Development of a
city driving videogame

Alejandro Garcia Lépez

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume I

July 3, 2023

Supervised by: Raul Montoliu Colas, PhD.

@0l

http://creativecommons.org/licenses/by-nc-sa/3.0/

To Wendy

ACKNOWLEDGMENTS

I would like to thank the team at Catness where I learnt most of the things I know of
Unreal Engine.

Moreover, the team of Epic Games for creating the really awesome technology for
developing video games free and accessible to everyone.

I would also like to thank Rail Montoliu Colas his suggestions and help in the process
of writing this report. Finally, thank Sergio Barrachina Mir and José Vte. Marti Avilés
for their inspiring LaTeX template for writing the Final Degree Work report, which has
become very useful as a starting point and guide in writing this report.

ABSTRACT

This project involves the creation of an immersive video game centered around driving
through a bustling city, complete with realistically moving vehicles. The primary objec-
tive is to develop an advanced, rule-based intelligence system for the vehicles, ensuring
their behavior mimics real-world traffic patterns. Additionally, special attention will be
given to accurately replicating the movement of bicycles within the game.

At its core, this game will focus on crafting and refining an Al system that effectively
manages the flow of traffic throughout the city. It will be a third-person simulation/-
casual genre video game developed using the powerful Unreal Engine 5, optimized for
computer platforms. The player will assume the role of a delivery person riding a bicycle
and will be tasked with timely package deliveries across different areas of the city.

By combining realistic vehicle dynamics, and precise bicycle movement, players will
be fully immersed in an authentic urban environment. The use of Unreal Engine 5
will ensure stunning visuals and a seamless gameplay experience. As the delivery guy,
players will face the challenge of navigating through a dynamic city, dodging traffic, and
delivering packages within strict time limits.

1ii

Contents
1 Introduction
1.1 Game Overview
1.2 Work Motivation
1.3 Objectives
1.4 Environment and Initial State
1.5 Results preview
2 Planning and resources evaluation
2.1 Planningo
2.2 Resource Evaluation
3 Game Design Document
3.1 Conceptualization
3.2 Demography
3.3 Requirement Analysis
3.4 System Design
3.5 System Architecture
3.6 Interface Design.
4 Work Development and Results
4.1 Work Development
42 Results. L.
5 Conclusions and Future Work
5.1 Conclusions
5.2 Futurework
Bibliography

A Source code

CONTENTS

13

................ 13
................ 15
................ 15
................ 19
................ 19
................ 19

25

................ 25
................ 35

41

................ 41
................ 42

43

45

CHAPTER

INTRODUCTION

Contents

1.1 Game Overview e
1.2 Work Motivationo
1.3 Objectives
1.4 Environment and Initial State
1.5 Resultspreview

R W N =

This chapter serves as a concise overview of the development process, outlining the
objectives, motivations, and initial state of the project. Its primary focus is to provide
a clear understanding of the planned work and its purpose. In a nutshell, the project
consist of a design and development of a single player, 3rd person action/casual game in
a city which will challenge your driving skills.

Game play video: Delivery Drift - YouTube

1.1 Game Overview

As described in the abstract, the player assumes the role of a Delivery Guy tasked with
making timely deliveries. The game environment will feature highlighted green beacons
showing over buildings, indicating the delivery destinations and providing a general
direction to follow. However, successfully completing the deliveries requires more than
just punctuality; the player must also navigate through a bustling cityscape, evading
vehicles at all costs. Any collision, no matter how minor, will instantly end the game.

https://youtu.be/S7lLfCrk1bQ

Introduction

Figure 1.1: Delivery Drift overview

1.2 Work Motivation

One of the games that thrilled me more was Grand Theft Auto, particular y GTA IV
[15], there was where I discovered the open world games. One of the things that I enjoyed
the most was exploring the city by car. So with that idea in mind Delivery Drift is a
simulation game that tries to recreate the sensation of driving thought a city. In the
image 1.2, we can see the ambient inspiration.

This type of games are usually popular and attract the interest of the general public
which is mainly why I decided to create this game, moreover, these type of games usually
create a sensation of immersion and challenging game play. Although to create a slight
distinction to other similar video games there is a small twist, the driving is done on a
bike instead of a car, this idea came to my mind because I use the bike as a mean of
transport, but then I realised that is more interesting to be done by bike because the
speed is felt more and it’s easier to pass though cars.

1.3. Objectives

———
SocIAL
DISTANCING rg ‘

° | e

® 1

Figure 1.2: Delivery Drift top, GTA IV Bottom [5]

1.3 Objectives

The project’s primary objectives can be summarized as follows:

e Provide players with a profound sense of immersion within a bustling cityscape and
a compelling desire to explore its intricacies. This would be acquired by designing
an interesting city and using highly detailed assets.

e Create a good feeling of the bicycle controls and mechanics, by creating good
animations and a realistic bicycle movement.

o Design and implement all systems described in Chapter 3 (see Chapter 3).

o Make all the vehicles look realistic and interact with each other in a way that feels
natural and challenging.

Introduction

o Expand my knowledge of Unreal Engine, as by the start of the project, my knowl-
edge is basic.

1.4 Environment and Initial State

The beginning of the idea was to create a complex and interconnected system which
would need to be consistent in time and space scale. At the start I didn’t had the
knowledge to make such a big project. During the first weeks of development, I completed
a very extensive tutorial, Professional Game Development in C++ and Unreal Engine
by Tom Looman [19], that gave me a good starting point into understanding the basic
functioning of unreal and how the different systems relate. After that the project was
still a difficult challenge but with various tutorials, websites and forums to solve the
future problems it was viable. Although time and resources were limited, and some
ideas were left apart, the core of the game was possible.

The creation of this game is inspired by some already existing games and will rely
on some assets and web pages.

e The game is inspired by the driving aspects of the popular game Grand Theft
Auto [16], it also shares some similarities with the game Delivery Truck Sim-
ulator [3] and Pizza Delivery Simulator [14].

e There will be used some assets, the most useful and main asset for the map con-
struction is the "City Environment Megapack vol 02" taken from the Unreal Engine
Marketplace [12] and the City Samples Vehicles from the Unreal Engine Market-
place too [6].

o Sketchfab, and other internet websites alike, will provide car models and various
city elements which will be incorporated into the video game.

o For the main character I’ll be using the Control Rig from Epic Games [8]. And
for the meshes the Stylized Character Kit: Casual 01 by RocketArts [22]

1.5 Results preview

What is going to be achieved is a game that tries to be realistic both in movement and in
environment. The game play and mechanics would feel natural and entertaining. Here
we can see some shots of the game and a short game play video.!

! Game play Delivery Drift, https://youtu.be/S7ILFCrk1bQ.

https://youtu.be/S7lLfCrk1bQ

1.5. Results preview

Figure 1.3: Delivery Drift title page

SOCIAL
DISTANCING

Figure 1.4: Delivery Drift player start

Introduction

Figure 1.5: Delivery Drift in game photo

CHAPTER

PLANNING AND RESOURCES EVALUATION

Contents
2.1 Planning 7
2.2 Resource Evaluation, 8

2.1 Planning

The main part of the game would be the delivery missions that take place in the bustling
city. As a delivery guy on a bicycle, the player’s objective is to deliver packages to
different parts of the city within a limited time. Here’s what different parts of the game
will consist of:

o City Exploration: The player would have the freedom to take any route they
desire to deliver the packages. The city would be filled with realistic buildings and
vehicles.

o Delivery Missions: The player would have a wide range of delivery missions to
complete within a limited time frame. Each mission would be different and offer
varying levels of challenge. The player would need to navigate through the city,
avoiding traffic to reach their destination and deliver the package on time.

o Traffic Management: The game’s Al would manage the circulation of vehicles in
the city, making it more challenging for the player to complete their missions. The
player would need to use their knowledge of traffic rules to navigate through the
city safely and efficiently.

Planning and resources evaluation

e Rewards: When the player finishes one deliver mission he receives 1 "point", and
when he/she has 5 he would be able to drive a car instead of a bike.

e Challenging Scenarios: As the player progresses through the game, they would
encounter some challenging scenarios, specifically rush hour traffic. However this
scenarios would appear randomly (by chance) along the game play. The player
would need to learn how to adapt their strategy to complete the missions success-
fully.

2.2 Resource Evaluation

From the objectives described in the previous section (see Section 2.1) the next tasks
can be deduced to accomplish the requirements (see Figure 2.1)

And from the information in the task table the next Gantt chart is done (see Fig-
ure 2.2)
2.2.1 Tools

For the development of this particular game, there will be used a variety of tools and
technologies to create a dynamic and immersive game play experience. 2.1,2.2, 2.3,2.4
and 2.5. The games has been developed in my personal PC with the next specifications:

o OS: Windows 11 Home.

o Processor: Intel i712700

o GPU: Nvidia RTX 3060 Ti
« RAM: 32 GB DDR4

Type: Engine

Specific software name: Unreal Engine 5

It offers a range of tools and features that make it easy to develop complex
game play mechanics and realistic graphics. Some of the systems that will be
used will be Lumen, Behaviour Trees and Environment Queries

Table 2.1: Software programs «TOOL1. UE5»

2.2. Resource Evaluation

Type: Development Environment

Specific software name: JetBrains Rider

Efficient and powerful development environment that can help streamline the
process of creating a complex and immersive video game. Used to write and
debug code for the game’s mechanics, Al, and other features.

Table 2.2: Software programs «TOOL2. Rider»

Type: 3D Modeling

Specific software name: Blender

It will be used if necessary, just in case there isn’t a specific 3D model in free
assets.

Table 2.3: Software programs «TOOL4. Blender»

Type: Image Editor

Specific software name: Photoshop

For menus and UI. Textures too if I can’t find them in free assets or want to
touch up some of them.

Table 2.4: Software programs « TOOL5. Photoshop»

Type: Project Management Tools

Specific software name: Trello / Excel

Keep track of tasks, timelines, and goals for each aspect of the game’s develop-
ment. These tools will help ensure the project stays on schedule and on budget.

Table 2.5: Software programs « TOOLG6. Trello»

Type: Project report

Specific software name: Overleaf - LaTeX

Represent all the work done using LaTeX

Table 2.6: Software programs « TOOL6. Overleafy

10

Planning and resources evaluation

Task
Learn Unreal Engine 5
Base project
Fundamental behavior of vehicles
Acceleration and deceleration
One-way roads
Non grid roads

Traffic lights
More than one vehicle
More than one lane roads

Cyclist (player)
Car (player)

Package delivery
Map Creation

Final touches
Tutoring sessions
FDG report

Evaluation presentation
Total time:

Estimated Time (Hours)
50
25
20
10
14
14

20

= | F[(== |=|=

=

23 h
20 h

300 h

Figure 2.1: Planning of the tasks (made with Excel)

2.2. Resource Evaluation

11

May, 2023 Jun, 2025 Ju, 2023
o7 May 1amay 21y 28 May 04uun 1 aun 18 4un 25.0un ozuul 08 ul 16001

30apr

2 Apr

16 Apr

Apr, 2023
02401 08 Apr

12Mar

war, 2023
12Feb. 19Feb. 2F

Feb, 2025
29020 05Feb
E

5
8
Ty
i1i
HES
g 0
2

Figure 2.2: Planning of the tasks (made with OnlineGantt.com)

CHAPTER

GAME DESIGN DOCUMENT

Contents
3.1 Conceptualization 13
3.2 Demography e 15
3.3 Requirement Analysis 15
3.4 System Design 19
3.5 System Architecture 19
3.6 Imterface Design 19

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, its interface design.

3.1 Conceptualization

General details:

Title: Delivery Drift

Genre: Simulation, Casual.

Platforms: Windows.

Age: +6

13

14

Game Design Document

3.1.1 Game summary

Step into the shoes of a determined Delivery Guy in this thrilling game that puts you
in charge of making time-sensitive deliveries. As you embark on your virtual adventure,
the game’s world unfurls before you, bustling with life and excitement. Your objective?
To navigate through the vibrant cityscape, ensuring each package reaches its destination
promptly.

As you explore the dynamic game environment, you’ll notice buildings adorned with
streetlights. There will be a beacon visible from all the parts of the world. This beacon
serve as vital clue, revealing the locations where your deliveries must be made. They
guide you with a general direction, acting as a beacon of hope amidst the chaos of the
city streets.

However, punctuality alone won’t guarantee your success. The city is teeming with
bustling traffic, with vehicles zipping through the streets at breakneck speeds. It’s not
just a race against time but also a battle for survival. Each moment demands your
unwavering attention as you maneuver your way through the maze of cars.

You must exhibit lightning-fast reflexes and swift decision-making skills to dodge any
potential collision. A split-second delay, a minor misstep, and your journey comes to
an abrupt end. No mercy is granted, as even the slightest impact will instantly trigger
game over.

The stakes are high, and the pressure is intense. Will you emerge as the ultimate
Delivery Guy, conquering the city’s intricate web of streets and delivering each pack-
age with precision? It’s a test of skill, nerve, and determination, as you navigate the
treacherous urban jungle while racing against time.

Immerse yourself in this adrenaline-fueled delivery adventure, where every decision
counts and each successful delivery brings you closer to triumph. Get ready to experience
the thrill of the chase and the satisfaction of a job well done in this high-stakes, high-
speed race against the clock.

3.1.2 Narrative context

Nowadays, the world is rapidly advancing towards a future that is both exciting and
daunting. With the advent of new technologies and the rise of mega-corporations, our
cities are evolving at an unprecedented pace. Self-driving cars, drones, and advanced Al
systems are becoming a common sight on our streets, transforming the way we live and
work. The streets are congested with all sorts of vehicles, from sleek and self-driving
cars to massive trucks, all competing for space on the road.

It is in this context that Delivery Drift takes place, presenting a world that is both
familiar and alien. The game’s cyberpunk-inspired setting presents a vision of the future
that is both captivating and terrifying, a world where corporations rule with an iron fist
and the streets are congested with all manner of vehicles.

The player takes on the role of a delivery guy, working for a small courier company
that is trying to make a name for itself in the cutthroat industry. The company has
only one rule: deliver the package on time, no matter what. The player must navigate

3.2. Demography

15

through the busy streets of the city, weaving in and out of traffic, dodging obstacles,
and avoiding accidents to reach the destination on time.

But at the heart of this world is the humble delivery guy, the unsung hero of the city
who keeps the wheels of commerce turning. In Delivery Drift, the player takes on the
role of this courier, navigating the busy streets of the city and facing the many challenges
that come with the job.

Delivery Drift is more than just a game; it is a reflection of the world we live in, a
world that is constantly evolving and changing. With its realistic vehicles movements,
advanced Al-based traffic management, and engaging game play, the game promises to
provide an exciting and immersive experience for players of all ages.

3.2 Demography

Age. The minimum age is 6 based on the minimum level of skills needed to play the
game. There is no violent content (there is no blood when the player crashes) or any
other legal restriction for which a child could not play the game.

Genre. The genres selected are a good choice based on the most played genres on
steam, as Simulation gets 14% of all released games occupying the 3rd place and casual
another 14% occupying the 4th place [18].

Cultural references. The cultural references are taken from the modern Japan
style in buildings and city construction. Moreover, the overall environment features a
cyberpunk style.

Types of players. The main type of player that the game will attract is The Ex-
plorer, due to the city exploration characteristic of the game, and secondly The Achiever,
which due to the fact that after completing some deliveries the player will be awarded
with the option to drive trough the city with a car.

3.3 Requirement Analysis

The requirements needed can be derived from the different tasks to accomplish, so to
make it here is a description of what some of the task should do:

o Base project: Basic assets and initial road grid.
« Fundamental behavior of vehicles: Move the vehicle to desired destination.

o Acceleration and deceleration: Acceleration and deceleration in start, breaks and
curves.

e One-way roads: Roads in which vehicles can’t go and come back through the same.

o Two-Way roads: Add a variable to vehicles that could be changed to make them
able to change lane.

e Non grid roads: Change the grid pattern in the roads to a more realistic one.

16

Game Design Document

o Traffic lights: Adapt the velocity, stop and/or continue in traffic lights

e Automated destinations: System that assigns destinations to the vehicle.

e More than one vehicle: Interaction between vehicles and with Traffic Lights.
o Cyclist (player): Player movement on the Bicycle.

o Car (player): Player movement in the Car.

o Package delivery: Bicycle destination system.

e Map Creation: Road and city design, building placement and background decora-
tion.

o Final touches: Improve assets, post-processing in camera, menu, scoring and saving
system.

3.3.1 Functional Requirements

The subsequent functional requirements delineate the essential features and behaviors
to be implemented within the project. These requirements encompass a diverse array
of functionalities, encompassing aspects such as game entry, vehicle interactions, and
player movements.

Moreover, it is imperative that the system engenders an immersive experience for
the player. The functional requirements are comprehensively depicted in the following
tables: 3.1, 3.2, 3.3, 3.4 and 3.5.

Actor: Player

Preconditions: Be on the Main Menu

Steps:

e Open the Game.
e Select "Play".

o Wait the level to charge.

Table 3.1: Functional requirement «Start Game»

3.3. Requirement Analysis

17

Actor: Player

Preconditions: Be on the main level

Steps:

Use "W" to accelerate.

Use "D" to steer right.

Use "A" to steer left.

Use "S" to brake if moving forward.

Use "S" to move backwards if not moving.

Use the mouse to look around

Table 3.2: Functional requirement «Cyclist movement»

Actor: Player

Preconditions: Be on the main level

Steps:

Look around.
Locate the beacon in the city.
Drive to the destination.

Dodge the cars.

Table 3.3: Functional requirement «Deliver package to destination»

18 Game Design Document

Actor: Car

Preconditions: Be on a road

Steps:

o Get the reference to the nearest road (that is a spline).

e Get the closest point in the spline.

e Once there get the point 3 meters forward.

e Drive to the point.

o If arrived to an intersection, go to the start of the selected road.

e If not in the end of the road go to step 3.

Table 3.4: Functional requirement «Drive through spline»

Actor: Car

Preconditions: Be on the main level

Steps:

¢ Drive following the spline

e Look if the traffic light is green

e Receive the intersection overlap event.

e Get the information of the roads in the intersection.

e Pick a road to drive trough.

Table 3.5: Functional requirement «Cross Intersection»

3.4. System Design

19

3.3.2 Non-functional Requirements

e Fluency and efficiency in the game play of the video game, both mechanically and
FPS.

¢ Realistic and interesting game look.
e The aesthetic will remind a Japanese cyberpunk style.

e The Ul will be minimalist and simple.

3.4 System Design
o Case use diagrams (see Figure 3.1).
o Class diagrams (see Figure 3.2).

o Activities diagrams (see Figure 3.3).

3.5 System Architecture

Given that I don’t have the economic means to test the game on a wide range of computer
builds I have no exact method to test this. A first approach will set the minimum
requirements with:

o OS: Windows 10 / Windows 11
e Processor: Intel i5 10400

o GPU: Nvidia RTX 2060 Ti

« RAM: 10 GB DDRA4

3.6 Interface Design

The two HUD that will take place are the Main menu, the pause and the in-game HUD.
The design will aim to be really simple and futuristic/cyberpunk. Its interesting to
highlight that the pause menu will have a subtle effect of background blur while on the
pause. Here we can see the mock-ups for the Main Menu (see Figure 3.4), Pause (see
Figure 3.5) and HUD (see Figure 3.6).

20

Game Design Document

Player

Drive without
collisions

---<<include=>---- Arrive in time

<<include>>

i <<extend>=---
Add point

Check
Enough
points to
buy car

<= e;dend »>

Figure 3.1: Use Cases

3.6.

Interface Design

Drive
through

Bike

+maxspeed:int

Drive
through

Driven

Player

Delivery
points

+TimeRemaining
-float (20<float<100)

Drive,

Car

+maxspeed:int

Figure 3.2: Class diagram

Al

22

Game Design Document

Choose Car

If you have enough
points

o —

Choose Bike

Crash with car | arrive
not in time

Press Play —<>

Receive mission
/ Drive

[Accomplish mision in
time

Go to main manu

Gain Points

Figure 3.3: Activity diagram

3.6.

Interface Design

23

DELIVERY DRIFT

Figure 3.4: Main Menu concept

Figure 3.5: Pause Menu concept

24

Game Design Document

Figure 3.6: HUD concept

CHAPTER

WORK DEVELOPMENT AND RESULTS

Contents
4.1 Work Development oo 25
4.2 Results 35

The developed work and the obtained results will be made explicit in this chapter.
All possible deviations from the initial planning are detailed and justified in the results
section (see section 4.2).

4.1 Work Development

The programming was done mostly on blueprint, this decision was made because the
level of prototyping and testing new mechanics is faster. That’s why for these project it
is more suitable to be done this way. Although some parts needed to be done in c++,
and because the interaction that unreal has between blueprint and c++ is really good
this was the best approach.

The development consisted of 6 main parts: the Road System, Car Al, Player, Traffic
Lights, Map building and Deliver System. Each part will integrate various of the tasks
described in Chapter 3 (see chapter 3):

o Road System (see section 4.1.1): One-way roads, Non grid roads, More than one
lane roads

o Car AI (see section 4.1.2): Fundamental behavior of vehicles, Acceleration and
deceleration, More than one vehicle

o Player (see section 4.1.3): Cyclist, Car

25

26

Work Development and Results

o Traffic Lights (see section 4.1.4): Traffic lights
o Map building (see section 4.1.5): Map creation, Final touches

o Deliver System (see section 4.1.6): Automated destinations, Package delivery

4.1.1 Road system

Firstly the approach that needed to be defined is the road system, the two main options
were having a NavMesh [10] or having a spline that defined the road. A NavMesh
would provide a lot of flexibility but the number of possible bugs that could appear is
big. The option of having a spline is less flexible and would require to be more careful
with the road placement, but on the other side it would give more control on the possible
routes that the car cloud follow.

Figure 4.1: Road intersection

The final decision was to have a spline to be the road that the car would follow (see
Figure 4.2). But because there was the need to have bifurcated paths and splines could
handle that situations the intersections were included (see Figure 4.1). Their function
is to have references to the roads that he is in contact with, and when a car enters
they’ll provide that information to the car to make it able to go throw bifurcations in
splines Car at intersections - YouTube. The roads needed to have defined an start, an
end and a boolean that tells if they are a one way road. That information is read by
the intersection and stored by the construction script so that it is not needed to compile
extra code at run-time.

https://youtu.be/gvVZi24Uq_w

4.1. Work Development

27

&
V &Y LV sdiira
Y& &

ve a Box that is used to detect overlaps and get information of the road = 5
A - | | |] h .
7 } / : S,
/ / | [| |] | R T
/ / | \ A \
/ / L | [| | | | L \ \ \ i B \
Figure 4.2: Road diagram

4.1.2 Car Al

The assets and basic configuration will be taken form the City Sample Vehicles from
Epic Games [6] (See image 4.3).

Figure 4.3: Car model

Moving to the car movement, it will be done using the Chaos Vehicles plugin
from unreal [7]. The plugin enable us to easily control different aspects of vehicles. But
in exchange you need to configure more things. The main thing that will be needed
are a physics asset that will be important to define the size and form of the wheels,
and the car collision with the environment. After that you need to specify different

28

Work Development and Results

parameters as shown on the image (See image 4.4), the most important ones are the
wheels (which have their own configuration, see image 4.5), the torque, RPM and mass.
After configuring all that the acceleration, brake and steer is managed by the Chaos
Vehicles System. Then the work done is divided into: make the car follow the spline, the
speed control, the target point (instant next destination) and predict the path (smooth
transitions).

Figure 4.4: Chaos Vehicle System parameters

To make the car follow a spline is fairly simple, we mainly need the reference to the
spline and a function that returns the coordinates of the spline at a given distance of
the spline. With that we can set the coordinates as the destination. Then we need to
make this target point adjust to the position of the car along the spline. When we are
too close to the target position we’ll want to look for the next position along the spline

4.1. Work Development

29

Lateral Slip Graph

Figure 4.5: Chaos Vehicle Wheels parameters

Car following spline - YouTube. And because we are having two way roads we want the
increment on the distance to be aware of the direction in which the car is moving to
return the appropriate distance along the spline and the appropriate horizontal offset of
the road for driving always at right. This is also relevant when crossing an intersection
to take into account the direction of the road to know were the right is. The speed
control is necessary for various reasons, we need it to brake on traffic lights, when going
to collide, to set the maximum speed, and to slow the speed for curves.

https://youtu.be/ejEbEF75xUU

30

Work Development and Results

4.1.3 Player

At the beginning, the idea was for the player’s movement to be controlled by a C++ class
that receives the player’s input and includes all the necessary functions. Additionally, the
animations were intended to be obtained from Mixamo [1] or other websites. However,
after incorporating these animations and programming the C++4 class, it was decided
to change the plan mainly because the bicycle did not take into account the fact that
when you accelerate and pedal, the force is applied to the rear wheel and the rotation
comes from the front wheel. Moreover, when you stop accelerating, the wheels continue
to rotate while the pedals remain still. The animations were not fully compatible with
this type of behavior, leading to the conclusion that implementing the entire bicycle
movement through code was not feasible as it would require too much additional work
and would result in patching upon patches.

It was necessary to change the base player, and for this purpose, the decision was
made to use the Chaos Vehicle plugin from Unreal Engine [7]. This vehicle has
different requirements than the previously used cars (see section 4.1.2), and it was
necessary to adapt all the necessary parameters to a two-wheeled vehicle. The physics
asset of the bicycle were created to ensure compatibility, the wheels were configured,
and particular attention was given to stabilization which is a completely different aspect
compared to a four-wheeled vehicle. The bicycle requires a different center of mass since
it needs to be able to return to the center in a stable manner when it leans to the sides,
simulating how a person balances a bicycle when it tilts to the sides. Similarly, when
the bicycle naturally tilts to one side, the wheel turns to balance the bicycle. Although
we cannot physically turn the wheel in this case since it is controlled by the player, it
is compensated by having a center of mass and a distribution in a way that keeps the
bicycle always balanced.

To control the bicycle, the throttle, brake, and steer functions provided by the Chaos
Vehicles plugin of Unreal Engine were used. To handle these controls, the enhanced
input system of Unreal Engine [9]. was utilized, replacing the previous player input
control system. Despite having a higher learning curve, the enhanced input system sim-
plifies development for larger games and makes it more suitable for controllers, allowing
separate management of the type of action performed by an input and the associated
key inputs.

Once the bicycle is functional and moving, the next step is to create animations
for this new bicycle with its unique controls. To do this, we began by separating the
pedals from the entire bicycle mesh in Blender. This allows us to import them into
Unreal Engine and place several sockets that will serve as reference points for the feet.
These sockets will be used in the creation of procedural animations that will be generated
based on the locations of specific points on the bicycle. To accomplish this, we will need a
skeleton for the main character. The default skeleton provided by Unreal Engine is quite
helpful, as it already has a pre-formed and well-structured bone hierarchy. Additionally,
we will utilize the Control Rig plugin from Unreal Engine [8]. This plugin allows us
to create handlers that can move specific bones in a natural and organic manner, similar
to inverse kinematics. Setting up a Control Rig can be a complex task, especially for

4.1. Work Development

31

humanoid forms. Therefore, we used the control rig project available on the Unreal
Engine Marketplace, although it is specifically designed for Unreal Engine version 4.26.
To use it in the version that is used for this project (Unreal Engine 5.1), it requires
downloading the 4.26 version and migrating the relevant parts to the new version. After
adapting the Control Rig code to Unreal Engine 5.1 (See image 4.6), we add setters to
multiple points that can be modified and used for various purposes, such as hands, feet,
torso, and head. These points will be used in the animation blueprint, which will control
the position of the Control Rig. This animation will make use of two functions of the
character. One of the functions is used to retrieve key points of the bicycle, such as the
seat, handlebars, pedals, spine tilt, and head position, based on the current state of the
bike. After obtaining this information, we set the hand positions in the Control Rig to
the specified points. Due to the configuration of the Control Rig itself, it will naturally
move towards these points.

Figure 4.6: Control Rig Blueprint

We configure an idle position in which the player leans forward and supports the
foot on the pedal. To achieve this, we use a player function that returns the velocity in
km/h, and if it is close to zero, we obtain a different spine and head position from the
function that returns the key points of the bike, to create a more natural appearance.
By using a linear interpolation function to gradually transition between points based on
the speed, the character can switch between idle (See image 4.7) and cycling smoothly

32

Work Development and Results

(See image 4.8). As the animation is procedural, the foot that rests on the pedal will
stay in place, regardless of the pedal’s current position.

[1 1]
m onn

Figure 4.7: Cyclist Idle

Figure 4.8: Cyclist Moving

With all these elements in place and the pedals and wheels configured to rotate at the
appropriate speed, along with the bicycle’s handlebars responding to player input, we
now have a player with a functioning bicycle. The Chaos Vehicles system and procedural
animations, utilizing the Control Rig and animation blueprint of Unreal Engine, bring
the bicycle to life Character Movement - YouTube.

Finally, a character mesh was added to substitute the unreal mannequin base mesh
as shown in image 4.9.

https://youtu.be/gFXAim2VMrU

4.1. Work Development

Figure 4.9: Comparison between default mesh and final mesh

4.1.4 Traffic lights

To ensure efficient traffic flow, the coordination of traffic lights with the timings of other
lights in the intersection is crucial. Given the substantial number of intersections to
configure, an automated approach was adopted. This approach involves the automatic
spawning of traffic lights at the appropriate positions, rotations, and with adjusted
delays between them. Consequently, whenever an intersection is added, the necessary
traffic lights are spawned automatically at the required locations. This streamlined
process simplifies intersection setup and facilitates the seamless integration of traffic
light systems.

4.1.5 Map building

To create the map, a significant portion of the assets were sourced from the City Mega-
pack [12]. The map’s design was inspired by an image from Crosshead Studios, which
was originally intended as a D&D City map (See image 4.10) [13]. Meticulous manual
placement of roads, sidewalks, and buildings was undertaken, involving repetitive work
and considerable time investment (See image 4.11 and image 4.12).

One notable advantage of having the same roads and same buildings but in different
positions is that by the way it is configured, the material and textures sent to the GPU
is less, therefore the VRAM consumption is minimized and prevents data congestion on
the communication bus between the CPU and GPU. As a result, the system operates
more efficiently, requiring fewer resources and ensuring smooth data flow between the
central and graphical processing units. Despite these optimizations, the detailed nature
of the assets still demands mid/high PC specifications to run the game effectively.

34

Work Development and Results

Figure 4.11: Delivery Drift map top view

4.2. Results

35

Figure 4.12: Delivery Drift map side view

4.1.6 Deliver system

The deliver system is really simple and consists of mainly of choosing a random point
and showing a beacon (See image 4.15) pointing to the sky to show the position and
once arrived there the beacon disappears and a new random location is chosen. To
make it more challenging there is a timer to deliver the package. To be able to see the
beacon from every point a custom material was needed to highlight the beacon. The
material domain needed to be of type post process so that with calculations taking into
account the view size, the screen position and the size of the object, the material is able
to highlight the beacon. In the player side, it was needed to Visualize the packages
delivered properly. But not only in the HUD, but also physically the cyclist is wearing
a Package that disappears just when you deliver the package and a new one is spawned
after a few seconds. There is another version of the game where you are able to choose
a car to drive though the city instead of the bike. This is unlocked just after you’re able
to deliver 5 packages in time. This will be chosen from the main menu. Also, the game
over happens when you crash into a car. When that happens you loose the control of
the player and after a few seconds the game restarts.

4.2 Results

Exclusions from initial ideas:

The work archived differs from the initial approach in the GDD in two main things,
the not inclusion of pedestrians and the environment conditions like day/night cycle or
weather. The main reason to not include them was due to time, but choosing them
among other things to not include them is because they are mainly fancy elements and
not functional mechanics that affect the game play in a significant way. Even though

36

Work Development and Results

Figure 4.13: Beacon on Map

they could become interesting mechanics the amount of work needed to achieve the point
where they become mechanics and not just extra elements that add life or fancy visuals.

Traffic system:

Shifting our focus to the accomplishments, the primary goal of establishing a func-
tional traffic system has been successfully attained. This can be observed in the game
play video !, where the vehicles demonstrate the capability to navigate seamlessly across
all roadways.

Player:

The cyclist has exceeded initial expectations by incorporating animations from the
renowned platform Mixamo [1] and employing a simplified movement system. The
resulting implementation showcases notable improvements, as the animation system en-
compasses a broader spectrum of movements, rendering a heightened sense of realism.
Moreover, the integration of the Chaos Vehicle plugin [7] elevates the cycling ex-
perience by simulating friction, mass, wheel dynamics, and other physical attributes.
Furthermore, the objective of introducing an additional vehicle upon completing deliv-
eries has been achieved. The intention behind this addition was to create a mode in
which the game does not restart upon collisions, resulting in a different game play ex-
perience characterized by pure enjoyment, as demonstrated in this video showcasing the
car Car showcase - YouTube - YouTube.

! Delivery Drift - YouTube, https://youtu.be/S7ILFCrk1bQ.

https://youtu.be/w4VxVaPCqfY
https://youtu.be/S7lLfCrk1bQ

4.2. Results 37

DISTANCING

R e

Figure 4.14: Initial View of the game

Traffic Lights:

The initial idea of incorporating additional elements such as yield signs and cross-
walks to extend the traffic control system beyond just traffic lights was considered. How-
ever, since pedestrian safety measures were not taken into account, there was no valid
reason to implement this idea. Overall, the city has successfully achieved a realistic and
detailed appearance, offering an authentic urban experience.

Figure 4.15: Intersection view, traffic lights

38

Work Development and Results

Deliver System:

The delivery system has been successfully executed in line with initial expectations,
presenting a functional and minimalist approach. Notably, the system effectively com-
municates the destination to the player without the need for textual information or any
additional user interface elements. Furthermore, the player is visually informed of suc-
cessful deliveries through the disappearance of the beacon and packages, followed by the
appearance of a new beacon and package, indicating continuous progress.

Map Building:

Finally, the main menu has achieved a cyberpunk minimal style and it used two
creative commons assets, the Stacker Font [2] and a neon squircle rectangle [23]
from freesvg [20], and for the HUD it was used tree more creative commons images,
the Speedometer [4], a timer icon [21] and the Package points icon [17]. So the
main menu with its minimalist approach achieved this final result (See image 4.16 as
well as the HUD (See image 4.17.

All together, these elements combine to create a captivating casual/simulation video
game as we can see on the video Game play Video: Delivery Drift - YouTube

(DELIVERY DRIFT
¥ 0 '

o —
- SOCIAL h
DISTANCING 1§

| ’i\.v.' .

\
»
{
i
R

Figure 4.16: Final Main Menu

https://youtu.be/S7lLfCrk1bQ

4.2. Results

39

Figure 4.17: HUD in game

CHAPTER

CONCLUSIONS AND FUTURE WORK

Contents
5.1 Conclusions e e e e e 41
5.2 Future work 42

5.1 Conclusions

During the development of this game, I had both professional and personal experiences
that greatly impacted my growth and learning. One notable aspect was the opportunity
to work extensively with Unreal Engine, which I discovered it was more powerful game
development tool than I thought. Before this project, my knowledge of Unreal Engine
was minimal, but through the development process, I gained a deep understanding of
its functionalities and capabilities.

Professionally, this project allowed me to enhance my skills in game design, level
creation, and Al programming. Building a bustling city environment with realistic
buildings and vehicles was a challenging yet rewarding experience. It required careful
attention to detail and some optimization to create an immersive and believable world.

Personally, this project allowed me to explore my creativity and problem-solving
skills. Designing the city of making all the different systems work all together without
problems offered the opportunity to challenge the knowledge I have.

In terms of the relation between this work and my degree, the development of this
game aligns closely with the concepts and skills I acquired during my coursework. The
game development process encompasses various aspects, including software engineering,
computer graphics, animation, and artificial intelligence, which are core components of

41

42

Conclusions and Future Work

my degree. Through this project, I was able to apply the theoretical knowledge I learned
in my degree program to a practical, hands-on project.

Overall, the development of this game has been an enriching experience. I have not
only expanded my understanding of Unreal Engine and game development but also honed
my problem-solving abilities and creative thinking. It has been a valuable opportunity
to bridge the gap between theoretical knowledge and practical application, and I am
confident that the skills and experiences gained from this project will benefit me in
future endeavors within the game development industry.

5.2 Future work

Looking ahead to the future development of this game, I am excited to incorporate the
new tool introduced in Unreal Engine 5.2 called the Procedural Content Generation
Framework [11]. This framework will be fundamental in creating a much larger and
more expansive city environment for the game.

Traditionally, building a city by hand is a time-consuming and repetitive task. It
involves manually designing and placing each building, road, and pedestrian, which can
be a daunting process. However, with the Procedural Content Generation Framework,
we can automate and streamline this process by using algorithms and rules to generate
the city procedurally.

This framework allows us to define various parameters and rules for generating the
city. We can specify the density and distribution of buildings, the layout of the road
network, and the placement of pedestrians and vehicles. By leveraging the power of
procedural generation, we can create a city that feels organic and realistic, while also
saving a significant amount of time and effort in the development process.

[10]

[11]

BIBLIOGRAPHY

Adobe. Mixamo. https://www.mixamo.com/. Accessed: 2023-06-12.

Almarkhatype. Stacker font. https://www.fontspace.com/stacker-font-f82510. Ac-
cessed: 2023-06-12.

RHT Apps. Delivery truck simulator. https://play.google.com/store/apps/details?id=com.RedHorn. TruksS

Accessed: 2023-06-12.

berkut123. Speedometer icon or sign with arrow vector image.
https://www.vectorstock.com /royalty-free-vector/speedometer-icon-or-sign-with-
arrow-vector-23887416. Accessed: 2023-06-12.

Sergio Cejas. Este seria el asombroso apartado visual de gta iv si fuese remasterizado
en 4k y con ray-tracing. https://www.vidaextra.com/accion/este-seria-asombroso-
apartado-visual-gta-iv-fuese-remasterizado-4k-ray-tracing. Accessed: 2023-06-12.

Epic Games Epic Content. City sample vehicles.
https://www.unrealengine.com/marketplace/en-US/product/city-sample-vehicles.
Accessed: 2023-06-12.

Unreal Engine. Chaos vehicles. https://docs.unrealengine.com/4.26 /en-
US/InteractiveExperiences/Physics/ChaosPhysics/ChaosVehicles/. Accessed:
2023-06-12.

Unreal Engine. Control rig. https://docs.unrealengine.com/5.0/en-US/control-rig-
in-unreal-engine/. Accessed: 2023-06-12.

Unreal Engine. Enhanced input. https://docs.unrealengine.com/5.0/en-
US/enhanced-input-in-unreal-engine/. Accessed: 2023-06-12.

Unreal Engine. Nav mesh. https://docs.unrealengine.com/4.27 /en-
US/Resources/ContentExamples/NavMesh/. Accessed: 2023-06-12.

Unreal Engine. Procedural content generation framework.
https://docs.unrealengine.com/5.2 /en-US /procedural-content-generation—
framework-in-unreal-engine/. Accessed: 2023-06-12.

43

Bibliography

[12] Kyrylo Sibiriakov Environments. City environment megapack vol 02.
https://www.unrealengine.com/marketplace/en-US/product/city-environment-
megapack-vol. Accessed: 2023-06-12.

[13] Play With Games. Crosshead studios. https://crossheadstudios.com/runeport/.
Accessed: 2023-06-12.

[14] Play ~ With Games. Pizza delivery: Simulador de c.
https://play.google.com/store/apps/details?id=com.playwithgames.pizza.delivery.parkinghl=es; 1
US. Accessed : 2023 — 06 — 12.

[15] RockStar Games. Grand theft auto iv. https://www.rockstargames.com/es/games/IV.
Accessed: 2023-06-12.

[16] RockStar Games. Grand theft auto v. https://www.rockstargames.com/es/gta-v. Ac-
cessed: 2023-06-12.

[17] HansAchterbahn. Distance. https://freesvg.org/distance. Accessed: 2023-06-12.

[18] Karl Kontus. Video game insights report: First half of 2022 on steam.
https://www.gamedeveloper.com/blogs/video-game-insights-report-first-half-of-2022-
on-steam. Accessed: 2023-06-12.

[19] Tom Looman. Professional game development in c++ and unreal engine.
https://courses.tomlooman.com/p/unrealengine-cpp. Accessed: 2023-06-12.

[20] OpenClipart. Neon numerals-backgrounds. https://freesvg.org/rwwgub-neon-numerals-
backgrounds-5. Accessed: 2023-06-12.

[21] OpenClipart-Vectors. Icon stopwatch clock time black.
https://pixabay.com/vectors/icon-stopwatch-clock-time-black-157350/. Accessed:
2023-06-12.

[22] RocketArts. Stylized character kit: Casual 01.

https://www.unrealengine.com/marketplace/en-US /product /stylized-male-character-
kit-casual. Accessed: 2023-06-12.

[23] Wikipedia. Squircle. https://es.wikipedia.org/wiki/Squircle. Accessed: 2023-06-12.

APPENDIX

SOURCE CODE

All the code can be accessed trough GitHub: TFG-DeliveryDrift - GitHub

45

https://github.com/AlejandrooHub/TFG-DeliveryDrift

	Contents
	Introduction
	Game Overview
	Work Motivation
	Objectives
	Environment and Initial State
	Results preview

	Planning and resources evaluation
	Planning
	Resource Evaluation

	Game Design Document
	Conceptualization
	Demography
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

