
AVATAR CUSTOMIZATION USING DEEP
LEARNING’S STYLE TRANSFER

TECHNOLOGY

Roberto Montagud Cenalmor
Final Degree Project

Bachelor’s Degree in Video Game Design and Development
Universitat Jaume I

July 2023

Tutor: Rafael Fernández Beltrán

1

2

Acknowledgments

First of all, I would like to thank all the teachers and classmates who have accompanied and
helped me in my journey and stage at the UJI, without whom I would not have been able to
reach this decisive moment in my training.

I would also like to mention the figure of my tutor Rafael Fernández, who has guided,
supervised and given me light at specific moments of this last course, being decisive and
comforting for me his presence and help.

3

4

Abstract

An important aspect in the world of video games is the player's identity, In this regard
player´s avatar plays a significant role in this. However, we often find ourselves limited to a
few predefined options, which can restrict our individual expression. This document presents
a project report on an application aiming to address this issue by providing more
customization options to players. This application, developed in tkinter, utilizes a Style
Transfer Model [1] using deep learning techniques (Specifically Convolutional Neural
Networks) to transform user’s self images into a specific artistic style.

Also, it offers a user-friendly interface where users can upload their avatar images or take a
photo, and choose from a predefined list of artistic styles. Once the desired style is selected,
the application applies the style transfer model to generate the transformed image.

5

Keywords

Digital Avatar Customization
Artificial Intelligence
Deep learning.
Neural Style Transfer.
Convolutional Neural Network.

6

7

Contents

1. INTRODUCTION ……………………………………..…………………………. 9
1.1 Work Motivation ………………………………..…………………………...9
1.2 Objectives .…………….……………………….………………………… 10
1.3 Environment and Initial State …………………………………………… 10

2. PLANNING AND RESOURCES EVALUATION……………………………… 13
2.1. Planning ..……………………………………….…………………………. 13
2.2. Resources Evaluation ...……………………………………………………. 15

2.2.1. Hardware Resources………………….…………………………. 15
2.2.2. Software Resources …………………..…………………………. 16
2.2.3. Human Resources ……………………..………………………… 18

3. SYSTEM ANALYSIS AND DESIGN……………………………………………. 19
3.1. Theoretical Framework …………………………………………………..19

3.1.1. Artificial Neural Networks …………..…………………………. 19
3.1.2. Convolutional Neural Networks ……......……………………….. 21
3.1.3. ReLu ……………………………………………………………. 23
3.1.4. Neural Model Proposal …………………………………………. 24

3.2. Requirements Analysis ……………………………………………………27
3.2.1. Functional Requirements …………….…………………………...27
3.2.2 Non-Functional Requirements ……….……………………………27

3.3. System Design ……………………………………………………………..28
3.4. System Architecture …………………………..…………………………...33
3.5. Interface Design …………………………………………………………...33

4. WORK DEVELOPMENT AND RESULTS…………..…………………………...35
4.1. Work Development………………………………………………………….35
4.2. Results ………………………………………….…………………………...40

5. CONCLUSIONS AND FUTUREWORK…………….…………………………...43
5.1. Conclusions …………………………………………………………………43
5.2. Future Work …………………………………..…………………………….43

6. CITEDWORKS ………………………………………..………………………….. 45

8

Section 1 INTRODUCTION

1. INTRODUCTION

Contents

1.1 Work Motivation. 9
1.2 Objectives . 10
1.3 Environment and Initial State . 10

This document presents a comprehensive overview of the project, including its
inception, development and the results obtained throughout this effort. Within this
introductory section, we explore the driving forces that led to the initiation of this project,
outlining its objectives and delineating the initial conditions. It also encompasses a thorough
analysis of the decisions made, encompassing both externally imposed and self-imposed
considerations, before embarking on this work.

1.1 Work Motivation

The project was initially proposed by the tutor based on an open idea for the generation of
these custom avatars, from there, personal motivations come into play.

The creation of an application for the personalization of avatars through style transfer has multiple
motivations. One of them is the desire to explore and learn about the field of deep learning and
artificial intelligence. The implementation of style transfer techniques involves the understanding and
application of advanced algorithms and models, which provides a valuable opportunity to acquire
practical knowledge in this area. It is important to highlight that artificial intelligence is gaining
increasing relevance in everyday life and in more ambitious applications, encompassing virtually all
areas of society. As a result, there is a growing number of people interested in artificial intelligence, as
we can observe today due to its increasing popularity. As more people become familiar with the
concept of artificial intelligence and its applications, there is a growing demand for products and
services that incorporate these capabilities. This trend appears to be on the rise in the coming years.

In addition, the personalization of avatars has become a growing trend in the digital world. Avatars are
used on social networks, gaming platforms, and online communities, and many people seek to express
their identity and creativity through them. The possibility of using an artificial intelligence-based

9

Section 1 INTRODUCTION

application to create unique and personalized avatars, by transferring artistic styles from reference
images, is attractive to both casual users and digital artists.

There have been several studies that have addressed the importance of using avatars in virtual
environments, such as:

1. "Virtual Embodiment: Presence in Virtual Worlds Can Alter Perceptual Experience" (Mel
Slater, Maria V. Sanchez-Vives, and Mavi Sanchez-Martin, 2010): This study examined how
the representation of a user through an avatar can affect their perceptual experience in virtual
environments. The findings demonstrated that users can experience changes in their own
bodily perception and sensorimotor abilities when identifying with an avatar.

2. "The Impact of Avatar Personalization and Immersion on Virtual Body Ownership, Presence,
and Emotional Response" (Panagiotis Kourtesis, Stavroula-Evita Fotinea, and Dimitrios
Tzovaras, 2019): The study explored how avatar personalization and immersion influence
virtual body ownership, the sense of presence, and users' emotional response. The results
showed that avatar personalization and immersion can enhance the sense of virtual body
ownership and presence in virtual environments.

1.2 Objectives

● To learn the functioning of the Neural Style Transfer technology for digital images
processing.

● To implement a deep-learning based model on to make the style transfer between two images.
● To develop a program that allows the users to generate their own avatars with customized

styles.

1.3. Environment and Initial State

As previously mentioned, the project originated as a proposal from the supervisor, with the
article "A Neural Algorithm of Artistic Style" by Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge [2] serving as the main point of support for the deep learning model.
“Here we introduce an artificial system based on a Deep Neural Network that creates artistic images
of high perceptual quality. The system uses neural representations to separate and recombine content
and style of arbitrary images, providing a neural algorithm for the creation of artistic images.
Moreover, in light of the striking similarities between performance-optimised artificial neural

10

Section 1 INTRODUCTION

networks and biological vision, our work offers a path forward to an algorithmic understanding of
how humans create and perceive artistic imagery. “

The style transfer approach is a technique that involves using pre-trained Convolutional Neural
Networks (CNNs) [3] to extract high-level features from target images. These features are then
combined iteratively to generate a new image that combines the style of one image with the content of
another.CNNs approach

In addition to CNNs, there are other alternatives in style transfer, most of them based on CNNs, such
as Generative Adversarial Networks (GANs)[4]. GANs consist of a generator network that generates
new images and a discriminator network that tries to distinguish between the generated images and
real images. Through an adversarial training process, the generator network learns to produce images
that closely resemble the style of the input image while maintaining the content of the target image.

Instance normalization is another technique used in style transfer to enhance control over the style and
content of the generated image. It normalizes the features at each spatial location independently,
which helps to preserve the global style information while allowing for local variations.

Efficiency and speed improvements have also been made in style transfer algorithms to handle
high-resolution images more efficiently. Various optimization techniques and network architectures
have been proposed to reduce the computational complexity and memory requirements, enabling
faster processing of large images.

Furthermore, style transfer has been extended to other modalities beyond images. For example, there
have been attempts to transfer artistic styles to videos, where each frame is processed independently
or through temporal coherence constraints. Style transfer has also been applied to other domains such
as music and text, enabling the generation of music with a specific style or transforming the style of
written text.

Overall, style transfer techniques continue to evolve, incorporating advancements in neural network
architectures, optimization algorithms, and extensions to different modalities, opening up possibilities
for creative applications in various fields.

11

Section 1 INTRODUCTION

12

Section 2 Planning and Resources Evaluation

2. PLANNING AND RESOURCES EVALUATION

Contents

2.1 Planning. .13
2.2 Resources Evaluation. 15

2.2.1 Hardware Resources. 15
2.2.2 Software Resources. .16
2.2.3 Human Resources. 18

At this stage, we will present and outline the project objectives, as well as assess their
feasibility. We will organize the tasks and provide a time estimation for their completion.
Additionally, we will offer an estimation of the economic costs involved in the project, broken down
into hardware, software, working hours, and indirect costs.

2.1. Planning
Below are the accomplishments achieved during the project's development, demonstrating the

various tasks completed. It is important to note that the tasks were not strictly executed in a linear
fashion, with one task being completed before moving on to the next. Rather, there was a dynamic
approach that involved interweaving and alternating between different tasks. To provide a visual
representation of the project's progress, a Gantt chart has been included in this section (refer to Figure
1).

● Studying and learning about Neural Style Transfer technology (30 hours):
Search for information on various elements related to artificial intelligence, but
especially on Convolutional Neural Networks and Style Transfer Techniques, by
reading articles [5] and watching videos from people with extensive knowledge on
the subject.

● Alternative’s analysis and choice of the deep learning model (30 hours):
Analyze different alternatives and select the most suitable deep learning model for us.
Various options are evaluated and a comparative analysis is carried out to determine
which model best fits the requirements and objectives of the project. The goal is to
choose the option that has the best performance and ability to fulfill the specific tasks
of avatar personalization. Furthermore, the feasibility of the proposed tools and their
training should also be considered in this phase.

● Implementation of the chosen model (80 hours): The concepts and algorithms of
the model are translated into programming code, following the established guidelines
and specifications. The necessary components are developed, the appropriate
parameters are configured, and the model is integrated into the avatar personalization

13

Section 2 Planning and Resources Evaluation

application. This stage is crucial to ensure that the selected model works correctly and
meets the requirements of the project.

● Development of a data set for the avatar’s generation (10 hours): Various data
sources, such as images, illustrations, and relevant artistic styles for avatar
personalization, are collected and prepared.

● Model training and analysis for the digital avatar personalization (30 hours):
The previously collected and prepared data is used to evaluate the artificial
intelligence model. During the training process, the model learns to generate
personalized avatars using deep learning and style transfer techniques. Once the
training is completed, a thorough analysis of the model’s performance is carried out.
Metrics such as the quality of personalization, visual fidelity, and diversity of
generated avatars are evaluated. In addition, adjustments and improvements are made
to the model if necessary, with the aim of optimizing its ability to create avatars that
meet the needs and preferences of users.

● User interface development (60 hours): The visual elements are designed and
created to create an intuitive and attractive interface.

● Documentation and presentation (60 hours): Preparation of documents such as
the Final Degree Work report, the presentation, technical proposal or other necessary
documents.

The objective "To learn the functioning of the Neural Style Transfer technology for
digital images processing" is primarily accomplished in stage 1: "Studying and learning about
Neural Style Transfer technology (30 hours)", and also to a significant extent in stage 2:
“Alternative’s analysis and choice of the deep learning model (30 hours)”. However, this
objective continues to be achieved throughout all stages of the project's development.
The objective "To implement a deep-learning based model to perform style transfer between
two images" is accomplished in stage 3: "Implementation of the chosen model (80 hours)".

The objective "To develop a program that allows users to generate their own avatars with
customized styles" is accomplished in stage : "Development of a dataset for avatar generation
(10 hours)", stage 5: "Model training and analysis for digital avatar personalization (30
hours)" and Point 6: "User interface development (60 hours)". In these points, the
development of a program that allows users to generate personalized avatars with customized
styles is carried out, covering everything from data preparation to the user interface for user
interaction.

When it comes to completing tasks, a self-planned approach has been followed, breaking
them down into subtasks. Notes have been taken along the way, facilitating small-scale
progress and a gradual transition towards larger-scale advancements. Several follow-up
meetings were held periodically with the project supervisor, seeking recommendations on the
preferred direction or potential implementation of changes.

14

Section 2 Planning and Resources Evaluation

Figure 1: Gantt Diagram of the memory.

2.2. Resources Evaluation

Next, an assessment is made of the project resources, divided into hardware,
software, and human resources.

2.2.1 Hardware Resources

The plan was to carry out the entire development using a PC capable of
running the Neural Network (NN) model (for its integration with the
application). Additionally, it is necessary for the device to have a webcam for
taking photos.
These are the minimum requirements to run the application:

● Processor: Intel Core i5 or equivalent

● Graphics Card: NVIDIA GTX 1050 or a similar graphics card

● RAM: 8GB or higher

15

Section 2 Planning and Resources Evaluation

● Storage: Solid State Drive (SSD) with at least 256GB capacity

● Operating System: Windows 10 or superior

● Webcam: Built-in or external webcam for photo capture

● Internet Connectivity: Wired or wireless network adapter for internet
access

● Software: Compatible software tools and libraries required for
implementing the NN model and application development.

In the development of this type of projects its important to have a good
Graphics Processing Unit (GPU). GPUs are essential for computing
neural networks due to their capability for massive parallelism,
specialized architecture, fast memory, and the availability of optimized
libraries and frameworks. Their use enables accelerated training time
and inference of neural networks, driving the advancement and
application of machine learning techniques and deep neural networks
in various fields.

2.2.2 Software Resources

In terms of software, we will utilize Google Colab [6] to compose and
execute Neural network model proposal implementation (being Python most relevant
programming language in this regard), enabling us not only to develop and train
neural network model proposal, but also to organize several performance and utility
test over it. This software has a free version, with limited resources as computation
time, use or GPU etc.. Also there are some purchase plans that remove these
limitations.

For project purposes free is considered to provide enough resources to NN model
developing and testing

Additionally, auxiliary libraries are needed to support our deep learning and matrix
handling objectives, including:

16

Section 2 Planning and Resources Evaluation

● Keras [7] is a popular open-source deep learning framework designed to
enable fast experimentation with deep neural networks. It offers a
user-friendly interface for building and training deep neural networks using
pre-built layers and an easy-to-use API. Keras can run on top of various
backends, including TensorFlow, Theano, and CNTK, and provides a range
of built-in loss functions, optimizers, and metrics to optimize the network
during training.

● NumPy is an open-source Python library used for scientific computing and
data analysis. It offers tools for working with multi-dimensional arrays and
matrices, as well as a wide range of mathematical functions to operate on
these arrays.

● Matplotlib is an open-source Python library for creating static, animated, and
interactive visualizations. It provides a broad range of tools for creating plots
and charts, such as line plots, scatter plots, bar plots, histograms, and more.
Matplotlib allows users to customize every aspect of their visualizations,
including colors, labels, fonts, and other properties.

Additionally, various image processing libraries have been used, such as OpenCV
(cv) and Pillow:

● OpenCV is a widely-used library in computer vision that offers a wide range
of functions and algorithms for image processing and analysis.

● Pillow is a Python image processing library that provides functions for
opening, manipulating, and saving images in different formats. These
libraries have been instrumental in performing various image-related tasks in
the project.

In terms of the graphical user interface, the selected technology will be Tkinter, which
is the default GUI library in Python, because of its ease of use in creating simple
applications. Additionally, an Anaconda [8] environment has been used to make use
of all the necessary libraries, and Spyder has been utilized to implement the model
code in the application.

Finally, online communication with the supervisor has been conducted via Gmail and
Google Meet for tracking purposes. These platforms have provided a convenient and
efficient means of exchanging updates, discussing project progress, and seeking
guidance. Gmail has facilitated regular email communication, allowing for detailed
discussions and sharing of documents, while Google Meet has been utilized for
virtual meetings and video conferences, enabling real-time discussions and screen
sharing. This online communication has ensured a smooth and effective collaboration
with the supervisor, allowing for timely feedback, addressing any concerns, and
ensuring the project stays on track.

17

Section 2 Planning and Resources Evaluation

2.2.3 Human Resources

Determining the cost per hour of hiring a person to perform each of the above
tasks can vary depending on multiple factors, such as geographic location, the level of
experience of the professional, the type of contract, among others. First, we will
estimate the cost of developing and implementing the style transfer model based on
the cost of hiring a Deep Learning professional [9], and then also add the estimated
cost for a Python application developer [10], as follows in the Chart 1:

Chart 1: Costs of the human resources.

18

Section 3 System Analysis and Design

3. SYSTEM ANALYSIS AND DESIGN

Contents

3.1 Theorical Framework. 19
3.1.1 Artificial Neural Networks .19
3.1.2. Convolutional Neural Networks . 21
3.1.3 ReLu .23
3.1.4 Neural Model Proposal .24

3.2 Requirements Analysis. 27
3.2.1 Functional Requirements . 27
3.2.2 Non-functional Requirements . 27

3.3 System Design .28
3.4 System Architecture . 33
3.5 Interface Design . 33

This proposal outlines the development of an application that utilizes artificial neural
networks for neural style transfer. It includes a discussion on the theoretical framework of both
artificial neural networks and Convolutional Neural Network, along with a proposed neural model for
style transfer as essential foundations to understand the implemented model.

The proposal also includes functional and nonfunctional requirements, as well as system design. In
this section, a functional definition and UML diagrams have been included to provide a clear
overview of the system. Additionally, the system architecture will be described, along with the
minimum system requirements necessary to execute the application flawlessly on a PC.

3.1 Theoretical Framework

Due to the complexity of the project, it needs a prior theoretical context to understand its
development, so before starting with the design and architecture of the project, a theoretical
framework must be established. It includes a discussion of both, artificial neural networks and
convolutional neural networks, along with a proposed neural model for style transfer.

Then, the focus of the analysis will be on describing and examining the functional and non-functional
requirements that underpin the application.

3.1.1 Artificial Neural Networks

An Artificial Neural Network is a computational model inspired by the structure and
function of biological neurons operate inside the brain [11]. It is made up of interconnected
nodes or neurons, which process and transmit information through the network.

19

Section 3 System Analysis and Design

An artificial neuron consists of three main components: inputs, weights, and an activation
function. The inputs represent the signals or input values that the neuron receives from other
neurons or the environment. Each input is associated with a weight, which determines the
importance or relative impact of that input on the neuron's output.
The activation function is a mathematical function that takes the weighted sum of the inputs
multiplied by their respective weights and transforms it into an output. This function
introduces non-linearities and defines how the neuron responds and generates an output based
on the received inputs.
The output of an artificial neuron can be used as input for other neurons in the network, thus
forming a network of connections that allows for parallel information processing and the
execution of complex tasks such as pattern recognition, data classification, or
decision-making.

These artificial neurons are organized into layers inside the network, with each layer
responsible for a specific type of computation. The input layer receives data from the outside
world, while the output layer produces the final result. In between the input and output layers,
there can be multiple hidden layers that perform complex computations on the input data.

The process by which an artificial neural network learns from a dataset is called training.
During the training process, the network adjusts its weights and biases based on the input data
and desired output, allowing it to learn and improve its performance. Once the network has
been trained, it can be used for a variety of applications, such as image recognition, natural
language processing, and prediction.

Figure 2: An Artificial Neural Network schema.

20

Section 3 System Analysis and Design

The input layer receives the input data, which is then processed by one or more hidden layers.
Each hidden layer consists of multiple neurons, each of which performs a computation on the input
data. The output of one hidden layer is then passed on to the next hidden layer until the final hidden
layer is reached.

The output layer produces the final output of the network. The number of neurons in the output layer
depends on the type of problem being solved. For example, for a binary classification problem, the
output layer would consist of a single neuron that outputs a value between 0 and 1 indicating the
probability of a positive outcome.

During training, the weights and biases of each neuron in the network are adjusted based on the input
data and desired output, allowing the network to learn and improve its performance over time. Once
the network has been trained, it can be used to make predictions on new data.

3.1.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of neural network that is designed
specifically for image and video recognition. It uses a process called convolution [12], where
the network learns filters to detect specific features in the input data.

Convolution is a mathematical operation that involves applying a filter or kernel to the input
data in order to extract specific features. The filter is a small matrix of weights that slides or
convolves across the input, performing element-wise multiplication and summation at each
position. This process allows the network to learn and detect patterns or features in the input
data, such as edges, textures, or shapes. By performing convolutions at multiple layers of the
network, CNNs can progressively learn more complex and abstract features, enabling them to
recognize patterns and make predictions in image and video data.

A basic schematic of a CNN architecture would typically include the following layers:

● Input layer: The layer that receives the raw image data.
● Convolutional layer: Applies a set of filters to the input image, producing a feature

map.
● Pooling layer: Reduces the spatial dimensions of the feature map, while retaining the

most important information.
● Activation layer: Introduces non-linearity to the network, allowing it to learn complex

relationships between the inputs and outputs.
● Fully-connected layer: Connects every neuron in one layer to every neuron in the next

layer, producing the final output of the network.
● Output layer: The final layer that provides the network's prediction or decision.

21

Section 3 System Analysis and Design

Figure 3: A Convolutional Neural Network schema.

Note that this is just a basic schematic, and actual CNN architectures can be much more
complex and can include multiple convolutional, pooling, and fully-connected layers, as well
as different types of activation functions and regularization techniques.

22

Section 3 System Analysis and Design

3.1.3 ReLu

"ReLu" [13] is an abbreviation for "Rectified Linear Unit," which refers to an
activation function utilized in neural networks. The ReLu function can be defined by the
mathematical expression:

Figure 4: ReLu activation function.

Figure 5: ReLu mathematical representation.

In simple terms, the output of the function equals the input value if it is greater than or equal
to zero, while it is zero otherwise.

The ReLu activation function has gained popularity in neural network architectures due to its
simplicity, computational efficiency, and non-linear characteristics. It permits the network to capture
non-linear relationships between inputs and outputs, making it a useful tool for recognizing patterns in
complex data.

In a neural network, the ReLu activation function is applied during the forward pass to the output of
either a fully connected or a convolutional layer. This action allows the network to introduce
non-linearity, enabling it to learn and identify more intricate patterns in the data.

23

Section 3 System Analysis and Design

3.1.4 Neural Model Proposal

Neural Style Transfer is a technique that uses a neural network to apply the style of
one image to the content of another image. The general structure of a Neural Style Transfer
network involves the following steps:

● Input images: The network takes as input two images: a content image and a style image.
These images need to be preprocessed to meet the requirements of the CNN.

● Feature extraction: Both the content image and the style image are processed by a pre-trained
Convolutional Neural Network, and the activations of certain layers are extracted. These
activations capture high-level information about the content and style of the images.

● Content reconstruction: The activations of the content image are used to reconstruct the
original image. This is done by minimizing the difference between the activations of the
content image and the activations of a generated image.

● Style reconstruction: The activations of the style image are used to define a style
representation, which is used to generate a new image that has the same style as the style
image. This is done by minimizing the difference between the activations of the style
representation and the activations of the generated image.

● Output image: The output image is generated by combining the content of the content image
with the style of the style image. This is done by applying the activations of the content
reconstruction to the style reconstruction. Finally, the generated image undergoes
post-processing to restore it to its original format.

The result is a new image that contains the content of the content image, but with the style of the style
image applied. This process can be repeated with different content and style images to produce a
variety of artistic effects.

24

Section 3 System Analysis and Design

Figure 6: Neural Style Transfer Schema and example.

Finally, the optimization process is performed iteratively, requiring a number of iterations to achieve
realistic style transfer.

Regarding the pre-trained CNN, a popular choice is the VGGNet [14], which is important for style
transfer due to its ability to learn visual features at different levels of abstraction, allowing it to
capture both content and style of images. Its deep and uniform structure, combined with its training on
large datasets, is effective for feature extraction in style transfer. Next, we will see two versions of the
VGGNet considered for implementation.

VGG16 [15] is a convolutional neural network architecture that was developed by the Visual
Geometry Group at Oxford University. It is commonly used for image classification and other
computer vision tasks.
VGG19 [16] is a deeper version of VGG16, with 19 layers instead of 16. It has additional
convolutional layers that make it more powerful, but also more computationally expensive to train and
use.

Finally, VGG19 is selected as it is the most complete one.
VGG19 is also developed by the Visual Geometry Group (VGG) at the University of Oxford. It is a
variant of the VGGNet architecture and is characterized by its use of small, stacked convolutional
layers.

The architecture of VGG19 consists of 19 layers, including 16 convolutional layers and 3 fully
connected layers. The convolutional layers are responsible for learning hierarchical representations of
the input image, while the fully connected layers perform the final classification.
VGG19 uses 3x3 convolutional filters and max pooling layers to reduce the spatial dimensions of the
feature maps, and 2x2 pooling layers are used to further reduce the size.

25

Section 3 System Analysis and Design

The architecture also includes Rectified Linear Unit (ReLU) activation functions, which introduce
non-linearities into the network and improve the network's ability to model complex relationships
between inputs and outputs.

VGG19 has been trained on the ImageNet dataset [17], a large collection of labeled images, and has
achieved state-of-the-art results on various image classification benchmarks. It is often used as a
pre-trained model for transfer learning, where its pre-trained weights on large image classification
datasets are used as the starting point for training on a new, smaller dataset.

Figure 7: ImageNet Dataset Examples

26

Section 3 System Analysis and Design

3.2 Requirements Analysis

In this section, the functional and non-functional requirements of the application are listed,
which are taken into account in the next section to establish its design .

3.2.1. Functional Requirements

• R1: the user can start the application.

• R2: the user can select an artistic style.

• R3: the user can upload an image.

• R4: the user can take a picture.

• R5: the user can quit the application.

• R6: the user can crop the image.

• R7: the user can choose the quality of the output image.

• R8: the system will be able to generate a stylized image.

• R9: the player can download the output image.

3.2.2 Non-Functional Requirements

Non-functional requirements impose conditions on the design or implementation. In
this
project, the non-functional requirements are:

• R10: the system will be able to access the user’s device files to obtain an image.

• R11: the system will be able to access the user’s device files to save an image.

• R12: the system will take around one minute to make the style transfer.

• R13: the application will be simple and intuitive.

27

Section 3 System Analysis and Design

3.3 System Design

Next, in this section, the system design is presented based on the functional requirements,
followed by a use case diagram (Figure 8), a sequential diagram (Figure 9) and a UML Classes
Diagram (Figure 10).

Requirements R1

Actor User

Description The user starts the application by opening it

Preconditions

Normal sequence 1. The user open the application
2. The system loads the main screen

Alternative sequence None

Chart (2.1) Case of Use

Requirements R2

Actor User

Description The user chooses between the 3 available artistic styles

Preconditions 1. The user must be in the main menu

Normal sequence 1. The user press the model selector button
2. The system shows the available models to choose
from

Alternative sequence None

Chart (2.2) Case of Use

28

Section 3 System Analysis and Design

Requirements R3

Actor User

Description The user can choose an image from their device to
upload

Preconditions 1. The user must be in the main menu

Normal sequence 1. The user press the button Upload
2. The system displays the images from the user’s
archive

Alternative sequence None

Chart (2.3) Case of Use

Requirements R4

Actor User

Description The user can take a photo with their device

Preconditions 1. The user must be in the main menu

Normal sequence 1. The user press the button Take Picture
2. The system open the camera of the device

Alternative sequence 2.1 The system does not open the camera of the device
because it is not available

Chart (2.4) Case of Use

Requirements R5

Actor User

Description The user can quit the application

Preconditions 1. The user must be in the main menu

Normal sequence 1. The user press the button Exit
2. The system quit the application

Alternative sequence None

Chart (2.5) Case of Use

29

Section 3 System Analysis and Design

Requirements R6

Actor User

Description The user can crop the uploaded or taken image

Preconditions 1. The user must be in the main menu
2. The user must have uploaded or taken an image

Normal sequence 1. The user press the button Crop
2. The system displays the current image in a pop-up
window
3. The user chooses the area to be cropped.
4. The user confirm the crop

Alternative sequence None

Chart (2.6) Case of Use

Requirements R7

Actor User

Description The user can choose the quality of the output image
using a slider

Preconditions 1. The user must be in the main menu

Normal sequence 1. The user slides the slider.
2. The system change the quality of the output image

Alternative sequence None

Chart (2.7) Case of Use

Requirements R8

Actor User

Description The system perform the stylization of the selected image

Preconditions 1. The user must have uploaded or taken an image

Normal sequence 1. The user press the button Confirm
2. The system performs the transformation of the image

30

Section 3 System Analysis and Design

Alternative sequence None

Chart (2.8) Case of Use

Requirements R9

Actor User

Description The user can download the stylized image to their device

Preconditions 1. The system must have performed the stylization

Normal sequence 1. The user press the button Download
2. The system save the stylized image in the users
device.

Alternative sequence None

Chart (2.9) Case of Use

Figure 8: Use Case Diagram

31

Section 3 System Analysis and Design

Figure 9: Sequence Diagram

Figure 10: UML Clases Diagram

32

Section 3 System Analysis and Design

3.4 System Architecture

The requirements to play the build of this project in a PC are:

● OS: Windows 10 or Higher (home and professional editions)
● CPU: Intel Core i3/ AMD Ryzen 3
● RAM: 4 GB
● GPU: CUDA 3.5 compatible or Higher [18]
● STO: At least 100 MB of available hard disk space.

3.5 Interface Design

This description details the implementation of a style transfer application that allows users to
generate artistic images from an input image or by capturing a real-time photograph. This application
is based on a neural network model that combines the style of a user-selected reference image with the
content of an input image to create a new output image with a unique and personalized aesthetic.

The user interface of the application has been designed considering the principles of usability and
visual aesthetics. An intuitive and user-friendly approach has been employed to ensure an optimal user
experience. The following are the mock-ups of the interface:

Figure 11: Tkinter Application.

33

Section 3 System Analysis and Design

The implementation process of the project was carried out in an organized and comprehensive
manner, following the planned stages. The following describes each of these stages:

● Data Acquisition: Reference images of various artistic styles were collected to train the style
transfer model. These images were properly cited and included in the appendices.

● Data Preprocessing: The reference images were processed to extract styles and content.
Techniques such as image processing and feature extraction were used to obtain suitable
representations for the neural network model.

● Model Training: The style transfer model was implemented using a convolutional neural
network architecture. The model parameters were adjusted, and an iterative training process
was conducted until satisfactory results were achieved.

● Integration with the User Interface: The trained model was integrated with the application's
user interface. The necessary functionalities were developed to allow users to select a
reference image, upload an input image, or capture a real-time photograph, and generate the
output image with the transferred style.

During the implementation process, some problems arose that required additional solutions. These
problems included optimizing the model's performance on mobile devices, managing memory to
avoid overloading, and improving the visual quality of the generated images. Adjustments were made
in the implementation and optimization techniques were applied to address these issues.

Throughout the project, the following milestones were achieved:

● Successful implementation of the style transfer model.
● Effective integration of the model with the user interface.
● Generation of output images with accurately transferred styles and visually appealing results.
● Optimization of the application's performance on different platforms and devices.

The implementation of the style transfer application has been successful, allowing users to generate
personalized artistic images from an input image or real-time photograph. The proposed objectives
have been achieved, and the challenges encountered have been overcome.

34

Section 4 Work Development and Results

4. WORK DEVELOPMENT AND RESULTS

Contents

4.1 Work Development .35
4.2Results . 40

In the field of project development, it is essential to understand the progress and outcomes
achieved. In this part of the work, the objectives accomplished at each stage of the development will
be examined, and the potential adjustments and modifications made throughout the project will be
highlighted. This analysis will provide a comprehensive view of how the project has evolved from its
initial conception to the final results obtained.

4.1. Work Development

This section of the project will be a description of how the main objectives have been
achieved, the problems encountered, the way they have been resolved, and the modifications that the
work has had to undergo compared to the initial planning in order to conclude it.

Before starting with the development of the application, other preliminary tasks had to be carried out
since the development of this application requires prior learning, both about neural networks and the
functioning of Google Colab.

After reading and studying various texts and videos related to the topic, an in-depth exploration was
conducted into the functioning of Google Colab. After this, it is decided to depart from Gatys' article,
which became evident during testing that it has a limitation in providing fast results in few iterations,
which means a longer time. Therefore, an existing implementation extracted from Keras was used as a
template. Its worth to consider that these models are truly complex, many of them being continuously
that these models are truly complex, many of them being continuously revised by researchers.

After evaluating all possible options, pre-trained CNN was the option that better suit to reach specific
requirements and desired constraints according project planning specifically vgg19 model, which
stands as the most comprehensive Convolutional Neural Network model currently available. In the
implementation of Neural Style Transfer used as template [19], multiple layers are used to perform the
necessary operations. These layers are designed to extract features from a reference style image and
apply those features to a target content image.

Without going into too much technical detail, the general process involves the following stages:

Load the CNN model: A pre-trained model, such as VGG16 or VGG19, which has been trained on a
large amount of visual recognition data, is used. These models have a deep architecture with many
convolutional layers and serve as a starting point.

35

Section 4 Work Development and Results

Build the Style Transfer Model: Specific layers from the base model are taken and a new model is
constructed that retains those layers. These selected layers act as feature extractors.

Define Loss functions: Loss functions are defined to capture the difference between the reference
style image and the target content image. These loss functions include a content loss and a style loss,
which represent the similarity in content and style respectively.

Optimize the target image: An optimization algorithm is used to adjust the target content image and
minimize the previously defined Loss functions. This involves iterating the image update process
multiple times to obtain a better approximation of the desired style. It is important to note that while
the Keras implementation provides a solid foundation for the Neural Style Transfer process, it can
also be customized and improved according to specific project needs.

Next step was to choose an artistic style that would work well with our model, and this is where we
encountered the first problem. The main idea was to create an application that, in addition to stylizing
images with classic artistic styles, could also do the same with artistic styles from video games.

Tests were carried out using images sourced from diverse video games- However, they lacked the
desired distinctiveness. Consequently, games were selected based on their notable visual aesthetics
rather than their realism, such as "Gris" [20] and "Journey" [21], alongside another game recognized
for its unique style, namely "Hotline Miami" [22].

Here are some examples of the outputs with different styles:

Figure 12:Examples of close images with “Hotline Miami” and “Journey” style.

36

Section 4 Work Development and Results

Figure 13: Example of landscape with Hotline Miami style.

As is evident from the given information, there are cases where the behavior with wide images, such
as the landscape of Paris, doesn't have any negative issues with the styles. However, when it comes to
closer images like a person or a pet, the output is too poor to be used. the project's main objective,
since the purpose of the application is to use it for avatars, these outputs have to be discarded since
most avatar images are of people, characters, or animals.

Considering this, tests were conducted with more famous and distinctive artistic styles, and good
results were obtained. Some of these styles were chosen as the final ones, such as "The Scream" by
Edvard Munch (1893), "Les Demoiselles d'Avignon" by Pablo Picasso (1907) and "Harlequin's
Carnival" by Joan Miró (1924).

Next, the modification and testing stage of the models with the chosen styles begins in order to obtain
the best possible outputs. Different changes are included, for example, by using different layers of the
VGG19 model to achieve different results depending on the artistic style. For instance:

To perform style transfer using "The Scream" style, various convolutional layers can be utilized to
capture different levels of features and styles, such as the layers:

- Convolutional Layer: block1_conv1
- Convolutional Layer: block2_conv1
- Convolutional Layer: block3_conv1
- Convolutional Layer: block4_conv1
- Convolutional Layer: block5_conv1

These layers represent different levels of abstraction in the network and capture more detailed features
as they progress to higher layers. By combining the style representations extracted from these layers
with the content features of an input image, style transfer can be achieved, reflecting "The Scream's"
distinctive style in the target image.

37

Section 4 Work Development and Results

Figure 14: Example of The Scream transfer style.

Another example is:
- Convolutional Layer: block1_conv1
- Convolutional Layer: block2_conv2
- Convolutional Layer: block3_conv3
- Convolutional Layer: block4_conv4
- Convolutional Layer: block5_conv4

These layers also represent different levels of abstraction in the network and capture more detailed
features as you go deeper into the higher layers. By combining the style representations extracted
from these layers with the content features of an input image, style transfer can be achieved, reflecting
the distinctive artistic style of "Demoiselles d'Avignon" in the target image.

Figure 15: Example of Demoiselles d'Avignon transfer style.

Once tuning over model was completed, next step was developing this model as application together
with user interface, as it have to execute in a personal computer,installing Deep learning libraries
along with python was necessary, migrate to Anaconda environment along with Spyder, as they were

38

Section 4 Work Development and Results

necessary due to the large number of libraries needed for the application development. Similarly, the
main challenge encountered in the app development, which has taken the most time, has been the
multiple errors when installing all the libraries since specific versions of each library need to be used
to ensure compatibility among them, especially with Python, TensorFlow and cuDNN [23].

Some of these errors were easily solved, especially thanks to internet searches and solutions provided
by users on Stack Overflow. Other errors occurred due to compatibility issues between certain
libraries that were initially compatible but had problems with a specific library in the end.

Figure 16: OpenCV incompatibility error.

And finally, some errors occurred where, after installing a library, when trying to use it, an error
occurred indicating that it wasn't installed, even though it appeared as installed in the environment.
With the help of the tutor and dedicating a significant amount of time, we managed to find solutions to
continue with the project.

Once we have started the development of the model and the application, we can now discuss the
relationship between both of them. In this case, there is an obvious and significant problem: there is a
very high waiting time when transforming one image into another through style transfer. To find a
solution to this problem, a significant reduction in image resolution is applied, allowing the app itself
to perform preprocessing of the input images. This simple modification significantly reduces the
waiting time during the stylization of the images, turning a process that used to take nearly 5 minutes
into just around a minute.

To further reduce the image generation time, the use of the AdaIN technique for Style Transfer [24]
was considered. AdaIN (Adaptive Instance Normalization) is a technique used in Style Transfer in the
field of machine learning. Unlike a model based on VGG19, which focuses on capturing content and
style features in different convolutional layers, AdaIN focuses on Adaptive Instance Normalization. In
the style transfer process, AdaIN takes a content image and a style image and adjusts the instance
normalization of the content image to statistically resemble the style image. This is achieved by
adjusting the mean and standard deviation of the features in the convolutional layers, allowing the
content image to acquire stylistic characteristics similar to the style image.

39

Section 4 Work Development and Results

Thanks to this, when generating a stylized image, AdaIN is faster than VGG19, which could help
further reduce the waiting time. However, the problem is that using AdaIN for style transfer requires
training the model with a dataset, which takes a significant amount of time. Generally, the
convergence time can vary from several days to even several weeks, which is not feasible according to
project planning and time spent. Therefore, we ultimately discarded this option and continued with the
previously chosen model, VGG19.

4.2. Results

As a result, after the project development, all the initial objectives proposed have been
achieved, although there have been some modifications regarding the initial idea of the app. Initially,
it was supposed to be a simple application where the user would choose an image or take a photo and
perform style transfer with the chosen style. To these functions, the option for the user to crop images,
choose from multiple models, and select higher or lower quality of the resulting images has been
added.

The following is a table showing the comparison between the expected hours for each task and the
actual time needed:

TASK Expected Time Actual Time

Studying and learning about Neural Style Transfer
technology

30 hours 30 hours

Alternative’s analysis and choice of the deep learning model 30 hours 30 hours

Implementation of the chosen model 80 hours 90 hours

Development of a data set for the avatar’s generation 10 hours 10 hours

Model training and analysis for the digital avatar
personalization

30 hours 20 hours

User interface development 60 hours 70 hours

Documentation and presentation 60 hours 50 hours

Chart 3: Tracking Table for Planned Hours and Actual Hours Used.

As observed in the table, there has been a variation in the hours used compared to the ones initially
planned. This variation is attributed to the issues encountered during the development process, as
previously mentioned. As a result, it was necessary to allocate more hours than expected for the
application development, both in terms of implementing the model and developing the interface and
app functions.

40

Section 4 Work Development and Results

The final result of this project was obtaining transformed images through style transfer using
convolutional networks, so to conclude this section, we are going to analyze the final images obtained.

To perform this analysis, we will take into account the perceptual loss.

Perceptual loss is a metric that quantifies the difference between the generated image and the
reference image in terms of perceptual features. It is calculated using pre-trained neural network
models, such as VGGNet, by measuring the differences in activations of intermediate layers for the
generated image and the reference image. A lower perceptual loss indicates a better match in
perceptual features between the images.

Figure 17: Resulting images with their loss.

In the loss functions of the resulting images (see Figure 16), different losses are obtained depending
on the model. Therefore, subjective evaluation should also be taken into account when assessing the
results, as it is important to note that no metric is perfect, and there may be discrepancies between
objective metrics and human perception. Therefore, it is recommended to use a combination of
objective metrics and subjective evaluation to obtain a more comprehensive and accurate assessment
of style transfer.

41

Section 4 Work Development and Results

42

Section 5 Conclusions and Future Work

5. CONCLUSIONS AND FUTUREWORK

Contents

5.1 Conclusions . 43
5.2 Future Work . 43

5.1. Conclusions

Throughout my degree, we have developed various video games or applications, but we have
never had to undertake a project of this nature. In this Bachelor's Thesis, an exhaustive analysis and
development of Style Transfer techniques based on Convolutional Neural Networks have been carried
out. As a result of this, I have been able to learn a lot about a field that is in growing development and
is increasingly gaining importance, such as the field of artificial intelligence and deep learning.
Although this field is briefly touched upon in the degree program, having this prior knowledge has
undoubtedly been helpful.

Finally, it is crucial to highlight that recent advances in artificial intelligence are exciting and
promising. Artificial Intelligence has enormous potential to positively transform our society, from
medicine and education to transportation and industry.

However, we must remember that we are responsible for its proper development and application. Only
by addressing these advancements with ethical awareness and a focus on the collective well-being can
we fully harness the benefits of artificial intelligence and build a fairer and more equitable future.

5.2. Future Work

In the short term, one of the works that will be done to improve the application and make it
more complete is to expand the number of art styles available. This would provide users with a greater
variety of options to choose from. In addition, another service that is planned to be implemented in the
future is integration with cloud services. For example, users could be allowed to easily store and share
their stylised images online.

These enhancements, along with others that could be implemented, aim to create an application that is
as complete as possible so that it can be sold, and subsequently incorporated by the relevant team into
popular platforms for both PC and mobile devices. From Steam and Xbox to Android and web
browsers, the aim is to broaden the reach of the application and reach a wider audience. In this way,
users of these platforms themselves will be able to conveniently enjoy the service of our application,
allowing them to edit their avatars and give them a distinctive touch in a simple way.

43

Section 5 Conclusions and Future Work

Furthermore, the utilization of AdaIn should be thoroughly examined and further investigated in
scenarios where the initial application of style transfer did not yield the desired results.

44

6. CITEDWORKS

[1] Dey, S. (2022, 30 marzo). Neural Style Transfer on Real Time Video (With Full
implementable code). Medium.
https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementa
ble-code-ac2dbc0e9822

[2] "A Neural Algorithm of Artistic Style" by Leon A. Gatys, Alexander S. Ecker, and
Matthias Bethge [1508.06576] A Neural Algorithm of Artistic Style (arxiv.org)

[3] Tharsanee, R. M., Soundariya, R. S., Kumar, A. S., Karthiga, M., & Sountharrajan, S.
(2021). Deep Convolutional Neural Network–based image classification for COVID-19
diagnosis. En Data Science for COVID-19 (pp. 117–145). Elsevier.
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network

[4] Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent Progress on
Generative Adversarial Networks (GANs): A Survey. IEEE Access, 7, 36322-36333.
https://doi.org/10.1109/access.2019.2905015
Recent Progress on Generative Adversarial Networks (GANs): A Survey | IEEE Journals &
Magazine | IEEE Xplore

[6] EdXD. (2022, 6 noviembre). What is Google Colab: A Beginner's Guide - ByteXD.
https://bytexd.com/what-is-google-colab-a-beginner-guide/?utm_content=cmp-true

[7] Team, K. (s. f.). Keras: Deep Learning for humans. https://keras.io/

[8] Osterbuhr, T. (2023). What is Anaconda and how does it relate to Python? Venture
Lessons. https://www.venturelessons.com/what-is-anaconda/

[9] UpWork Machine Learning Expert artificial intelligence - Upwork

[10] UpWork App Developer app developer - Upwork

[11] Puri, M., Solanki, A., Padawer, T., Tipparaju, S. M., Moreno, W. A., & Pathak, Y. (2016).
Introduction to artificial neural network (ANN) as a predictive tool for drug design, discovery,
delivery, and disposition. En Artificial Neural Network for Drug Design, Delivery and
Disposition (pp. 3–13). Elsevier.

[12] Mishra, M. (2020, agosto 26). Convolutional neural networks, explained. Towards Data
Science.
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939

45

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822
https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822
https://arxiv.org/abs/1508.06576
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://ieeexplore.ieee.org/document/8667290
https://ieeexplore.ieee.org/document/8667290
https://bytexd.com/what-is-google-colab-a-beginner-guide/?utm_content=cmp-true
https://keras.io/
https://www.venturelessons.com/what-is-anaconda/
https://www.upwork.com/ab/profiles/search?q=artificial%20intelligence
https://www.upwork.com/ab/profiles/search?q=app%20developer
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939

[13] A Gentle Introduction to the Rectified Linear Unit (ReLU) -
MachineLearningMastery.com. (s.f.). MachineLearningMastery.com.
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neu
ral-networks/

[14] Chan, K., Im, S., & Ke, W. (2020). VGGreNet: A Light-Weight VGGNet with Reused
Convolutional Set. https://doi.org/10.1109/ucc48980.2020.00068

[15] Hassan, M. U. (2023). VGG16 – Convolutional Network for Classification and
Detection. Neurohive.
https://neurohive.io/en/popular-networks/vgg16/#:~:text=VGG16%20%E2%80%93%20Conv
olutional%20Network%20for%20Classification%20and%20Detection,%E2%80%9CVery%2
0Deep%20Convolutional%20Networks%20for%20Large-Scale%20Image%20Recognition%
E2%80%9D.

[16] Mascarenhas, S., & Agarwal, M. (2021). A comparison between VGG16, VGG19 and
ResNet50 architecture frameworks for Image Classification.
https://doi.org/10.1109/centcon52345.2021.9687944

[17] Papers with Code - ImageNet Dataset. (s. f.).
https://paperswithcode.com/dataset/imagenet

[18] Minimum requirements https://www.tensorflow.org/install/gpu?hl=es-419

[19] Team, K. (s. f.). Keras documentation: Neural style transfer.
https://keras.io/examples/generative/neural_style_transfer/

[20] Home - Nomada Studio. (s. f.). Nomada Studio. https://nomada.studio/

[21] Tgc. (2020, 14 abril). Journey - thatgamecompany. thatgamecompany.
https://thatgamecompany.com/journey/

[22] HOTLINE MIAMI. (s. f.). https://hotlinemiami.com/

[23] NVIDIA CUDA Deep Neural Network (cuDNN). (2023, 27 junio). NVIDIA Developer.
https://developer.nvidia.com/cudnn
[24] Huang, X., & Belongie, S. (2017). Arbitrary Style Transfer in Real-Time with Adaptive
Instance Normalization. https://doi.org/10.1109/iccv.2017.167

46

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://doi.org/10.1109/ucc48980.2020.00068
https://neurohive.io/en/popular-networks/vgg16/#:~:text=VGG16%20%E2%80%93%20Convolutional%20Network%20for%20Classification%20and%20Detection,%E2%80%9CVery%20Deep%20Convolutional%20Networks%20for%20Large-Scale%20Image%20Recognition%E2%80%9D
https://neurohive.io/en/popular-networks/vgg16/#:~:text=VGG16%20%E2%80%93%20Convolutional%20Network%20for%20Classification%20and%20Detection,%E2%80%9CVery%20Deep%20Convolutional%20Networks%20for%20Large-Scale%20Image%20Recognition%E2%80%9D
https://neurohive.io/en/popular-networks/vgg16/#:~:text=VGG16%20%E2%80%93%20Convolutional%20Network%20for%20Classification%20and%20Detection,%E2%80%9CVery%20Deep%20Convolutional%20Networks%20for%20Large-Scale%20Image%20Recognition%E2%80%9D
https://neurohive.io/en/popular-networks/vgg16/#:~:text=VGG16%20%E2%80%93%20Convolutional%20Network%20for%20Classification%20and%20Detection,%E2%80%9CVery%20Deep%20Convolutional%20Networks%20for%20Large-Scale%20Image%20Recognition%E2%80%9D
https://doi.org/10.1109/centcon52345.2021.9687944
https://paperswithcode.com/dataset/imagenet
https://www.tensorflow.org/install/gpu?hl=es-419
https://keras.io/examples/generative/neural_style_transfer/
https://nomada.studio/
https://thatgamecompany.com/journey/
https://hotlinemiami.com/
https://developer.nvidia.com/cudnn
https://doi.org/10.1109/iccv.2017.167

Appendix

A. Source Code

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.applications import vgg19

base_image_path = keras.utils.get_file("perro.jpg",

"https://i.imgur.com/pwsKT2G.jpeg")

style_reference_image_path = keras.utils.get_file(

"grito.jpg", "https://i.imgur.com/QxSAVyJ.jpeg"

)

result_prefix = "perro_generated"

Weights of the different loss components

total_variation_weight = 1e-6

style_weight = 1e-6

content_weight = 2.5e-8

Dimensions of the generated picture.

width, height =

keras.preprocessing.image.load_img(base_image_path).size

img_nrows = 256

#img_ncols = 256

img_ncols = int(width * img_nrows / height)

def preprocess_image(image_path):

Util function to open, resize and format pictures into

appropriate tensors

img = keras.preprocessing.image.load_img(

image_path, target_size=(img_nrows, img_ncols)

)

47

img = keras.preprocessing.image.img_to_array(img)

img = np.expand_dims(img, axis=0)

img = vgg19.preprocess_input(img)

return tf.convert_to_tensor(img)

def deprocess_image(x):

Util function to convert a tensor into a valid image

x = x.reshape((img_nrows, img_ncols, 3))

Remove zero-center by mean pixel

x[:, :, 0] += 103.939

x[:, :, 1] += 116.779

x[:, :, 2] += 123.68

'BGR'->'RGB'

x = x[:, :, ::-1]

x = np.clip(x, 0, 255).astype("uint8")

return x

from IPython.display import Image, display

display(Image(filename=base_image_path, width=500, height=500))

display(Image(filename=style_reference_image_path, width=500,

height=500))

The gram matrix of an image tensor (feature-wise outer product)

def gram_matrix(x):

x = tf.transpose(x, (2, 0, 1))

features = tf.reshape(x, (tf.shape(x)[0], -1))

gram = tf.matmul(features, tf.transpose(features))

return gram

The "style loss" is designed to maintain

the style of the reference image in the generated image.

It is based on the gram matrices (which capture style) of

feature maps from the style reference image

and from the generated image

def style_loss(style, combination):

48

S = gram_matrix(style)

C = gram_matrix(combination)

channels = 3

size = img_nrows * img_ncols

return tf.reduce_sum(tf.square(S - C)) / (4.0 * (channels**2) *

(size**2))

An auxiliary loss function

designed to maintain the "content" of the

base image in the generated image

def content_loss(base, combination):

return tf.reduce_sum(tf.square(combination - base))

The 3rd loss function, total variation loss,

designed to keep the generated image locally coherent

def total_variation_loss(x):

a = tf.square(

x[:, : img_nrows - 1, : img_ncols - 1, :] - x[:, 1:, :

img_ncols - 1, :]

)

b = tf.square(

x[:, : img_nrows - 1, : img_ncols - 1, :] - x[:, : img_nrows -

1, 1:, :]

)

return tf.reduce_sum(tf.pow(a + b, 1.25))

Build a VGG19 model loaded with pre-trained ImageNet weights

model = vgg19.VGG19(weights="imagenet", include_top=False)

Get the symbolic outputs of each "key" layer (we gave them unique

names).

outputs_dict = dict([(layer.name, layer.output) for layer in

model.layers])

Set up a model that returns the activation values for every layer in

VGG19 (as a dict).

49

feature_extractor = keras.Model(inputs=model.inputs,

outputs=outputs_dict)

List of layers to use for the style loss.

style_layer_names = [

"block1_conv1",

"block2_conv1",

"block3_conv1",

"block4_conv1",

"block5_conv1",

]

The layer to use for the content loss.

content_layer_name = "block5_conv2"

def compute_loss(combination_image, base_image, style_reference_image):

input_tensor = tf.concat(

[base_image, style_reference_image, combination_image], axis=0

)

features = feature_extractor(input_tensor)

Initialize the loss

loss = tf.zeros(shape=())

Add content loss

layer_features = features[content_layer_name]

base_image_features = layer_features[0, :, :, :]

combination_features = layer_features[2, :, :, :]

loss = loss + content_weight * content_loss(

base_image_features, combination_features

)

Add style loss

for layer_name in style_layer_names:

layer_features = features[layer_name]

style_reference_features = layer_features[1, :, :, :]

combination_features = layer_features[2, :, :, :]

sl = style_loss(style_reference_features, combination_features)

loss += (style_weight / len(style_layer_names)) * sl

Add total variation loss

loss += total_variation_weight *

total_variation_loss(combination_image)

50

return loss

@tf.function

def compute_loss_and_grads(combination_image, base_image,

style_reference_image):

with tf.GradientTape() as tape:

loss = compute_loss(combination_image, base_image,

style_reference_image)

grads = tape.gradient(loss, combination_image)

return loss, grads

optimizer = keras.optimizers.SGD(

keras.optimizers.schedules.ExponentialDecay(

initial_learning_rate=100.0, decay_steps=100, decay_rate=0.96

)

)

base_image = preprocess_image(base_image_path)

style_reference_image = preprocess_image(style_reference_image_path)

combination_image = tf.Variable(preprocess_image(base_image_path))

iterations = 1000

for i in range(1, iterations + 1):

loss, grads = compute_loss_and_grads(

combination_image, base_image, style_reference_image

)

optimizer.apply_gradients([(grads, combination_image)])

if i % 100 == 0:

print("Iteration %d: loss=%.2f" % (i, loss))

img = deprocess_image(combination_image.numpy())

fname = result_prefix + "_at_iteration_%d.png" % i

keras.preprocessing.image.save_img(fname, img,

target_size=(img_nrows, img_ncols))

display(Image(result_prefix + "_at_iteration_%d.png" % i))

print(combination_image.shape)

import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk
from tkinter import Canvas
from tkinter import NW

51

import cv2

from tensorflow import keras
import numpy as np
from tensorflow.keras.applications import vgg19
import tensorflow as tf
from tkinter import ttk

img_nrows = 256
img_ncols = 256

class MainScreen(tk.Frame):

def update_quality(self, value):
Actualizar la calidad de la imagen aquí
img_nrows=value
img_ncols=value
self.value_label.config(text=f"Quality: {value}")

def __init__(self, master):
super().__init__(master)
self.master = master
self.image = None
self.pack()
self.create_widgets()
self.camera = cv2.VideoCapture(0) # inicializar la cámara

def create_widgets(self):
Definir la fuente personalizada
my_font = ("Garamond", 12)

Establecer la fuente predeterminada para todos los widgets de la aplicación
self.master.option_add("*Font", my_font)

self.create_title_label()

variable de control para el modelo seleccionado
self.model_var = tk.StringVar(self)

52

self.model_var.set("MODEL 1")

lista de imágenes para cada modelo, reescaladas a la mitad
self.model_images = {
"MODEL 1": tk.PhotoImage(file="model1.png").subsample(5),
"MODEL 2": tk.PhotoImage(file="model2.png").subsample(7),
"MODEL 3": tk.PhotoImage(file="model3.png").subsample(5)

}

widget Label para mostrar la imagen
self.model_image_label = tk.Label(self,

image=self.model_images[self.model_var.get()], bg="white", font="Garamond")
self.model_image_label.pack()

función para actualizar la imagen cada vez que cambie el modelo seleccionado
def update_image(*args):

self.model_image_label.config(image=self.model_images[self.model_var.get()],
bg="white")

actualizar la imagen al inicio
update_image()

asociar la variable de control con el widget OptionMenu
self.model_option_menu = tk.OptionMenu(self, self.model_var, "MODEL 1",

"MODEL 2", "MODEL 3", command=update_image)
self.model_option_menu.pack()

self.image_label = tk.Label(self)
self.image_label.pack()

Crear un Frame para los botones "Take Photo" y "Upload Image"
button_frame = tk.Frame(self)
button_frame.config(bg="white")
button_frame.pack()

Crear el botón "Take Photo"
self.photo_button = tk.Button(button_frame, text="TAKE PICTURE",

font=("Garamond"), command=self.take_photo)
image = tk.PhotoImage(file="camera.png")
image = image.subsample(15)

self.photo_button.config(image=image, width=160, height=40,
compound=tk.LEFT)

self.photo_button.image = image

53

self.photo_button.pack(side=tk.LEFT, padx=5)

Crear el botón "Upload Image"
self.upload_button = tk.Button(button_frame, command=self.upload_image,

bg="white", fg="black", font="Garamond")
upload_image = tk.PhotoImage(file="uploadImage.png") # Reemplaza

"ruta_de_la_imagen.png" con la ruta de tu imagen
upload_image = upload_image.subsample(15)

self.upload_button.config(image=upload_image, text="UPLOAD IMAGE",
width=160, height=40, compound=tk.LEFT) # Ajusta los valores de width y height
según tus necesidades

self.upload_button.image = upload_image
self.upload_button.pack(side=tk.LEFT, padx=5)

Crear un Frame para los botones "Crop" y "Confirm"
crop_confirm_frame = tk.Frame(self)
crop_confirm_frame.config(bg="white")
crop_confirm_frame.pack()

Crear un botón para iniciar el recorte
self.crop_button = tk.Button(crop_confirm_frame,command=self.crop,

bg="white", fg="black", font="Garamond")
crop_image = tk.PhotoImage(file="crop.png")
crop_image = crop_image.subsample(15)
self.crop_button.config(image=crop_image, text="CROP", width=100, height=40,

compound=tk.LEFT) # Ajusta los valores de width y height según tus necesidades
self.crop_button.image = crop_image
self.crop_button.pack(side=tk.LEFT, padx=5, pady=5)

Crear un botón para confirmar
self.confirm_button = tk.Button(crop_confirm_frame, text="CONFIRM",

command=self.confirm, bg="white", fg="black", font="Garamond")
confirm_image = tk.PhotoImage(file="confirm.png")
confirm_image = confirm_image.subsample(25)
self.confirm_button.config(image=confirm_image, text="CONFIRM", width=120,

height=40, compound=tk.LEFT) # Ajusta los valores de width y height según tus
necesidades

self.confirm_button.image = confirm_image
self.confirm_button.pack(side=tk.LEFT, padx=5)

Crear el slider de calidad

54

self.quality_scale_value = tk.IntVar()
self.quality_scale_value.set(128) # valor inicial del slider
self.quality_scale = tk.Scale(self, from_=32, to=512, length=200,

variable=self.quality_scale_value, command=self.update_quality,
orient=tk.HORIZONTAL)

self.quality_scale.set(128) # valor inicial del slider
self.quality_scale.pack()

Crear la etiqueta para mostrar el valor del slider
self.value_label = tk.Label(self, text="Quality: 128")
self.value_label.pack()

Lista de valores fijos permitidos para el control deslizante
fixed_values = [32, 64, 128, 192, 256, 512]

def update_quality(self, value):
Redondear el valor del control deslizante al valor fijo más cercano
closest_value = min(fixed_values, key=lambda x: abs(x - float(value)))
self.quality_scale.set(closest_value)
self.value_label.config(text=f"Quality: {closest_value}")

Inicializar la variable de instancia para la imagen recortada
self.cropped_image = None

def create_title_label(self):
self.title_label = tk.Label(self, text="AVATAR STYLER", font=("Perpetua", 24),

bg="white", fg="black")
self.title_label.pack()

def crop(self):

if self.image is None:
return

Crear una nueva ventana para el recorte
self.crop_window = tk.Toplevel(self.master)

Mostrar la imagen en un Canvas para permitir que el usuario seleccione la zona
de recorte

self.canvas = Canvas(self.crop_window, width=self.image.width,
height=self.image.height)

self.canvas.pack()
self.tk_image = ImageTk.PhotoImage(self.image)

55

self.canvas.create_image(0, 0, image=self.tk_image, anchor=NW)

Permitir que el usuario seleccione la zona de recorte
self.crop_area = self.canvas.create_rectangle(0, 0, 0, 0, outline="red")
self.canvas.bind("<ButtonPress-1>", self.start_crop)
self.canvas.bind("<B1-Motion>", self.crop_drag)
self.canvas.bind("<ButtonRelease-1>", self.end_crop)

Crear un botón para confirmar el recorte
self.confirm_button = tk.Button(self.crop_window, text="Confirmar",

command=self.confirm_crop)
self.confirm_button.pack()

def start_crop(self, event):
self.start_x = event.x
self.start_y = event.y

def crop_drag(self, event):
self.canvas.coords(self.crop_area, self.start_x, self.start_y, event.x, event.y)

def end_crop(self, event):
self.end_x = event.x
self.end_y = event.y

def confirm_crop(self):
Obtener las coordenadas de la zona de recorte
x1 = min(self.start_x, self.end_x)
y1 = min(self.start_y, self.end_y)
x2 = max(self.start_x, self.end_x)
y2 = max(self.start_y, self.end_y)

Recortar la imagen y almacenarla en la variable de instancia
self.cropped_image = self.image.crop((x1, y1, x2, y2))

Actualizar la imagen en el label original
self.photo = ImageTk.PhotoImage(self.cropped_image)
self.image_label.configure(image=self.photo) #AQUIIIIIIIIII

Cerrar la ventana de recorte
self.crop_window.destroy()

def take_photo(self):
ret, frame = self.camera.read() # Capturar un frame de la cámara

56

if ret:
Convertir el frame a una imagen PIL y mostrarla en el widget Label
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
self.image = Image.fromarray(image)
self.photo = ImageTk.PhotoImage(self.image)
self.image_label.config(image=self.photo)

def upload_image(self):
Abrir un cuadro de diálogo para seleccionar un archivo de imagen
file_path = filedialog.askopenfilename()
if file_path:
Cargar la imagen seleccionada y redimensionarla
self.image = Image.open(file_path)
resized_image = self.image.resize((256, 256)) # Redimensionar a un tamaño fijo

(256x256)

Mostrar la imagen redimensionada en el widget Label
self.photo = ImageTk.PhotoImage(resized_image)
self.image_label.config(image=self.photo)

Abrir un cuadro de diálogo para seleccionar un archivo de imagen
file_path = filedialog.askopenfilename()
if file_path:
Cargar la imagen seleccionada y mostrarla en el widget Label
self.image = Image.open(file_path)
self.photo = ImageTk.PhotoImage(self.image)
self.image_label.config(image=self.photo)

def confirm(self):
loading_screen = LoadingScreen(self)
if self.cropped_image:
image_path = "cropped_image.png" # Ruta de archivo temporal para la imagen

recortada
self.cropped_image.save(image_path) # Guardar la imagen recortada en un

archivo temporal
else:

image_path = "uploaded_image.png" # Ruta de archivo temporal para la
imagen cargada

57

self.image.save(image_path) # Guardar la imagen cargada en un archivo
temporal

loading_screen.start_process(image_path)
self.destroy()

class LoadingScreen(tk.Frame):
def __init__(self, master):
super().__init__(master)
self.master = master
self.pack()
self.create_widgets()

def create_widgets(self):
self.loading_label = tk.Label(self, text="Loading...")
self.loading_label.pack()

self.progress_bar = ttk.Progressbar(self, orient='horizontal', length=200,
mode='determinate')

self.progress_bar.pack()

self.start_process()

def start_process(self):
Obtén la imagen seleccionada por el usuario

input_image = self.master.cropped_image if self.master.cropped_image else
self.master.image

Carga el modelo de style transfer
model = keras.models.load_model("modeloGritoFinal.h5")

Obtén la ruta del archivo de imagen
image_path = "cropped_image.png" if self.master.cropped_image else

"uploaded_image.png"
input_image.save(image_path) # Guardar la imagen en un archivo temporal

Preprocesa la imagen de entrada para adaptarla al formato requerido por el
modelo

preprocessed_image = self.preprocess_image(image_path)

58

Aplica el estilo artístico a la imagen mediante la transferencia de estilo
stylized_image = model.predict(preprocessed_image)

style_transfer = StyleTransfer()
content_image_path = preprocessed_image
style_image_path = "model2.png"
output_image = style_transfer.aplica_estilo(image_path, style_image_path, 500)
output_image.save("result2.png")

#deprocessed_image = Image.open('ruta_de_tu_imagen_deprocesada.jpg')
deprocessed_image = self.deprocess_image(output_image)

output_image = np.squeeze(output_image, axis=0) # Elimina la dimensión
adicional del lote

print(deprocessed_image.shape)

output_image = Image.fromarray(deprocessed_image)
output_path = "imagen_estilizada.png"

Guarda la imagen estilizada en un archivo
stylized_image = np.squeeze(stylized_image, axis=0) # Elimina la dimensión

adicional del lote

print(stylized_image.shape)

stylized_image = self.deprocess_image(stylized_image) # Desprocesa la imagen
output_image = Image.fromarray(stylized_image) # Crea una instancia de

PIL.Image
output_path = "ruta/a/donde/guardar/imagen_estilizada.png"
output_image.save(output_path) # Guarda la imagen estilizada en un archivo

Muestra la pantalla de resultados
self.result_screen = ResultScreen(self.master)
self.destroy()

@staticmethod
def preprocess_image(image_path):
img = keras.preprocessing.image.load_img(
image_path, target_size=(img_nrows, img_ncols)

59

)
img = keras.preprocessing.image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img

@staticmethod
def deprocess_image(x):

x = x.reshape((img_nrows, img_ncols, 3)).astype("float64")
Reajusta la imagen a su rango original
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
Convierte de BGR a RGB
x = x[:, :, ::-1]
Asegúrate de que los valores estén en el rango de 0 a 255
x = np.clip(x, 0, 255).astype("uint8")
return x

class StyleTransfer:
def __init__(self, img_nrows=256, img_ncols=256):
self.img_nrows = img_nrows
self.img_ncols = img_ncols
self.total_variation_weight = 1e-6
self.style_weight = 1e-6
self.content_weight = 2.5e-8
self.style_layer_names = [
"block1_conv1",
"block2_conv1",
"block3_conv1",
"block4_conv1",
"block5_conv1",

]
self.content_layer_name = "block5_conv2"
self.model = None
self.feature_extractor = None
self.optimizer = None

def preprocess_image(self, image_path):
img = keras.preprocessing.image.load_img(
image_path, target_size=(self.img_nrows, self.img_ncols)

60

)
img = keras.preprocessing.image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return tf.convert_to_tensor(img)

def deprocess_image(self, x):
x = x.reshape((self.img_nrows, self.img_ncols, 3))
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype("uint8")
return x

def gram_matrix(self, x):
x = tf.transpose(x, (2, 0, 1))
features = tf.reshape(x, (tf.shape(x)[0], -1))
gram = tf.matmul(features, tf.transpose(features))
return gram

def style_loss(self, style, combination):
S = self.gram_matrix(style)
C = self.gram_matrix(combination)
channels = 3
size = self.img_nrows * self.img_ncols
return tf.reduce_sum(tf.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))

def content_loss(self, base, combination):
return tf.reduce_sum(tf.square(combination - base))

def total_variation_loss(self, x):
a = tf.square(x[:, : self.img_nrows - 1, : self.img_ncols - 1, :] - x[:, 1:, :

self.img_ncols - 1, :])
b = tf.square(x[:, : self.img_nrows - 1, : self.img_ncols - 1, :] - x[:, : self.img_nrows -

1, 1:, :])
return tf.reduce_sum(tf.pow(a + b, 1.25))

def compute_loss(self, combination_image, base_image, style_reference_image):
input_tensor = tf.concat([base_image, style_reference_image, combination_image],

axis=0)
features = self.feature_extractor(input_tensor)

loss = tf.zeros(shape=())

61

layer_features = features[self.content_layer_name]
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]

loss += self.content_weight * self.content_loss(base_image_features,
combination_features)

for layer_name in self.style_layer_names:
layer_features = features[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[2, :, :, :]
sl = self.style_loss(style_reference_features, combination_features)
loss += (self.style_weight / len(self.style_layer_names)) * sl

loss += self.total_variation_weight * self.total_variation_loss(combination_image)
return loss

def aplica_estilo(self, content_image_path, style_image_path, iterations):
content_image = self.preprocess_image(content_image_path)
style_image = self.preprocess_image(style_image_path)

base_image = tf.Variable(content_image, dtype=tf.float32)
style_reference_image = tf.Variable(style_image, dtype=tf.float32)
combination_image = tf.Variable(content_image, dtype=tf.float32)

self.feature_extractor = vgg19.VGG19(
include_top=False, weights="imagenet", input_shape=(self.img_nrows,

self.img_ncols, 3)
)

outputs_dict = dict([(layer.name, layer.output) for layer in
self.feature_extractor.layers])

self.feature_extractor = keras.Model(inputs=self.feature_extractor.inputs,
outputs=outputs_dict)

self.feature_extractor.trainable = False

self.optimizer = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)

@tf.function()
def train_step(combination_image):
with tf.GradientTape() as tape:

loss = self.compute_loss(combination_image, base_image,
style_reference_image)

62

grads = tape.gradient(loss, combination_image)
self.optimizer.apply_gradients([(grads, combination_image)])

combination_image.assign(tf.clip_by_value(combination_image,
clip_value_min=0.0, clip_value_max=255.0))

for i in range(iterations):
train_step(combination_image)

final_image = self.deprocess_image(combination_image.numpy())
final_image = Image.fromarray(final_image)
return final_image

class ResultScreen(tk.Frame):
def __init__(self, master):
super().__init__(master)
self.master = master
self.pack()
self.create_widgets()

def create_widgets(self):
self.result_label = tk.Label(self, text="Result:")
self.result_label.pack()

self.result_image = tk.PhotoImage(file="result2.png")
self.result_canvas = tk.Canvas(self, width=self.result_image.width(),

height=self.result_image.height())
self.result_canvas.create_image(0, 0, anchor=tk.NW, image=self.result_image)
self.result_canvas.pack()

self.download_button = tk.Button(self, text="Download Image",
command=self.download)

self.download_button.pack()

self.return_button = tk.Button(self, text="Return to Main Screen",
command=self.return_to_main)

self.return_button.pack()

def download(self):
TODO: Implement image downloading functionality
pass

def return_to_main(self):
main_screen = MainScreen(self.master)

63

self.destroy()

if __name__ == "__main__":
root = tk.Tk()
root.geometry("400x400")
main_screen = MainScreen(root)
root.mainloop()

B. Diagram and Figure List

2. PLANNING AND RESOURCES EVALUATION

-Figure 1: Gantt Diagram of the memory…………………………………..……….………. Pág. 15

3. SYSTEM ANALYSIS AND DESIGN

-Figure 2: An Artificial Neural Network schema ………………………………….………. Pág. 20
-Figure 3: A Convolutional Neural Network schema……………………...……….………. “ 22
-Figure 4: ReLu activation function…………………………...…………………….………. “ 23
-Figure 5: ReLu mathematical representation ……………………………..……….………. “ 23
-Figure 6: Neural Style Transfer Schema and example .…………………………….………. “ 25
-Figure 7: ImageNet Dataset Examples …………………………………………….………. “ 26
-Chart (2.1) Case of Use …………………………………………………………….………. “ 26
-Chart (2.2) Case of Use …………………………………………………………….………. “ 26
-Chart (2.3) Case of Use …………………………………………………………….………. “ 27
-Chart (2.4) Case of Use …………………………………………………………….………. “ 27
-Chart (2.5) Case of Use …………………………………………………………….………. “ 27
-Chart (2.6) Case of Use …………………………………………………………….………. “ 28
-Chart (2.7) Case of Use …………………………………………………………….………. “ 28
-Chart (2.8) Case of Use …………………………………………………………….………. “ 28
-Chart (2.9) Case of Use …………………………………………………………….………. . “ 29
-Figure 8: Use Case Diagram ……………………………………………………….……….. “ 31
-Figure 9: Sequence Diagram ……………………………………………………….………. “ 32
-Figure 10: UML Classes Diagram ………………………………………………….………. “ 32
-Figure 11: Tkinter Application ……………………………………………………………… “ 33

4. WORK DEVELOPMENT AND RESULTS

64

-Figure 12:Examples of close images with “Hotline Miami” and “Journey” style………. “ 36
-Figure 13: Example of landscape with Hotline Miami style ……………………….………. “ 37
-Figure 14: Example of The Scream transfer style ………………………………….………. “ 38
-Figure 15: Example of Demoiselles d'Avignon transfer style ..…………………….………. “ 38
-Figure 16: OpenCV incompatibility error ………………………………………….………. “ 39
-Chart 3: Tracking Table for Planned Hours and Actual Hours Used……………….………. “ 40
-Figure 17: Resulting images with their loss ………………………………………………… “ 41

65

