
Design and Development of an Online
Multiplayer Videogame

Adrián Mon Maroto

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 3, 2023

Supervised by: Carlos González Ballester, PhD.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

First of all, I would like to thank my family and friends for their support and help in
developing and testing my Final Degree Work.

I also would like to thank my Final Degree Work supervisor, Carlos González Ballester,
PhD, for helping me to decide the topic of this work and for his support and recommen-
dations whenever I got stuck.

And I would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents a video game called Fixing It, which is a multiplayer and arcade
game where the player takes control of a mechanic and together with his/her co-workers,
the other players in the game, he/she must fix as many objects as possible before his
working day is over.

This document consists in the development of a multiplayer video game developed
with Unity3D and focused for Windows. This has been done exploring the new Unity´s
Netcode library next to the Unity´s Lobby and Relay libraries to create a lobby system
and using this in turn to create an online mini-game.

In addition to this, the Observer Pattern is used throughout the development of the
project in order to allow a more orderly and independent programming and is used to
separate the UI logic from the internal logic of the game.

iii

Keywords

Unity
Multiplayer
Lobby
Observer Pattern

v

Contents

Contents vii

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 3
1.3 Environment and Initial State . 3

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 6

3 Game Design Document 9
3.1 Conceptualization . 9
3.2 Demography . 10
3.3 Rules . 11
3.4 Mechanics . 12
3.5 Input Interface . 17
3.6 User interface . 18
3.7 Level design . 22
3.8 Story . 23
3.9 Art Style . 23
3.10 Soundtrack . 24
3.11 Multiplayer . 24

4 Work Development and Results 25
4.1 Work Development . 25
4.2 Results . 40

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future work . 44

Bibliography 45

vii

viii Contents

A Glossary 47
A.1 Observer Pattern . 47
A.2 Scriptable Object . 47
A.3 Assembly Definition . 48

B Source code 49
B.1 BaseEventChannelSO . 49
B.2 VoidEventChannelSO . 50
B.3 BaseFuncSO . 51
B.4 SceneLoaderManager . 53
B.5 NetworkSceneLoader . 58
B.6 FixingGameMultiplayer NOT FINAL VERSION 61
B.7 LobbyManager . 69
B.8 CharacterSelectionPlayer . 79
B.9 CharacterSelectionManager . 81
B.10 FixingGameManager . 84
B.11 RoomObject NOT FINAL VERSION . 90
B.12 IRoomObjectParent . 93
B.13 ToFixRoomObject . 93
B.14 PlayerController . 95
B.15 BaseCounter . 100
B.16 CustomerController . 101
B.17 InputReaderSO . 104
B.18 SelectableUIData . 106

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 3
1.3 Environment and Initial State . 3

This chapter shows what the purpose of the work was in the beginning, why and
how this project was going to be developed.

1.1 Work Motivation

In the Universtat Jaume I the students of Video Game Design and Development never
learn how to create a multiplayer game and it is also something that I have never faced
before, so I see it as my own challenge.

I see it as an opportunity to learn the common logic in all the multiplayer minigames
and to learn how to use the new Unity´s multiplayer librareis; Netcode for Gameobjects
[9] , Unity Lobby Service [7] and Unity Relay [8].

Moreover, I was motivated to do so because there were information channels that
were already investigating the new Unity multiplayer libraries, such as Code Monkey [3]
or Tarodev [4] , so I could use them as references when developing the project.

Another of my motivations was to improve my code architecture and to investigate
the use of the Observer Pattern 1 for this purpose.

1Go to A.1 to see the definition of the Observer Pattern

1

2 Introduction

My main goal is to make the cleanest and most abstract code possible to be able to
reuse it in other projects and at the same time to force myself to improve in terms of
code design. The art is secondary.

I also wanted to do this work so that anyone who wants to try to do some multiplayer
programming with Unity has some extra reference since it uses relatively new libraries.

1.2. Objectives 3

1.2 Objectives
The objectives to be achieved are directly related to work motivation:

• Create a Lobby and Relay System: Create an abstract implementation of the
Lobby and Relay Systems so that they can be recycled in any game.

• Develop of a mini-game by applying the Observer Pattern: Use the Ob-
server Pattern to create cleaner and more scalable code.

• Adapt the mini-game to multiplayer: Use the Netcode for GameObjects
Library to sync every global object and make the server in charge of important
functions.

1.3 Environment and Initial State
The idea for the game started in October 2022, after a meeting with my Final Degree
Work supervisor in which there was a debate about what to do. In the end he recom-
mended me to make a multiplayer game, which I decided to do because it was something
that wasn’t done during my degree and because knowing the architecture behind mul-
tiplayer programming is highly valued by companies when it comes to hiring people, as
it is something that only a minority of people do. In turn told me that I could apply
some design pattern, and I chose the Observer Pattern because it is one that I had
always wanted to start mastering due to the separation of classes that it allows when
programming and that by applying it I would force myself to improve my code design.

After the meeting and doing an introductory GDD of what the game was going to
be like I was able to start the project as such the first week of March 2023. This is
because I was on Erasmus during the first semester of the academic year 2022/2023 and
until I finished all the Erasmus exams and papers and did all the necessary bureaucracy
I didn’t have time to start it.

When I started in March I organised myself in such a way that when I had free
time after my internship and classes I would spend from 16.00 to 22.00 researching and
working on the project. It has been a routine that I have managed to keep to, except
for occasional days or holidays.

Due to time constraints, the new Unity libraries having strange bugs and the fact
that it was a one-man job, I focused on programming the game and most of the artwork
is placeholder.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 6

This chapter explains the technical part of the work, the planning and all the re-
sources used.

2.1 Planning

This section is going to explain how the tasks were divided in time. Not all tasks were
dependent on each other, i.e. some tasks might not be completed so that others could
be done. The planning is the following:

• Search for information about Unity’s multiplayer libraries (40 hours):
Search the official Unity documentation, public forums and websites of people
working with Unity as a professional tool.

• Creation of the initial menu of the game (6 hours): Create a basic menu
where the player can choose whether to play; enter the options menu to adjust the
display and sounds; or exit the game.

• Creation of a Lobby and Relay System (100 hours): Create another menu
where the player can decide whether to join one of the listed public lobbies; join a
private lobby through the internal code of that lobby; create a lobby, both public
and private; or whether to return to the start menu. Internally it will use Unity’s

5

6 Planning and resources evaluation

Relay system to allow you to connect to a host by its IP and port; or to be the
host and open a port.

• Creation of the mini-game (50 hours): Create the game mechanics based on
those of the GDD and merge them to create a demo level.

• Adaptation of the mini-game to multiplayer (74 hours): Use the new
Unity’s Netcode for GameObjects library to dynamically synchronise and/or clone
instantiated objects across all users in the game session. Such as player prefabs or
objects that later in the game will be used by all people and need their positions
and internal states to be updated for everyone.

• Writing the final report (20hours): Write the report, find images to link to it
and correct minor errors in the file.

• Preparation of FDW presentation (10 hours): Prepare the slides used in
the final presentation and an accompanying script.

The division of tasks can be seen in Figure 2.1

2.2 Resource Evaluation
The resources used for this project were:

• Electricity: Calculating the 300 hours worked and the use of a MSI GL63 8SD as
a professional computer, with an average consumption of 180W and the average
cost of electricity during the months of March, April, May and June, we estimate
an electricity cost of around 4.32€.

• Salary: Also based on the salary of a junior software programmer in Spain, which
is around 10-12€ per hour, it would have cost around 3300€.

• Unity license: Free of charge due to educational licensing.

• Visual Studio 2022: Free of charge since the Community version has been used.

• Krita: Free of charge due to is an Open Source tool.

• Blender: Free of charge due to is an Open Source tool.

• External assets: All of the external assets used in this project were free assets.

All these results in the sum of 3304.32€ as the costs of all the work.

2.2. Resource Evaluation 7

Figure 2.1: Gantt chart (made with lucid)

https://lucid.app/users/login##/login

C
h

a
p

t
e

r

3
Game Design Document

Contents
3.1 Conceptualization . 9
3.2 Demography . 10
3.3 Rules . 11
3.4 Mechanics . 12
3.5 Input Interface . 17
3.6 User interface . 18
3.7 Level design . 22
3.8 Story . 23
3.9 Art Style . 23
3.10 Soundtrack . 24
3.11 Multiplayer . 24

3.1 Conceptualization
Title: Fixing It

Platforms: Windows

Game Summary: This game will be placed in a level that simulates a mechanical
workshop where the players work. They have to fix objects that NPCs will bring
to the workshop because they are broken. To do so, they will have to collect the
necessary pieces scattered in different parts of the room to craft the tools, which
will break after a set number of uses, and use them to fix the objects.

9

10 Game Design Document

Similar Games: A game with a similar gameplay could be Overcooked.

Figure 3.1: Overcooked gameplay

3.2 Demography
Age: Due to its future cute graphics and its absence of swear words and explicit
elements this game is a game suitable for any player over 3 years of age. Although
its complexity in coordinating with your peers and understanding what is going
on, it is a game aimed at a slightly more logical thinking audience, ranging from
pre-teens to young adults.

Genre: The game can be classified into three distinct genres: Arcade due to being
designed in such a way that the player can jump in, have a couple of quick games
and leave; Puzzle as the player must use a bit of logic to think of the most efficient
way to fix the objects in the limited time; and Multiplayer as it is a game with the
ability to connect with up to 3 people online to play together for the highest score.

Types of players: This game is for 2 types of players: casual gamers who simply
want to unwind for half an hour a day and have a couple of quick games with
their friends; and competitive gamers who will compete to get the highest possible
scores in the game.

3.3. Rules 11

3.3 Rules

3.3.1 Design decisions

Objective: The main objective of the game is to fix as many objects as possible
in the given time.

Difficulty: The difficulty of the game depends on the player. A novice player will
not know the recipes for the tools so he will have to spend time going to the recipe
book, i.e. he will have less time to fix items and it will be more difficult to get
a high score. Meanwhile, an experienced player will be able to skip the step of
looking at the recipe book, making it easier to get a high score.

Variety: This first version of the game will have only 3 objects to fix with a total
of 3 tools and 5 different pieces. This has been designed to have a minimum to
test the mechanics of the game and see if they are fun to keep expanding it or not.

Complexity: The only complexities for the players will be to be aware of which
ojbect to fix is for which NPC; to be aware of the remaining uses of each tool before
it breaks; and to manage the space available in the room for the pieces, tools and
objects to fix.

Limits: The only limit is spatial, the player will not be able to leave his working
room.

3.3.2 Modifiable rules

Before starting the mini-game, players can choose the colour of their character from a
list of pre-set colours, as long as that colour is not chosen by another player.

3.3.3 Operational rules

The player will be able to do a total of 3 different actions:

• The player controls a character that can move along the XZ axes.

• The character can grab or release one of the different types of objects at a time
when he is at a minimum distance away from the counter containing the object.

• The character can also interact at the same distance with the counters for a special
use. This allows them to create tools, review crafting recipes or fix broken objects.

12 Game Design Document

3.3.4 Foundational rules

These are the technical rules that spicify the behaviours of the operational rules:

• The players will have a constant speed moveSpeed which will allow them to move
around the room. This movement will in turn rotate the character on the Y-axis
at a constant rotationSpeed to align it with the direction it is moving in.

• When interacting with objects of any type to grab or release objects or to perform
alternate interaction, a raycast will be launched from the base of the controlled
character in the direction the character is facing and will have a range of interact-
Distance. If a collision with any type of counter occurs, the counter will internally
decide what action to take.

3.3.5 Written rules

There will be an optional menu in the main menu called Controls, where the player can
see the different controls to understand how to play.

3.3.6 Advisory rules

The counters will show a local outline, i.e. they will only be displayed to the player
who is playing rather than to the entire gaming room, which will be displayed when the
player is inside interactDistance to indicate that they will interact with that object.

3.4 Mechanics

3.4.1 Actions

• Movement: The player will have a static camera that will show the whole level.
He/She can move across the XZ axes in the level and the character will turn to
face that direction.

• Grab/Release objects: When the character is facing a counter and inside a
minimum range, it can grab the object that is on that counter only if it is not
grabbing another object. At the same time it can release the object onto that
counter only if the counter does not contains an object.

• Craft objects: The player has to release from 1 to 3 pieces in the Tool Counter.
After doing it he/she can do the alternate interaction to let the Tool Counter do
the crafting logic. If the objects in the tool counter belong to a recipe the Tool
Counter will output the tool onto itself so the character can grab it.

• Fix objects: An object to fix needs to be onto some counter. After that if a
controlled character tries to alternate interact with that counter it will check if
he/she has one of the correct tools that the broken object needs to be fixed. If

3.4. Mechanics 13

that happens, the tool will be used and will check if it has more uses or if it will
broke and disappear. If the object to fix does not need more tools, it will be ready
to return to the NPC that asked about the repair.

• Check recipe book: The recipe book is on another special counter, so the player
needs to alternate interact with it. The first column will show an image of the
object to be created and the second, third and fourth columns of each page will
show an image of the objects to be fixed. If the level has more tools than the
possible ones to be shown in the 2 pages of the book, the interface will show the
user buttons to go to the next or previous page and see the rest of the recipes. See
Figure 3.3.

Figure 3.2: Recipe Book

Figure 3.3: Recipe Book with a third page

14 Game Design Document

3.4.2 Entities

• Pieces: One of the different objects that the player can grab or release. It is used
to craft tools in the ToolCreatorCounter.

• Tools: The second type of object that the player can grab or release. It is used
fix the objects to fix and can break after a certain number of uses.

• Objects to Fix: The last type of object that the player can grab or release. It
is left by an NPC at the CustomerCounter for the player to pick up and fix using
the necessary tools, these are shown above it with the pictorial representation of
the tools.

Figure 3.4: Object to Fix in CustomerCounter

• NPC: They are the customers who give the Objects to Fix to the CustomerCoun-
ters so the player gan grab and fix them.

• TableCounter: An empty counter where the player can grab or release objects
and try to fix the objects that are on it. See Figure 3.5

• ToolCreatorCounter: A counter where the player can release up to 3 pieces
and an alternate interact will consume those objects to try to create a tool. If
the combination of those objects returns a tool, it will be created and ready to be
grabbed by a player. See Figure 3.6

• CustomerCounter: A counter where a NPC will be waiting for a player to
return its fixed item. In case there is no NPC assigned to this counter yet, it will
be useless. See Figure 3.7

3.4. Mechanics 15

• PiecesCounter: Every time a player tries to interact with it while not grabbing
an object, the counter will generate the piece related to itself and give it to the
player. See Figure 3.8

• ManualCounter: A counter where the player can check the recipes of the tools
after doing an alternate interaction. See Figure 3.9

Figure 3.5: TableCounter with a piece on top

Figure 3.6: ToolCreatorCounter ready to create a tool

16 Game Design Document

Figure 3.7: CustomerCounters with customers waiting for the fixed object

Figure 3.8: PiecesCounter

3.5. Input Interface 17

Figure 3.9: ManualCounter

3.5 Input Interface

The player will be able to use keyboard as well as any standard controller. There are 2
different inputs, one for gameplay (see Table 3.1) and one for navigation in any kind of
menu or interface.

KEYBOARD CONTROLLER
Move WASD Left Stick

Interact Space Button South
Alternate Interact E Button West

Table 3.1: Gameplay controls

KEYBOARD CONTROLLER
Submit Space/Enter Button South
Cancel Escape Button East

Navigation WASD/↑←↓→ Left Stick/D-Pad

Table 3.2: Menu Navigation controls

18 Game Design Document

3.6 User interface

3.6.1 Flow structure

The navigation between the different menus of the game can be seen in the following
figure 3.10:

Figure 3.10: Menus Flow Structure

3.6. User interface 19

3.6.2 Some menu designs

These images are examples of the different menus throughout the game, such as: the
Main Menu, Figure 3.11; the Options Menu, Figure 3.12; the Options Menu with the
submenu for Screen Settings, Figure 3.13, or Volume Settings, Figure 3.14; the Lobby
Menu, Figure 3.15; or the Character Selection Menu, Figure 3.16.

Figure 3.11: Main Menu

Figure 3.12: Options Menu

20 Game Design Document

Figure 3.13: Options Menu in Screen Settings

Figure 3.14: Options Menu in Volume Settings

3.6. User interface 21

Figure 3.15: Lobby Menu with a public lobby available

Figure 3.16: Character Selection Menu

22 Game Design Document

3.7 Level design

The prototype level of the game is as shown in the following image.

Figure 3.17: Level Design

3.8. Story 23

3.8 Story
This game will have no story due to the fact that it is a prototype. But in case it will be
wanted to be expanded, the story could be related to a group of mechanics who make a
repair shop and as they become famous in the village they get more and more things to
fix.

As they gain popularity, their workload increases with more complex repairs. The
mechanics’ skills and dedication become renowned, attracting customers from far and
wide.

3.9 Art Style
Placeholders will be used in the first instance and if time permits, they will be replaced
by Simplistic Low-poly approach, taking inspiration on games such as Overcooked, also
implementing Unity Store Assets and maybe assets created by.

The final artwork will be added in future versions of the game, for the final prototype
placeholders have been used.

Figure 3.18: Reference Art 0

Figure 3.19: Reference Art 1

24 Game Design Document

3.10 Soundtrack

3.10.1 Sound Effects

There will be small sound effects for when a tool is used or an item is fixed; when a
tool is created; the customer receives their fixed item; any of the PiecesCounter in the
level is used; a tool is broken; a Customer is moving; or for when the player character is
moving.

3.10.2 Music

The music will be a bit fast to give the player even more of a time trial feeling when
playing the mini-game.

3.11 Multiplayer
Up to 4 players per game will be able to connect online, each player having a different
character colour.

Players will not be able to interact with each other with any direct action. What
they will be able to do is to annoy each other with their collisions, thus generating
situations where the gameplay changes as the characters become a moving wall for the
other players.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 25
4.2 Results . 40

This chapter is going to explain how everything was developed and if anything has
changed from the initial planning will be detailed and justified.

4.1 Work Development
This section explains the most relevant aspects of the developed work following the same
order as shown in Figure 2.1 in the Planning.

4.1.1 Overview

The overall project follows a very similar structure. The Observer Pattern has been
followed in order to create a clean and independent code architecture. For this, we have
decided to use the Scriptable Objects 1 offered by Unity as a bridge between the observed
object and the different observers, thus generating a layer of abstraction that would
allow changing any side of the bridge without the other side being aware of anything,
this system of using Scriptable Objects as bridges has been inspired by Unity’s Open
Project [10].

In addition, Unity’s Assembly definitions 2 have been used to ensure that within the
code dependencies, there are no dependencies in loops and at the same time to increase

1Go to A.2 to see the definition of a Scriptable Object
2Go to A.3 to see the definition of the Assembly Definition

25

26 Work Development and Results

the compilation times of the code, The basic understanding of how to use them was
provided by channels such as Infallible Code [2].

4.1. Work Development 27

The game has been designed in a way that there will always be at least 2 active
scenes:

• LocalPersistentManagers: A scene where all the local managers, such as the
SceneLoaderManager, the AudioManager or the InputController, will be located.
It will also have a canvas which will be displayed while downloading and loading
other scenes.

• GameScene: It will be the scene which will be replaced according to the scene
we want the player to see. Depending on the moment of the game it can be the
Main Menu scene, the Lobby Selection scene, the CharacterSelection scene or the
Minigame scene.

4.1.2 Scene Loader

The first thing that was not originally planned was to make a SceneLoaderManager
3 and to apply for the first time the Observer Pattern with the Scriptable Objects as
bridges, which was necessary when programming everything and seeing that at least 2
active scenes were needed simultaneously.

The very first thing we needed to do was to create our bridge system using Scriptable
Objects. To do this we created a script with an abstract class which would contain a
UnityAction<T> and a public function that would receive a parameter of type T and
would invoke the UnityAction in case it has subscribed functions. 4

We also create another new script for the UnityActions that do not receive any
parameter instead of creating a child class because T cannot be void. 5

Once this was done we designed how the GameScene loading and unloading system
works.

There is a GameObject called ChangeSceneBridge inside LocalPersistentManagers
that is in charge of listening to those VoidEventChannelSO that invoke its UnityAction
and have been created to notify that you want to change scene.

When its private functions are called by those events, this script is in charge of
invoking the UnityAction of the corresponding LoadSceneChannelSO.

LoadSceneChannelSO is a script that inherits from BaseEventChannelSO<T> which
has set GameSceneSO as T, a subtype of ScriptableObject created for the project that
has as its only parameter an AssetReference and will be used as a scene reference.

These last UnityAction are listened by the SceneLoaderManager, another GameOb-
ject inside LocalPersistentManagers, and because it receives as parameter a GameSce-
neSO the SceneLoaderManager will load its AssetReference as new GameScene of the
game and in turn it will unload the previous GameScene and it will decide according to
the LoadSceneChannelSO that has sent the event whether to load it as local scene or as
multiplayer scene.

3Go to B.4 to see how the SceneLoaderManager is implemented
4Go to B.1 to see how the asbtract class is implemented
5Go to B.2 to see how the VoidEventChannelSO is implemented

28 Work Development and Results

In case the SceneLoaderManager decides to load multiplayer, the loading logic will be
delegated through a StringBoolFuncSO, another bridge system created from Scriptable
Objects in which instead of invoking UnityAction a Func is invoked where one side of the
bridge assigns the desired function to the Func and the other side invokes that function
6 , so that a script called NetworkSceneLoader 7 is in charge of carrying all the logic of
the loading and unloading of the multiplayer scenes.

When starting to load and when finishing loading the scenes it will invoke 2 differ-
ent VoidEventChannelSOs, one for each moment, which will be listened by the Canvas
located in LocalPersistentManagers to show a loading screen while everything is hap-
pening.

Once everything has been prepared, it is decided that the game will start with a
scene called Initialisation, in charge of loading LocalPersistentManagers asynchronously
and when it detects that they are already loaded directly invoke the UnityAction of the
LoadSceneChannelSO, which is to load locally with parameter the GameSceneSO with
the reference of the MainMenu, and instantly unload Initialisation asynchronously.

In this case it has been decided to call directly the LoadSceneChannelSO instead
of a VoidEventChannelSO that is listened by the ChangeSceneBridge because this last
one was created as a bridge between the different GameObjects that want to change
scene and the SceneLoaderManager because when splitting the code with the assemblies
definitions of Unity we realised that to use the LoadSceneChannelSO it was necessary
to have the reference of the GameSceneSO, which GameObjects in general don’t seem
to need to have.

On the other hand, the Initialisation scene code does it directly because due to
its operation it was decided to group it with the rest of the codes in charge of handling
scenes, so they are in the same assembly definition and can use the LoadSceneChannelSO
without problems.

The SceneLoaderManager is also in charge of closing the game.

Figure 4.1: Relationship diagram of the scene loading

6Go to B.3 to see how the base abstract class for FuncSO is implemented
7Go to B.5 to see how the NetworkSceneLoader is implemented

4.1. Work Development 29

4.1.3 Main Menu

It is a simple menu where the player can decide to exit the game; enter in the options
menu and change the screen or volume settings; or play the game.

The first thing to do was to make a simple user interface design to reflect all actions.
For this we created a canvas with 4 different panels:

• Main Menu Panel: It has Play, Options and Exit buttons. See Figure 3.11.

• Options Panel: It has Screen, Volume and Back buttons. See Figure 3.12.

• Screen Settings Panel: It has a dropdown with all the Screen Resolutions; a
Fullscreen toggle; and Accept and Reset Buttons. See Figure 3.13.

• Audio Settings Panel: It has General Volume, Music and Sound Sliders. See
Figure 3.14.

Once all the UI design was done and animated using a LeanTween library [1], we
proceeded to make all the logic of it following the Observer Pattern and separating the
logic of the UI from the internal logic.

Visual Logic

The first thing I did was to create a custom script for each panel which would have ref-
erenced all the objects on the panel: buttons, sliders... Then I added to these referenced
objects that after being used by the user would invoke one of our custom Scriptable
Objects.

• Main Menu Panel: Its buttons would each invoke a VoidEventChannelSO.

• Options Menu Panel: Its buttons would also invoke a VoidEventChannelSO.

• Screen Settings Panel: Only the Accept and Cancel buttons are associated to
a custom Scriptable Object but these needed to pass 2 arguments, the index of the
chosen resolution and a boolean to indicate the full screen, so it was not possible
to make a subclass of BaseEventChannelSO<T>, so it was decided to make a
homonymous class but with 2 parameters called BaseEventChannelSO<T1,T2> 8

and then make a subclass of it which would have as T1 an int and as T2 a bool,
called ScreenSettingsChannelSO.

• Audio Settings Panel: Its 3 sliders invoke FloatEventChannelSO, subclass of
BaseEventChannelSO<T> that have as T a float, and pass the values of the sliders
as argument of the event.

Once all the panel scripts have been created a Canvas script was created to handle
all the internal animations and which Panels will be displayed or disabled.

8Go to B.1 to see how BaseEventChannelSO<T1,T2> is implemented

30 Work Development and Results

Internal Logic

• Main Menu Panel:

– Play Button: The VoidEventChannelSO invoked by this button is listened
by the ChangeSceneBridge, which is already internally in charge of invoking
the LoadSceneChannelSO listened by the SceneLoaderManager to load the
LobbySelection scene as the GameScene locally.

– Options Button: The VoidEventChannelSO invoked by this button is listened
by the Canvas and it is in charge of making the animation to show the Options
Menu Panel and to hide and deactivate the Main Menu Panel.

– Exit Button: The VoidEventChannelSO invoked by this button is listened by
the SceneLoaderManager and it closes the game.

• Options Menu Panel: The VoidEventChannelSOs invoked by each button are
listened by the Canvas to display the Screen Settings Panel, Volume Settings Panel
and to re-display the Main Menu Panel respectively.

• Screen Settings Panel: Both Accept and Cancel buttons invoke the same
ScreenSettingsChannelSO but with different parameters, the first button gets the
index of the current item in the dropdown and the gets if the toggle is On or
not while the second button send the maximum resolution index and a true. The
event is listened by another gameobject called ResolutionManager, which has a
script that manages the resolution and whether it is in fullscreen, and resizes the
game view.

• Audio Settings Panel:The FloatEventChannelSOs invoked by each Slider are
listened by the AudioManager, a gameobject inside LocalPersistentManagers de-
signed to control the sound channels and the music that is currently playing.

A demostration video of the Main Menu: MainMenu Demo Video

4.1.4 Lobby and Relay System

To do this, a scene called LobbySelection has been created.
Here the player will be in a menu where they can change their player name, choose

whether to create a lobby, join one of the public lobbies, join a private lobby via code
or return to the Main Menu.

As with the Main Menu, the first thing that was done was to design a UI, which can
be organised in 4 different parts, see Figure 3.15:

• PlayerNameInputField: It is just an InputField where the player can modify
his/her online name.

https://drive.google.com/file/d/1rlYXZTnIWFCJB6WcozXTAB7q4jo80Gkd/view?usp=drive_link

4.1. Work Development 31

• LobbiesScrollArea Panel: It has a button within a vertical group that acts as
a template join button to be duplicated when new public lobbies are detected, it
also has a text to indicate that there are no public lobbies at the moment.

• Lobby Options Panel: It has the Create Lobby, Join by Code, Refresh Lobbies
and To Main Menu buttons.

• PopUp Panel: Panel that internally has 4 panels: the CreateLobby Panel, Join-
ByCode Panel, LobbyErrorPanel and LobbyState Panel.

And as in the Main Menu, it was decided to separate the internal logic from the UI
logic by using the Observer Pattern.

Visual Logic

The same structure as in the Main Menu has been followed again: create a script for
each panel with references to its objects and also that these objects, when used, invoke
the corresponding customs Scriptable Objects.

A script has also been made for the current canvas to act as a manager for all panels,
it listens all the necesarry events from our customs Scriptable Objects to update or set
the values or the visibility of the panels.

• PlayerNameInputField: Being an object with nothing internally in charge of
it, its logic has been delegated to the Canvas. Each time its value is changed it
invokes a StringEventChannelSO, another subclass of BaseEventChannelSO<T>
with a string as T, passing as parameter its new value.

• LobbiesScrollArea Panel: Listens for a LobbiesChannelSO, another subclass
of BaseEventChannelSO<T> that uses List<Lobby> as T, and when that Lobbi-
esChannelSO is invoked causes this panel to receive all available public lists; turns
on or off the message that no public lobbies are available depending on the size
of the list received; and all dynamically generated buttons to join lobbies are de-
stroyed and new ones are generated based on the lobbies in the list received. In
addition, dynamically generated lobby join buttons display the lobby name, the
number of people in the lobby and the maximum number of people at the time the
button is created. It also internally stores the lobby reference so that when it is
pressed it invokes a StringEventChannelSO passing the lobby ID as a parameter.

• Lobby Options Panel: Each button invokes a VoidEventChannelSO.

• PopUp Panel: Panel that acts as a manager for each of the possible PopUps that
may appear in this scene.

– CreateLobby Panel: Its Create button invokes a CreateLobbyChannelSO, a
subclass of BaseEventChannelSO<T1,T2> and uses a string as T1 and a bool
as T2, in which it passes as parameters the name chosen for the lobby and

32 Work Development and Results

the boolean to indicate whether it is public or not. Its cancel button invokes
a VoidEventChannelSO. See Figure 4.2.

– JoinByCode Panel: Its Join button invokes a StringEventChannelSO in which
it passes as parameter the lobby code entered by the user in the Panel Input
Field. Its cancel button invokes a VoidEventChannelSO. See Figure 4.3.

– LobbyError Panel: It has only one button which invokes a VoidEventChan-
nelSO. See Figure 4.4.

– LobbyState Panel: This panel has no event to invoke or listen to, it is handled
directly by the PopUp Panel. See Figure 4.5.

Internal Logic

• PlayerNameInputField: The StringEventChannelSO invoked after its modifi-
cation is listened by the FixingGameMultiplayer 9 which takes care of saving the
name in a variable and in Unity’s PlayerPrefs so you don’t have to set it between
game.

• LobbiesScrollArea Panel: The StringEventChannelSO invoked by the buttons
to join a lobby are listened by the LobbyManager 10 which tries to join the actual
user to the given id lobby. The LobbyManager invokes a StringEventChannelSO
depending on where it is in the joining process and as a parameter a small text in-
dicating the current state of the process. In case of an error in any part, a different
StringEventChannelSO is invoked with parameter the reason for the error. Any
of these 2 invocations are listened by the Canvas and it shows the PopUp of turn
to indicate to the user the process. If the user successfully joins the lobby and the
relay, a VoidEventChannelSO is invoked which is listened to by the FixingGame-
Multiplayer and is responsible for making connections as a client to that server and
to invoke a VoidEventChannelSO which will be listened by the ChangeSceneBridge
and this will invoke a LoadSceneChannelSO listened by the SceneLoaderManager
to load the CharacterSelection scene in a multiplayer way.

• Lobby Options Panel:

– Create Lobby and Join by Code Buttons: The VoidEventChannelSOs invoked
by both buttons are listened to by the canvas itself, which is responsible for
displaying the corresponding PopUp.

– Refresh Lobbies Button: The VoidEventChannelSO invoked is listened by the
LobbyManager, which invokes a StringEventChannelSO and as parameter
a text indicating that it is looking for lobbies. After that it searches for

9Gameobject with a script in charge of handling purely multiplayer data such as if a player is ready
to play, the name, the colour... You can see the implementation in B.6.

10Gameobject with a script in charge of handling the lobby creation, connection, destruction, kick-
ing out players, managing erros... The script also handles the whole Relay System. You can see the
implementation in B.7.

4.1. Work Development 33

all available public lobbies and at the end it invokes a LobbiesChannelSO
with the parameter the list of the lobbies found, which is listened by the
LobbiesScrollArea and this is in charge of updating the UI. If there is any
problem when searching for public lobbies, a different StringEventChannelSO
is invoked with the parameter the reason of the problem and it would be
listened by the Canvas to show the corresponding PopUp.

– To Main Menu Button: The VoidEventChannelSO invoked is listened by the
ChangeSceneBridge which is already internally in charge of invoking the Load-
SceneChannelSO listened by the SceneLoaderManager to load the MainMenu
scene as GameScene locally.

• PopUp Panel:

– CreateLobby Panel: The CreateLobbyChannelSO invoked is listened by the
LobbyManager and start creating the lobby and invokes a StringEventChan-
nelSO depending on where it is in the creating process and as a parameter
a small text indicating the current state of the process. In case of an error
in any part, a different StringEventChannelSO is invoked with parameter the
reason for the error. Any of these 2 invocations are listened by the Canvas
and it shows the PopUp of turn to indicate to the user the process. If the
user successfully creates the lobby and the relay, a VoidEventChannelSO is
invoked which is listened to by the FixingGameMultiplayer and is responsible
for making connections as a host, i.e. client and server. The VoidEventChan-
nelSO is listened by the Canvas to hide the PopUp.

– JoinByCode Panel: The StringEventChannelSO is listened by the LobbyMan-
ager which tries to join the actual user to the given code lobby. The custom
Scriptable Objects that are invoked in the process are the same as when the
user tries to join by id, i.e. trying to join a public lobby.

– LobbyError Panel: The VoidEventChannelSO invoked is listened by the Can-
vas which hides the PopUp.

– LobbyState Panel: It has no custom Scriptable Object invoked, so there is no
internal logic to explain.

A demostration video of the Lobby and Relay System: Lobby Screen Video

https://drive.google.com/file/d/1R5tc3uPL3FjcOeQSwIV6GP3ZCRzufqiQ/view?usp=drive_link

34 Work Development and Results

Figure 4.2: Create Lobby Panel

Figure 4.3: Join by Code Panel

4.1. Work Development 35

Figure 4.4: Lobby Error Panel

Figure 4.5: Lobby State Panel

36 Work Development and Results

4.1.5 Character Selection

To do this, a scene called CharacterSelection has been created.
This is a scene that will only be loaded in multiplayer mode and the user will be the

host or a client.
It acts as a waiting room until all players in the lobby are ready to play. There can

be up to 4 players at the same time.
While waiting for all players to be ready to play, the name of the lobby; the lobby

joining code; the names and colours of the players; and whether they are ready or not
will be displayed. There will also be a list of 6 colours for the players to decide which
colour they want to have on their character, with the only rule that they can’t have a
colour that another character already has.

The first thing that was done was to design a UI and the visual representation of
players, see Figure 3.16. It can be organised in:

• The players representation: This gameobject contains the PlayerVisual prefab;
the text for the player name; the text for the ready text; and a small canvas with
a button to let the host kick the player.

• Buttons Panel: It has Ready and Main Menu buttons.

• Colours Panel: It has 6 different buttons, each for a different colour.

• Leave to Menu Panel: It is a small popup asking the user if they really want
to leave the lobby. It has Leave and Cancel buttons.

• Kicked Panel: It is another popup that notifies the player that he/she has been
kicked. It only has Accept button.

• Name and Code Panel: It contains 2 texts that are filled in with the lobby
name and the lobby joining code respectively.

All the panels will be inside a canvas that will act in the same way as the previous
canvasses, as a manager of them.

Visual Logic

• The players representation: Every gameobject listens 2 VoidEventChannelSO:
the first to update the visibility and colour of the gameobject; and the second to
display or not the Ready text. It also invokes an ULongEventChannelSO, another
subclass of BaseEventChannelSO<T> that uses an ulong as T, when the kick
button is pressed and passes as parameter the id of the client that is kicked out.
11

11Go to B.8 to see the implementation of the Player Representation

4.1. Work Development 37

• Buttons Panel: Both buttons are handled directly by the canvas. The Ready
button invokes a VoidEventChannelSO. The MainMenu button when pressed dis-
plays the Leave to Menu Panel.

• Colours Panel: This panel does not have a script, each button manages it-
self. When each button is pressed it sends an IntEventChannelSO, a subclass of
BaseChannelSO<T> which uses an int as T, passing as a parameter the id of the
colour.

• Leave to Menu Panel: Each button invokes a different VoidEventChannelSO
when pressed.

• Kicked Panel: When its Accept button is pressed, a VoidEventChannelSO is
invoked.

• Name and Code Panel: They are handled by the canvas, which at scene startup
invokes 2 StringFuncSO, subclasses of BaseFuncSO<TResult>, and sets the values
returned by those Funcs as the respective texts.

Internal Logic

• The players representation: The ULongEventChannelSO invoked is listened
by the FixingGameMultiplayer and manages the disconnection of the player with
that clientId.

• Buttons Panel: The VoidEventChannelSO invoked is listened by the CharacterS-
electionManager 12 , another script designed to take into account which players
are ready and which are not in order to send a VoidEventChannelSO event which
will be listened to load the Minigame scene.

• Colours Panel: The IntEventChannelSO invoked is listened by the FixingGame-
Multiplayer and changes the color of the player who used the button.

• Leave to Menu Panel: The VoidEventChannelSO invoked by the Leave but-
tons is listened by the FixingGameMultiplayer which manages the desconnec-
tion of the player and after that it invokes another VoidEventChannelSO lis-
tened by ChangeSceneBridge and it invokes a LoadSceneChannelSO listened by
the SceneLoaderManager to load the MainMenu.

• Kicked Panel: The VoidEventChannelSO invoked is listened by the ChangeScene-
Bridge and it invokes a LoadSceneChannelSO listened by the SceneLoaderManager
to load the MainMenu.

• Name and Code Panel: They have no internal logic apart from the visual.

A demostration video of the Character Selection: Character Selection Screen
12Go to B.9 to see the implementation of the CharacterSelectionManager

https://drive.google.com/file/d/1R5tc3uPL3FjcOeQSwIV6GP3ZCRzufqiQ/view?usp=drive_link

38 Work Development and Results

4.1.6 Mini-game

A scene was created that will contain the mini-game.
First of all, all the mechanics and their relationships at the single player level were

thought out.
The mini-game has used the Observer Pattern along with creating Components. This

has been done because there are certain things that don’t make sense to put that layer
of abstraction because of its direct relationship, like the character and the sounds or
particles it generates, it knows when to make sound or when to activate its particle
system.

FixingGameManager

It is the manager of the level logic 13.
It is in charge of managing the activation and deactivation of the player input or

changing the Input channel from Gameplay to Menu mode and vice versa; has a Script-
able Object with the recipes that the level will use and then the objects that need it will
get it through a ToolRecipeManagerFuncSO, subclass of BaseFuncSO<TResult> that
uses a ToolRecipeManagerSO as T, which in turn is a Scriptable Object where an array
with the tool crafting recipes is stored; where to spawn the NPCs, which Object to Fix
with and which counter to go to; and the game state.

Room Objects

They are part of the main mechanics of the game 14 .
They are divided according to a number into 3 different types: Pieces, Tools and

Objects To Fix.
They have 2 AudioComponent, Component programmed in order to run a sound

clip on a specific channel, one for when the object is used and one for when the object
breaks. Although in reality they are only used by the Tools.

They have a reference to an IRoomObjectParent 15 , an interface designed for all
those gameobjects that will be able to handle RoomObjects, which will be their parent
in the hierarchy of objects in the scene and this IRoomObjectParent in turn has a
reference to the RoomObject.

it has a static function that is in charge of spawning new RoomObjects in an
IRoomObjectParent.

For the Object to Fix a subclass 16 has been created because it needs to recycle all
the logic of the RoomObject but adding an array indicating the tools needed to fix the
object and another array to take into account the tools already used.

13Go to B.10 to see the implementation
14Go to B.11 to see the implementation of RoomObject
15Go to B.12 to see the implementation of IRoomObjectParent
16Go to B.13 to see the implementation of the Object To Fix subclass, it is called ToFixRoomObject

4.1. Work Development 39

To show the user the tools he/she needs to use, a component has been created for
the Object to Fix that is in charge of showing the image representation of the tools to
be used on top of the object. See Figure 3.4.

Player

Gameobject in charge of moving; rotating; acting as IRoomObjectParent; and handling
the interactions that the player can perform with the different types of counter, calling
the BaseCounter and this is in charge of inheriting the behaviour of the interaction 17.

It has 2 components in charge of the animation of the player and the walking sound.
And the gameobject has a particle system that is activated by the character’s move-

ment.

Counters

They are a group of different objects which are also necessary for the game. They all have
a common parent class, BaseCounter 18, which each Counter overrides to implement its
functionality.

There are a total of 5 different Counters and all of them act as IRoomObjectParent.
It is possible to see all of them in the subsection 3.4.2.

NPCs

The code that controls them is CustomerController 19 and its internal logic is a hardcoded
state machine because it is the only place in the project where one would be required.
It also acts as IRoomObjectParent.

As can be seen in the figure 4.6 it can be seen that the first thing the NPC does is
to go to a Counter, once there he waits until the broken object he had taken to fix is
returned to him and when he has finished he leaves to leave the Counter for the next
NPC.

Figure 4.6: NPCs State Machine

4.1.7 Adaption of the mini-game to multiplayer

To modify the mini-game logic from singleplayer to multiplayer mode what has been
done has been:

17Go to B.14 to see how the Player Controller is implemented
18Go to B.15 to see how the BaseCounter is implemented
19Go to B.16 to see how the CustomerController is implemented

40 Work Development and Results

• NetworkVariables and NetworkLists: Variables and lists which are synchro-
nised between all users. They are used for important things like the number of
uses of a tool or the remaining tools that an ObjectToFix needs.

• ServerRpc and ClientRpc functions: These are functions that run on the
server and on the clients respectively. When a client tries to perform an action, it
usually calls a ServerRpc function so that the server executes all the internal logic
and when it is finished, it calls a ClientRpc function so that all the clients receive
the corresponding visual changes.

• Network events: Events that NetworkVariables and NetworkLists have which
are executed every time their values have been changed. There are certain parts
of the code where this has been chosen instead of the ServerRpc and ClientRpc in
order to avoid synchronisation failures of these NetworkVariables when calling the
ClientRpc.

4.1.8 Extra

There are 3 things that have been done as extras to all of this:

• Centralise the Input System with a Scriptable Object: To do this Unity’s
new Input System have been used and it was created a code called InputReaderSO
20 which is a Scriptable Object that anyone can access and has the designated
functions and events to control all the game’s Input.

• Centralising the colours of UI elements: A Scriptable Object was created
which contains the set of colours that any UI element has. After this, a code called
SelectableUIData 21 was created which would be in charge of assigning the colours
of the Scriptable Object to the elements that contain this code, thus allowing a
centralisation of the colours and an ease of design.

• Put the more generic codes in a separate folder to start creating a li-
brary: As codes have been created that are tools for programming or design, I have
decided to separate them in a separate folder called ProgramadorCastellano. This
is because they are codes that can be improved and used in the future as a custom
library. Inside would be codes such as BaseEventChannelSO or SelectableUIData.

4.2 Results

Although Unity’s new multiplayer library is still buggy, a first version of a videogame
has been created following the Observer Pattern as much as possible and it is playable
by up to 4 simultaneous players in a single lobby, who can enjoy short 2-minute games.

20Go to B.17 to see how the InputReaderSO is implemented
21Go to B.18 to see how the SelectableUIData is implemented

4.2. Results 41

From a computer science point of view, the separate codes in the ProgramadorCastel-
lano folder can serve as a library for any programmer who wants to create an Observer
Pattern. Also due to the separation of interface and logic codes anyone who wants to
recreate the lobbies system can use the codes already created for this project without
having to modify it for the most part.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 43
5.2 Future work . 44

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

It was a challenge to make a multiplayer game with a design pattern applied to it. This
is because we have never dealt with anything related to multiplayer games in our career,
nor have we ever put into practice the use of design patterns when organising code.

Also the use of a new library has resulted in more difficulties in the development of the
project. Synchronisation errors of certain objects that could only be fixed by converting
them to Singletons, even though this was not originally intended, that certain objects
shared their NetworkObject ID so that the value had to be re-assigned by hand, or that
when loading scenes asynchronously, clients could not disconnect correctly due to an
internal bug in the library, causing the user to have to disconnect by brute force with
all the problems that this entails.

So to develop a game of any kind with a new library I recommend waiting a bit until
it is more developed and does not have major bugs like those mentioned above.

43

44 Conclusions and Future Work

5.2 Future work
As future work the idea would be to wait a little while for the Unity multiplayer library
bugs to be fixed.

Once there are no major bugs we would continue with the progress of the game to redo
the asynchronous download of the clients without crashing, add visual and sound details
to the game, take advantage of the Observer Pattern to make a system of achievements
without too much difficulty and study about level design to make different levels with
different tools and objects to fix so that there is more variety and therefore fun for the
end player.

Regarding the more abstract codes stored in the ProgramadorCastellano folder the
idea is to refine and extend those codes to generate a public library to have all the
primitive BaseEventSO and BaseFuncSO ready to use just by downloading the folder
and also to have a central modification system of the UI that allows apart from changing
the colours, to change the images or the animations of the UI in a centralised way.

Bibliography

[1] LeanTween - LeanTween.

[2] Infallible Code. Before you continue to YouTube.

[3] Code Monkey. Before you continue to YouTube.

[4] Tarodev. Before you continue to YouTube.

[5] Unity Technologies. Unity - Manual: Assembly definitions.

[6] Unity Technologies. Unity - Manual: ScriptableObject.

[7] Unity Technologies. Unity Lobby Service.

[8] Unity Technologies. Unity Relay.

[9] Unity Technologies. About Netcode for GameObjects | Unity Multiplayer Network-
ing, 6 2023.

[10] Unity. Bringing characters to life with animation | Open Projects Devlog, 5 2021.

[11] Wikipedia contributors. Observer pattern — Wikipedia, the free encyclopedia,
2023.

45

A
p

p
e

n
d

ix A
Glossary

A.1 Observer Pattern

“In software design and engineering, the observer pattern is a software design pattern in
which an object, named the subject, maintains a list of its dependents, called observers,
and notifies them automatically of any state changes, usually by calling one of their
methods.

It is often used for implementing distributed event-handling systems in event-driven
software. In such systems, the subject is usually named a "stream of events" or "stream
source of events" while the observers are called "sinks of events." The stream nomen-
clature alludes to a physical setup in which the observers are physically separated and
have no control over the emitted events from the subject/stream source. This pattern
thus suits any process by which data arrives from some input that is not available to the
CPU at startup, but instead arrives seemingly at random (HTTP requests, GPIO data,
user input from peripherals, distributed databases and blockchains, etc.).

Most modern programming languages comprise built-in event constructs implement-
ing the observer-pattern components. While not mandatory, most observer implementa-
tions use background threads listening for subject events and other support mechanisms
provided by the kernel.” [11]

A.2 Scriptable Object

“A ScriptableObject is a data container that you can use to save large amounts of data,
independent of class instances.” [6]

47

48 Glossary

A.3 Assembly Definition
“An assembly is a C# code library that contains the compiled classes and structs that
are defined by your scripts and which also define references to other assemblies.” [5]

A
p

p
e

n
d

ix B
Source code

Here you will find the most relevant codes necessary to better understand the explanation
of the document.

To see all the code of the game: https://github.com/AdriMon27/FIXING-IT

B.1 BaseEventChannelSO

1 using ProgramadorCastellano.Base;

2 using UnityEngine;

3 using UnityEngine.Events;

4
5 namespace ProgramadorCastellano.Events

6 {

7 /// <summary>

8 /// Base Scriptable Object class for creating our personals EventChannelSO.

9 /// Don t forget to add CreateAssetMenu.

10 /// If you want to change the names in the parameters you can make a new RaiseEvent()

11 /// and call base.RaiseEvent()

12 /// </summary>

13 /// <typeparam name="T">Struct,List,Dict... that the event channel will use</typeparam>

14 public abstract class BaseEventChannelSO<T> : DescriptionBaseSO, IMyEventSO<T>

15 {

16 public UnityAction<T> OnEventRaised { get; set; }

17
18 public void RaiseEvent(T eventArg)

19 {

20 if (OnEventRaised != null) {

21 OnEventRaised.Invoke(eventArg);

22 }

49

https://github.com/AdriMon27/FIXING-IT

50 Source code

23 else {

24 Debug.LogWarning($"{errorMessage} with parameter {eventArg}");

25 }

26 }

27 }

28
29 public abstract class BaseEventChannelSO<T0,T1> : DescriptionBaseSO, IMyEventSO<T0, T1>

30 {

31 public UnityAction<T0,T1> OnEventRaised { get; set; }

32
33 public void RaiseEvent(T0 eventArg0, T1 eventArg1)

34 {

35 if (OnEventRaised != null) {

36 OnEventRaised.Invoke(eventArg0, eventArg1);

37 }

38 else {

39 Debug.LogWarning($"{errorMessage} with parameters {eventArg0} and {eventArg1}");

40 }

41 }

42 }

43 }

B.2 VoidEventChannelSO

1 using ProgramadorCastellano.Base;

2 using UnityEngine;

3 using UnityEngine.Events;

4
5 namespace ProgramadorCastellano.Events

6 {

7 [CreateAssetMenu(menuName = "Events/Primitive/Void Event Channel")]

8 public class VoidEventChannelSO : DescriptionBaseSO, IMyEventSO

9 {

10 public UnityAction OnEventRaised { get; set; }

11
12 public void RaiseEvent()

13 {

14 if (OnEventRaised != null) {

15 OnEventRaised.Invoke();

16 }

17 else {

18 Debug.LogWarning(errorMessage);

19 }

20 }

21 }

22 }

B.3. BaseFuncSO 51

B.3 BaseFuncSO

1 using ProgramadorCastellano.Base;

2 using System;

3 using UnityEngine;

4
5 namespace ProgramadorCastellano.Funcs

6 {

7 /// <summary>

8 /// Base Scriptable Object class for creating our personals FuncSO

9 /// Don t forget to add CreateAssetMenu

10 /// If you want to change the names in the parameters you can make a new RaiseFunc() ant call base.RaiseEvent()

11 /// </summary>

12 /// <typeparam name="TResult">Struct,List,Dict... that the Func will return</typeparam>

13 public abstract class BaseFuncSO<TResult> : DescriptionBaseSO, IMyFuncSO<TResult>

14 {

15 private Func<TResult> OnFuncRaised;

16
17 /// <summary>

18 /// Set the Func to null

19 /// </summary>

20 public void ClearOnFuncRaised()

21 {

22 OnFuncRaised = null;

23 }

24
25 /// <summary>

26 /// Invokes the Func

27 /// </summary>

28 /// <returns>The <typeparamref name="TResult"/> output object if OnFuncRaised is not null or default if the Func is null</returns>

29 public TResult RaiseFunc()

30 {

31 if (OnFuncRaised != null) {

32 return OnFuncRaised.Invoke();

33 }

34 else {

35 Debug.LogWarning($"{errorMessage}");

36 return default;

37 }

38 }

39
40 /// <summary>

41 /// Tries to set a new Func to the internal Func

42 /// </summary>

43 /// <param name="newFunc"></param>

44 /// <returns>If it was possible to set the Func, if the Func was null</returns>

45 public bool TrySetOnFuncRaised(Func<TResult> newFunc)

46 {

47 if (OnFuncRaised != null) {

48 return false;

52 Source code

49 }

50
51 OnFuncRaised = newFunc;

52 return true;

53 }

54 }

55
56 public abstract class BaseFuncSO<T0, TResult> : DescriptionBaseSO, IMyFuncSO<T0, TResult>

57 {

58 private Func<T0, TResult> OnFuncRaised;

59
60 /// <summary>

61 /// Set the Func to null

62 /// </summary>

63 public void ClearOnFuncRaised()

64 {

65 OnFuncRaised = null;

66 }

67
68 /// <summary>

69 /// Tries to set a new Func to the internal Func

70 /// </summary>

71 /// <param name="arg0">First argument of the func</param>

72 /// <returns>The <typeparamref name="TResult"/> output object if OnFuncRaised is not null or default if the Func is null</returns>

73 public TResult RaiseFunc(T0 arg0)

74 {

75 if (OnFuncRaised != null) {

76 return OnFuncRaised.Invoke(arg0);

77 }

78 else {

79 Debug.LogWarning($"{errorMessage} with parameter {arg0}");

80 return default;

81 }

82 }

83
84 /// <summary>

85 /// Tries to set a new Func to the internal Func

86 /// </summary>

87 /// <param name="newFunc"></param>

88 /// <returns>If it was possible to set the Func, if the Func was null</returns>

89 public bool TrySetOnFuncRaised(Func<T0, TResult> newFunc)

90 {

91 if (OnFuncRaised != null) {

92 return false;

93 }

94
95 OnFuncRaised = newFunc;

96 return true;

97 }

98 }

99

B.4. SceneLoaderManager 53

100 public abstract class BaseFuncSO<T0, T1, TResult> : DescriptionBaseSO, IMyFuncSO<T0, T1, TResult>

101 {

102 private Func<T0, T1, TResult> OnFuncRaised;

103
104 /// <summary>

105 /// Set the Func to null

106 /// </summary>

107 public void ClearOnFuncRaised()

108 {

109 OnFuncRaised = null;

110 }

111
112 /// <summary>

113 /// Tries to set a new Func to the internal Func

114 /// </summary>

115 /// <param name="arg0">First argument of the func</param>

116 /// <param name="arg1">Second argument of the func</param>

117 /// <returns>The <typeparamref name="TResult"/> output object if OnFuncRaised is not null or default if the Func is null</returns>

118 public TResult RaiseFunc(T0 arg0, T1 arg1)

119 {

120 if (OnFuncRaised != null) {

121 return OnFuncRaised.Invoke(arg0, arg1);

122 }

123 else {

124 Debug.LogWarning($"{errorMessage} with parameters {arg0} and {arg1}");

125 return default;

126 }

127 }

128
129 /// <summary>

130 /// Tries to set a new Func to the internal Func

131 /// </summary>

132 /// <param name="newFunc"></param>

133 /// <returns>If it was possible to set the Func, if the Func was null</returns>

134 public bool TrySetOnFuncRaised(Func<T0, T1, TResult> newFunc)

135 {

136 if (OnFuncRaised != null) {

137 return false;

138 }

139
140 OnFuncRaised = newFunc;

141 return true;

142 }

143 }

144 }

B.4 SceneLoaderManager

54 Source code

1 using FixingIt.Events;

2 using FixingIt.SceneManagement.ScriptableObjects;

3 using ProgramadorCastellano.Events;

4 using ProgramadorCastellano.Funcs;

5 using System;

6 using UnityEngine;

7 using UnityEngine.ResourceManagement.AsyncOperations;

8 using UnityEngine.ResourceManagement.ResourceProviders;

9 using UnityEngine.SceneManagement;

10
11 namespace FixingIt.SceneManagement.Logic

12 {

13 /// <summary>

14 /// Persistent Manager, doesnt need an Instance or to clear the funcs

15 /// </summary>

16 public class SceneLoaderManager : MonoBehaviour

17 {

18 // filled after loaded one scene

19 private GameSceneSO _sceneToLoad;

20 private GameSceneSO _currentSceneLoaded;

21 private bool _isSceneToLoadNetwork = false;

22 private bool _isCurrentSceneNetwork = false;

23
24 private float _necessaryWaitSeconds = 0.1f;

25
26 [Header("Listening To")]

27 [SerializeField]

28 private LoadSceneChannelSO _loadSceneChannel;

29 [SerializeField]

30 private LoadSceneChannelSO _loadNetworkSceneChannel;

31 [SerializeField]

32 private VoidEventChannelSO _exitGameEvent;

33 [SerializeField]

34 private VoidEventChannelSO _unloadedNetworkEventCompleted;

35
36 [Header("Broadcasting To")]

37 [SerializeField] VoidEventChannelSO _startSceneLoadingEvent;

38 [SerializeField] VoidEventChannelSO _sceneLoadedEvent;

39
40 [Header("Invoking Func")]

41 [SerializeField]

42 private StringBoolFuncSO _loadNewNetworkSceneByNameFunc;

43 [SerializeField]

44 private StringBoolFuncSO _unloadNetworkSceneByNameFunc;

45
46 [Header("Setting Func")]

47 [SerializeField]

48 private StringFuncSO _getCurrentSceneNameFunc;

49
50 private void Awake()

51 {

B.4. SceneLoaderManager 55

52 //DontDestroyOnLoad(gameObject);

53
54 _getCurrentSceneNameFunc.TrySetOnFuncRaised(() => _currentSceneLoaded.name);

55 }

56
57 private void OnEnable()

58 {

59 _loadSceneChannel.OnEventRaised += LoadScene;

60 _loadNetworkSceneChannel.OnEventRaised += LoadNetworkScene;

61 _exitGameEvent.OnEventRaised += ExitGame;

62
63 _unloadedNetworkEventCompleted.OnEventRaised += SceneLoaderManager_UnloadedNetworkEventCompleted;

64 }

65
66 private void OnDisable()

67 {

68 _loadSceneChannel.OnEventRaised -= LoadScene;

69 _loadNetworkSceneChannel.OnEventRaised -= LoadNetworkScene;

70 _exitGameEvent.OnEventRaised -= ExitGame;

71
72 _unloadedNetworkEventCompleted.OnEventRaised -= SceneLoaderManager_UnloadedNetworkEventCompleted;

73 }

74
75 #region Local Load

76 private void LoadScene(GameSceneSO sceneToLoad)

77 {

78 // send event

79 _startSceneLoadingEvent.RaiseEvent();

80
81 _sceneToLoad = sceneToLoad;

82 _isSceneToLoadNetwork = false;

83
84 UnloadPreviousScene();

85 LoadNewScene();

86 }

87
88 private void LoadNewScene()

89 {

90 // load scene

91 var loadingOperationHandle = _sceneToLoad.SceneReference.LoadSceneAsync(LoadSceneMode.Additive);

92 loadingOperationHandle.Completed += OnNewSceneLoaded;

93
94 _isCurrentSceneNetwork = false;

95 }

96
97 private void OnNewSceneLoaded(AsyncOperationHandle<SceneInstance> obj)

98 {

99 _currentSceneLoaded = _sceneToLoad;

100
101 Scene s = obj.Result.Scene;

102 SceneManager.SetActiveScene(s);

56 Source code

103
104 //LightProbes.TetrahedralizeAsync(); //not necessary

105
106 // send event

107 _sceneLoadedEvent.RaiseEvent();

108 }

109 #endregion

110
111 #region Network Load

112 private void LoadNetworkScene(GameSceneSO sceneToLoad)

113 {

114 // send event

115 _startSceneLoadingEvent.RaiseEvent();

116
117 _sceneToLoad = sceneToLoad;

118 _isSceneToLoadNetwork = true;

119
120 UnloadPreviousScene();

121
122 // si hemos descargado una local

123 if (!_isCurrentSceneNetwork)

124 {

125 Invoke(nameof(LoadNewNetworkScene), _necessaryWaitSeconds); // necessary wait to prevent errors

126 }

127 // else => lo maneja UnloadPreviousSceneNetwork

128 }

129
130 /// <summary>

131 /// Function that should be called after all the clients have unload async the previous networkScene

132 /// </summary>

133 private void LoadNewNetworkScene()

134 {

135 // load scene

136 string sceneName = _sceneToLoad.name;

137 bool hasNetSceneLoaded = false;

138 try

139 {

140 hasNetSceneLoaded = _loadNewNetworkSceneByNameFunc.RaiseFunc(sceneName);

141 }

142 catch (Exception e)

143 {

144 ManageNetworkSceneLoaderExceptions(e);

145 }

146
147 if (hasNetSceneLoaded)

148 _currentSceneLoaded = _sceneToLoad;

149
150 _isCurrentSceneNetwork = hasNetSceneLoaded;

151 }

152 #endregion

153

B.4. SceneLoaderManager 57

154 #region Unload

155 /// <summary>

156 /// Se podra hacer Coroutine para a adir efecto de pantalla de carga

157 /// </summary>

158 private void UnloadPreviousScene()

159 {

160 // null when we are entering in the Main Menu

161 if (_currentSceneLoaded == null)

162 {

163 return;

164 }

165
166 // check if it is managed by SceneManager or by NetworkSceneManager

167 if (!_isCurrentSceneNetwork)

168 {

169 UnloadPreviousSceneLocal();

170 }

171 else

172 {

173 UnloadPreviousSceneNetwork();

174 }

175 }

176
177 private void UnloadPreviousSceneLocal()

178 {

179 _currentSceneLoaded.SceneReference.UnLoadScene();

180 }

181 private void UnloadPreviousSceneNetwork()

182 {

183 string sceneName = _currentSceneLoaded.name;

184
185 try

186 {

187 _unloadNetworkSceneByNameFunc.RaiseFunc(sceneName);

188 }

189 catch (Exception e)

190 {

191 ManageNetworkSceneLoaderExceptions(e);

192 }

193 }

194 #endregion

195
196 private void ExitGame()

197 {

198 Debug.Log("Quitting Application!");

199 Application.Quit();

200 }

201
202 private void ManageNetworkSceneLoaderExceptions(Exception e)

203 {

204 Debug.LogError($"Error catched: {e.Message}");

58 Source code

205 }

206
207 private void SceneLoaderManager_UnloadedNetworkEventCompleted()

208 {

209 if (_isSceneToLoadNetwork)

210 {

211 Invoke(nameof(LoadNewNetworkScene), _necessaryWaitSeconds); // necessary wait to prevent errors

212 }

213 // else -> managed by its function

214 }

215 }

216 }

B.5 NetworkSceneLoader

1 using ProgramadorCastellano.Events;

2 using ProgramadorCastellano.Funcs;

3 using System;

4 using Unity.Netcode;

5 using UnityEngine;

6 using UnityEngine.SceneManagement;

7
8 namespace FixingIt.SceneManagement.Logic

9 {

10 public class NetworkSceneLoader : NetworkBehaviour

11 {

12 public static NetworkSceneLoader Instance { get; private set; }

13
14 [Header("Broadcasting To")]

15 [SerializeField]

16 private VoidEventChannelSO _sceneLoadedEvent;

17 [SerializeField]

18 private VoidEventChannelSO _unloadedNetworkSceneEventCompleted;

19
20 [Header("Setting Func")]

21 [SerializeField]

22 private StringBoolFuncSO _loadNewNetworkSceneByNameFunc;

23 [SerializeField]

24 private StringBoolFuncSO _unloadNetworkSceneByNameFunc;

25
26 private void Awake()

27 {

28 if (Instance != null && Instance != this)

29 {

30 Destroy(this);

31 }

32 else

33 {

B.5. NetworkSceneLoader 59

34 Instance = this;

35 DontDestroyOnLoad(this);

36 }

37
38 // clear funcs

39 _loadNewNetworkSceneByNameFunc.ClearOnFuncRaised();

40 _unloadNetworkSceneByNameFunc.ClearOnFuncRaised();

41
42 // set funcs

43 _loadNewNetworkSceneByNameFunc.TrySetOnFuncRaised(LoadNewNetworkScene);

44 _unloadNetworkSceneByNameFunc.TrySetOnFuncRaised(UnloadNetworkScene);

45 }

46
47 public override void OnNetworkSpawn()

48 {

49 if (IsServer)

50 {

51 NetworkManager.Singleton.SceneManager.OnSceneEvent += NetworkSceneLoader_OnNetworkSceneEvent;

52 }

53 Debug.Log($"OnNetworkSpawn and IsServer: {IsServer}");

54
55 base.OnNetworkSpawn();

56 }

57
58 #region Load

59 /// <summary>

60 /// Function that should be called after all the clients have unload async the previous networkScene.

61 /// Loads async a new NetworkScene

62 /// </summary>

63 /// <param name="sceneName">Name of the scene to load</param>

64 /// <returns>If the Scene was loaded && You are server</returns>

65 /// <exception cref="Exception">It was not possible to load the scene due to NetworkErrors</exception>

66 private bool LoadNewNetworkScene(string sceneName)

67 {

68 if (!IsServer)

69 return false;

70
71 var status = NetworkManager.Singleton.SceneManager.LoadScene(sceneName, LoadSceneMode.Additive);

72 if (status != SceneEventProgressStatus.Started)

73 {

74 string errorMsg = $"Failed to load {sceneName} with a {nameof(SceneEventProgressStatus)}: {status}";

75
76 Debug.LogWarning(errorMsg);

77 throw new Exception(errorMsg);

78 }

79
80 return true;

81 }

82 #endregion

83
84 #region Unload

60 Source code

85 /// <summary>

86 /// Unloads a NetworkScene

87 /// </summary>

88 /// <param name="sceneName">Name of the scene to unload</param>

89 /// <returns>If the Scene was unloaded && You are server</returns>

90 /// <exception cref="Exception">It was not possible to unload the scene due to nameScene error</exception>

91 private bool UnloadNetworkScene(string sceneName)

92 {

93 // TODO: mirar esto bien

94 if (!IsServer)

95 return false;

96
97 Scene sceneToUnload = SceneManager.GetSceneByName(sceneName);

98 if (!sceneToUnload.IsValid())

99 {

100 string errorMsg = $"UnloadingError: Escena con nombre {sceneName} no existe ahora mismo";

101
102 Debug.LogWarning(errorMsg);

103 throw new Exception(errorMsg);

104 }

105
106 NetworkManager.Singleton.SceneManager.UnloadScene(sceneToUnload);

107 return true;

108 }

109 #endregion

110
111 private void NetworkSceneLoader_OnNetworkSceneEvent(SceneEvent sceneEvent)

112 {

113 var clientOrServer = sceneEvent.ClientId == NetworkManager.ServerClientId ? "server" : "client";

114 switch (sceneEvent.SceneEventType)

115 {

116 // locally cases

117 case SceneEventType.LoadComplete:

118 {

119 //if (sceneEvent.ClientId == OwnerClientId) {

120 // SceneManager.SetActiveScene(sceneEvent.Scene);

121 //}

122
123 Debug.Log($"Loaded the {sceneEvent.SceneName} scene on {clientOrServer}-({sceneEvent.ClientId}).");

124 break;

125 }

126 case SceneEventType.UnloadComplete:

127 {

128 Debug.Log($"Unloaded the {sceneEvent.SceneName} scene on {clientOrServer}-({sceneEvent.ClientId}).");

129 break;

130 }

131 // when server && all clients

132 case SceneEventType.LoadEventCompleted:

133 {

134 Debug.Log($"Load event completed for the following client identifiers:({sceneEvent.ClientsThatCompleted})");

135 if (sceneEvent.ClientsThatTimedOut.Count > 0)

B.6. FixingGameMultiplayer NOT FINAL VERSION 61

136 {

137 Debug.LogWarning($"Load event timed out for the following client identifiers:({sceneEvent.ClientsThatTimedOut})");

138 }

139
140 // send event

141 _sceneLoadedEvent.RaiseEvent();

142 break;

143 }

144 case SceneEventType.UnloadEventCompleted:

145 {

146 Debug.Log($"Unload event completed for the following client identifiers:({sceneEvent.ClientsThatCompleted})");

147 if (sceneEvent.ClientsThatTimedOut.Count > 0)

148 {

149 Debug.LogWarning($"Unload event timed out for the following client identifiers:({sceneEvent.ClientsThatTimedOut})");

150 }

151
152 // in theory this code is unreachable for clients but just in case

153 if (IsServer)

154 {

155 _unloadedNetworkSceneEventCompleted.RaiseEvent();

156 }

157
158 break;

159 }

160 }

161 }

162 }

163 }

B.6 FixingGameMultiplayer NOT FINAL VERSION

1 using FixingIt.Events;

2 using FixingIt.Funcs;

3 using FixingIt.Minigame;

4 using FixingIt.PlayerGame;

5 using FixingIt.RoomObjects.Logic;

6 using FixingIt.RoomObjects.SO;

7 using FixingIt.SceneManagement.ScriptableObjects;

8 using ProgramadorCastellano.Events;

9 using ProgramadorCastellano.Funcs;

10 using System.Linq;

11 using Unity.Netcode;

12 using Unity.Services.Authentication;

13 using UnityEngine;

14 using UnityEngine.SceneManagement;

15
16 namespace FixingIt.Multiplayer

17 {

62 Source code

18 public class FixingGameMultiplayer : NetworkBehaviour

19 {

20 private const string PLAYER_PREFS_PLAYER_NAME_MULTIPLAYER = "PlayerNameMultiplayer";

21
22 public static FixingGameMultiplayer Instance { get; private set; }

23
24 [SerializeField] private GameSceneSO _characterSelectionSceneSO;

25 [SerializeField] private Color[] _playerColorArray;

26 [SerializeField] private RoomObjectsSOListSO _allRoomObjectsSOListSO;

27
28 private NetworkList<PlayerData> _playerDataNetworkList;

29 private string _playerName;

30
31 [Header("Broadcasting To")]

32 [SerializeField]

33 private VoidEventChannelSO _hostStartedEvent;

34 [SerializeField]

35 private StringEventChannelSO _rejectedToServerEvent;

36 [SerializeField]

37 private VoidEventChannelSO _playerDataNetworkListChangedEvent;

38 [SerializeField]

39 private VoidEventChannelSO _networkToMainMenuEvent;

40 [SerializeField]

41 private StringEventChannelSO _playerIdDisconnectedEvent;

42
43 [Header("Listening To")]

44 [SerializeField]

45 private VoidEventChannelSO _lobbyCreatedEvent;

46 [SerializeField]

47 private VoidEventChannelSO _lobbyJoinedEvent;

48 [SerializeField]

49 private IntEventChannelSO _changePlayerColorId;

50 [SerializeField]

51 private VoidEventChannelSO _leaveGameToMainMenuEvent;

52 [SerializeField]

53 private ULongEventChannelSO _kickPlayerEvent;

54 [SerializeField]

55 private StringEventChannelSO _setPlayerNameEvent;

56 [SerializeField]

57 private TryToSpawnRoomObjectChannelSO _tryToSpawnRoomObjectEvent;

58
59 [Header("Invoking Func")]

60 [SerializeField]

61 private StringFuncSO _getCurrentSceneNameFunc;

62
63 [Header("Setting Func")]

64 [SerializeField]

65 private IntBoolFuncSO _isPlayerIndexConnected;

66 [SerializeField]

67 private IntPlayerdataFuncSO _getPlayerDataFromPlayerIndex;

68 [SerializeField]

B.6. FixingGameMultiplayer NOT FINAL VERSION 63

69 private IntColorFuncSO _getPlayerColorFunc;

70 [SerializeField]

71 private PlayerdataFuncSO _getClientPlayerData;

72 [SerializeField]

73 private StringFuncSO _getPlayerNameFunc;

74 //[SerializeField]

75 //private SpawnRoomObjectFuncSO _spawnRoomObjectFunc;

76
77 private void Awake()

78 {

79 if (Instance != null && Instance != this)

80 {

81 Destroy(this);

82 }

83 else

84 {

85 Instance = this;

86 DontDestroyOnLoad(gameObject);

87 }

88 // si sobra tiempo, refactorizar a un FuncSO y que el sistema de guardado sea externo

89 _playerName = PlayerPrefs.GetString(PLAYER_PREFS_PLAYER_NAME_MULTIPLAYER, $"PlayerName{Random.Range(100, 1000)}");

90
91 _playerDataNetworkList = new NetworkList<PlayerData>(readPerm: NetworkVariableReadPermission.Everyone);

92 _playerDataNetworkList.OnListChanged += OnPlayerDataNetworkListChanged;

93
94 // clear funcs just in case

95 _isPlayerIndexConnected.ClearOnFuncRaised();

96 _getPlayerDataFromPlayerIndex.ClearOnFuncRaised();

97 _getPlayerColorFunc.ClearOnFuncRaised();

98 _getClientPlayerData.ClearOnFuncRaised();

99 _getPlayerNameFunc.ClearOnFuncRaised();

100 //_spawnRoomObjectFunc.ClearOnFuncRaised();

101
102 // set funcs

103 _isPlayerIndexConnected.TrySetOnFuncRaised(IsPlayerIndexConnected);

104 _getPlayerDataFromPlayerIndex.TrySetOnFuncRaised(GetPlayerDataFromPlayerIndex);

105 _getPlayerColorFunc.TrySetOnFuncRaised(GetPlayerColor);

106 _getClientPlayerData.TrySetOnFuncRaised(GetPlayerData);

107 _getPlayerNameFunc.TrySetOnFuncRaised(GetPlayerName);

108 //_spawnRoomObjectFunc.TrySetOnFuncRaised(SpawnRoomObject);

109 }

110
111 private void OnEnable()

112 {

113 _lobbyCreatedEvent.OnEventRaised += StartHost;

114 _lobbyJoinedEvent.OnEventRaised += StartClient;

115
116 _changePlayerColorId.OnEventRaised += ChangePlayerColor;

117
118 _leaveGameToMainMenuEvent.OnEventRaised += LeaveToMainMenu;

119

64 Source code

120 _kickPlayerEvent.OnEventRaised += KickPlayer;

121
122 _setPlayerNameEvent.OnEventRaised += SetPlayerName;

123
124 _tryToSpawnRoomObjectEvent.OnEventRaised += SpawnRoomObject;

125 }

126
127 private void OnDisable()

128 {

129 _lobbyCreatedEvent.OnEventRaised -= StartHost;

130 _lobbyJoinedEvent.OnEventRaised -= StartClient;

131
132 _changePlayerColorId.OnEventRaised -= ChangePlayerColor;

133
134 _leaveGameToMainMenuEvent.OnEventRaised -= LeaveToMainMenu;

135
136 _kickPlayerEvent.OnEventRaised -= KickPlayer;

137
138 _setPlayerNameEvent.OnEventRaised -= SetPlayerName;

139
140 _tryToSpawnRoomObjectEvent.OnEventRaised -= SpawnRoomObject;

141 }

142
143 private void StartHost()

144 {

145 NetworkManager.Singleton.ConnectionApprovalCallback += NetworkManager_ConnectionApprovalCallback;

146 NetworkManager.Singleton.OnClientConnectedCallback += NetworkManager_OnClientConnectedCallback;

147 NetworkManager.Singleton.OnClientDisconnectCallback += NetworkManager_Server_OnClientDisconnectCallback;

148 NetworkManager.Singleton.StartHost();

149
150 // send event

151 _hostStartedEvent.RaiseEvent();

152 }

153
154 private void StartClient()

155 {

156 NetworkManager.Singleton.OnClientConnectedCallback += NetworkManager_Client_OnClientConnectedCallback;

157 NetworkManager.Singleton.OnClientDisconnectCallback += NetworkManager_Client_OnClientDisconnectCallback;

158 NetworkManager.Singleton.StartClient();

159 }

160
161 private void OnPlayerDataNetworkListChanged(NetworkListEvent<PlayerData> changeEvent)

162 {

163 _playerDataNetworkListChangedEvent.RaiseEvent();

164 }

165
166 private void LeaveToMainMenu()

167 {

168 NetworkManager.Singleton.Shutdown();

169
170 // send event

B.6. FixingGameMultiplayer NOT FINAL VERSION 65

171 _networkToMainMenuEvent.RaiseEvent();

172 }

173
174 private void KickPlayer(ulong clientId)

175 {

176 NetworkManager.Singleton.DisconnectClient(clientId);

177 NetworkManager_Server_OnClientDisconnectCallback(clientId);

178 }

179
180 #region Player Info

181 private bool IsPlayerIndexConnected(int playerIndex)

182 {

183 //if (!IsServer)

184 //return false;

185
186 return playerIndex < _playerDataNetworkList.Count;

187 }

188
189 private PlayerData GetPlayerDataFromPlayerIndex(int playerIndex)

190 {

191 return _playerDataNetworkList[playerIndex];

192 }

193
194 private PlayerData GetPlayerData()

195 {

196 return GetPlayerDataFromClientId(NetworkManager.Singleton.LocalClientId);

197 }

198
199 private int GetPlayerDataIndexFromClientId(ulong clientId)

200 {

201 for (int i = 0; i < _playerDataNetworkList.Count; i++) {

202 if (_playerDataNetworkList[i].ClientId == clientId) {

203 return i;

204 }

205 }

206
207 return -1;

208 }

209
210 private PlayerData GetPlayerDataFromClientId(ulong clientId)

211 {

212 foreach (PlayerData playerData in _playerDataNetworkList) {

213 if (playerData.ClientId == clientId) {

214 return playerData;

215 }

216 }

217
218 return default;

219 }

220
221 private Color GetPlayerColor(int colorId)

66 Source code

222 {

223 return _playerColorArray[colorId];

224 }

225
226 private void ChangePlayerColor(int colorId)

227 {

228 ChangePlayerColorServerRpc(colorId);

229 }

230
231 [ServerRpc(RequireOwnership = false)]

232 private void ChangePlayerColorServerRpc(int colorId, ServerRpcParams serverRpcParams = default)

233 {

234 if (!IsColorAvailable(colorId)) {

235 return;

236 }

237
238 // get playerdata struct. We cannot modify directly the clientId in a NetworkList

239 int playerDataIndex = GetPlayerDataIndexFromClientId(serverRpcParams.Receive.SenderClientId);

240 PlayerData playerData = _playerDataNetworkList[playerDataIndex];

241
242 // set playerdata struct

243 playerData.ColorId = colorId;

244 _playerDataNetworkList[playerDataIndex] = playerData;

245 }

246
247 private string GetPlayerName()

248 {

249 return _playerName;

250 }

251
252 private void SetPlayerName(string playerName)

253 {

254 // no dejar nombres vacios

255 if (playerName == string.Empty)

256 return;

257
258 _playerName = playerName;

259 // si sobra tiempo, refactorizar a un FuncSO y que el sistema de guardado sea externo

260 PlayerPrefs.SetString(PLAYER_PREFS_PLAYER_NAME_MULTIPLAYER, playerName);

261 }

262
263 [ServerRpc(RequireOwnership = false)]

264 private void SetPlayerNameServerRpc(string playerName, ServerRpcParams serverRpcParams = default)

265 {

266 // get playerdata struct. We cannot modify directly the clientId in a NetworkList

267 int playerDataIndex = GetPlayerDataIndexFromClientId(serverRpcParams.Receive.SenderClientId);

268 PlayerData playerData = _playerDataNetworkList[playerDataIndex];

269
270 // set playerdata struct

271 playerData.PlayerName = playerName;

272 _playerDataNetworkList[playerDataIndex] = playerData;

B.6. FixingGameMultiplayer NOT FINAL VERSION 67

273 }

274
275 [ServerRpc(RequireOwnership = false)]

276 private void SetPlayerIdServerRpc(string playerId, ServerRpcParams serverRpcParams = default)

277 {

278 // get playerdata struct. We cannot modify directly the clientId in a NetworkList

279 int playerDataIndex = GetPlayerDataIndexFromClientId(serverRpcParams.Receive.SenderClientId);

280 PlayerData playerData = _playerDataNetworkList[playerDataIndex];

281
282 // set playerdata struct

283 playerData.PlayerId = playerId;

284 _playerDataNetworkList[playerDataIndex] = playerData;

285 }

286 #endregion

287
288 #region Color

289 private bool IsColorAvailable(int colorId)

290 {

291 foreach (PlayerData playerData in _playerDataNetworkList) {

292 if (playerData.ColorId == colorId) {

293 // already in use

294 return false;

295 }

296 }

297
298 return true;

299 }

300
301 private int GetFirstUnusedColorId()

302 {

303 for (int i = 0; i < _playerColorArray.Length; i++) {

304 if (IsColorAvailable(i)) {

305 return i;

306 }

307 }

308
309 return -1;

310 }

311 #endregion

312
313 #region Minigame

314 // TODO: cambiar por sistema de pooling como extra

315 private void SpawnRoomObject(RoomObjectSO roomObjectSO, NetworkObjectReference roomObjectParentNORef)

316 {

317 SpawnRoomObjectServerRpc(GetRoomObjectSOIndex(roomObjectSO), roomObjectParentNORef);

318 }

319
320 [ServerRpc(RequireOwnership = false)]

321 private void SpawnRoomObjectServerRpc(int roomObjectSOIndex, NetworkObjectReference roomObjectParentNORef)

322 {

323 GameObject roomObjectGO = Instantiate(GetRoomObjectSOFromIndex(roomObjectSOIndex).RoomObjectPrefab);

68 Source code

324
325 NetworkObject roomObjectNO = roomObjectGO.GetComponent<NetworkObject>();

326 roomObjectNO.Spawn();

327
328 RoomObject roomObject = roomObjectGO.GetComponent<RoomObject>();

329
330 roomObjectParentNORef.TryGet(out NetworkObject roomObjectParentNO);

331 IRoomObjectParent roomObjectParent = roomObjectParentNO.GetComponent<IRoomObjectParent>();

332 roomObject.SetRoomObjectParent(roomObjectParent);

333 }

334
335 private int GetRoomObjectSOIndex(RoomObjectSO roomObjectSO)

336 {

337 return _allRoomObjectsSOListSO.RoomObjectsSO.IndexOf(roomObjectSO);

338 }

339
340 private RoomObjectSO GetRoomObjectSOFromIndex(int index)

341 {

342 return _allRoomObjectsSOListSO.RoomObjectsSO[index];

343 }

344 #endregion

345
346 #region NetworkCallbacks

347 private void NetworkManager_ConnectionApprovalCallback(NetworkManager.ConnectionApprovalRequest connectionApprovalRequest,

348 NetworkManager.ConnectionApprovalResponse connectionApprovalResponse)

349 {

350 string rejectedReason = string.Empty;

351
352 // server no est en characerselection

353 int numberOfActiveScenes = SceneManager.sceneCount;

354 string[] activeSceneNames = new string[numberOfActiveScenes];

355 for (int i = 0; i < SceneManager.sceneCount; i++)

356 {

357 activeSceneNames[i] = SceneManager.GetSceneAt(i).name;

358 }

359
360 if (!activeSceneNames.Contains(_characterSelectionSceneSO.name))

361 {

362 connectionApprovalResponse.Approved = false;

363 connectionApprovalResponse.Reason = "Game has already started!";

364
365 return;

366 }

367
368 connectionApprovalResponse.Approved = true;

369 }

370
371 /// <summary>

372 /// Only subscribed by the host

373 /// Host manages what to do when a client connects

374 /// </summary>

B.7. LobbyManager 69

375 /// <param name="clientId">clientId that has connected</param>

376 private void NetworkManager_OnClientConnectedCallback(ulong clientId)

377 {

378 _playerDataNetworkList.Add(new PlayerData()

379 {

380 ClientId = clientId,

381 ColorId = GetFirstUnusedColorId(),

382 //PlayerName = _playerName,

383 });

384 SetPlayerNameServerRpc(GetPlayerName());

385 }

386
387 private void NetworkManager_Server_OnClientDisconnectCallback(ulong clientId)

388 {

389 for (int i = 0; i < _playerDataNetworkList.Count; i++) {

390 PlayerData playerData = _playerDataNetworkList[i];

391 if (playerData.ClientId == clientId) {

392 // Disconnected

393 _playerDataNetworkList.RemoveAt(i);

394
395 string playerId = playerData.PlayerId.ToString();

396 _playerIdDisconnectedEvent.RaiseEvent(playerId);

397 }

398 }

399 }

400
401 private void NetworkManager_Client_OnClientConnectedCallback(ulong clientId)

402 {

403 SetPlayerNameServerRpc(GetPlayerName());

404 SetPlayerIdServerRpc(AuthenticationService.Instance.PlayerId);

405 }

406
407 private void NetworkManager_Client_OnClientDisconnectCallback(ulong obj)

408 {

409 _rejectedToServerEvent.RaiseEvent(NetworkManager.Singleton.DisconnectReason);

410 }

411 #endregion

412 }

413 }

B.7 LobbyManager

1 using FixingIt.Events;

2 using ProgramadorCastellano.Events;

3 using ProgramadorCastellano.Funcs;

4 using System.Collections.Generic;

5 using System.Threading.Tasks;

6 using Unity.Netcode;

70 Source code

7 using Unity.Netcode.Transports.UTP;

8 using Unity.Networking.Transport.Relay;

9 using Unity.Services.Authentication;

10 using Unity.Services.Core;

11 using Unity.Services.Lobbies;

12 using Unity.Services.Lobbies.Models;

13 using Unity.Services.Relay;

14 using Unity.Services.Relay.Models;

15 using UnityEngine;

16
17 namespace FixingIt.GameLobby

18 {

19 // It is a Singleton just to work through scenes and delete it whenever I want

20 public class LobbyManager : MonoBehaviour

21 {

22 private const int MAX_PLAYER_AMOUNT = 4;

23 private const string DTLS_CONNECTION_TYPE = "dtls"; //type that Unity docummentation recommends

24 private const string RELAY_JOIN_CODE = "RelayJoinCode";

25
26 private const string CREATE_LOBBY_MSG = "Creating lobby...";

27 private const string CREATE_RELAY_MSG = "Creating relay...";

28 private const string JOIN_LOBBY_MSG = "Joining lobby...";

29 private const string JOIN_RELAY_MSG = "Joining relay...";

30 private const string SEARCHING_LOBBIES_MSG = "Searching for public lobbies...";

31
32 public static LobbyManager Instance { get; private set;}

33
34 private const string PLAYER_NAME = "PlayerName";

35
36 private Lobby _hostLobby;

37 private Lobby _joinedLobby;

38 private float _heartbeatTimer;

39 private float _lobbyUpdateTimer;

40 private string _playerName;

41
42 [Header("Broadcasting To")]

43 [SerializeField]

44 private LobbiesChannelSO _lobbiesListedEvent;

45 [SerializeField]

46 private VoidEventChannelSO _lobbyCreatedEvent;

47 [SerializeField]

48 private VoidEventChannelSO _lobbyJoinedEvent;

49 [SerializeField]

50 private StringEventChannelSO _lobbyErrorCatchedEvent;

51 [SerializeField]

52 private StringEventChannelSO _lobbyStateUpdated;

53
54 [Header("Listening To")]

55 [SerializeField]

56 private VoidEventChannelSO _refreshLobbiesListEvent;

57 [SerializeField]

B.7. LobbyManager 71

58 private CreateLobbyChannelSO _createLobbyChannel;

59 [SerializeField]

60 private StringEventChannelSO _joinByIdEvent;

61 [SerializeField]

62 private StringEventChannelSO _joinByCodeEvent;

63 [SerializeField]

64 private VoidEventChannelSO _allPlayersReadyEvent;

65 [SerializeField]

66 private VoidEventChannelSO _toMainMenuScreenEvent;

67 [SerializeField]

68 private VoidEventChannelSO _leaveGameToMainMenuEvent;

69 [SerializeField]

70 private StringEventChannelSO _kickPlayerPlayerIdEvent;

71 [SerializeField]

72 private StringEventChannelSO _playerIdDisconnectedEvent;

73
74 [Header("Setting Func")]

75 [SerializeField]

76 private StringFuncSO _getLobbyNameFunc;

77 [SerializeField]

78 private StringFuncSO _getLobbyCodeFunc;

79
80 private void Awake()

81 {

82 if (Instance != null && Instance != this) {

83 Destroy(this);

84 }

85 else {

86 Instance = this;

87 DontDestroyOnLoad(gameObject);

88 }

89
90 // clear funcs just in case

91 _getLobbyNameFunc.ClearOnFuncRaised();

92 _getLobbyCodeFunc.ClearOnFuncRaised();

93
94 // set funcs

95 _getLobbyNameFunc.TrySetOnFuncRaised(() => _joinedLobby.Name);

96 _getLobbyCodeFunc.TrySetOnFuncRaised(() => _joinedLobby.LobbyCode);

97 }

98
99 private void OnEnable()

100 {

101 _refreshLobbiesListEvent.OnEventRaised += ListLobbies;

102 _createLobbyChannel.OnEventRaised += CreateLobby;

103 _joinByIdEvent.OnEventRaised += JoinLobbyById;

104 _joinByCodeEvent.OnEventRaised += JoinLobbyByCode;

105
106 _allPlayersReadyEvent.OnEventRaised += DeleteLobby;

107
108 _toMainMenuScreenEvent.OnEventRaised += LeaveLobby;

72 Source code

109 _leaveGameToMainMenuEvent.OnEventRaised += LeaveLobby;

110
111 //_kickPlayerPlayerIdEvent.OnEventRaised += KickPlayer;

112 _playerIdDisconnectedEvent.OnEventRaised += KickPlayer;

113 }

114
115 private void OnDisable()

116 {

117 _refreshLobbiesListEvent.OnEventRaised -= ListLobbies;

118 _createLobbyChannel.OnEventRaised -= CreateLobby;

119 _joinByIdEvent.OnEventRaised -= JoinLobbyById;

120 _joinByCodeEvent.OnEventRaised -= JoinLobbyByCode;

121
122 _allPlayersReadyEvent.OnEventRaised -= DeleteLobby;

123
124 _toMainMenuScreenEvent.OnEventRaised -= LeaveLobby;

125 _leaveGameToMainMenuEvent.OnEventRaised -= LeaveLobby;

126
127 //_kickPlayerPlayerIdEvent.OnEventRaised -= KickPlayer;

128 _playerIdDisconnectedEvent.OnEventRaised -= KickPlayer;

129 }

130
131 private async void Start()

132 {

133 // to prevent initialize and signin when we are signed

134 if (UnityServices.State != ServicesInitializationState.Initialized)

135 {

136 InitializationOptions initializationOptions = new InitializationOptions();

137 initializationOptions.SetProfile(Random.Range(0, 1000).ToString()); // to allow test with multiple builds

138
139 await UnityServices.InitializeAsync(initializationOptions);

140
141 await AuthenticationService.Instance.SignInAnonymouslyAsync();

142 }

143
144 _playerName = $"Guest{Random.Range(1000, 9999)}"; // It is not unique

145 Debug.Log(_playerName);

146
147 ListLobbies();

148 }

149
150 private void Update()

151 {

152 HandleLobbyHeartBeat();

153 //HandleLobbyPollForUpdates();

154 }

155
156 #region HandleLobby

157 private async void HandleLobbyHeartBeat()

158 {

159 if (!IsLobbyHost())

B.7. LobbyManager 73

160 return;

161
162 _heartbeatTimer -= Time.deltaTime;

163 if (_heartbeatTimer < 0f)

164 {

165 float heartbeatTimerMax = 15f;

166 _heartbeatTimer = heartbeatTimerMax;

167
168 await LobbyService.Instance.SendHeartbeatPingAsync(_joinedLobby.Id);

169 }

170 }

171
172 private async void HandleLobbyPollForUpdates()

173 {

174 if (!IsLobbyHost())

175 return;

176
177 _lobbyUpdateTimer -= Time.deltaTime;

178 if (_lobbyUpdateTimer < 0f)

179 {

180 float lobbyUpdateTimerMax = 1.1f;

181 _lobbyUpdateTimer = lobbyUpdateTimerMax;

182
183 Lobby lobby = await LobbyService.Instance.GetLobbyAsync(_joinedLobby.Id);

184 _joinedLobby = lobby;

185
186 // TODO: send event to Update UI

187 }

188 }

189 #endregion

190
191 private bool IsLobbyHost()

192 {

193 return _joinedLobby != null

194 && _joinedLobby.HostId == AuthenticationService.Instance.PlayerId;

195 }

196
197 private async void ListLobbies()

198 {

199 try

200 {

201 _lobbyStateUpdated.RaiseEvent(SEARCHING_LOBBIES_MSG);

202
203 // lobbies with al least 1 slot and sorted in created order

204 QueryLobbiesOptions queryLobbiesOptions = new QueryLobbiesOptions

205 {

206 Filters = new List<QueryFilter> {

207 new QueryFilter(QueryFilter.FieldOptions.AvailableSlots, "0", QueryFilter.OpOptions.GT) // con al menos 1 hueco

208 // I can put another filter to compare the data, for example for the GameMode, not necessary in my game

209 //new QueryFilter(QueryFilter.FieldOptions.S1, "SpeedFix", QueryFilter.OpOptions.EQ)

210 },

74 Source code

211 Order = new List<QueryOrder> {

212 new QueryOrder (false, QueryOrder.FieldOptions.Created)

213 }

214 };

215
216 QueryResponse queryResponse = await Lobbies.Instance.QueryLobbiesAsync(queryLobbiesOptions);

217
218 // send event

219 _lobbiesListedEvent.RaiseEvent(queryResponse.Results);

220 }

221 catch (LobbyServiceException e)

222 {

223 ManageLobbyErrors(e);

224 }

225 }

226
227 #region Relay

228 private async Task<Allocation> AllocateRelay()

229 {

230 try {

231 // max players - the host

232 Allocation allocation = await RelayService.Instance.CreateAllocationAsync(MAX_PLAYER_AMOUNT - 1);

233
234 return allocation;

235 }

236 catch (RelayServiceException e) {

237 ManageRelayErrors(e);

238
239 return default;

240 }

241 }

242
243 private async Task<string> GetRelayJoinCode(Allocation allocation)

244 {

245 try {

246
247 string relayJoinCode = await RelayService.Instance.GetJoinCodeAsync(allocation.AllocationId);

248
249 return relayJoinCode;

250 }

251 catch(RelayServiceException e) {

252 ManageRelayErrors(e);

253
254 return default;

255 }

256 }

257
258 private async Task<JoinAllocation> JoinRelay(string joinCode)

259 {

260 try {

261 JoinAllocation joinAllocation = await RelayService.Instance.JoinAllocationAsync(joinCode);

B.7. LobbyManager 75

262
263 return joinAllocation;

264 }

265 catch (RelayServiceException e) {

266 ManageRelayErrors(e);

267
268 return default;

269 }

270 }

271
272 private async Task JoinRelayTransport(Lobby lobbyJoined)

273 {

274 string relayJoinCode = lobbyJoined.Data[RELAY_JOIN_CODE].Value;

275 JoinAllocation joinAllocation = await JoinRelay(relayJoinCode);

276
277 NetworkManager.Singleton.GetComponent<UnityTransport>().SetRelayServerData(new RelayServerData(joinAllocation, DTLS_CONNECTION_TYPE));

278 }

279 #endregion

280
281 private async void CreateLobby(string lobbyName, bool isPrivate)

282 {

283 try

284 {

285 _lobbyStateUpdated.RaiseEvent(CREATE_LOBBY_MSG);

286
287 CreateLobbyOptions createLobbyOptions = new CreateLobbyOptions

288 {

289 IsPrivate = isPrivate,

290 Player = GetPlayer(),

291 };

292
293 Lobby lobby = await LobbyService.Instance.CreateLobbyAsync(lobbyName, MAX_PLAYER_AMOUNT, createLobbyOptions);

294
295 _hostLobby = lobby;

296 _joinedLobby = _hostLobby;

297
298 Debug.Log($"Created lobby! {lobby.Name}, {lobby.MaxPlayers}, {lobby.Id}, {lobby.LobbyCode}");

299
300 // create relay

301 _lobbyStateUpdated.RaiseEvent(CREATE_RELAY_MSG);

302
303 Allocation allocation = await AllocateRelay();

304
305 string relayJoinCode = await GetRelayJoinCode(allocation);

306
307 await LobbyService.Instance.UpdateLobbyAsync(_joinedLobby.Id, new UpdateLobbyOptions {

308 Data = new Dictionary<string, DataObject> {

309 {RELAY_JOIN_CODE, new DataObject(DataObject.VisibilityOptions.Member, relayJoinCode)}

310 }

311 });

312

76 Source code

313 NetworkManager.Singleton.GetComponent<UnityTransport>().SetRelayServerData(new RelayServerData(allocation, DTLS_CONNECTION_TYPE));

314
315 // send event

316 _lobbyCreatedEvent.RaiseEvent();

317 }

318 catch (LobbyServiceException e)

319 {

320 ManageLobbyErrors(e);

321 }

322 }

323
324 private async void JoinLobbyById(string lobbyId)

325 {

326 try

327 {

328 _lobbyStateUpdated.RaiseEvent(JOIN_LOBBY_MSG);

329
330 JoinLobbyByIdOptions joinLobbyByIdOptions = new JoinLobbyByIdOptions

331 {

332 Player = GetPlayer()

333 };

334
335 Lobby lobby = await Lobbies.Instance.JoinLobbyByIdAsync(lobbyId, joinLobbyByIdOptions);

336 _joinedLobby = lobby;

337
338 Debug.Log($"Joined Lobby with id: {lobbyId}");

339
340 // join relay

341 _lobbyStateUpdated.RaiseEvent(JOIN_RELAY_MSG);

342
343 await JoinRelayTransport(_joinedLobby);

344
345 // send event

346 _lobbyJoinedEvent.RaiseEvent();

347 }

348 catch (LobbyServiceException e)

349 {

350 ManageLobbyErrors(e);

351 }

352 }

353
354 private async void JoinLobbyByCode(string lobbyCode)

355 {

356 try

357 {

358 _lobbyStateUpdated.RaiseEvent(JOIN_LOBBY_MSG);

359
360 JoinLobbyByCodeOptions joinLobbyByCodeOptions = new JoinLobbyByCodeOptions

361 {

362 Player = GetPlayer()

363 };

B.7. LobbyManager 77

364
365 Lobby lobby = await Lobbies.Instance.JoinLobbyByCodeAsync(lobbyCode, joinLobbyByCodeOptions);

366 _joinedLobby = lobby;

367
368 // join relay

369 _lobbyStateUpdated.RaiseEvent(JOIN_RELAY_MSG);

370
371 await JoinRelayTransport(_joinedLobby);

372
373 // send event

374 _lobbyJoinedEvent.RaiseEvent();

375 }

376 catch (LobbyServiceException e)

377 {

378 ManageLobbyErrors(e);

379 }

380 }

381
382 private async void DeleteLobby()

383 {

384 if (!IsLobbyHost())

385 return;

386
387 try {

388 await LobbyService.Instance.DeleteLobbyAsync(_joinedLobby.Id);

389
390 _joinedLobby = null;

391 }

392 catch (LobbyServiceException e) {

393 ManageLobbyErrors(e);

394 }

395 }

396
397 private async void LeaveLobby()

398 {

399 if (_joinedLobby == null)

400 return;

401
402 try {

403 //if (IsLobbyHost()) {

404 // DeleteLobby();

405 //}

406
407 await LobbyService.Instance.RemovePlayerAsync(_joinedLobby.Id, AuthenticationService.Instance.PlayerId);

408
409 _joinedLobby = null;

410 }

411 catch (LobbyServiceException e) {

412 ManageLobbyErrors(e);

413 }

414 }

78 Source code

415
416 // When player kicked, managed by the FixingGameMultiplayer, NetworkManager

417 private async void KickPlayer(string playerId)

418 {

419 if (!IsLobbyHost())

420 return;

421
422 try {

423 await LobbyService.Instance.RemovePlayerAsync(_joinedLobby.Id, playerId);

424 }

425 catch (LobbyServiceException e) {

426 ManageLobbyErrors(e);

427 }

428 }

429
430 #region PlayerLobby

431 private Player GetPlayer()

432 {

433 return new Player

434 {

435 Data = new Dictionary<string, PlayerDataObject> {

436 {PLAYER_NAME, new PlayerDataObject(PlayerDataObject.VisibilityOptions.Member, _playerName) }

437 }

438 };

439 }

440 #endregion

441
442 private void ManageLobbyErrors(LobbyServiceException e)

443 {

444 Debug.LogException(e);

445
446 string userErrorMsg = e.Message;

447 userErrorMsg = userErrorMsg[0].ToString().ToUpper() + userErrorMsg.Substring(1);

448
449 _lobbyErrorCatchedEvent.RaiseEvent(userErrorMsg);

450 }

451
452 private void ManageRelayErrors(RelayServiceException e)

453 {

454 Debug.LogException(e);

455
456 string userErrorMsg = e.Message;

457 userErrorMsg = userErrorMsg[0].ToString().ToUpper() + userErrorMsg.Substring(1);

458
459 _lobbyErrorCatchedEvent.RaiseEvent(userErrorMsg);

460 }

461 }

462 }

B.8. CharacterSelectionPlayer 79

B.8 CharacterSelectionPlayer

1 using FixingIt.Funcs;

2 using FixingIt.PlayerGame;

3 using ProgramadorCastellano.Events;

4 using ProgramadorCastellano.Funcs;

5 using TMPro;

6 using Unity.Netcode;

7 using UnityEngine;

8 using UnityEngine.UI;

9
10 namespace FixingIt.CharacterSelection

11 {

12 public class CharacterSelectionPlayer : MonoBehaviour

13 {

14 [SerializeField] private int _playerIndex;

15 [SerializeField] private GameObject _readyGameObject;

16 [SerializeField] private TextMeshPro _playerNameText;

17 [SerializeField] private PlayerVisualComp _playerVisualComp;

18 [SerializeField] private Button _kickButton;

19
20 [Header("Broadcasting To")]

21 [SerializeField]

22 private ULongEventChannelSO _kickPlayerClientIdEvent;

23 [SerializeField]

24 private StringEventChannelSO _kickPlayerPlayerIdEvent;

25
26 [Header("Listening To")]

27 [SerializeField]

28 private VoidEventChannelSO _playerDataNetworkListChangedEvent;

29 [SerializeField]

30 private VoidEventChannelSO _clientReadyChangedEvent;

31
32 [Header("Invoking Func")]

33 [SerializeField]

34 private IntBoolFuncSO _isPlayerIndexConnectedFunc;

35 [SerializeField]

36 private ULongBoolFuncSO _isPlayerReadyFunc;

37 [SerializeField]

38 private IntPlayerdataFuncSO _getPlayerDataFromPlayerIndexFunc;

39 [SerializeField]

40 private IntColorFuncSO _getPlayerColorFunc;

41 [SerializeField]

42 private StringFuncSO _getPlayerNameFunc;

43
44 private void Awake()

45 {

46 _kickButton.onClick.AddListener(KickPlayer);

47 }

48

80 Source code

49 private void Start()

50 {

51 _playerDataNetworkListChangedEvent.OnEventRaised += UpdateCSPlayer;

52 _clientReadyChangedEvent.OnEventRaised += UpdateCSPlayer;

53
54 // server is 0

55 _kickButton.gameObject.SetActive(NetworkManager.Singleton.IsServer && _playerIndex != 0);

56
57 UpdateCSPlayer();

58 }

59
60 private void OnDestroy()

61 {

62 _playerDataNetworkListChangedEvent.OnEventRaised -= UpdateCSPlayer;

63 _clientReadyChangedEvent.OnEventRaised -= UpdateCSPlayer;

64 }

65
66 private void UpdateCSPlayer()

67 {

68 if (_isPlayerIndexConnectedFunc.RaiseFunc(_playerIndex))

69 {

70 Show();

71
72 // show ready

73 PlayerData playerData = _getPlayerDataFromPlayerIndexFunc.RaiseFunc(_playerIndex);

74 bool isReady = _isPlayerReadyFunc.RaiseFunc(playerData.ClientId);

75 _readyGameObject.SetActive(isReady);

76
77 // show name

78 _playerNameText.text = playerData.PlayerName.ToString();

79
80 // show color

81 Color playerColor = _getPlayerColorFunc.RaiseFunc(playerData.ColorId);

82 _playerVisualComp.SetPlayerColor(playerColor);

83 }

84 else

85 {

86 Hide();

87 }

88 }

89
90 private void KickPlayer()

91 {

92 PlayerData playerData = _getPlayerDataFromPlayerIndexFunc.RaiseFunc(_playerIndex);

93 //_kickPlayerPlayerIdEvent.RaiseEvent(playerData.PlayerId.ToString());

94 _kickPlayerClientIdEvent.RaiseEvent(playerData.ClientId);

95 }

96
97 private void Show()

98 {

99 gameObject.SetActive(true);

B.9. CharacterSelectionManager 81

100 }

101
102 private void Hide()

103 {

104 gameObject.SetActive(false);

105 }

106 }

107 }

B.9 CharacterSelectionManager

1 using ProgramadorCastellano.Events;

2 using ProgramadorCastellano.Funcs;

3 using System.Collections.Generic;

4 using Unity.Netcode;

5 using UnityEngine;

6
7 namespace FixingIt.CharacterSelection

8 {

9 public class CharacterSelectionManager : NetworkBehaviour

10 {

11 [SerializeField] private float _timeCountdownMax = 5f;

12 private float _timeCountdownTimer;

13
14 private Dictionary<ulong, bool> _playerReadyDictionary;

15
16 private bool _allPlayersReady;

17
18 [Header("Broadcasting To")]

19 [SerializeField]

20 private VoidEventChannelSO _allPlayersReadyEvent;

21 [SerializeField]

22 private VoidEventChannelSO _clientReadyChangedEvent;

23 [SerializeField]

24 private FloatEventChannelSO _countdownEvent;

25 [SerializeField]

26 private VoidEventChannelSO _allPlayersReadyCancelledEvent;

27
28 [Header("Listening To")]

29 [SerializeField]

30 private VoidEventChannelSO _readyButtonEvent;

31
32 [Header("Setting Func")]

33 [SerializeField]

34 private ULongBoolFuncSO _isPlayerReadyFunc;

35
36 private void Awake()

37 {

82 Source code

38 _timeCountdownTimer = _timeCountdownMax;

39
40 _playerReadyDictionary = new Dictionary<ulong, bool>();

41 _allPlayersReady = false;

42
43 // clear func just in case

44 _isPlayerReadyFunc.ClearOnFuncRaised();

45
46 // set func

47 _isPlayerReadyFunc.TrySetOnFuncRaised(IsPlayerReady);

48 }

49
50 private void OnEnable()

51 {

52 _readyButtonEvent.OnEventRaised += TogglePlayerReady;

53 }

54
55 private void OnDisable()

56 {

57 _readyButtonEvent.OnEventRaised -= TogglePlayerReady;

58 }

59
60 private void Update()

61 {

62 HandleCountdown();

63 }

64
65 #region SetPlayerReady

66 private void TogglePlayerReady()

67 {

68 TogglePlayerReadyServerRpc();

69 }

70
71 [ServerRpc(RequireOwnership = false)]

72 private void TogglePlayerReadyServerRpc(ServerRpcParams serverRpcParams = default)

73 {

74 bool isPlayerReady = true;

75
76 if (_playerReadyDictionary.ContainsKey(serverRpcParams.Receive.SenderClientId)) {

77 isPlayerReady = !_playerReadyDictionary[serverRpcParams.Receive.SenderClientId];

78 }

79
80 SetPlayerReadyClientRpc(isPlayerReady, serverRpcParams.Receive.SenderClientId);

81 _playerReadyDictionary[serverRpcParams.Receive.SenderClientId] = isPlayerReady;

82
83 // check if all clients are ready

84 bool allClientsReady = true;

85 foreach (ulong clientId in NetworkManager.Singleton.ConnectedClientsIds) {

86 if (!_playerReadyDictionary.ContainsKey(clientId)

87 || !_playerReadyDictionary[clientId])

88 {

B.9. CharacterSelectionManager 83

89 // this player is not ready

90 allClientsReady = false;

91 break;

92 }

93 }

94
95 if (allClientsReady) {

96 _timeCountdownTimer = _timeCountdownMax;

97 _allPlayersReady = true;

98 }

99 else {

100 _allPlayersReady = false;

101
102 AllPlayersReadyCancelledClientRpc();

103 // send event

104 //_allPlayersReadyCancelledEvent.RaiseEvent();

105 }

106 }

107
108 [ClientRpc]

109 private void AllPlayersReadyCancelledClientRpc()

110 {

111 _allPlayersReadyCancelledEvent.RaiseEvent();

112 }

113
114 [ClientRpc]

115 private void SetPlayerReadyClientRpc(bool isPlayerReady, ulong clientId)

116 {

117 _playerReadyDictionary[clientId] = isPlayerReady;

118
119 // send event

120 _clientReadyChangedEvent.RaiseEvent();

121 }

122 #endregion

123
124 private bool IsPlayerReady(ulong clientId)

125 {

126 return _playerReadyDictionary.ContainsKey(clientId) && _playerReadyDictionary[clientId];

127 }

128
129 private void HandleCountdown()

130 {

131 if (!_allPlayersReady) {

132 return;

133 }

134
135 _timeCountdownTimer -= Time.deltaTime;

136 RaiseCountdownEventClientRpc(_timeCountdownTimer);

137 if (_timeCountdownTimer < 0f) {

138
139 // send event

84 Source code

140 _allPlayersReadyEvent.RaiseEvent();

141 }

142 }

143
144 [ClientRpc]

145 private void RaiseCountdownEventClientRpc(float remainingTime)

146 {

147 _countdownEvent.RaiseEvent(remainingTime);

148 }

149 }

150 }

B.10 FixingGameManager

1 using FixingIt.Counters;

2 using FixingIt.Customer;

3 using FixingIt.Events;

4 using FixingIt.Funcs;

5 using FixingIt.InputSystem;

6 using FixingIt.RoomObjects.Logic;

7 using FixingIt.RoomObjects.SO;

8 using ProgramadorCastellano.Events;

9 using System.Collections.Generic;

10 using System.Linq;

11 using Unity.Netcode;

12 using UnityEngine;

13 using UnityEngine.SceneManagement;

14
15 namespace FixingIt.Minigame

16 {

17 public class FixingGameManager : NetworkBehaviour

18 {

19 private enum GameState

20 {

21 WaitingToStart,

22 Playing,

23 End

24 }

25
26 [SerializeField] InputReaderSO _inputReaderSO;

27
28 [SerializeField] ToolRecipeManagerSO _levelToolRecipeManagerSO;

29 [SerializeField] Transform _baseTransformToSpawn;

30
31 private float _waitingToStartTimer;

32 private float _gameplayTimer;

33 private float _customerSpawnerTimer;

34 //private GameState _gameState;

B.10. FixingGameManager 85

35 private NetworkVariable<GameState> _gameState = new NetworkVariable<GameState>(GameState.WaitingToStart);

36
37 private NetworkVariable<int> _numberObjectsFixed = new NetworkVariable<int>(0);

38
39 [Header("Player")]

40 [SerializeField] GameObject _playerPrefab;

41 [SerializeField] Transform[] _playerSpawnPositions;

42
43 [Header("Timers")]

44 [SerializeField] private float _waitingToStartTimerMax = 5f;

45 [SerializeField] private float _gameplayTimerMax = 60f;

46 [SerializeField] private float _customerSpawnerTimerMax = 10f;

47
48 [Header("Customers")]

49 [SerializeField] GameObject _customerPrefab;

50 [SerializeField] Transform _customerStartPosition;

51
52 [Header("Customer Counters")]

53 [SerializeField]

54 private CustomerCounter[] _customerCounters;

55 [SerializeField]

56 private RoomObjectSO[] _objectsToFixSO;

57 public int TestIndex;

58
59 [Header("Broadcasting To")]

60 [SerializeField]

61 private FloatEventChannelSO _waitingToStartTimerEvent;

62 [SerializeField]

63 private FloatEventChannelSO _gameplayTimerNormalizedEvent;

64 [SerializeField]

65 private IntEventChannelSO _numberObjectsFixedEvent;

66
67 [Header("Listening To")]

68 [SerializeField]

69 private VoidEventChannelSO _inMenuEvent;

70 [SerializeField]

71 private VoidEventChannelSO _outMenuEvent;

72 [SerializeField]

73 private RoomObjectParentChannelSO _customerWithObjectFixedEvent;

74
75 [Header("Setting Func")]

76 [SerializeField]

77 private ToolRecipeManagerFuncSO _getLevelToolRecipeManagerSOFunc;

78
79 private void Awake()

80 {

81 _getLevelToolRecipeManagerSOFunc.ClearOnFuncRaised();

82 _getLevelToolRecipeManagerSOFunc.TrySetOnFuncRaised(() => _levelToolRecipeManagerSO);

83
84 _waitingToStartTimer = _waitingToStartTimerMax;

85 _gameplayTimer = _gameplayTimerMax;

86 Source code

86 }

87
88 private void OnEnable()

89 {

90 _inMenuEvent.OnEventRaised += ToMenuMode;

91 _outMenuEvent.OnEventRaised += ToGameplayMode;

92
93 _customerWithObjectFixedEvent.OnEventRaised += ObjectFixedAndReturned;

94 }

95
96 private void OnDisable()

97 {

98 _inMenuEvent.OnEventRaised -= ToMenuMode;

99 _outMenuEvent.OnEventRaised -= ToGameplayMode;

100
101 _customerWithObjectFixedEvent.OnEventRaised += ObjectFixedAndReturned;

102 }

103
104 private void Start()

105 {

106 //_gameState = GameState.WaitingToStart;

107 _inputReaderSO.DisableAllInput();

108 }

109
110 public override void OnNetworkSpawn()

111 {

112 _gameState.OnValueChanged += State_OnValueChanged;

113
114 if (IsServer) {

115 NetworkManager.Singleton.SceneManager.OnLoadEventCompleted += NM_SM_OnLoadEventCompleted;

116 }

117 }

118
119 private void State_OnValueChanged(GameState previousValue, GameState newValue)

120 {

121 switch (newValue)

122 {

123 case GameState.WaitingToStart:

124 _inputReaderSO.DisableAllInput();

125 break;

126 case GameState.Playing:

127 _inputReaderSO.EnableGameplayInput();

128 break;

129 case GameState.End:

130 _inputReaderSO.EnableMenuInput();

131 _numberObjectsFixedEvent.RaiseEvent(_numberObjectsFixed.Value);

132 break;

133 default:

134 break;

135 }

136 }

B.10. FixingGameManager 87

137
138 private void NM_SM_OnLoadEventCompleted(string sceneName, LoadSceneMode loadSceneMode, List<ulong> clientsCompleted, List<ulong> clientsTimedOut)

139 {

140 for (int i = 0; i < NetworkManager.Singleton.ConnectedClientsIds.Count; i++) {

141 ulong clientId = NetworkManager.Singleton.ConnectedClientsIds[i];

142
143 GameObject playerGO = Instantiate(_playerPrefab, _baseTransformToSpawn);

144 playerGO.transform.position = _playerSpawnPositions[i].position;

145 playerGO.GetComponent<NetworkObject>().SpawnAsPlayerObject(clientId, true);

146 Debug.Log(playerGO.GetComponent<NetworkObject>().OwnerClientId);

147 Debug.Log(NetworkManager.Singleton.LocalClientId);

148 }

149 }

150
151 private void Update()

152 {

153 if (!IsServer) {

154 return;

155 }

156
157 switch (_gameState.Value) {

158 case GameState.WaitingToStart:

159 // esperar countdown to start

160 _waitingToStartTimer -= Time.deltaTime;

161 if (_waitingToStartTimer < 0f) {

162 _gameState.Value = GameState.Playing;

163 //_inputReaderSO.EnableGameplayInput();

164 }

165
166 WaitingToStartRaiseEventClientRpc(_waitingToStartTimer);

167 //_waitingToStartTimerEvent.RaiseEvent(_waitingToStartTimer);

168 break;

169 case GameState.Playing:

170 // timer juego

171 _gameplayTimer -= Time.deltaTime;

172 if (_gameplayTimer < 0f) {

173 _gameState.Value = GameState.End;

174 //_inputReaderSO.EnableMenuInput();

175
176 //_numberObjectsFixedEvent.RaiseEvent(_numberObjectsFixed);

177 }

178
179 // timer npcs

180 _customerSpawnerTimer -= Time.deltaTime;

181 if (_customerSpawnerTimer < 0f) {

182 _customerSpawnerTimer = _customerSpawnerTimerMax;

183
184 SpawnNewCustomer();

185 }

186
187 float gameplayTimerNormalized = GetTimerNormalized(_gameplayTimer, _gameplayTimerMax);

88 Source code

188 GameplayTimerNormalizedRaiseEventClientRpc(gameplayTimerNormalized);

189 //_gameplayTimerNormalizedEvent.RaiseEvent(GetTimerNormalized(_gameplayTimer, _gameplayTimerMax));

190 break;

191 case GameState.End:

192 // mostrar puntuacion

193 Debug.Log(_numberObjectsFixed);

194 break;

195 default:

196 Debug.LogWarning($"{_gameState} is not implemented");

197 break;

198 }

199
200
201 }

202
203 [ClientRpc]

204 private void WaitingToStartRaiseEventClientRpc(float waitingToStartTimer)

205 {

206 _waitingToStartTimerEvent.RaiseEvent(waitingToStartTimer);

207 }

208
209 [ClientRpc]

210 private void GameplayTimerNormalizedRaiseEventClientRpc(float gameplayTimerNormalized)

211 {

212 _gameplayTimerNormalizedEvent.RaiseEvent(gameplayTimerNormalized);

213 }

214
215 private float GetTimerNormalized(float timer, float timerMax)

216 {

217 return timer / timerMax;

218 }

219
220 #region GameplayMode

221 private void ToMenuMode()

222 {

223 _inputReaderSO.EnableMenuInput();

224 }

225
226 private void ToGameplayMode()

227 {

228 _inputReaderSO.EnableGameplayInput();

229 }

230 #endregion

231
232 #region Game Loop

233
234 #region CustomerCounters

235 private CustomerCounter GetFirstCustomerCounterFree()

236 {

237 foreach (CustomerCounter counter in _customerCounters) {

238 if (!counter.HasCustomerAssigned()) {

B.10. FixingGameManager 89

239 return counter;

240 }

241 }

242
243 return null;

244 }

245
246 private int GetCustomerCounterIndex(CustomerCounter customerCounter)

247 {

248 return System.Array.IndexOf(_customerCounters, customerCounter);

249 }

250
251 private CustomerCounter GetCustomerCounterFromIndex(int index)

252 {

253 return _customerCounters[index];

254 }

255 #endregion

256
257 #region ObjectToFixSO

258 private RoomObjectSO GetRandomObjecToFixSO()

259 {

260 int randIndex = Random.Range(0, _objectsToFixSO.Length);

261
262 return _objectsToFixSO[randIndex];

263 }

264
265 private int GetObjectToFixSOIndex(RoomObjectSO roomObjectSO)

266 {

267 return System.Array.IndexOf(_objectsToFixSO, roomObjectSO);

268 }

269
270 private RoomObjectSO GetObjectToFixSOFromIndex(int index)

271 {

272 return _objectsToFixSO[index];

273 }

274 #endregion

275
276 private void SpawnNewCustomer()

277 {

278 CustomerCounter freeCounter = GetFirstCustomerCounterFree();

279 if (freeCounter == null) {

280 return;

281 }

282 int freeCounterIndex = GetCustomerCounterIndex(freeCounter);

283
284 RoomObjectSO objectToFixSO = GetRandomObjecToFixSO();

285 int objectToFixSOIndex = GetObjectToFixSOIndex(objectToFixSO);

286
287 SpawnNewCustomerServerRpc(freeCounterIndex, objectToFixSOIndex);

288 }

289

90 Source code

290 [ServerRpc]

291 private void SpawnNewCustomerServerRpc(int freeCounterIndex, int objectToFixSOIndex)

292 {

293 GameObject customerGO = Instantiate(_customerPrefab, _customerStartPosition.position, Quaternion.identity);

294 customerGO.transform.position = _customerStartPosition.position;

295 customerGO.transform.rotation = _customerStartPosition.rotation;

296
297
298 CustomerController customerController = customerGO.GetComponent<CustomerController>();

299
300 if (customerController == null) {

301 Debug.LogError($"The prefab {_customerPrefab} is not a Customer Controller");

302 return;

303 }

304
305 NetworkObject customerNO = customerGO.GetComponent<NetworkObject>();

306 customerNO.Spawn();

307 customerGO.transform.parent = RoomObject.StaticInSceneTransform;

308
309 CustomerCounter freeCounter = GetCustomerCounterFromIndex(freeCounterIndex);

310 RoomObjectSO objectToFixSO = GetObjectToFixSOFromIndex(objectToFixSOIndex);

311 customerController.InitCustomer(_customerStartPosition, freeCounter, objectToFixSO);

312 freeCounter.SetCustomerAssigned(customerController);

313
314
315 RoomObject.SpawnRoomObject(objectToFixSO, customerController);

316 }

317
318 private void ObjectFixedAndReturned(IRoomObjectParent customerWithObject)

319 {

320 _numberObjectsFixed.Value++;

321 }

322 #endregion

323 }

324 }

B.11 RoomObject NOT FINAL VERSION

1 using FixingIt.ActorComponents;

2 using FixingIt.Events;

3 using FixingIt.RoomObjects.SO;

4 using ProgramadorCastellano.Events;

5 using Unity.Netcode;

6 using UnityEngine;

7
8 namespace FixingIt.RoomObjects.Logic

9 {

10 [RequireComponent(typeof(FollowTransformComponent))]

B.11. RoomObject NOT FINAL VERSION 91

11 public class RoomObject : NetworkBehaviour

12 {

13 private static TryToSpawnRoomObjectChannelSO _staticTryToSpawnRoomObjectEvent;

14 public static Transform StaticInSceneTransform { get; private set; }

15
16 [SerializeField] private RoomObjectSO _roomObjectSO;

17 [SerializeField] private int _numberOfUses = 1;

18
19 [Header("Components")]

20 [SerializeField] private AudioComponent _roomObjectUsedAudioComp;

21 [SerializeField] private AudioComponent _roomObjectBrokenAudioComp;

22 private FollowTransformComponent _followTransformComp;

23
24 [Header("Broadcasting To")]

25 //[SerializeField]

26 //private VoidEventChannelSO _roomObjectUsedEvent;

27 [SerializeField]

28 private VoidEventChannelSO _roomObjectBrokenAfterUseEvent;

29 [SerializeField]

30 private TryToSpawnRoomObjectChannelSO _tryToSpawnRoomObjectEvent; // its value should be the same among all the roomObjects

31
32 private IRoomObjectParent _roomObjectParent;

33
34 public RoomObjectSO RoomObjectSO => _roomObjectSO;

35 public GameObject RoomObjectVisualPrefab => transform.GetChild(0).gameObject;

36
37 protected virtual void Awake()

38 {

39 _followTransformComp = GetComponent<FollowTransformComponent>();

40 }

41
42 private void Start()

43 {

44 if (_tryToSpawnRoomObjectEvent != null) {

45 _staticTryToSpawnRoomObjectEvent = _tryToSpawnRoomObjectEvent;

46 StaticInSceneTransform = transform;

47 }

48 }

49
50 public void SetRoomObjectParent(IRoomObjectParent newRoomObjectParent)

51 {

52 SetRoomObjectParentServerRpc(newRoomObjectParent.GetNetworkObject());

53 }

54
55 [ServerRpc(RequireOwnership = false)]

56 private void SetRoomObjectParentServerRpc(NetworkObjectReference newRoomObjectParentNORef)

57 {

58 transform.parent = StaticInSceneTransform;

59 SetRoomObjectParentClientRpc(newRoomObjectParentNORef);

60 }

61

92 Source code

62 [ClientRpc]

63 private void SetRoomObjectParentClientRpc(NetworkObjectReference newRoomObjectParentNORef)

64 {

65 newRoomObjectParentNORef.TryGet(out NetworkObject newRoomObjectParentNO);

66 IRoomObjectParent newRoomObjectParent = newRoomObjectParentNO.GetComponent<IRoomObjectParent>();

67
68 // clear parent info

69 _roomObjectParent?.ClearRoomObject();

70
71 // set new parent

72 _roomObjectParent = newRoomObjectParent;

73
74 if (newRoomObjectParent.HasRoomObject())

75 {

76 Debug.LogError("IRoomObjectParent already has a RoomObject");

77 }

78
79 newRoomObjectParent.SetRoomObject(this);

80
81 // set transform

82 _followTransformComp.SetTargetTransform(newRoomObjectParent.GetRoomObjectTransform());

83 }

84
85 public void Use()

86 {

87 _numberOfUses--;

88
89 if (_numberOfUses <= 0)

90 {

91 _roomObjectBrokenAfterUseEvent.RaiseEvent();

92
93 //if (_roomObjectBrokenAudioComp == null) {

94 // Debug.LogWarning("Only Tools should be broken");

95 //}

96 //else {

97 // _roomObjectBrokenAudioComp.PlaySound();

98 //}

99 Broke();

100 }

101 else

102 {

103 if (_roomObjectUsedAudioComp == null)

104 {

105 Debug.LogWarning("Only Tools should be used");

106 }

107 else

108 {

109 _roomObjectUsedAudioComp.PlaySound(false);

110 }

111 }

112 }

B.12. IRoomObjectParent 93

113
114 // TODO: cambiar por sistema de pooling como extra

115 public void Broke()

116 {

117 _roomObjectParent.ClearRoomObject();

118
119 Destroy(gameObject);

120 }

121
122 #region Static

123 // TODO: cambiar por sistema de pooling como extra

124 public static void SpawnRoomObject(RoomObjectSO roomObjectSO, IRoomObjectParent roomObjectParent)

125 {

126 _staticTryToSpawnRoomObjectEvent.RaiseEvent(roomObjectSO, roomObjectParent.GetNetworkObject());

127 }

128 #endregion

129 }

130 }

B.12 IRoomObjectParent

1 using Unity.Netcode;

2 using UnityEngine;

3
4 namespace FixingIt.RoomObjects.Logic

5 {

6 public interface IRoomObjectParent

7 {

8 public Transform transform { get; }

9
10 public Transform GetRoomObjectTransform();

11 public RoomObject GetRoomObject();

12 public void SetRoomObject(RoomObject roomObject);

13 public bool HasRoomObject();

14 public void ClearRoomObject();

15
16 public NetworkObject GetNetworkObject();

17 }

18 }

B.13 ToFixRoomObject

1 using FixingIt.RoomObjects.SO;

2 using System.Linq;

3 using UnityEngine;

4

94 Source code

5 namespace FixingIt.RoomObjects.Logic

6 {

7 public class ToFixRoomObject : RoomObject

8 {

9 [SerializeField] private ToFixRoomObjectVisualComp _toFixRoomObjectVisualComp;

10 [SerializeField] private RoomObjectSO[] _toolsToBeFixedSO;

11 private bool[] _toolsUsedSO;

12
13 public bool IsFixed => _toolsUsedSO.All(valor => valor);

14
15 protected override void Awake()

16 {

17 base.Awake();

18 _toolsUsedSO = new bool[_toolsToBeFixedSO.Length];

19 }

20
21 private void Start()

22 {

23 _toFixRoomObjectVisualComp.UpdateTFROVisual(_toolsToBeFixedSO, _toolsUsedSO);

24 }

25
26 //private void FixObject()

27 //{

28 // // change visual?

29 // _toFixRoomObjectVisualComp.UpdateTFROVisual(_toolsToBeFixedSO, _toolsUsedSO);

30 // Debug.Log("FixObject");

31 //}

32
33 public bool TryToFix(RoomObjectSO toolUsed, out bool toolBeenUsed)

34 {

35 toolBeenUsed = false;

36
37 // should be check from outside but just in case

38 if (IsFixed)

39 {

40 Debug.Log("cannot fix a object that is already fixed");

41 return false;

42 }

43
44 for (int i = 0; i < _toolsToBeFixedSO.Length; i++)

45 {

46 if (_toolsUsedSO[i])

47 continue;

48
49 if (toolUsed == _toolsToBeFixedSO[i])

50 {

51 _toolsUsedSO[i] = true;

52 toolBeenUsed = true;

53 break;

54 }

55 }

B.14. PlayerController 95

56
57 _toFixRoomObjectVisualComp.UpdateTFROVisual(_toolsToBeFixedSO, _toolsUsedSO);

58
59 if (!IsFixed)

60 return false;

61
62 return true;

63 }

64 }

65 }

B.14 PlayerController

1 using FixingIt.ActorComponents;

2 using FixingIt.Counters;

3 using FixingIt.InputSystem;

4 using FixingIt.RoomObjects.Logic;

5 using ProgramadorCastellano.Funcs;

6 using Unity.Netcode;

7 using UnityEngine;

8
9 namespace FixingIt.PlayerGame

10 {

11 [RequireComponent(typeof(Rigidbody))]

12 public class PlayerController : NetworkBehaviour, IRoomObjectParent

13 {

14 [SerializeField] InputReaderSO _inputReaderSO;

15
16 [SerializeField] private Transform _holdingPoint;

17
18 [Header("Player Comps")]

19 [SerializeField] private PlayerVisualComp _playerVisualComp;

20 [SerializeField] private PlayerAnimationComp _animationComp;

21 [SerializeField] private AudioComponent _audioComp;

22
23 [Header("Player Stats")]

24 [SerializeField] private float _moveSpeed = 5f;

25 [SerializeField] private float _rotateSpeed = 10f;

26 [SerializeField] private float _interactDistance = 2f;

27 [SerializeField] private LayerMask _countersLayerMask;

28
29 [Header("Invoking Func")]

30 [SerializeField]

31 private ULongColorFuncSO _getColorFromClientIdFunc;

32
33 private Rigidbody _rb;

34 private RoomObject _roomObject;

35 private Vector2 _direction;

96 Source code

36
37 private Outline _currentOutline;

38
39 private void Awake()

40 {

41 _rb = GetComponent<Rigidbody>();

42 }

43
44 private void OnEnable()

45 {

46 // se maneja dentro de las funciones para evitar una condicion de carrera

47 //if (OwnerClientId == NetworkManager.LocalClientId)

48 // Debug.Log("ofnesoinfie");

49 //if (!IsOwner) {

50 // return;

51 //}

52
53 _inputReaderSO.MoveEvent += SetPlayerDirection;

54 _inputReaderSO.InteractEvent += HandleInteraction;

55 _inputReaderSO.AlternateInteractEvent += HandleAlternateInteraction;

56 }

57
58 private void OnDisable()

59 {

60 // si se deja ocurre una condicion de carrera que bloqueaba el personaje

61 //if (!IsOwner) {

62 // return;

63 //}

64
65 _inputReaderSO.MoveEvent -= SetPlayerDirection;

66 _inputReaderSO.InteractEvent -= HandleInteraction;

67 _inputReaderSO.AlternateInteractEvent -= HandleAlternateInteraction;

68 }

69
70 private void Start()

71 {

72 _playerVisualComp.SetPlayerColor(_getColorFromClientIdFunc.RaiseFunc(OwnerClientId));

73 }

74
75 private void FixedUpdate()

76 {

77 if (!IsOwner) {

78 return;

79 }

80
81 HandleMovement();

82 }

83
84 private void Update()

85 {

86 if (!IsOwner) {

B.14. PlayerController 97

87 return;

88 }

89
90 HandleRotation();

91 HandleSelectionOutline();

92 }

93
94 private void HandleSelectionOutline()

95 {

96 Vector3 rayOrigin = transform.position;

97 Vector3 rayDir = transform.forward;

98
99 if (Physics.Raycast(rayOrigin, rayDir, out RaycastHit rayHit, _interactDistance, _countersLayerMask)) {

100 if (rayHit.transform.TryGetComponent(out Outline outline)) {

101 if (_currentOutline == outline) {

102 return;

103 }

104
105 if (_currentOutline != null) {

106 _currentOutline.enabled = false;

107 }

108
109 _currentOutline = outline;

110 _currentOutline.enabled = true;

111 }

112 else {

113 if (_currentOutline == null) {

114 return;

115 }

116
117 _currentOutline.enabled = false;

118 _currentOutline = null;

119 }

120 }

121 else {

122 if (_currentOutline == null) {

123 return;

124 }

125
126 _currentOutline.enabled = false;

127 _currentOutline = null;

128 }

129 }

130
131 private void HandleMovement()

132 {

133 Vector3 velocity = new Vector3(_direction.x, 0f, _direction.y);

134 velocity *= _moveSpeed;

135
136 _rb.velocity = velocity;

137

98 Source code

138 bool isMoving = velocity != Vector3.zero;

139 _animationComp.SetIsWalking(isMoving);

140
141 if (isMoving) {

142 _audioComp.PlaySound();

143 }

144 else {

145 _audioComp.StopSound();

146 }

147 }

148
149 private void HandleRotation()

150 {

151 Vector3 desiredRotation = new Vector3(_direction.x, 0f, _direction.y);

152
153 transform.forward = Vector3.Slerp(transform.forward, desiredRotation, Time.deltaTime * _rotateSpeed);

154 }

155
156 public PlayerVisualComp GetPlayerVisualComp()

157 {

158 return _playerVisualComp;

159 }

160
161 #region InputActions

162 private void SetPlayerDirection(Vector2 directionInput)

163 {

164 if (!IsOwner) {

165 return;

166 }

167
168 _direction = directionInput;

169 }

170
171 private void HandleInteraction()

172 {

173 if (!IsOwner) {

174 return;

175 }

176
177 Vector3 rayOrigin = transform.position;

178 Vector3 rayDir = transform.forward;

179
180 if (Physics.Raycast(rayOrigin, rayDir, out RaycastHit rayHit, _interactDistance, _countersLayerMask)) {

181 if (rayHit.transform.TryGetComponent(out BaseCounter baseCounter)) {

182 baseCounter.Interact(this);

183 }

184
185 Debug.DrawRay(rayHit.point, rayDir * _interactDistance, Color.green, 5f);

186 }

187
188 Debug.DrawRay(rayOrigin, rayDir * _interactDistance, Color.red, 5f);

B.14. PlayerController 99

189 }

190
191 private void HandleAlternateInteraction()

192 {

193 if (!IsOwner) {

194 return;

195 }

196
197 Vector3 rayOrigin = transform.position;

198 Vector3 rayDir = transform.forward;

199
200 if (Physics.Raycast(rayOrigin, rayDir, out RaycastHit rayHit, _interactDistance, _countersLayerMask)) {

201 if (rayHit.transform.TryGetComponent(out BaseCounter baseCounter)) {

202 baseCounter.AlternateInteract(this);

203 }

204
205 Debug.DrawRay(rayHit.point, rayDir * _interactDistance, Color.green, 5f);

206 }

207
208 Debug.DrawRay(rayOrigin, rayDir * _interactDistance, Color.blue, 5f);

209 }

210 #endregion

211
212 #region IRoomObjectParent

213 public Transform GetRoomObjectTransform()

214 {

215 return _holdingPoint;

216 }

217
218 public RoomObject GetRoomObject()

219 {

220 return _roomObject;

221 }

222
223 public void SetRoomObject(RoomObject roomObject)

224 {

225 _roomObject = roomObject;

226 }

227
228 public bool HasRoomObject()

229 {

230 return _roomObject != null;

231 }

232
233 public void ClearRoomObject()

234 {

235 _roomObject = null;

236 }

237
238 public NetworkObject GetNetworkObject()

239 {

100 Source code

240 return NetworkObject;

241 }

242 #endregion

243 }

244 }

B.15 BaseCounter

1 using FixingIt.RoomObjects.Logic;

2 using Unity.Netcode;

3 using UnityEngine;

4
5 namespace FixingIt.Counters

6 {

7 public abstract class BaseCounter : NetworkBehaviour, IRoomObjectParent

8 {

9 [SerializeField] private Transform _topPoint;

10
11 private RoomObject _roomObject;

12
13 public abstract void Interact(IRoomObjectParent roomObjectParent);

14 public abstract void AlternateInteract(IRoomObjectParent roomObjectParent);

15
16 public Transform GetRoomObjectTransform()

17 {

18 return _topPoint;

19 }

20
21 public RoomObject GetRoomObject()

22 {

23 return _roomObject;

24 }

25
26 public void SetRoomObject(RoomObject roomObject)

27 {

28 _roomObject = roomObject;

29 }

30
31 public bool HasRoomObject()

32 {

33 return _roomObject != null;

34 }

35
36 public void ClearRoomObject()

37 {

38 _roomObject = null;

39 }

40

B.16. CustomerController 101

41 public NetworkObject GetNetworkObject()

42 {

43 return NetworkObject;

44 }

45 }

46 }

B.16 CustomerController

1 using FixingIt.ActorComponents;

2 using FixingIt.RoomObjects.Logic;

3 using FixingIt.RoomObjects.SO;

4 using Unity.Netcode;

5 using UnityEngine;

6 using UnityEngine.AI;

7
8 namespace FixingIt.Customer

9 {

10 public class CustomerController : NetworkBehaviour, IRoomObjectParent

11 {

12 // could have be done with a state machine but this case is too simple

13 private enum ClientState

14 {

15 Waiting,

16 GoingToCounter,

17 LeavingCounter

18 }

19
20 [SerializeField] Transform _holdingPoint;

21
22 private NavMeshAgent _agent;

23 private ClientState _clientState;

24
25 private RoomObject _roomObject;

26
27 private Transform _startTransform;

28 private IRoomObjectParent _parentToLeaveBrokenObject;

29
30 [Header("Customer Comps")]

31 [SerializeField]

32 private AudioComponent _audioComp;

33
34 private void Awake()

35 {

36 _agent = GetComponent<NavMeshAgent>();

37
38 _clientState = ClientState.Waiting;

39 }

102 Source code

40
41 private void Start()

42 {

43 if (!IsServer)

44 return;

45
46 GoToCounter();

47 }

48
49 private void Update()

50 {

51 if (!IsServer)

52 return;

53
54 switch (_clientState)

55 {

56 case ClientState.Waiting:

57 break;

58 case ClientState.GoingToCounter:

59 _audioComp.PlaySound();

60 if (_agent.remainingDistance < _agent.stoppingDistance)

61 {

62 _clientState = ClientState.Waiting;

63 _roomObject.SetRoomObjectParent(_parentToLeaveBrokenObject);

64
65 _audioComp.StopSound();

66 }

67 break;

68 case ClientState.LeavingCounter:

69 _audioComp.PlaySound();

70 if (_agent.remainingDistance < _agent.stoppingDistance)

71 {

72 // si da tiempo cambiarlo por un sistema de pooling

73 Destroy(gameObject);

74 }

75 break;

76 default:

77 Debug.LogWarning($"{_clientState} is not implemented");

78 break;

79 }

80 }

81
82 private void GoToCounter()

83 {

84 Debug.Log(_parentToLeaveBrokenObject != null);

85 _agent.SetDestination(_parentToLeaveBrokenObject.transform.position);

86 _clientState = ClientState.GoingToCounter;

87 }

88
89 public void LeaveCounter()

90 {

B.16. CustomerController 103

91 _agent.SetDestination(_startTransform.position);

92 _clientState = ClientState.LeavingCounter;

93 }

94
95 public void InitCustomer(Transform startTransform, IRoomObjectParent parentToLeaveBrokenObject, RoomObjectSO _objectToFixSO)

96 {

97 _startTransform = startTransform;

98 _parentToLeaveBrokenObject = parentToLeaveBrokenObject;

99
100 transform.position = _startTransform.position;

101 transform.rotation = _startTransform.rotation;

102
103 //RoomObject.SpawnRoomObject(_objectToFixSO, this);

104 }

105
106 #region RoomObjectParent

107 public Transform GetRoomObjectTransform()

108 {

109 return _holdingPoint;

110 }

111
112 public RoomObject GetRoomObject()

113 {

114 return _roomObject;

115 }

116
117 public void SetRoomObject(RoomObject roomObject)

118 {

119 _roomObject = roomObject;

120 }

121
122 public bool HasRoomObject()

123 {

124 return _roomObject != null;

125 }

126
127 public void ClearRoomObject()

128 {

129 _roomObject = null;

130 }

131
132 public NetworkObject GetNetworkObject()

133 {

134 return NetworkObject;

135 }

136 #endregion

137 }

138 }

104 Source code

B.17 InputReaderSO

1 using UnityEngine;

2 using UnityEngine.Events;

3 using UnityEngine.InputSystem;

4
5 namespace FixingIt.InputSystem

6 {

7 //[CreateAssetMenu(fileName = "Input Reader", menuName = "Game/ Input Reader")]

8 public class InputReaderSO : ScriptableObject, GameInput.IGameplayActions, GameInput.IMenuActions

9 {

10 private GameInput _gameInput;

11
12 // Assign delegate{} to events to initialise them with an empty delegate

13 // so we can skip the null check when we use them

14
15 // Gameplay

16 public event UnityAction<Vector2> MoveEvent = delegate { };

17 public event UnityAction InteractEvent = delegate { };

18 public event UnityAction AlternateInteractEvent = delegate { };

19
20 // Menu

21 public event UnityAction MenuConfirmEvent = delegate { };

22 public event UnityAction MenuCancelEvent = delegate { };

23 public event UnityAction<Vector2> MenuNavigationEvent = delegate { };

24
25 /*
26 * On Enable/Disable Functions

27 */

28 #region On Enable/Disable

29 private void OnEnable()

30 {

31 if (_gameInput == null) {

32 _gameInput = new GameInput();

33
34 // set all callbacks

35 _gameInput.Gameplay.SetCallbacks(this);

36 _gameInput.Menu.SetCallbacks(this);

37 }

38
39 // EnableGameplayInput(); // TODO: se debe manejar de forma externa

40 }

41
42 private void OnDisable()

43 {

44 DisableAllInput();

45 }

46 #endregion

47
48 /*

B.17. InputReaderSO 105

49 * Turn On/Off Inputs

50 */

51 #region Turn On/Off Inputs

52 public void EnableGameplayInput()

53 {

54 DisableAllInput();

55
56 _gameInput.Gameplay.Enable();

57 }

58
59 public void EnableMenuInput()

60 {

61 DisableAllInput();

62
63 _gameInput.Menu.Enable();

64 }

65
66 public void DisableAllInput()

67 {

68 _gameInput.Gameplay.Disable();

69 _gameInput.Menu.Disable();

70 }

71 #endregion

72
73 /*
74 * Gameplay Acions

75 */

76 #region Gameplay Actions

77 public void OnMove(InputAction.CallbackContext context)

78 {

79 MoveEvent.Invoke(context.ReadValue<Vector2>());

80 }

81
82 public void OnInteract(InputAction.CallbackContext context)

83 {

84 if (context.phase == InputActionPhase.Performed) {

85 InteractEvent.Invoke();

86 }

87 }

88
89 public void OnAlternateInteract(InputAction.CallbackContext context)

90 {

91 if (context.phase == InputActionPhase.Performed) {

92 AlternateInteractEvent.Invoke();

93 }

94 }

95 #endregion

96
97 /*
98 * Menu Actions

99 */

106 Source code

100 #region Menu Actions

101 public void OnSubmit(InputAction.CallbackContext context)

102 {

103 if (context.phase == InputActionPhase.Performed) {

104 MenuConfirmEvent.Invoke();

105 }

106 }

107
108 public void OnCancel(InputAction.CallbackContext context)

109 {

110 if (context.phase == InputActionPhase.Performed) {

111 MenuCancelEvent.Invoke();

112 }

113 }

114
115 public void OnNavigation(InputAction.CallbackContext context)

116 {

117 if (context.phase == InputActionPhase.Performed) {

118 MenuNavigationEvent.Invoke(context.ReadValue<Vector2>());

119 }

120 }

121 #endregion

122 }

123 }

B.18 SelectableUIData

1 using UnityEngine;

2 using UnityEngine.UI;

3
4 namespace ProgramadorCastellano.UI

5 {

6 [RequireComponent(typeof(Selectable))]

7 public class SelectableUIData : MonoBehaviour

8 {

9 [SerializeField] private SelectableUISkinDataSO _skinDataSO;

10
11 private Selectable _selectable;

12
13 private void Awake()

14 {

15 //_selectable = GetComponent<Selectable>();

16
17 OnSkinUI();

18 }

19
20 private void OnSkinUI()

21 {

B.18. SelectableUIData 107

22 _selectable = GetComponent<Selectable>();

23 //Debug.Log(_selectable.gameObject.name);

24
25 _selectable.colors = _skinDataSO.Colors;

26 }

27
28
29 // COMMENT THE UPDATE AFTER DESGIN

30 /*private void Update()

31 {

32 if (Application.isEditor)

33 {

34 OnSkinUI();

35 }

36 }*/

37 }

38 }

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	Game Design Document
	Conceptualization
	Demography
	Rules
	Mechanics
	Input Interface
	User interface
	Level design
	Story
	Art Style
	Soundtrack
	Multiplayer

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Glossary
	Observer Pattern
	Scriptable Object
	Assembly Definition

	Source code
	BaseEventChannelSO
	VoidEventChannelSO
	BaseFuncSO
	SceneLoaderManager
	NetworkSceneLoader
	FixingGameMultiplayer NOT FINAL VERSION
	LobbyManager
	CharacterSelectionPlayer
	CharacterSelectionManager
	FixingGameManager
	RoomObject NOT FINAL VERSION
	IRoomObjectParent
	ToFixRoomObject
	PlayerController
	BaseCounter
	CustomerController
	InputReaderSO
	SelectableUIData

