UNIVERSITAT
JAUME-I

Application of Unity Netcode for
GameQObjects in the production of an
online multiplayer fighting game in 3D

Aurelio José Trigueros Miravalls

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume I

July 3, 2023

Supervised by: José Vicente Marti Avilés

@0l

http://creativecommons.org/licenses/by-nc-sa/3.0/

For those who supported me all these years with infinite
patience, I appreciate it from the bottom of my heart.

ACKNOWLEDGMENTS

I would like to thank the friends I made during my studies and with which I have shared
unforgettable moments and experiences that have made me the person I am now. To
Franc for motivating me to try to be a better programmer every day and to Maria for
making me see that I can do the things I impulsively set out to do, even if they are
sometimes too optimistic.

To my flatmates and close friends, who participated in the creation process helping
me to choose design issues, giving me feedback and support at all times. I would also
like to thank some of my professors, who have made me see how interesting and deep
the field of videogames is and from whom I have learnt many things. I also would like
to thank Sergio Barrachina Mir and José Vte. Marti Avilés for their inspiring LaTeX
template for writing the Final Degree Work report, which I have used as a starting point
in writing this report.

To the companies that have motivated me to follow this path as a developer and to think
about making a living from this, such as From Software, Team Cherry or Extremely OK
Games, among many others. Their games have made me see what is achieved by working
with love for your own work.

Last, but most important of all, I would like to thank my family. Without them I
wouldn’t be here and I always keep that in mind. Thank you for trusting me all these
years and for understanding my vocation with pride. Especially my mother, who is the
best person in the world, thank you for everything.

http://lorca.act.uji.es/curso/latex/
http://lorca.act.uji.es/curso/latex/

ABSTRACT

Video games are, without a doubt, an endless source of memorable experiences. Multi-
player video games, in my experience, have been the purveyors of many of these moments.
Sharing those moments with friends allows you to have a good time with them. It has
always been a personal challenge for me to one day make an online game because of
what I owe to these types of games.

This project consists of developing a fighting video game with 3D graphics in Unity
[31] using its new native package, Netcode for GameObjects [22]. The game uses
matchmaking [17] to connect players who are looking for an opponent at the same
time and uses a dedicated server [15] to increase security. Additionally, the movement
is client-authoritative [28] to preserve fluency. It is also interesting to implement lo-
cal multiplayer [1] in this genre. The game is intended to be adapted at some point
to the Rollback Netcode [7] method, an efficient way used by professional games to
reduce the impact of lag, although it is costly to implement due to the use of Al and
customization of the engine’s render pipeline [29]. This report will summarize both
the creative process of the game itself and the technical requirements that had to be
researched to achieve it.

Keywords: Unity, Netcode for GameObjects, Fighting video game, Matchmaking,

Dedicated server, Client-Authoritative, Local multiplayer, Rollback netcode, Render
Pipeline.

1ii

Contents

1 Introduction
1.1 Work Motivation
1.2 Objectives
1.3 Environment and Initial State

2 Planning and resources evaluation

2.1 Planning
2.2 Resource Evaluation

System Analysis and Design

3.1 Requirement Analysis
3.2 System Design
3.3 System Architecture
3.4 Interface Design.
Game Design

4.1 Game Summary
4.2 Gameplay,
4.3 Mechanics oo
44 Game Art

Work Development and Results

5.1 Related Research
5.2 Work Development
53 Results.
Conclusions and Future Work

6.1 Conclusions
6.2 Futurework,

Bibliography

CONTENTS

13

................ 13
................ 15
................ 16
................ 18

21

................ 21
................ 25
................ 45

49

................ 49
................ 20

53

CHAPTER

INTRODUCTION

Contents
1.1 Work Motivation 1
1.2 Objectives e 2
1.3 Environment and Initial State 2

This chapter shows how did the original idea of the work started, the main goals to
achieve and the things that I already knew before looking deeper in the topic.

1.1 Work Motivation

The idea for the game originated from a conversation I had with my friend and classmate,
Adria. We both thought it would be interesting to create a game with a black magic
and African voodoo mythology atmosphere. Inspired by this idea, I further developed
a Game Design Document (GDD) as part of the Conceptual Design for Videogames
course (VJ1222). To my delight, my final paper received the highest grade from Profes-
sor Emilio Saéz.

Throughout my life, I have always been an avid multiplayer game player, and I have been
particularly intrigued by the complexities involved in creating fighting games, especially
those designed for competitive play. I didn’t want to undertake an easy project for my
TFG; I wanted something that I could proudly showcase to prospective employers.

When I discovered that the highest-rated fighting games in the community utilized a
technique called Rollback Netcode to enhance the game’s responsiveness, I saw this

1

Introduction

as an opportunity to delve into the challenging world of netcode and investigate its in-
tricacies. While it may have been an ambitious undertaking, I was determined to prove
myself and explore this new subject.

1.2 Objectives

As stated by Dan Fornace in his article [9], the keys to a good fighting game lie in its
fluidity and readability. The objectives of this work are as follows:

e Create a game that is satisfying to play and can be competitive at the same
time, striking a good balance between balance and fun. Prioritize readability in
animations and effects. The focus will be on providing clear visual and sound cues
that allow players to react appropriately, rather than overwhelming animations
with excessive visual effects that could lead to confusion. For instance, it is im-
portant for players to clearly recognize when a character is taking damage during
the fight.

e Maintain fluidity when playing online by implementing Rollback Netcode, a
highly regarded technique in the fighting game community. This method is crucial
for reducing the impact of high latency in international connections. Players should
experience responsive input reactions and feel that the outcome of a match is
determined primarily by skill, with an element of luck to make it more enjoyable.

e Implement a robust multiplayer foundation that is easily modifiable and al-
lows for the straightforward addition of new features. The game will utilize a
dedicated-server structure, where both clients send their character inputs to
enable the other client to recreate the behavior of the opponent on their own
machine.

e Achieve an appealing art style with a dark yet comic atmosphere, setting it
apart from other games in the genre. The game’s graphical user interface (GUI)
and overall art should maintain consistency to create a visually appealing and
cohesive atmosphere. Characters should be visually distinct from the background,
enabling players to easily locate their own character.

1.3 Environment and Initial State

It was necessary to have some experience with Unity and a little knowledge about
graphics to achieve an acceptable result in this matter.

There were some tutorials that helped out with the netcode implementation, specially
with Unity Netcode for GameObjects [22], but there is few information for a rollback
implementation, in general. But there was even fewer information for this implementa-
tion in Unity. It seems to be a new topic and people have not tested it too much.

1.3. Environment and Initial State

The modeling skills were enough to model some environment inanimated objects, but
they weren’t capable to model and rig characters in a professional way, and some time
would be destined to learning more about this.

Finally, at least the experience with shaders was quite enough to make the desired
visuals that the game would have.

CHAPTER

PLANNING AND RESOURCES EVALUATION

Contents
2.1 Planning 5
2.2 Resource Evaluation 6

This chapter will explain where the hours spent have been allocated, the planning
that was proposed at the beginning compared to what was actually followed due to
various technical complications.

2.1 Planning

The past experience in making games helped in estimating the appropriate hours for each
section involved in this creative and technical process. However, the lack of experience
in making fighting games and multiplayer games necessitated a change in this planning,
as well as a reduction in some parts that required extensive post-TFG work. The goal
was to create a functional multiplayer game with appealing mechanics and visuals.

The estimated time was divided into the following aspects: game design, technical
research, 3D models and animations, programming dedicated to mechanics and physics,
graphics-oriented programming, sound design and implementation, and writing this dis-
sertation.

More hours were used than the initially established time frame, totaling approxi-
mately 325 hours. In Figure 2.1, it shows the initial distribution of hours and how it

evolved throughout the project (see Figure 2.2). It can be observed that, in the end,

5

Planning and resources evaluation

more time was spent on research and programming compared to everything else.

2.2 Resource Evaluation

This section will list the different resources, both hardware and software, that have been
used to carry out this work.

Software used:

- Unity 2021.3.17: more stable version with new multiplayer system, being this the
engine of the game.

- Blender: used to make the 3D models.

- Visual Studio 2022: used to edit the C-Sharp scripts that compose the main code.
- Krita: used for character concepts and user interface design.

- OverLeaf: used to write this memory.

- Trello: helped with task planning and bug fixing.

- Lucid.app: for making the game flowchart.

In terms of hardware:

- OMEN by HP Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 3.70 GHz
- 32 GB RAM

- NVIDIA GeForce 1080T1i

- Wacom Intuos S graphics tablet

- Razer Kraken X Headset

- XBOX 360 Gamepad

2.2. Resource Evaluation

Percentage of time

Activity (of 300 hours
stipulated)
Investigation
(About fighter games and 5%
netcode, in most part)
Game Design 5%
Modeling and GUI design 15%
Coding mechanics,
N ; 40%
animations and options
VFX 20%
SFX and music 5%
Writing the memory 5%

Figure 2.1: Initial Planification (canva.com)

Planning and resources evaluation

Activity

Percentage of time
(of 325 hours)

Investigation

(About fighter games and 10%
netcode, in most part)
Game Design 5%
Modeling and GUI design 10%
st metancs 0%
VFX 15%
SFX and music 5%
Writing the memory 5%

Figure 2.2: Final Hour Destination (canva.com)

CHAPTER

SYSTEM ANALYSIS AND DESIGN

Contents
3.1 Requirement Analysis 9
3.2 System Design 11
3.3 System Architecture oo 11
3.4 Imterface Design 12

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design.

3.1 Requirement Analysis

It is important in a project of considerable dimensions to take into account the indis-
pensable aspects that define it, both functional and non-functional. These are listed
below to clarify the main objectives of the work.

3.1.1 Functional Requirements

List of functional requirements:
e The user can move the character with ease as well as jump and cancel jump.
e The user can attack his opponent with a fast attack or a slow charged attack.

e The user can block and counter attacks at the right moment.

9

10

System Analysis and Design

The user can choose between local multiplayer, online multiplayer and
training mode.

The user can choose between two characters in a selection screen.
The user can pause the game if not in an online mode.

The user can change the volume of the game.

The user can fast forward to his opponent with a skill.

The user can use his character’s own skills in exchange for magic.
The user can throw his opponent off the stage to win the fight.

The user can return to the title screen and exit the game.

3.1.2 Non-functional Requirements

List of non-functional requirements:

The game will have local and online multiplayer.

The game will only be available on PC, although it will be crossplay oriented in
the future.

The game will be in 3D.

The controls will be simpler than a 2D fighting game but not very easy, because
players expect a learning curve.

The frames that occupy the animations will be very rigorous, always fulfilling
some frames of preparation, action and recovery in each one of them.

The interface will have a lighthearted and comic look, as well as an aesthetic of
patches for clothes and seams.

The graphics will be comic book style and will have a violent as well as comical
feel.

The sounds used will be unrealistic and will enhance the important actions that
occur.

The game will be playable with both controller and keyboard.

The game will have a matchmaking system to find matches with opponents of
similar level.

The game will use dedicated servers to make cheating more difficult.

3.2. System Design

3.2 System Design

Attached is the flowchart of the game at the moment (see Figure 3.1)

i

ONLINE SEARCHING FIGHT
— FOR AN ARENA

MODE OPPONENT (ONLINE)
TITLE —‘;\

SCREEN
STATS
— SCREEN
LOCAL FIGHT
— ARENA
MODE (OFFLINE)
OPTIONS
OFFLINE?

Figure 3.1: Flowchart of the game (lucid.app)

3.3 System Architecture

The game is designed to run on any mid-range computer, and can at least ensure the
60 F'PS (Frames Per Second) [14] that fighting games need to remain smooth and re-
active to inputs. For the development, the most stable version of Unity’s Netcode for
GameObjects, version 2021.3.17, was used.

These are the version system requirements for the editor [32]:

- Windows 7 (SP14), Windows 10 and Windows 11, 64-bit versions only.
- CPU: X64 architecture with SSE2 instruction set support

- Graphics API: DX10, DX11, and DX12-capable GPUs

12

System Analysis and Design

3.4 Interface Design

The user interface should have a cartoon look, cheerful and comical appearance. The
overall look should reside in the theme of stitching and dolls, therefore the interface is
based on patches overlapping everything else, with fabric texture (see Figure 3.2).

At the same time, the buttons will contain colloquial language with which the func-
tionality of the game will be understood. All language used will end in an exclamation
mark, as will the title of the game, as a way of differentiating the interface from that of
other games. Sound feedback will be given to the player when pressing buttons, as well
as visible evidence of which button is currently selected. The pointer will be hidden at
all times as the pointer position is not used at any point in the game.

Figure 3.2: Cat patch (left) and band aid (right) patches. Pinterest.

CHAPTER

GAME DESIGN

Contents
4.1 Game SUMIATY o v v v vt e e e e 13
4.2 Gameplay 15
4.3 Mechanics e 16
4.4 Game Art 18

This section will look at the design of the game, both mechanically and technically,
as well as artistic decisions.

4.1 Game Summary

¢ Title: Voodoo Wars!

¢ Platform: PC

¢ Genres: Fighting Game, Action, Online

o Artistic style: 3D models, cartoon style, violent atmosphere

o Similar games: "Super Smash Bros Ultimate" [12]," Brawlhalla" [4] or "Naruto:
Ultimate Ninja Storm" [19]

13

14

Game Design

4.1.1 Setting

The game recreates a fictional sport with a mythological religious basis, in which people
fight for the favor of a god. Only the best at the contact sport of Voodoo Wars! will
reach paradise in this universe. Therefore, believers in this faith prepare lethal voodoo
dolls to fight against other dolls, inspired by today’s robot fights but with a macabre
twist. This drive to be the best is one of the core elements of the game, which promotes
competitiveness in the online mode. In fact, the best real game player of the year will
have the opportunity to participate in designing a character of their choice.

As a sport, it features a boxing-style announcer and a stadium where the crowd can
be heard roaring with every direct hit.

Figure 4.1: Concept art made with TA

4.1.2 Target audience

The target audience for this game consists of teenagers and young adults between 16
and 30 years old, usually male, which is the most common gender in fighting games. It
seeks both people who want a game to play with their friends and competitive people
who have no ceiling when it comes to improving their skills.

4.2. Gameplay

15

4.2 Gameplay

The opposing dummy will be controlled by another person, both locally and online. The
implementation of an AI using behaviour trees is intended for future work (see Figure
4.2).

Figure 4.2: Fighting between two characters

The combat system is the core of all gameplay. The main objective is to knock the
opponent out of the ring, thereby eliminating one of his chances of rebirth. The one
who runs out of rebirth opportunities will die permanently, with the dummy left in the
ring becoming the winner.

The blows have different thrust forces, plus they depend on a global variable that is
different from any other fighting game: there is an on-screen representation of a scale
that simulates who the god prefers to win. The less favour the god provides, the
more the opponent will have. This will boost hits with more favour, making the player
with less favour fly further more easily.

Hits, however, will have the possibility of being blocked or even countered, stun-
ning the opponent and gaining the advantage of anticipation. Something important is
that characters can only do one action at a time, and this can be interrupted if they are
hit (see Figure 4.3).

In addition to all this, there is a kind of mana called Voodoo magic, which is a
resource used by some skills that characters cast with powerful results. This resource
can be obtained either by landing blows or by collecting energy pellets that appear in

16

Game Design

Figure 4.3: Blocking example

the ring from time to time. The fight will always start with an energy ball in the middle
of the characters, encouraging aggression and action at all times, as whoever gets close
to the other character first will be rewarded first.

The ring consists of a large circular island surrounded by smaller islands orbiting
it. These islands can be dangerous to access, but will contain magic spheres that will
help to charge special attacks sooner (see Figure 4.4).

There will be a time limit for combat, and the player with the fewest lives will lose
in the event of a draw. In the event of a draw, the fight will enter sudden death mode,
where the favour between the two opponents swings wildly and either can win with a
good hit.

The aim is to make the combat system frenetic and entertaining, fluid and easy to
learn. However, the real goal is to add even more mechanics such as combos and jumping
attacks that steepen the learning curve to make the game more difficult to master.

4.3 Mechanics

The mechanics will be the same for all fights and will only differ in the different weapons
and abilities that the various characters possess. Although the game can be played with
either keyboard and mouse or controller, it is strongly recommended to play with a
controller because it is much more comfortable for fighting games.

4.3. Mechanics 17

Figure 4.4: Fighting between two characters

¢ Movement: WASD keys in PC, Left Joystick in gamepad.

o Fast Attack: Left Click Mouse in PC, Left action button in gamepad

e Strong Attack: Right Click Mouse in PC, Right action button in gamepad

¢ Block: Control key in PC, Right Trigger in gamepad

e Parry: Q key in PC, Right Shoulder in gamepad

e Jump: Spacebar in PC, Down action button in gamepad

e Dash: Shift key in PC, Left Joystick in gamepad

¢ Voodoo Power: E key in PC, Left Shoulder in gamepad

e Taunt: T key in PC, Up arrow in gamepad

18

Game Design

4.4 Game Art

4.4.1 Visual References

Visual references were sought through both Pinterest searches and drawing AI (Artifi-
cial Intelligence) description results (see Figure 4.6), all in an effort to come up with a
charismatic art style. The art style draws from both traditional comics and games like
Darkest Dungeon [18], with a much darker style and a strong black line. It had to
derive from the Voodoo religion, so symbols of death, masks or other cultural references
to this are often used.

The playful aesthetic and the ring was based on Brawlhalla. See an example of this
aesthetic in figure 4.5.

The image of the voodoo doll holding a nail was the key visual reference and the one
that originated the idea of using a similar aesthetic throughout the game (see Figure 4.6).

The 3D Low Poly [13] style goes well with a less serious and realistic gameplay and
saves a lot of performance in this aspect.

S A N e R —P

Figure 4.5: Brawlhalla

4.4.2 VFX

VFX (Visual Effects) are very important in fighting games, accompanying all incoming
inputs and making it easier to visualise what the opponent is doing. Most of them have
been taken from the Unity Asset Store [23], but modified within the engine to suit the

4.4. Game Art 19

Figure 4.6: Pinterest references and original idea.

game and its appearance. They are accompanied by controller vibration if it is played
with one, further increasing the player’s awareness of what’s going on. There is a slash
effect for the attacks, a magic shield covering the character when it is blocking and a
shining when a player is ready to counter attack, among other examples (See Figure 4.7)

Figure 4.7: Blocking (left), getting hit (right) and run (bottom) VFX.

20

Game Design

4.4.3 Sound Design

The sound of the game tries to be as reactive as possible to what is on screen, reinforcing
important actions that occur. During the fight, soft combat music plays in the back-
ground. Actions such as punching, counterattacking, using the shield, sliding towards
the opponent... Everything has important sound feedback to give the opponent a clue
to react.

CHAPTER

WORK DEVELOPMENT AND RESULTS

Contents
5.1 Related Research 21
5.2 Work Development L 25
5.3 Results e 45

Here it will presented the concluded results of the research process that was done
first, both on the fighting game genre itself and on the technical challenge of making a
multiplayer game. It will also discuss the work done during these months in the different
areas of development.

5.1 Related Research

Before development started as such, there was a period of time where getting informa-
tion about all the technical complications and best practices in fighting games was key.
Especially because it was important to take everything that others were doing very well
and bring it to a type of fighting game that was more neglected by fans: 3D fighting
games.

5.1.1 Genre Research

The first thing that was investigated was the main inspiration for this TFG, a famous
game within this genre, Naruto: Ninja Storm Revolution 3 (see Figure 5.1). Look-
ing at the user reviews, there are several aspects that are liked among these players.
Above all, they ask that if it is a 3D fighting game, the space should be used to add
verticality and gameplay within the map. Dragon Ball Budokai Tenakichi 3 2]

21

22

Work Development and Results

(see Figure 5.2) was taken as an example of this, which took advantage of its 3D game-
play to recreate impressive fights in the air and on the ground.

IZQue, B8000?!

iIiDebe ser un error la maaQuina

sufrioco una descompostural

Figure 5.2: Dragon Ball Tenkaichi 3

The research continued, and after a while the first key ideas of a well-received fight-
ing game among users were synthesised: fluidity, verticality, taking advantage of
the scenery, easily executable combos and accountability to the player at all
times. If anyone should win in a fighting game, it is the player who has made the best
use of his or her skills to take advantage, without unfair moments in the game that break
the experience of participating in a real sport.

5.1. Related Research

23

Physics was also an important issue, and the intention of the work was not to make
a 3D Smash Bros [3] (see Figure 5.3), but to find the good things about this game
and apply them to one with different mechanics. And it turns out that what Smash
Bros does very well is physics [5]. They delved deeper into the subject and there are
little technicalities that without them fighting games wouldn’t be what they are now.
Stun times, cancelling animations, taking control away from the player when thrown....
Fighting games are quite technical at bottom.

Figure 5.3: Smash Bros Ultimate

The research helped to approach the code architecture in a different way. The char-
acters first had to have a Finite State Machine [21] to ensure that they are always
in a state and cannot leave it until the animation ends. Each animation is divided into
three distinct time slots: preparation, action and recovery [8]. When an input is
pressed, the action does not occur until that point in the animation is reached. While
in an animation and another input is pressed, it is possible to save it in an input buffer
to execute it right after this animation ends. This is something that many acclaimed
fighting games do and is something that is standardised and rare not to have (see Figure
5.4)

It was also important for the execution to learn the difference between hitbox, hurt-
box and collider in this kind of games. The hitbox is the collision area (trigger) that an
attack occupies. The hurtbox is the collision area (also trigger) of the character itself.
If the hitbox collides with another character’s hurtbox, they receive the corresponding
effect. The collider (a collision area that each physical model has) however only prevents
players from overlapping and is active all the time. [6]

Finally, as these are games where attacks last for specific frames and strategies de-
pend on this, it is important to normalise the frame rate for all players to exactly 60 fps.

24

Work Development and Results

Figure 5.4: Animation explanation

And this will also be important for synchronising players, as it will be seen in the next
section. [14] [9]

5.1.2 Multiplayer Research

Making a fighting game was no more than a fairly manageable challenge at the local
level. However, the focus of the work had to be on making a multiplayer game as well
as a multiplayer game in this genre. To this end, an easy-to-implement multiplayer
solution for Unity was investigated, namely Netcode for Game Objects [22], their
recently released native solution. However, after research into the methods used by on-
line fighting games to compensate for poor connections, it was decided that Rollback
Netcode would be implemented, a method that consists of not rendering one player’s
frame without having both player’s frames. If a player’s frame is missing due to a packet
loss or a delay, the rollback simulates by means of artificial intelligence which is the most
likely move the person would make. If that input arrives late and does not correspond
to the simulated one, it goes back in the simulation, so to speak, and is rendered with
the player’s input. It is a way of taking advantage of the fact that the game can run
at many fps, but only 60 fps are used for rendering, so the remaining fps are used to
make corrections to the ones that really matter. As it may seem, this is an expensive
technique to implement in Unity, not to say that there is almost nothing researched on
the subject. However, even if it was not in this work due to lack of time, the game had
to be oriented to take this multiplayer model at some point.

One of the requirements of Rollback, and certainly the topic on which research has
been most extensive, has been how to make the game a fully deterministic model.
A deterministic model consists of a system that receives an input and the same thing
always happens when given the same outputs. This is very important, because then the
rollback would only have to send inputs from one client to another, so that each player
receives the input from the other and simulates it at the same time. The problem is
that it is harder than it seems to ensure that something is deterministic. It turns out

5.2. Work Development

25

that computers are not deterministic with each other, and this is mostly due to the
floating point problem that different types of processors have. If one computer does
not have the same processor as another, no one cannot be sure that after a while it will
not be out of phase with the other player because of the accumulated error in processing
floating commas. One processor may see 0.1 as 0.10000003 and the other as 0.10000004,
and this accumulated difference over time causes the two players to become out of sync,
causing chaos and absolute lack of control of the game.

Unity is going to provide a native solution for this problem, but they say they will
release it sometime in 2023. Therefore, a way had to be found to use the benefits of
Netcode for Game Objects without using the Rigidbody system, which uses nor-
mal floating numbers. One of the solutions seems to be to use a physics system outside
Unity with FixedFloatPoints [10], which would ensure a deterministic system. In the
meantime, multiplayer should be secured first and the game should be oriented in that
direction, little by little.

Finally, thanks to the services provided by the new Unity people, dedicated servers,
matchmaking and instant rematch would be available completely free of charge. This
made this task much easier and it is thanks to this that online was implemented without
much trouble. Also, a voice chat service would be a very good idea, because the essence
of fighting games is to be able to comment the game while you play, as if you were next
to the player. This would be optional for players and easy to implement with Unity’s
free Vivox [35] service.

5.2 Work Development

This section will explain the different aspects that have been developed in this final work:
programming, 3D modelling and animation. The bulk of the time was spent in these
three areas, and time would be saved in the VFX, SFX and textures. Some time would
be used for learning about character modelling techniques, as well as the multiplayer
library documentation.

5.2.1 Coding

The code developed in the work can be divided into two parts: the one that controls
the mechanics and behaviour in general (the vast majority, written in C-Sharp) and
a custom lighting shader for the game (written in HLSL (High Level Shader Lan-
guage) [25] and Unity’s ShaderGraph).

As an organising and scripting entity, we can find the GameManager, which is present
in every scene of the game. It is mainly in charge of changing the game mode, coordi-
nating local multiplayer, changing global game variables and controller vibration.

26

Work Development and Results

© 00 N DU W N

NN N KN = = = e e e e
W N = O © W N O U W= O

© 00 N D U W N

[I i e R O e iy
S © 00 N O Uk W N = O

Change Play Mode

public void ChangePlayMode(PlayMode playMode)

{

activePlayMode = playMode;

if (activePlayMode == PlayMode.ONLINE)

{
GetComponent<PlayerInputManager>().enabled = false;
networkManager.SetActive(true);
serverManager.SetActive(true);
approvalManager.SetActive(true);
SceneManager.LoadScene("OnlineRing");

}

else if (activePlayMode == PlayMode.OFFLINE)

{
GetComponent<PlayerInputManager>().enabled = true;
networkManager.SetActive(false);
serverManager.SetActive(false);
approvalManager.SetActive(false);
GetComponent<PlayerInputManager>().playerPrefab = charactersArray0Offline[0];
SceneManager.LoadScene("0fflineRing");

}

}

This function is responsible, with the help of the Input System Manager, for assigning
the various controls to the individual prefabs so that each player can control her o his
character.

On Player Joined

void OnPlayerJoined(PlayerInput playerInput)

{
if (playerInput.playerIndex == 0)
{
playerOne = GameObject.FindGameObjectWithTag("Player");
playerOne.GetComponentInChildren<PlayerController>().playerOne = true;
playerOne.tag = "PlayerOne";
GetComponent<PlayerInputManager>().playerPrefab = charactersArrayOffline[playerTwoCharacterId];
try
{
InputSystem.SetDeviceUsage(Gamepad.all[0], "Playerl");
playerTwoGamepad = InputSystem.GetDevice<Gamepad>(new InternedString("Player2"));
}
catch
{
InputSystem.SetDeviceUsage(Keyboard.current, "Playerl");
}
}
else

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

B~ W N =

© 0 N O«

11
12
13
14
15
16
17
18
19
20
21

9.2

Work Development

27

playerTwo = GameObject.FindGameObjectWithTag("Player");
playerTwo.GetComponentInChildren<PlayerController>().playerOne = false;
playerTwo.tag = "PlayerTwo";
playerOne.GetComponentInChildren<PlayerController>().enemy = playerTwo;
playerTwo.GetComponentInChildren<PlayerController>().enemy = playerOne;
playerOne.GetComponentInChildren<PlayerController>().enemyController

= playerTwo.GetComponentInChildren<PlayerController>();
playerTwo.GetComponentInChildren<PlayerController>().enemyController

= playerOne.GetComponentInChildren<PlayerController>();

try
{
InputSystem.SetDeviceUsage(Gamepad.all[1l], "Player2");
playerTwoGamepad = InputSystem.GetDevice<Gamepad>(new InternedString("Player2"));
}
catch
{
InputSystem.SetDeviceUsage(Keyboard.current, "Player2");
}
mainCam.Follow = playerOne.transform;
mainCam.LookAt = playerTwo.transform;

This changes the speed of the controller motor to cause vibration in the controller,

only

if the controller has a controller assigned to it and if it is therefore possible.

RumblePulse

{

public void RumblePulse(float lowFrequency, float highFrequency, float duration, bool playerOne)

if (playerOne)
{
if (playerOneGamepad !'= null)

{
playerOneGamepad.SetMotorSpeeds (lowFrequency, highFrequency);
StartCoroutine(StopRumble(duration, playerOne));

else

if (playerTwoGamepad != null)

playerTwoGamepad.SetMotorSpeeds (lowFrequency, highFrequency);
StartCoroutine(StopRumble(duration, playerOne));

28

Work Development and Results

N

© 00 N 3wt

10
11
12
13
14
15
16
17

© 00 N O UL A W N

=
= o

Finally, the GameManager deals in the Update method with the behaviour of the
camera, which switches from Target to the nearest player at all times, and the Look at to
the opposite player. See 5.5 to see more details of the Cinemachine[16] configuration.

CameraBehaviour

if (Vector3.Distance(playerOne.transform.position, mainCam.gameObject.transform.position)
< Vector3.Distance(playerTwo.transform.position, mainCam.gameObject.transform.position))

{
if (mainCam.Follow
{
mainCam.Follow
mainCam.LookAt
}
}
else
{
if (mainCam.Follow
{
mainCam.Follow
mainCam.LookAt
}
}

== playerTwo.transform)

= playerOne.transform;
= playerTwo.transform;

== playerOne.transform)

= playerTwo.transform;
= playerOne.transform;

As for multiplayer, we can find 3 key scripts: ConnectionApprovalHandler, Matchmak-

erClient and ServerStartUp.

ConnectionApprovalHandler handles user authentication, which in the case of the
project has been left as anonymous ID to make things easier, although it is not expensive
to implement the API of each authentication service such as Google or Steam. This script
only allows players to connect until the lobby maximum is reached, in this case two.

ApprovalCheck

private void ApprovalCheck(NetworkManager.ConnectionApprovalRequest request, NetworkManager.ConnectionApprovalRe:

{

response.Approved = true;

response.CreatePlayerObject = true;

response.PlayerPrefabHash =

null;

if (NetworkManager.Singleton.ConnectedClients.Count >= maxPlayers)

{

response.Approved = false;

}

response.Pending = false;

ServerStartUp what it does in general is to assign an allocation when the desired
number of players in a game is reached. First it checks if the run belongs to a server
or a client. If it belongs to a server, then it starts the server functionality and waits for
players until the game can be started. It assigns the given IP and port to each client.

5.2. Work Development

29

v CinemachineVirtualCamera
Status: Live Solo
Game Window Guide +
» During Play v

1

r Clip Plane
Far Clip Plane
Dutch
Advanced
Transitions
Blend Hint MNone
nherit Position

On Camera Live (ICinemachineCamera, ICinel

List is Empty

+
Framing Transposer
Composer
none
Extensions
Add E» sion

(select)

v Look Camera Y (Script)

¥ Position

Figure 5.5: Camera Configuration

30

Work Development and Results

© 00 N O U s W N

e e e e e e e e
© 00 N O Uk W N = O

20
21
22
23
24
25
26
27
28
29
30

It also performs backfill, which means that the players do not have to search at the
same time, but a player is assigned an allocation and waits there for another player to
connect. This is the server configuration in Unity Services [20] (see 5.6) The build
running on the Unity servers is a Linux build prepared to be a dedicated game server.
It does not render graphics in order to make better use of the computer performance
provided by Unity. These servers are always available and are only switched on when a
new allocation is needed, in order to reduce the cost.

Start
private async void Start()
{
bool server = false;
var args = System.Environment.GetCommandLineArgs();
for (int i = 0; i < args.Length; i++)
{
if (args[i] == "-dedicatedServer")
{
server = true;
}
if (args[i] == "-port" && (i + 1) < args.Length)
{
serverPort = (ushort)int.Parse(args[i + 1]);
}
if (args[i] == "-ip" && (i + 1 < args.Length))
{
externalServerIP = args[i + 1]
}
}
if (server)
{
StartServer();
await StartServerServices();
}
else
{
ClientInstance?.Invoke();
}
}

Last but not least, MatchmakerClient is in charge of managing the ticket that is sent
to the servers if it is a client, the ticket can be in four states: pending, accepted, failed or
timeout. When two tickets are pending and meet, the server assigns them an allocation
and they become accepted. The game therefore begins.

PollTicketStatus

private async void PollTicketStatus()

{

5.2. Work Development

31

Server ID

59810933

59810942

59810951

59810957

59810960

59810963

59810972

IP:Port Location Fleet

35.228179.128:9000 & europe-northl-b FleetTestVoodoo
35.228179.128:9100 & europe-northi-b FleetTestVoodoo
35.228179.128:9200 & europe-northl-b FleetTestVoodoo
35.228179.128:9300 & europe-northl-b FleetTestVoodoo
35.228179.128:9400 & europe-northl-b FleetTestVoodoo
35.228179.128:9500 & europe-northl-b FleetTestVoodoo
35.228179.128:9600 & europe-northl-b FleetTestVoodoo

Active build
configuration
Dev B build
Dev B build
Dev B build
Dev B build
Dev B build
Dev B build

n

Dev B build
erLinuxT

Figure 5.6: Servers Available

MultiplayAssignment multiplayAssignment = null;
bool gotAssignment = false;

do
{

sk.Delay(TimeSpan.FromSeconds(1f));

etStatus = await MatchmakerService.Instance.GetTicketAsync(ticketId);

etStatus == null) continue;

if (ticketStatus.Type == typeof(MultiplayAssignment))

Status

Available

Available

Available

Available

Available

Available

Available

multiplayAssignment = ticketStatus.Value as MultiplayAssignment;

await Ta
var tick
if (tick
{
}
switch(m
{

case

case

case

case

defa

ultiplayAssignment.Status)

StatusOptions.Found:
gotAssignment = true;
TicketAssigned(multiplayAssignment);
matchmakingPanels.SetActive(false);
fadePanel.SetActive(false);
Debug.Log("Ticket_found");
break;

StatusOptions.InProgress:
Debug.Log("Waiting _for_ticket");
break;

StatusOptions.Failed:
gotAssignment = true;
Debug.Log("Failed_to_get_ticket_status");
matchmakingPanels.SetActive(false);
fadePanel.SetActive(false);
break;

StatusOptions.Timeout:
gotAssignment = true;
Debug.Log("Time_out_to_get _the_ticket.");
matchmakingPanels.SetActive(false);
fadePanel.SetActive(false);
break;
ult:
throw new InvalidOperationException();

32

Work Development and Results

41
42
43
44

Ut W N

}
} while ('gotAssignment);

If the ticket is assigned, then the script assigns a port and an IP to the client and
start it.

Ticket Assigned

private void TicketAssigned(MultiplayAssignment assignment)

{
NetworkManager.Singleton.GetComponent<UnityTransport>().SetConnectionData(assignment.Ip, (ushort)assignment.F
NetworkManager.Singleton.StartClient();

In terms of the overall code architecture of the game, the bulk of the lines are in the
PlayerController and NetworkController, the script that holds all the characters in the
game and controls all the character mechanics, behaviour, animations and particles. It is
considered to eventually split this script into three separate scripts to further isolate the
tasks it performs. Unity’s Input System [27] (see Input System configuration in 5.7)
is used to centralise the inputs and their calls, which are inside the Player Controller.
This system is very versatile and can be used to adapt to any type of controller and add
local multiplayer easily.

Action Maps

! Player

Button

Figure 5.7: Player Input System

Inside this script is the Finite State Machine, which controls the states in which
all the characters in the game can be, these are:

public enum PlayerState
{

© 00 N O Ul W N

NN NN N N NN N N = = = e e e e
© 00 N O U = W N~ O © WO Uk Wi = O

5.2. Work Development

33

FAST_ATACK, SLOW_ATACK, BLOCK, PARRY, DASH, VOODOO_POW,
MOVEMENT, IDLE, JOKE, HIT, STUNNED, KNOCKED_UP

Except for HIT, STUNNED and KNOCKEDUP, which are reactions to receiving
attacks, all the others are states that the player can access of his own free will through
his controls. It contains an important variable called currentState, which contains the
state the player is in at all times and cannot change to another state until the animation
ends. Animations call Unity events [33] at certain frames, which are one-time functions.
There are differences between the PlayerController and the NetworkPlayerController ,
which are mainly that the online script must always know whether it is the owner or
not. IsOwner is a boolean that returns true or false depending on whether the script
belongs to the local player or not. The functions that check the inputs do the action
if the button is pressed or if the player is in a certain state when it is the other client.
This way the behaviour of the other client is simulated on the client itself based on the
state passed to it by the RPC call. [30] call, which we’ll talk about later. Here is an
example of how a script changes in an online game.

Taunting

if (IsOwner)

{
if (taunt && canChangeState && canTaunt)
{
jokeParticle.Play();
canChangeState = false;
canMove = false;
currentState = PlayerState.JOKE;
TransitionToStateServerRpc(currentState);
playerAnimator.SetBool("Taunting", true);
print("Taunt_Owner");
canTaunt = false;
}
else
{
if (!taunt)
{
if (playerAnimator.GetBool("Taunting") == true)
{
playerAnimator.SetBool("Taunting", false);
}
if (!'canTaunt) canTaunt = true;
}
}
}
else

34

Work Development and Results

30
31
32
33

N O Ot W N

S UL W N

N N N

if(currentState == PlayerState.JOKE)

{
//D0 THE SAME

}

As for RPC calls, it is also interesting to see how they act differently depending on
whether it is a server or a client.

TransitionToStateServerRpc

public void TransitionToStateServerRpc(PlayerState newState)

{
if (!IsServer) return;
currentState = newState;
// Call client RPC to update the state on other clients
UpdateStateOnClientRpc(currentState);
}

While the client sends its status to the server, the server stores it on the respective
other client.

UpdateStateOnClientRpc

public void TransitionToStateServerRpc(PlayerState newState)

{
if (IsOwner || IsServer) return;
print("Actualizo_cliente_id:_,." + NetworkObjectId);
currentState = newState;

}

There is the function Takelnputs(), which contains all the methods of each input that
are checked in the Update(). The jump and dash will be used as an example.

The jump for example is something that a lot of effort has been put into, because
it can be cancelled in mid-air to quickly return to the ground, as well as control the
height of the jump depending on how long you press its button.To cancel the jump, a
downward force had to be applied at the moment when the Y velocity of the character
was no longer positive and the lock input was pressed.

To achieve a time-dependent jump, gravity had to be removed from the character and
this method had to be added, which added a base jump force and gradually a small force
if the button was kept pressed.

FixJump

private void FixJump()

if (inAir)

{

© 0 N O o

10
11
12
13
14
15

© 00 N O U W N

NN NN = = e e e e e
W N H O © 0 N O Uk W N = O

5.2. Work Development 35

jumpTime += Time.deltaTime;
if (jumped && jumpTime < jumpMaxTime)

{
playerRb.AddForce(Vector3.up * jumpForceContinuous, ForceMode.Impulse);
}
else
{
if(currentState != PlayerState.DASH) playerRb.useGravity = true;
}

The functions that make up the dash are also worthy of attention, as they control
the timing of the dash, cancel the animation when it collides with the opponent, can
be done in the air, and keep you floating until you advance quickly. The dash consists
of moving the character towards the opponent, but what is really interesting about this
machine are the two corrutines it triggers, DashDelay() and StopDash().

The first one orients the player towards the other and doesn’t apply the force until later,
to give the impression that it charges this power for a while.

DashDelay

IEnumerator DashDelay()

Vector3 relativePos = enemy.transform.position - transform.position;
transform.rotation = Quaternion.LookRotation(new Vector3(relativePos.x, 0, relativePos.z).normalized, Vector3.up);
if (inAir)
{
playerRb.velocity = Vector3.zero;
playerRb.useGravity = false;

yield return new WaitForSeconds(dashDelay);
relativePos = enemy.transform.position - transform.position;
playerRb.velocity = (relativePos.normalized * dashSpeed);
dashParticle.Play();
playerAudio.loop = false;
playerAudio.clip = dashStartSound;
playerAudio.Play();
if (!isDashing)
{
StartCoroutine("Stopbash");
isDashing = true;

The dash can end in two ways: either you don’t hit anything for a few seconds or
you hit your opponent. For when you collide with your opponent, there is this routine
that resets the dash early.

Work Development and Results

StopDash

IEnumerator StopDash()

yield return new WaitForSeconds(dashDuration);
playerRb.velocity = Vector3.zero;

canMove = true;

canChangeState = true;
StartCoroutine("DashReset");

if (playerAnimator.GetBool("Dashing") == true)
{

playerAnimator.SetBool("Dashing", false);

==
H O © 00 N O Otk W N

,_.
o
-

It is also important to note the damage-receiving function, which applies the neces-
sary forces to the characters as well as state changes.

ReceiveDamage
1 internal void ReceiveAttack()
2 {
3 Vector3 enemyPos = enemy.transform.position - transform.position;
4 transform.rotation = Quaternion.LookRotation(new Vector3(enemyPos.x, 0, enemyPos.z).normalized, Vector3.up);
5 if (isParrying)
6 {
7 enemyController.currentState = PlayerState.STUNNED;
8 if (enemyController.playerAnimator.GetBool("Stunned") == false)
9 {
10 enemyController.playerAnimator.SetBool("Stunned", true);
11 parryStunnedParticle.Play();
12 parryDoneParticle.Play();
13 gameManager.RumblePulse(1.0f, 2.0f, 0.8f, playerOne);
14 gameManager.RumblePulse(1.0f, 2.0f, 0.8f, !playerOne);
15
16 }
17 }
18 else if(currentState == PlayerState.BLOCK)
19 {
20 if (playerAnimator.GetBool("BlockedHit") == false)
21 {
22 playerAnimator.SetBool("BlockedHit", true);
23 enemyController.blockEffectParticle.Play();
24 }
25 }
26 else
27 {
28 Vector3 relativePos = (transform.position - enemyController.gameObject.transform.position).normalized;
29 if (enemyController.currentState == PlayerState.SLOW_ATACK)
30 {
31 currentState = PlayerState.HIT;
32

5.2. Work Development 37

33 if (playerAnimator.GetBool("Receiving") == false)

34 {

35 playerAnimator.SetBool("Receiving", true);

36 enemyController.slowAtackImpactParticle.Play();

37 playerAudio.clip = slowAttackImpactSound;

38 playerAudio.loop = false;

39 playerAudio.Play();

40 gameManager.RumblePulse(1.0f, 2.0f, 0.8f, playerOne);

41

42 }

43

44 if (!playerOne)

45 {

46 gameManager.ChangeFavor(-strongAttackBaseFavorGain);

47 }

48 else

49 {

50 gameManager.ChangeFavor(strongAttackBaseFavorGain);

51 }

52

53 float totalDmgDone;

54

55 if (playerOne)

56 {

57 if (gameManager.playerOneFavor > 50)

58 {

59 totalDmgDone = strongAttackBaseFavorGain + (strongAttackBaseFavorGain * (gameManager.playerOneFavor -
60 }

61 else

62 {

63 totalDmgDone = strongAttackBaseFavorGain - (strongAttackBaseFavorGain * (50 - gameManager.playerOneFa
64 }

65

66

67 }

68 else

69 {

70 if (gameManager.playerOneFavor > 50)

71 {

72 totalDmgDone = strongAttackBaseFavorGain + (strongAttackBaseFavorGain * (gameManager.playerTwoFavor -
73 }

74 else

75 {

76 totalDmgDone = strongAttackBaseFavorGain - (strongAttackBaseFavorGain * (50 - gameManager.playerTwoFa
77 }

78 }

79

80 enemyController.gameManager.ChangeMagic((int)totalDmgDone, !playerOne);
81

82

83 relativePos.y = 1f;

84 GetComponent<Rigidbody>().AddForce((relativePos * totalDmgDone * enemyController.currentChargedAttackForce) *
85 }

86 else if(enemyController.currentState == PlayerState.FAST_ATACK)

38

Work Development and Results

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

{
currentState = PlayerState.HIT;
if (playerAnimator.GetBool("Receiving") == false)
{
playerAnimator.SetBool("Receiving", true);
enemyController.basicAtackImpactParticle.Play();
playerAudio.clip = basicAttackImpactSound;
playerAudio.loop = false;
playerAudio.Play();
}
if (!playerOne)
{
gameManager.ChangeFavor(-basicAttackFavorGain);
}
else
{
gameManager.ChangeFavor(basicAttackFavorGain);
}
float totalDmgDone;
if (playerOne)
{
if (gameManager.playerOneFavor > 50)
{
totalDmgDone = basicAttackFavorGain + (basicAttackFavorGain * (gameManager.playerOneFavor -
}
else
{
totalDmgDone = basicAttackFavorGain - (basicAttackFavorGain * (50 - gameManager.playerOneFavc
}
b
else
{
if (gameManager.playerOneFavor > 50)
{
totalDmgDone = basicAttackFavorGain + (strongAttackBaseFavorGain * (gameManager.playerTwoFavc
}
else
{
totalDmgDone = basicAttackFavorGain - (strongAttackBaseFavorGain * (50 - gameManager.playerTy
}
}
enemyController.gameManager.ChangeMagic((int)totalDmgDone, !playerOne);
relativePos.y = 0.2f;
print(relativePos);
GetComponent<Rigidbody>().AddForce(relativePos * totalDmgDone, ForceMode.Impulse);
}

As for the custom lighting shader, it uses Unity’s URP as a base and calculates
the colour of the fragment differently. It calculates diffuse lighting, specular lighting,
the Fresnel effect and even puts an outline on each edge of the objects to give a comic

N O U W N =

5.2. Work Development

39

book feel. All this with fully customisable values and it is a totally versatile shader to
which you can apply both textures and normal maps without any inconvenience. See in
the figure 5.8 all the values that can be modified.

I Light

Normal Map

Figure 5.8: Material Settings

This is the HLSL script where the functions that get the values of the URP are.
This could not be implemented in ShaderGraph because it requires loops to calculate
the lighting of all the point lights in the scene and sum them up.

There is no cartoon shader on the internet that has this functionality of having all
possible lights, so it is a proprietary implementation.

Lightning.hlsl

void MainLight_float(float3 WorldPos, out float3 Direction, out float3 Color,
out float DistanceAtten, out float ShadowAtten)
{
#ifdef SHADERGRAPH_PREVIEW
Direction = normalize(float3(0.5f, 0.5f, 0.25f));
Color = half3(1.0f, 1.0f, 1.0f);
DistanceAtten = 1.0f;

40

Work Development and Results

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ShadowAtten = 1.0f;
#else

float4 clipPos = TransformWorldToHClip(WorldPos);
#if SHADOWS_SCREEN

float4 shadowCoord = ComputeScreenPos(clipPos);
#else

float4 shadowCoord = TransformwWorldToShadowCoord(WorldPos);

#endif
Light mainLight = GetMainLight(shadowCoord);

Direction = mainLight.direction;
Color = mainLight.color;
DistanceAtten = mainLight.distanceAttenuation;
ShadowAtten = mainLight.shadowAttenuation;
#endif
}

void MainLight_half(half3 WorldPos, out half3 Direction, out half3 Color,

out half DistanceAtten, out half ShadowAtten)
{
#ifdef SHADERGRAPH_PREVIEW
Direction = normalize(half3(0.5f, 0.5f, 0.25f));
Color = half3(1.0f, 1.0f, 1.0f);
DistanceAtten = 1.0f;
ShadowAtten = 1.0f;

#else
#if SHADOWS_SCREEN
half4 clipPos = TransfromWorldToHClip(WorldPos);
half4 shadowCoord = ComputeScreenPos(clipPos);
#else

half4 shadowCoord = TransformWorldToShadowCoord(WorldPos);

#endif

Light mainLight = GetMainLight(shadowCoord);

Direction = mainLight.direction;
Color = mainLight.color;
DistanceAtten = mainLight.distanceAttenuation;
ShadowAtten = mainLight.shadowAttenuation;
#endif
}

#ifndef SHADERGRAPH_PREVIEW

Light GetAdditionalLightForToon(int PixellLightIndex, float3 WorldPosition) {
int perObjectLightIndex = GetPerObjectLightIndex(PixelLightIndex);

Light light = GetAdditionalPerObjectLight(perObjectLightIndex, WorldPosition);

light.shadowAttenuation = AdditionallLightRealtimeShadow(perObjectLightIndex, WorldPosition);

return light;

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115

5.2. Work Development 41

#endif
void AdditionallLight_float(float3 WorldPosition, float3 WorldNormal, float3 WorldView, float Smoothness, float3 SpecColor, ou
#ifdef SHADERGRAPH_PREVIEW

Diffuse = (0, 0, 0);
Specular = (0, 0, 0);
#else

float3 diffuseColor = 0;
float3 specularColor = 0;

#ifdef _ADDITIONAL_LIGHTS
Smoothness = exp2(10 * Smoothness + 1);
WorldNormal = normalize(WorldNormal);
WorldView = SafeNormalize(WorldView);

uint numAdditionallLights = GetAdditionalLightsCount();
for (uint lightI = 0; lightI < numAdditionallLights; lightI++) {
Light light = GetAdditionalLight(lightI, WorldPosition, half4(1, 1, 1, 1));
float3 attenuatedLightColor = light.color * (light.distanceAttenuation * light.shadowAttenuation);
diffuseColor += LightinglLambert(attenuatedLightColor, light.direction, WorldNormal);
specularColor += LightingSpecular(attenuatedLightColor, light.direction, WorldNormal, WorldView, float4(SpecColor, 0)

Diffuse = diffuseColor;
Specular = specularColor;

#endif

#endif
}

void AdditionalLight_half(half3 WorldPos, int Index, out half3 Direction,
out half3 Color, out half DistanceAtten, out half ShadowAtten)

Direction = normalize(half3(0.5f, 0.5f, 0.25f));
Color = half3(0.0f, 0.0f, 0.0f);

DistanceAtten = 0.0f;

ShadowAtten = 0.0f;

#ifndef SHADERGRAPH_PREVIEW
int pixellLightCount = GetAdditionalLightsCount();
if (Index < pixellLightCount)

{
Light light = GetAdditionallLight(Index, WorldPos);

Direction = light.direction;

42

Work Development and Results

116
117
118
119
120
121

Color = light.color;
DistanceAtten = light.distanceAttenuation;
ShadowAtten = light.shadowAttenuation;
}
#endif
}

It also supports point lights and shadows for each of the possible lights, as well as
shadows cast on objects. It is a shader to which a lot of time has been spent, but a lot
of importance was given to the graphical aspect of this work. Here (see ?77?) is diffuse
lighting, the key to which in the cartoon shader lies in the Smoothstep [34], to push
the illuminated values to the extreme and not let there be a wide range of colours to
illuminate an object.

After the specular, which is similar to the specular calculated in the URP, the Fresnel
effect is calculated, which consists of putting a halo around the object when a light is
right behind it (Figure 5.10).

Finally, the Outline [26] is multiplied to the final result of the shader, which is
calculated with the position of the camera at all times (Figure 5.11).

Figure 5.9: Diffuse Calculation

Este es el resultado final del shader in-game (figure 5.12).

5.2.2 Modeling

As for the 3D models, some time was spent on learning how to model characters and
getting a bit of a feel for Blender. "Skin" Blender modifier was used, and starting from
a vertex, it was extruded until it looked like the shape of the desired doll design.

5.2. Work Development

43

Figure 5.10: Fresnel Calculation

Screen Position Qutline ct (Custom Function)
Oout(4) @ Out(1) @

Mode | Default - Y QutlineThic

One Minus

@ |n(1) Out(1) @

W

Figure 5.11: Outline Calculation

There wasn’t enough time for texturing, so the models use free-use textures at the
moment to atleast have a good appareance. The two characters, Rum and Xaka, are
completily modeled for the game (see figures 5.13 and 5.14)

5.2.3 Animating

Animation is one of the most delicate aspects of a fighting game and that’s why it has
to be an extensive but well synchronised animation tree [11]. It was a bit difficult to
coordinate everything, but this way the animations look correct at all times.

The animations are imported from Mixamo, it would have been a very good point to
do the animations manually with the help of the Mocap Room(motion capture), but it
required an investment of time that couldn’t be used in this area. This is the animation

44

Work Development and Results

Figure 5.12: Outline Calculation

Figure 5.13: "Xaka", first character

5.3. Results

45

Figure 5.14: "Rum", second character

tree of a default character, see figure 5.15.

A blend Tree [24] was also used to merge the walking and running animations de-
pending on the speed of the character (figure 5.16). Except for the running, jumping
and static animations, all other animations can only switch from one to another until the
animation is finished (hasExitTime = true). The animations call events at different
frames, all to coordinate the gameplay and hitbox activations well.

5.3 Results

As a final result, the objectives set out in point 1.2 have been achieved. The game has
been smooth, giving a good feeling to the people who have come to try it.

The multiplayer system is fully implemented, and only a little more effort is required
to add functionalities that are fully expected by the player, such as Instant Rematch or
Anticheat. Matchmaking has been a bit of a challenge, but it has been more challenging
to code player control with both local and online multiplayer in mind, as well as the
use of RPCs to communicate clients with each other. A lot of research time has been

46

Work Development and Results

FallingUp

FallingDown

Any State

Stunned

HitBlocking

Taunt

Figure 5.15: Animator controller of a character

Blend Tree Blend Tree

Walk
Run =

= Blend Tree

Figure 5.17: Animation with Unity Events

5.3. Results

47

spent on the implementation of rollback, and it is something that has taken a lot of time
away from implementing the basis of online and more game mechanics, however, good
knowledge has been gained on the subject to establish a foundation to continue in that
direction in the future.

The game perfectly simulates the opponent’s behaviour only by receiving its current
state generated by the input, and this is entirely intentional in order to reduce data
sending to a minimum and to achieve a fast response.

Regarding the graphical shader, a lot has been learned about how the Shader Graph
works and the calculation of lighting in a graphics engine. In addition, we have obtained
a clean result, easy to modify parameters, and that can serve perfectly as the final shader
of a commercial game.

The art developed by me resides in the user interface and the character models,
which I think have acquired the desired personality for the project and form a totally
valid atmosphere for a fighting game. The visual effects have been made totally accept-
able thanks to good Unity assets and modifications to these to bring them more in line
with the style of the game.

But above all, the satisfaction that the game can be played anywhere in the world
and that anyone can find anyone else to play with is what stands out the most about
the realisation of this project (see figure 5.18 for the final result).

This is the repository of the project: https://github.com/aerisWay/VoodooWars

Figure 5.18: Final Result

https://github.com/aerisWay/VoodooWars

CHAPTER

CONCLUSIONS AND FUTURE WORK

Contents
6.1 Conclusions e e e e 49
6.2 Future work 50

In this chapter, the conclusions of the work, as well as its future extensions are shown.

6.1 Conclusions

I have really enjoyed making this project in many ways, the research has been very pro-
ductive and because of this I feel the desire to make a game of this genre and publish it
on Steam for everyone to enjoy. However, it has been frustrating at times, mostly due
to technical circumstances and limitations that seemed simpler at first. Many features
required implementation from scratch and networking knowledge that I did not have
before this work. I was only familiar with various concepts, but had no idea how to
implement them.

At one point I was very advanced in this work, because I started the project already at
Christmas and I had a very clear idea of it, but these complications and the lack of time
caused by the curricular internship just in the same space of time made that I had to cut
back on some aspects, at least for this work. I feel it was too ambitious an idea, but I
don’t regret it, as it has made me try harder to learn new things and not stay in my com-
fort zone with things I already knew how to do. My knowledge in Blender and interface
design has improved a bit in this project, so I have also done things I am not specialised
in and I have increased the number of tasks that I could do in a professional environment.

49

50

Conclusions and Future Work

In short, it has been a very profitable experience professionally speaking and a good
starting point to get a game published on a platform, a requirement that is the order of
the day in the profiles that companies ask for. In this way, I feel that the work has been
put to good use and that it will help me professionally to achieve the goals I have set
myself for the coming years.

6.2 Future work

Future work is undoubtedly the key to this project, which has only built a good skeleton
waiting to be perfected. It is clear to me that I will continue the project for a while until
I feel that the result is polished enough to bring it to market so that I can have a good
flagship in my portfolio.

As for multiplayer functionalities, the first aspect would be to apply a matchmaking
filter that matches players depending on their skill level and experience in the game.
It would also be interesting to add Instant Rematch, a feature highly acclaimed by the
community, as well as to establish a secure and fast client-server-client communication
model. The Rollback Netcode would be available from the release of the game, and this
would increase the good reception in the market. To build such an implementation a
good Al using Behaviour Trees or Machine Learning is needed as long as it is good at
predicting player inputs. It would also be important to make a non-competitive mode,
so that players could practice new characters or techniques without the pressure of feel-
ing ranked. In terms of mechanics, there is a long list of features thought of but not
implemented at the moment: an Input Buffer to improve player feel, double jumping,
throwing a chain that serves to return to the stage when you are far away, different
special attacks for each character with their distinctive ultimate abilities, combos, a me-
chanic to match the players’ favour called God’s Mercy...

There are a lot of things to polish in terms of mechanics to make it a game complex
enough to appeal to players of the genre, but they don’t take too much effort to achieve
in the short term with a little work, thanks to having a good foundation in character
control.

It would also improve the code by using events for player interactions, as well as native
animator events that achieve more accurate results when projecting hits and damage.
The game would also feature more starting characters, so players wouldn’t soon tire of
them.

As for the visuals, it wouldn’t hurt to have the help of a more artistic person to go
over both the models and the interface and get a better finish on this aspect. I would
like all the visual effects to be totally created by me, so that I feel that the whole prod-
uct is mine in its totality. The sound effects would be one of the things I would polish

6.2. Future work 51

the most, because it is the aspect where I have lacked the most time, all to get an epic
and sporty atmosphere in every game and good feelings when navigating through the UI.

Finally, I would start a weekly testing where I would write down every feeling the game
gives to the testers and bugs that occur in the process in order to improve the game
experience as much as possible.

BIBLIOGRAPHY

[1] AlllnGames. What is local co-op? https://www.allingames.com/what-is-local-co-
op/.

[2] Bandai. Dragon ball A Budokai tenkaichi 3.
https://dragonball.fandom.com /es/wiki/Dragonpgally :p udokairenkaichis.

Alex Blackfrost. I made smash bros in unity. https://youtu.be/7TE3Ny f9oL M.
BlueMammoth. Brawlhall. https://www.brawlhalla.com/.

David Cabrera. Super smash bros. ultimate basics: Life percentage, blow-
back and offense guide. https://www.polygon.com /super-smash-bros-ultimate-
guide/2018/12/19/18149079/life-percentage-blowback-weight-blowback.

Andrea "Jens" Demetrio. I wanna make a fighting game! a practical guide for beginners
— part 4 (2021 update). https://andrea-jens.medium.com/i-wanna-make-a-fighting-
game-a-practical-guide-for-beginners-part-4-2021-update-4c26{6964179.

Andrea "Jens" Demetrio. I wanna make a fighting game! a practical guide for beginners
— part 5. https://andrea-jens.medium.com/i-wanna-make-a-fighting-game-a-practical-
guide-for-beginners-part-5-f049a78ddc5b.

Dan Fornace. Anticipation, action, recovery. https://www.rivalslib.com/workshopguide/art/anticipation,ction

Dan Fornace. Dan fornace’s 10 tips for making a fighting game.
https://fornace.medium.com/dan-fornaces-10-tips-for-making-a-fighting-game-
€2c982da2396.

IShapeUnity. Fixfloat. https://github.com/iShapeUnity/FixFloat.

James Marijeanne. Understanding the video game animation tree for interactive charac-
ter animation. https://lesterbanks.com/2015/01/understanding-video-game-animation-
tree/.

Nintendo. Super smash bros. https://www.smashbros.com/esgS/.

Angela Palacios. Low poly: el arte de crear personajes y escenas con poligonos.
https://www.crehana.com/blog/estilo-vida/low-poly/.

53

o4

Bibliography

22]

g

[\)
ot

\V)

[\
-J

= T T S
B A |

31]
32]

Reddit. Do fighting games play differently above or below 60 fps?
https://www.reddit.com/r/Fighters/comments/selp9w/do rightinggamesylayqi f ferently.boveyryelow

Margaret Rouse. Dedicated server. https://www.techopedia.com/definition /4868 /dedicated-
server.

samyam. Cinemachine third person controller w/ input system - unity tutorial.
https://www.youtube.com/watch?v=ImuCxx VaEQ.

Sam Skinner. How matchmaking works. https://netduma.com/blog/how-matchmaking-
works/.

Steam. Darkest dungeon. https://store.steampowered.com/app/262060/Darkest pungeon /.
Steam. Naruto: Ultimate ninja storm. https://store.steampowered.com/app/495140/ NARUT Oy ltimat

Tarodev. 9 tools for multiplayer game development ft. tarodev | unity gaming services.
https://youtu.be/rJ K IwmOyJ A.

TechTarget. finite state machine. https://www.techtarget.com/whatis/definition/finite-
state-machine.

Unity. About netcode for gameobjects. https://docs-
multiplayer.unity3d.com/netcode/current /about/index.html.

Unity. Asset store. https://assetstore.unity.com/.
Unity. Blend trees. https://docs.unity3d.com/es/530/Manual/class-Blend Tree.html.
Unity. Hlsl in unity. https://docs.unity3d.com/Manual /SL-ShaderPrograms.html.

Unity. How to make a toon outline effect in unity 2019 Iwrp! (tutorial).
https://youtu.be/joGimXU X4 M.

Unity. Input system. https://docs.unity3d.com/Packages/com.unity.inputsystem@1.6 /manual /index.ht
Unity. Networktransform. https://docs-multiplayer.unity3d.com/netcode/current /components/networl
Unity. Render pipelines. https://docs.unity3d.com/Manual /render-pipelines.html.

Unity. Sending events with rpes. https://docs-
multiplayer.unity3d.com/netcode/current /advanced-topics/messaging-system/.

Unity. Unity. https://unity.com/es.

Unity. Unity editor system requirements. https://docs.unity3d.com/2021.1/Documentation/Manual/sys
requirements.html.

Unity. Unity events. https://docs.unity3d.com/Manual /UnityEvents.html.
Patricio Gonzalez Vivo. Smoothstep. https://thebookofshaders.com/glossary /?search=smoothstep.

Vivox. In-game voice and text chat (vivox). https://unity.com/products/vivox.

Bibliography

55

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Game Design
	Game Summary
	Gameplay
	Mechanics
	Game Art

	Work Development and Results
	Related Research
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

