

• RAM: 8 GB

Therefore, in orther to run this game effectively, the following system requirements
are suggested by the official Unity’s documentation [23]:

• Operating System: Windows 7 (SP1+), Windows 10 and Windows 11

• CPU: x86, x64 architecture with SSE2 instruction set support

• GPU: DX10, DX11, DX12 capable

In addition to meeting the hardware requirements, it is mandatory to have access to a
stable Internet connection to enjoy the full features of the game. The online multiplayer
mode relies heavily on the internet to ensure a seamless and uninterrupted gameplay
experience.

4.4 Interface Design
The game’s User Interface (UI) features a minimalist design with a pastel color scheme.
Only essential information is displayed, presented in a way that is easily recognizable to
the user. To display text on the screen, the font Mikado Bold will be used (see Figure
4.4).

Figure 4.4: Joint Drops game title typed using Mikado Bold.

40 System Analysis and Design

The game will have nine screens in total:

• The Main Menu: This is the main screen of the game. It displays the game’s
title and provides access to several options, including the Start, Options, Credits,
and Quit buttons (see Figure 4.5).

Figure 4.5: Main Menu screen with the game Splash Art (made with Krita) [8].

• The Lobby: This screen allows players to join or create a game session, as well
as edit their player name. For creating or joining a lobby, the payer can switch
between the following tabs:

– Join tab: The default tab when loading the Lobby scene, which provides
options for players to Join a lobby from the available list, Join by Code, or
use the Quick Join feature. Additionally, it allows players to refresh the lobby
list as well as edit their player name (see Figure 4.6).

– Create tab: This tab enables players to create a lobby by entering a name,
choosing the desired level to play, and selecting whether the lobby should be
public or private (see Figure 4.7).

4.4. Interface Design 41

Figure 4.6: Join tab.

Figure 4.7: Create tab.

• The Character Selection: This screen allows players to customize their character
color for the game, providing a range of options to choose from (see Figure 4.10).

• The Game: This is the active screen when the game is running (see Figure 4.9).
It has a Head-Up Display (HUD) showing the players’ health, the level name and
the coins obtained (see Figure 4.8).

Figure 4.8: UI elements (made with Krita) [8].

42 System Analysis and Design

Figure 4.9: Game screen showing the emote wheel.

Figure 4.10: Character Selection screen.

• Victory: This screen is displayed when players successfully complete the game.
It showcases the final stats, including the number of collected coins. Additionally,
players are provided with a button to play again. Upon clicking the button, the
lobby is dissolved, and players are redirected to the Main menu.

• Game Over: This screen is displayed when players fail to complete the level and
lose the game. It showcases the final stats, including the number of collected coins.
Additionally, players are provided with a button to play again. Upon clicking the
button, the lobby is dissolved, and players are redirected to the Main menu.

• The Pause: This screen can be accessed during gameplay when a player pauses
the game. It displays several buttons, including Resume, Options, and return to
Main Menu. Whenever a player initiates a pause in the game (see Figure 4.11), it
applies a pause to all players, triggering a notification for everyone involved (see
Figure 4.12).

4.4. Interface Design 43

Figure 4.11: Pause screen for the player who pauses the game.

Figure 4.12: Pause screen for the rest of players.

• Credits: This screen displays information about the developer of Joint Drops.

• Options: This screen provides access to the game’s control and audio settings,
including the ability to rebind keys to different actions (see Figure 4.13).

Figure 4.13: Options screen.

C
h

a
p

t
e

r

5
Work Development and Results

Contents
5.1 Work Development . 45
5.2 Results . 52

This chapter is a detailed review of all the work carried out, with special emphasis
on the procedures followed to obtain the results and justifying the ways of proceeding.

5.1 Work Development
To enhance readability and comprehension, this section has been divided into its core
sections: Programming, Multiplayer and Game Art. These follow a chronological order,
according to the planning and the importance of the achieved milestones in each of them.

5.1.1 Programming

There are different approaches to consider when planning the development of a multi-
player game. One approach is to implement the entire game offline and then adapt it to
multiplayer, while the other is to develop both aspects concurrently.

In this particular project, it was chosen to implement the game entirely offline first,
given the lack of experience in implementing a multiplayer system and developing long-
term projects. This decision proved successful, but the experience gained from this
project has given a broader perspective on game development needs, so the option of
adopting the other approach in future projects is not disregarded.

45

46 Work Development and Results

With a clear approach in mind, the development began by implementing the primary
mechanics of the game. Each of these will be detailed below, following the order of
implementation:

1. Player actions and gamepad feature: Unity’s built-in input system have been
utilized to detect and handle different inputs from the player, such as keyboard
and mouse or gamepad controls for the player actions. Animations and physics
have also been implemented to make player movements and interactions with the
environment more realistic. The last ones have been implemented independently,
as there was no requirement to merge functionality with visuals for the sake of
programming neatness.
It is worth mentioning that the throwing action has been implemented by drawing
a parabolic trajectory using mathematical calculations instead of physics-based
calculations, which allows for better control over the curvature without relying
on forces or gravity (see Appendix A). This method was inspired by a developer
thread [14]. However, this approach has led to some challenges as multiple collision
checks need to be performed to prevent any inaccuracies in the results.
Additionally, to prevent collisions, players spawn at different locations at the start
of each game. Furthermore, user preferences such as name, sound, and key settings
are saved using Unity PlayerPrefs for a personalized gaming experience [4].

2. Emote wheel: The emote wheel have been programmed using UI to display a
wheel with different emotes for the player to select (see Figure 4.9). This emotes
are made with Scriptable Objects (a Unity data class) for saving information such
as the id, the name, and the icon image. The size of the wheel is automatically
adjusted based on the number of emotes present, making it easy to incorporate
modifications.

3. Collectibles, Interactables, Activables: These elements serve as the parent
class that all derived classes can inherit from in order to utilize shared functional-
ities. Each of them include logic for detecting collisions, handling animations, and
updating game states based on the player’s interactions with these objects.

4. Items, Special Objects: Like the previous elements, these two also act as the
parent class, providing a base for other classes to inherit and utilize common
features. The Items in the game serve as a means of informing the player about
the Special Object or ability they have acquired. Each Special Object, however, will
exhibit unique behavior when used.
Currently, the game features only one Special Object, the Bomb, which is equipped
with a state machine to control its behavior. The state machine comprises three
distinct states, Idle, ExplosionCountdown, and Exploded, which are responsible for
controlling the bomb’s actions, including detonation and self-destruction after a
3-second countdown.

5.1. Work Development 47

5. Game Screens and Head-Up Display (HUD): The different game screens
have been implemented using Unity’s Scene Manager and UI elements. Also the
HUD has been programmed to display relevant information to the player during
gameplay like health, coins and the level name.
Moreover, to conceal any delays when transitioning between screens, a Loading
screen has also been implemented. Its purpose is to provide a seamless experience
during screen switches. Furthermore, to ensure consistent functionality across
all buttons in the game, a dedicated script has been developed to manage the
OnPointerEnter, OnPointerExit, OnPointerDown, and OnPointerUp events for
seamless interaction with the buttons.

6. Game Manager, Health system, Sound and Music system: The Game
Manager have been implemented to handle different game states, such as Waiting-
ToStart, CountdownToStart, GamePlaying, Victory and GameOver. Additionaly,
a health system has been programmed to manage the player’s health during game-
play. This system allows the player to take damage as well as respawning.
Finally, the Sound and Music system has been autonomously integrated using event
triggers, enabling centralized control from a single script. The system leverages a
separate Scriptable Object to store and manage all audio clips utilized in the game.

5.1.2 Multiplayer

Before diving into the multiplayer functionality, it was crucial to conduct a thorough
study of its operation and determine the appropriate mode of authority for the network.
The two modes of authority are server-authority and client-authority [21].

• In server-authority, the game server controls the game logic, validating the ac-
tions of the clients and sending the updates to all the players. This mode provides
a more secure gameplay experience as the server can validate every action, pre-
venting hacking and cheating. However, it can also result in slower gameplay due
to the constant communication between the server and clients.

• In client-authority, the game logic is controlled by the clients, and the server
validates the actions of the players and corrects any errors. This mode can result
in faster gameplay as there is less communication among the server and clients.
However, it can be more vulnerable to hacking and cheating as the clients have
more control over the game.

Nevertheless, after careful consideration and analysis, it was decided to implement
the client-authority mode for the multiplayer functionality of the game. This decision
was based on the game’s low-scale cooperative nature, designed to be played with friends,
which made it less vulnerable to hacking concerns typically found in competitive games.
Prioritizing responsiveness over reliability on a single instance was deemed more appro-
priate for the game’s intended audience and gameplay.

48 Work Development and Results

The following consideration was whether to allow late joins in the game, which would
enable players to join a match that had already begun. However, given that the game
is specifically designed for three players, it would not make sense to start with fewer
players or to continue if one player left. Therefore, it was decided that late joins would
not be permitted in this instance.

Unity Netcode offers two options for synchronization in multiplayer: Network Vari-
ables and Remote Procedure Calls, making the operation of multiplayer relatively straight-
forward.

• Network Variables are variables that can be synchronized across the network.
When a network variable is changed on a client, it will automatically be updated
on all other clients in the game. These have been use for tracking player health,
game states and coins.

• Remote Procedure Calls (RPCs) are functions that can be called across the
network. When an RPC is called on a client, it will be executed on all other
clients in the game. This has been used for implementing game mechanics such as
spawning a projectile or playing an animation.

Both options, Network Variables and RPCs, can be used for synchronization in Unity
Netcode since it was decided not to allow late joins, which is the only drawback of RPCs.

To ensure synchronization among players, a Network Manager was added to display
all objects existing in the network context. All these objects required the Network Object
component to be attached. In order for the players to move around, they needed a Net-
work Transform component, which is not provided in the inspector due to the default
server-authority mode. Instead, Unity provides the necessary code in the documentation.

To synchronize player movement, it was utilized the ClientNetworkTransform [21]
component from the documentation, as well as the OwnerNetworkAnimator component
[20] to synchronize animations (see Appendix A).

To synchronize the remaining actions and objects of the game, it has been utilized
RPCs, following the same approach. It is important to note that the network architecture
being utilized is based on the client-server, where the host acts as both the client and
server, with the other connections acting solely as clients. In Netcode for Gameobjects,
the server has the authority to perform game actions such as spawning and destroying
objects, editing variables, reparenting and more. As a result, any client who wants to
perform such actions must request the server’s permission. The request structure is as
follows:

1. The client detects the need for an action and calls the ServerRpc function, which
can only be executed by the server (without ownership).

5.1. Work Development 49

2. The server receives the petition and calls the ClientRpc function, which can be
executed by all clients, where the code will be executed.

In this manner, the server is responsible for completing the task and ensuring that
the outcome is disseminated to all clients (see Appendix A).

Despite the conveniences provided by the tool, it is important to note that it still
contains bugs, as it is a newly developed tool that is still undergoing refinement. Some
of these malfunctions are related to parenting. In the presented game, one of the key
mechanics is the ability to grab players and Special Objects. Initially, this was imple-
mented by making the grabbed object a child of the grabber player in the hierarchy,
which resulted in sharing global coordinates with the movement. However, this method
proved to be unsuitable for synchronization in the multiplayer mode. As a result, a
change in the approach was necessary. A new component called FollowTransform (see
Appendix A) has been created instead of reparenting, which allows the player or object
being grabbed to copy the coordinates of its parent, resulting in better outcomes and
better adaptation to multiplayer.

The next objective was to achieve synchronization of game states, pauses, and dis-
connections. Additionally, a Lobby system needed to be implemented that could meet
all the requirements of the game, including:

• A display of available public lobbies updated in real-time. So the player can choose
from a list.

• An option to quickly join the first game that is available.

• An option to join a game using a code.

• An option to create games with the ability to select between public or private.

Lastly, the Relay was implemented, a service that allows players from anywhere in
the world to connect through a server. This task was relatively straightforward compared
to all the previous ones since it only required a minor modification to the Lobby logic to
make it utilize an Allocation (see Appendix A).

50 Work Development and Results

5.1.3 Game Art

During the asset modeling phase of the game, a cute, low-poly minimalist style was em-
ployed, with simple shapes and easily recognizable elements. The main player character,
designed to resemble a small water drop, was created along with other objects and all
game world’s elements, using the same style (see Figure 5.1).

To ensure smooth, realistic movements that complement the game’s style, the player
character’s animations were rigged, including idle, idle grabbing, walking, walking grab-
bing, and throwing. To facilitate future customization options, the character’s texturing
has been intentionally kept minimal, as players can modify the character’s color later on
in the game (see Figure 4.10). The collectibles, including the coin and the heart, have
also been animated.

Figure 5.1: Main character modeling (made with Blender) [2].

5.1. Work Development 51

Post-processing effects like vignette and color alteration were added to improve the
game’s visuals, making it more refined and polished. Moreover, a cartoon shader was
used to give the player a more distinct and unique appearance, making them stand out
from other game elements.

Additionally, an eye-catching splash art illustration was created to represent the
game’s style and setting, attracting potential players and providing them with a sense of
what to expect (see Figure 4.5). Furthermore, the Unity’s particle system was utilized
to create visual effects, such as the Bomb explosion and the destructible crate effect and
confetti in the Credits screen. The ProBuilder tool was also used to create and edit
object geometry that breaks into pieces, adding another layer of immersion to the game.

The implementation of levels involved designing the layout of each level, with the
necessary obstacles, collectibles, and interactive objects in place. Every level required
appropriate decoration and scenery to suit the game’s setting. The process involved
striking a balance between gameplay mechanics and aesthetics to ensure that the levels
were not only fun to play but also visually appealing and engaging (see Figure 5.2).
Lastly, it is important to note that the skybox asset utilized in the game to enhance the
visual atmosphere, have been sourced from the Unity Asset Store [16].

Figure 5.2: Game world’s elements.

52 Work Development and Results

5.2 Results
Ultimately, despite facing some challenges along the way, the project’s initial planning
was able to flexibly adapt to the evolving requirements and successfully achieve all six
of the original objectives.

The game has been successfully developed in Unity with a strong programming foun-
dation that allows for future expansion and development of new game mechanics. All of
the main mechanics that were designed, such as player actions, map elements, items, and
early levels, have been incorporated. The multiplayer system has also been implemented
effectively, enabling players to play online with others from around the world, create and
join lobbies. Additionally, the game has been given its unique artistic style by creating
assets and other visual elements.

This project can serve as a blueprint for developing other multiplayer games, as it
lays out the essential foundations needed for such games. Developers can build upon the
existing network architecture, synchronization methods, and lobby system, adapting it
to fit their specific needs and requirements.

Furthermore, the lessons learned during the development of this project can be used
to agile the development of future multiplayer games. The challenges and solutions en-
countered during the creation of this game can be applied to other projects, avoiding
common pitfalls and optimizing the development process.

The work results can be checked by playing the game or inspecting files available in
the following links:

• Github repository: https://github.com/Slinon/Joint-Drops

• Google Drive repository: https://drive.google.com

• Official website: https://slinon.itch.io/joint-drops

https://github.com/Slinon/Joint-Drops
https://drive.google.com/drive/folders/1fchKoCX00emdj3-Z3MYSrbJA_Ic7lYUj?usp=share_link
https://slinon.itch.io/joint-drops

C
h

a
p

t
e

r

6
Conclusions and Future Work

Contents
6.1 Conclusions . 53
6.2 Future work . 54

In this chapter, the conclusions of the work, as well as its future extensions are shown.

6.1 Conclusions
In conclusion, the learning experience garnered from this project has been immense. It
has enabled me to cultivate a knack for organizing larger and more complex projects,
honing my programming skills to create cleaner and more optimized code, and also
equipped me with the ability to develop a seamless multiplayer system in Unity.

However, developing a multiplayer system can be a daunting task, as it requires a
significant amount of time and resources. When incorporating a multiplayer feature, the
duration of the project is likely to double the estimated time. While creating a basic
multiplayer system may be a feasible task, producing a refined, anti-cheat, accurate, and
fair multiplayer system requires a considerable amount of time and effort.

Also, encountering bugs in Unity and having to start over to achieve the expected
behavior could be frustrating at times.

53

54 Conclusions and Future Work

‘I never once failed at making a light bulb.
I just found out 99 ways not to make one.’

- Thomas A. Edison

Despite of that, this experience has taught me valuable problem-solving skills that I
can apply to future projects, speeding up development and reducing time costs.

6.2 Future work
The nature of the game encourages scalability, so it is planned to resume the project in
the near future by adding more levels, objects, and improving the game mechanics and
artistic design. It is even possible to consider a marketing campaign and publishing the
game on platforms such as Steam [15].

As the project expands, it may require a larger team to ensure a quality product
and timely delivery. Therefore, it may be necessary to contact a game designer, musi-
cal composer, 3D and 2D artist, and additional programmers for the project’s expansion.

Maintaining and improving the servers of successful multiplayer video games is an
ongoing process. As the service grows, it may become unsustainable for a single person
to handle.

Bibliography

[1] Atlassian. Trello. https://trello.com/es. Accessed: 2023-05-04.

[2] Blender. Blender 3.5. https://www.blender.org/. Accessed: 2023-05-04.

[3] Canva. Canva. https://www.canva.com/. Accessed: 2023-05-04.

[4] Unity Documentation. Playerprefs. https://docs.unity3d.com/ScriptReference/
PlayerPrefs.html. Accessed: 2023-05-19.

[5] drawio. diagrams.net. https://www.drawio.com/. Accessed: 2023-05-18.

[6] Gustavo Henrique. Dribbble. https://dribbble.com/guutv. Accessed: 2023-05-22.

[7] Jobted. Sueldo del programador de videojuegos en españa. https://www.jobted.es/
salario/programador-videojuegos. Accessed: 2023-05-04.

[8] Krita. Digital painting. https://krita.org/es/. Accessed: 2023-05-04.

[9] Liquidsky. Why are multiplayer games more popular than single player games?
https://liquidsky.com/why-are-multiplayer-games-more-popular-than-single-
player-games/. Accessed: 2023-05-04.

[10] Lucid. Lucidchart. https://www.lucidchart.com/. Accessed: 2023-05-19.

[11] Microsoft. Github desktop. https://desktop.github.com/. Accessed: 2023-05-04.

[12] Microsoft. Visual studio community 2022. https://visualstudio.microsoft.com/
vs/community/. Accessed: 2023-05-04.

[13] Overleaf. Overleaf. https://www.overleaf.com/. Accessed: 2023-05-04.

[14] GameDev StackExchange. Add parabola curve to straight movetowards() move-
ment. https://gamedev.stackexchange.com/questions/183507/add- parabola-
curve-to-straight-movetowards-movement. Accessed: 2023-05-18.

[15] Steam. Steam store. https://store.steampowered.com/. Accessed: 2023-05-05.

[16] BOXOPHOBIC Unity Asset Store. Polyverse skies | low poly skybox shaders.
https://assetstore.unity.com/packages/vfx/shaders/polyverse-skies-low-poly-
skybox-shaders-104017. Accessed: 2023-05-19.

55

https://trello.com/es
https://www.blender.org/
https://www.canva.com/
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://www.drawio.com/
https://dribbble.com/guutv
https://www.jobted.es/salario/programador-videojuegos
https://www.jobted.es/salario/programador-videojuegos
https://krita.org/es/
https://liquidsky.com/why-are-multiplayer-games-more-popular-than-single-player-games/
https://liquidsky.com/why-are-multiplayer-games-more-popular-than-single-player-games/
https://www.lucidchart.com/
https://desktop.github.com/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://www.overleaf.com/
https://gamedev.stackexchange.com/questions/183507/add-parabola-curve-to-straight-movetowards-movement
https://gamedev.stackexchange.com/questions/183507/add-parabola-curve-to-straight-movetowards-movement
https://store.steampowered.com/
https://assetstore.unity.com/packages/vfx/shaders/polyverse-skies-low-poly-skybox-shaders-104017
https://assetstore.unity.com/packages/vfx/shaders/polyverse-skies-low-poly-skybox-shaders-104017

56 Bibliography

[17] Rizwan Ashraf Unity Asset Store. Free music tracks for games. https:

//assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-
156413. Accessed: 2023-05-18.

[18] SwishSwoosh Unity Asset Store. Free ui click sound pack. https : / /

assetstore.unity.com/packages/audio/sound- fx/free- ui- click- sound- pack-
244644. Accessed: 2023-05-18.

[19] Unity. Netcode for gameobjects. https : / / docs.unity3d.com / Manual /
com.unity.netcode.gameobjects.html. Accessed: 2023-05-04.

[20] Unity. Networkanimator. https://docs- multiplayer.unity3d.com/netcode/
current/components/networkanimator. Accessed: 2023-05-05.

[21] Unity. Networktransform. https://docs- multiplayer.unity3d.com/netcode/
current/components/networktransform. Accessed: 2023-05-05.

[22] Unity. Relay. https://docs-multiplayer.unity3d.com/netcode/current/relay/.
Accessed: 2023-02-17.

[23] Unity. System requirements for unity 2021.1. https://docs.unity.cn/2021.1/
Documentation/Manual/system-requirements.html. Accessed: 2023-05-03.

[24] Unity. Unity 2021.3.16f. https://unity.com/releases/editor/whats-new/2021.3.16.
Accessed: 2023-05-04.

[25] Unity. Unity lobby service. https://docs.unity.com/lobby/en/manual/unity-lobby-
service. Accessed: 2023-02-17.

https://assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-156413
https://assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-156413
https://assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-156413
https://assetstore.unity.com/packages/audio/sound-fx/free-ui-click-sound-pack-244644
https://assetstore.unity.com/packages/audio/sound-fx/free-ui-click-sound-pack-244644
https://assetstore.unity.com/packages/audio/sound-fx/free-ui-click-sound-pack-244644
https://docs.unity3d.com/Manual/com.unity.netcode.gameobjects.html
https://docs.unity3d.com/Manual/com.unity.netcode.gameobjects.html
https://docs-multiplayer.unity3d.com/netcode/current/components/networkanimator
https://docs-multiplayer.unity3d.com/netcode/current/components/networkanimator
https://docs-multiplayer.unity3d.com/netcode/current/components/networktransform
https://docs-multiplayer.unity3d.com/netcode/current/components/networktransform
https://docs-multiplayer.unity3d.com/netcode/current/relay/
https://docs.unity.cn/2021.1/Documentation/Manual/system-requirements.html
https://docs.unity.cn/2021.1/Documentation/Manual/system-requirements.html
https://unity.com/releases/editor/whats-new/2021.3.16
https://docs.unity.com/lobby/en/manual/unity-lobby-service
https://docs.unity.com/lobby/en/manual/unity-lobby-service

A
p

p
e

n
d

ix A
Source code

ClientNetworkTransform

1 using Unity.Netcode.Components;

2 using UnityEngine;

3
4 namespace Unity.Multiplayer.Samples.Utilities.ClientAuthority

5 {

6 /// <summary>

7 /// Used for syncing a transform with client side changes.

8 /// This includes host. Pure server as owner isn’t supported by this.

9 /// Please use NetworkTransform for transforms that’ll always be owned by the server.

10 /// </summary>

11 [DisallowMultipleComponent]

12 public class ClientNetworkTransform : NetworkTransform

13 {

14 /// <summary>

15 /// Used to determine who can write to this transform. Owner client only.

16 /// This imposes state to the server. This is putting trust on your clients.

17 /// Make sure no security-sensitive features use this transform.

18 /// </summary>

19 protected override bool OnIsServerAuthoritative()

20 {

21 return false;

22 }

23 }

24 }

57

58 Source code

OwnerNetworkAnimator

1 using Unity.Netcode.Components;

2
3 public class OwnerNetworkAnimator : NetworkAnimator

4 {

5 protected override bool OnIsServerAuthoritative()

6 {

7 return false;

8 }

9 }

RPC Request Structure in Unity Netcode

1 public void Grab(ulong networkObjectId, ulong clientId)

2 {

3 GrabServerRpc(networkObjectId, clientId);

4 }

5
6 [ServerRpc(RequireOwnership = false)]

7 private void GrabServerRpc(ulong networkObjectId, ulong clientId)

8 {

9 GrabClientRpc(networkObjectId, clientId);

10 }

11
12 [ClientRpc]

13 private void GrabClientRpc(ulong networkObjectId, ulong clientId)

14 {

15 OnAnyGrabbed?.Invoke(this, new OnAnyGrabbedEventArgs

16 {

17 grabberNetworkObjectId = EmoteManager.Instance.GetConnectedPlayerById(clientId)

18 .NetworkObjectId,

19 grabbedNetworkObjectId = networkObjectId

20 });

21 }

Source code 59

FollowTransform

1 public class FollowTransform : MonoBehaviour

2 {

3 private Transform targetTransform;

4
5 public void SetTargetTransform(Transform targetTransform)

6 {

7 this.targetTransform = targetTransform;

8 }

9
10 public void ResetTransform()

11 {

12 targetTransform = null;

13 }

14
15 private void LateUpdate()

16 {

17 if (targetTransform == null)

18 {

19 return;

20 }

21
22 transform.position = targetTransform.position;

23 transform.rotation = targetTransform.rotation;

24 }

25 }

Quick Join (without Relay)

1 public async void QuickJoin()

2 {

3 OnJoinStarted?.Invoke(this, EventArgs.Empty);

4
5 try

6 {

7 joinedLobby = await LobbyService.Instance.QuickJoinLobbyAsync();

8
9 GameMultiplayer.Instance.StartClient();

10 }

11 catch (LobbyServiceException e)

12 {

13 Debug.Log(e);

14 OnQuickJoinFailed?.Invoke(this, EventArgs.Empty);

15 }

16 }

60 Source code

Quick Join (with Relay)

1 public async void QuickJoin()

2 {

3 OnJoinStarted?.Invoke(this, EventArgs.Empty);

4
5 try

6 {

7 joinedLobby = await LobbyService.Instance.QuickJoinLobbyAsync();

8
9 // ------- RELAY -------

10 string relayJoinCode = joinedLobby.Data[KEY_RELAY_JOIN_CODE].Value;

11
12 JoinAllocation joinAllocation = await JoinRelay(relayJoinCode);

13
14 NetworkManager.Singleton.GetComponent<UnityTransport>()

15 .SetRelayServerData(new RelayServerData(joinAllocation, "dtls"));

16 // ------- RELAY -------

17
18 GameMultiplayer.Instance.StartClient();

19 }

20 catch (LobbyServiceException e)

21 {

22 Debug.Log(e);

23 OnQuickJoinFailed?.Invoke(this, EventArgs.Empty);

24 }

25 }

Parabolic Trajectory using Mathematical Calculations

1 private void Parabola()

2 {

3 // Progress goes from 0 (startPosition) to 1 (endPosition)

4 progress = Mathf.Min(progress + Time.deltaTime * stepScale, 1.0f);

5
6 // Translates Progress value into a parabola

7 float parabola = 1.0f - 4.0f * (progress - 0.5f) * (progress - 0.5f);

8
9 // NextPos is obtained by a straight line from the startPosition to the endPosition.

10 Vector3 nextPos = Vector3.Lerp(startPosition, endPosition, progress);

11
12 // NextPosition vertical value gets added the arc

13 nextPos.y += parabola * arcHeight;

14
15 // Reset the parabola when it has reached the end

16 if (progress == 1)

17 {

18 ResetParabola();

19 }

20 }

Source code 61

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State
	Additional information

	Planning and resources evaluation
	Planning
	Resource Evaluation

	Game Design Document
	One Sheet
	Narrative
	Gameplay
	Level Design
	Graphics and Styling

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

