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Abstract

This article critically reviews analytical method validation and quality con-
trol applied to the environmental chemistry field. The review focuses on
the determination of organic micropollutants (OMPs), specifically emerg-
ing contaminants and pesticides, in the aquatic environment. The analytical
technique considered is (gas and liquid) chromatography coupled to mass
spectrometry (MS), including high-resolution MS for wide-scope screening
purposes. An analysis of current research practices outlined in the literature
has been performed, and key issues and analytical challenges are identified
and critically discussed. It is worth emphasizing the lack of specific guidelines
applied to environmental analytical chemistry and the minimal regulation
of OMPs in waters, which greatly affect method development and perfor-
mance, requirements for method validation, and the subsequent application
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to samples. Finally, a proposal is made for method validation and data reporting, which can be
understood as starting points for further discussion with specialists in environmental analytical
chemistry.

INTRODUCTION

The production and use of chemicals are indispensable aspects of the current worldwide econ-
omy and modern life. Many synthetic compounds are released into the aquatic environment via
industrial and communal wastewater treatment plants, surface runoff, and release from solid ma-
terials and waste. Consequently, a large number of organic micropollutants (OMPs) are found
in surface water and groundwater, particularly in densely populated areas. OMPs comprise many
categories of substances, including contaminants of emerging concern (CECs), a wide group of
compounds frequently used in our everyday lives yet barely regulated. Pharmaceutical active com-
pounds (PhACs) are among the most frequently investigated and reported CECs in the water
cycle (1), particularly antibiotics, owing to the current concern in the environmental field about
antibiotic resistance (2–5).

The great diversity in chemical composition, from nonpolar to highly polar compounds and
from low to high volatility, makes the detection and identification of potentially hazardous OMPs
an analytical challenge (6). Because many OMPs are transformed via biotic and abiotic processes
once released into the environment, not only the parent compounds but also their transformation
products (TPs) should be investigated, which adds more analytical challenges.

A major challenge to evaluating water quality and protecting water resources from anthro-
pogenic pollution is to improve monitoring and strengthen the comprehensive prioritization and
risk assessment of complex mixtures (7). The role of advanced analytical chemistry is essential to
this aim, and the potential of hyphenated chromatography-mass spectrometry (MS) for the inves-
tigation of OMPs in the environment is undisputed. At present, both liquid chromatography (LC)
and gas chromatography (GC) coupled to MS or tandemMS (MS/MS) are widely used for quan-
titative analysis of OMPs (8). Owing to its excellent sensitivity and selectivity, wide linear dynamic
range, and compatibility with aqueous samples, LC-MS(/MS) is frequently applied for the deter-
mination of CECs because of the medium-high polarity of most compounds, particularly TPs (9).
Although quantitative analysis is essential for monitoringCECs in water, it can only be applied to a
limited list of target compounds, whose reference standards are available. Therefore, wider-scope
techniques are required for a realistic overview of the chemical pollution state of the aquatic envi-
ronment. This is currently possible through the use of GC and/or LC coupled to high-resolution
mass spectrometry (HRMS). A systematic collection of wide-scope target, suspect, and nontarget
screening data at the European scale has been proposed to improve the spatial and temporal cov-
erage and range of matrices available for risk assessment (10). This integration helps to extend the
range of chemicals investigated in the aquatic environment and facilitates prioritization based on
the environmental occurrence of compounds (11).

This context illustrates the need to apply appropriate analytical methods previously validated
and that must be periodically subjected to quality control to support the reliability of data.Method
validation is a requirement in target quantitative methods, but it is not yet clearly defined in
HRMS-based screening methods, especially in suspect and nontarget screening. Recent initiatives
(e.g., NORMAN or the Dutch normNTA 8033) are focused on the development and harmoniza-
tion ofmeasurementmethods for the detection of emerging chemicals in the environment (10, 12).

The worldwide implementation of legislation to protect the aquatic environment is key to the
development of advanced (target) analytical methodology and may also establish the requirements
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for method performance as a function of the concentration levels regulated. It is also essential for
the development of specific advanced technologies for industrial and urban wastewater treatment
as well as the implementation of wide-scope screening strategies (13). However, the list of OMPs
currently regulated is relatively small, despite recent advances. Examples include one from the
United States,which introduced the Contaminant Candidate List, or the EuropeanUnion’sWater
Framework Directive, which also introduces the Watch List mechanism. The limited regulation
of OMPs in water stems from the inherent complexity of this topic. Factors include social and
economic implications, the extensive number of OMPs with distinct physico-chemical and toxic
properties that might be regulated, the analytical difficulties of receiving a rapid response for a
large number of compounds, and insufficient information available on the toxicity of many OMPs
and on environmental risk assessment. Future advances in environmental legislation will have
evident implications for the requirements of analytical methods applied.

Method validation is commonly based on reference guidelines in the specific area of research
(14–20). Thus, some fields, such as pesticide residue analysis in food, have detailed guidelines,
specifying the steps and criteria applied in this type of analysis. Unfortunately, environmental
analytical chemistry has no detailed guidelines for the determination of OMPs, and most labo-
ratories apply criteria based on other guidelines and fields of research. Moreover, specific issues
dealing with environmental analysis and related to the type of samples and variability in chemical
composition are missing. This is an impediment for analytical methods applied to environmental
samples, particularly for the harmonization of methodologies.

This review critically discussesmethod validation in the field of environmental analytical chem-
istry.Due to the complexity of the subject and the large number of articles covering a great variety
of contaminants, from heavy metals to OMPs, and in different sample matrices (e.g., water, soil,
sediments, air, biota), it is necessary to manage the extensive information available. Considering
the interest in the topic and the authors’ expertise, this review focuses on two relevant groups
of OMPs, pesticides and CECs; the latter case is limited to pharmaceutical residues. The envi-
ronmental matrix considered is the aquatic environment, including surface water, groundwater,
drinking water, and wastewater because of the relevance of water resources to our quality of
life and health. The analytical methods reviewed and critically discussed are exclusively based on
chromatography-MS [including GC, LC, low-resolution MS (LRMS), and HRMS]. The review
mainly covers quantitative methods, which are predominant in environmental analytical chem-
istry. A brief section is devoted to screening methods based on HRMS because of the increasing
interest of these methods. The selection of recent publications between 2017 and 2021 is a sample
to benchmark current practices used for method validation.

VALIDATION OF ANALYTICAL METHODS IN ENVIRONMENTAL
ANALYSIS: DEFINITIONS AND CURRENT FRAMEWORK

Method validation may include different parameters and is quite variable depending on whether
it covers research articles focused on method development, design of new sorbents or techniques
for improved analytical determinations, method application, or analysis that is regulatory framed
and may have legal consequences.

In this section, we discuss the most frequent performance figures considered in method vali-
dation. To this end, selected guidelines from reputed international organizations are considered
(Table 1). Some guidelines are of general application, such as those from Eurachem or AOAC (21,
22), whereas others are related to pesticides or pharmaceuticals/drugs commonly linked to water,
food, or biological fluids (15–20).

We have also considered EU Directive 96/23/EC (14), which is related to pharmaceuticals
and other residues in food and animals, as it has inspired validation protocols in many (research)
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applications. Importantly, the European SANTE (originally SANCO) guidelines for pesticide
residues were initially derived from EU Directive 96/23/EC, but they have been evolving much
faster over time (with >10 revisions) and are likely better adapted to current methods (15).
The US Environmental Protection Agency (EPA) Method 1694 (23) is also included here as an
enforcement method dedicated to CECs that also contains validation guidelines.

Some of these guidelines only cover generic issues (e.g., trueness), while others consider
chromatographic-MS detection particularities. The main features on method validation are
discussed below.

Trueness/Accuracy and Precision

Trueness/accuracy and precision are key parameters included in all method validation schemes.
They are normally assessed together with the same experiments. Regarding trueness, most guide-
lines give the range of acceptable recoveries, which varies greatly from a minimum of ca. 40–80%
(sometimes even lower) to a maximum recovery of 120–180%. These intervals are, however, in-
dicative, as most guidelines assume that certified reference materials (CRMs) are available, but this
is not the case in the analysis ofOMPs inwater inmost cases.For instance,EUDirective 96/23/EC
establishesmuch narrower criteria for CRMs (90–110%) than for spiked samples (50–120%). Sim-
ilarly, the SANTE guidelines consider a general interval of 70–120% but allow 30–140% as far
as the precision, expressed as relative standard deviation (RSD), is lower than 20%.Under certain
circumstances, the concentrations in samples can be corrected by a recovery factor, when recov-
eries are outside 80–120% (15). This is an important point, i.e., whether concentrations need to
be corrected by recovery, which is not always clearly discerned in the scientific literature, and is
not covered in many guidelines. In the case of precision, guidelines also have different criteria, but
20–30% seems to be most frequent recommendation (15, 20, 22).

Besides the allowed interval, a further important point is the number of samples and replicates
and the diversity ofmatrices to be assessed.These again vary greatly across the different guidelines.
The US EPAMethod 1694 (enforcement method for CECs in water) considers that trueness can
be assessed with spiked reagent water (n= 4 replicates), provided that isotopically labeled internal
standards (ILIS) are measured within each batch and that accuracy is reevaluated quarterly. Other
guides are more exigent and require three concentration levels and the analysis of 10 replicates
of each spiked sample (Table 1), while others establish the lowest spiked level as the limit of
quantification (LOQ) or close to it (e.g., twice the LOQ) (16, 17) and/or require that up to three
different matrices be investigated (20). Furthermore, in the case of precision, some standards (20,
22) consider it necessary to evaluate interrun/interday (intermediate) precision, not only intrarun
(repeatability) precision, and have different acceptable ranges for both parameters.

The different criteria applied in the guidelines can be understood considering the specific ap-
plied fields. For example, some have legal implications and must meet reporting levels; in residue
or toxicological analysis, it is relatively easy to obtain sample matrices free of analytes, which may
not be so easy to do in environmental samples; and enforcement methods are normally linked to a
large number of samples analyzed, thereforemitigating the cost of intensive validation approaches,
but this may not always apply to the analysis of CECs in environmental samples.

Limit of Detection and Limit of Quantification

The limit of detection (LOD) and LOQ are relevant parameters included in all method valida-
tions. In general purpose guidelines, LOD/LOQ are normally set to the International Union of
Pure and Applied Chemistry (IUPAC) definition relying on the standard deviation of a blank sam-
ple.However, this is not easy to assess with chromatography-MS detection. Some other standards,
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such as SWGTOX, allow different protocols, which fit better with several analytical techniques.
Guidelines linked to MS detection and most research articles normally utilize the signal-to-noise
(S/N) ratio, where the LOD is typically set to S/N = 3 and LOQ to S/N = 10. Surprisingly,
US EPA Method 1694 sets the LOD to S/N = 2.5 with only one MS/MS ion being recorded,
which may be far from optimal. Conversely, the US Pesticide Data Program guidelines establish a
S/N ≥ 3 for all ions at the LOD (not only for the quantifier ion), therefore guaranteeing a
solid confirmation of identifications. Other guidelines consider the LOQ as the lowest calibrator,
whereas a more exigent criterion is applied in SANTE,which sets the LOQ to the lowest concen-
tration that meets all validation criteria (e.g., trueness and precision). Furthermore, SWGTOX
indicates that LOD and LOQ need to be calculated with at least three different matrices.

Calibration and Quantification

Many analytical methods use calibration in solvent or matrix through a linear regression model.
However, guidelines do not usually require linear calibration and allow othermathematical models
as long as the number of points used is high enough (this varies from ca. 5 to 8). They recommend
visual verification of the fitting or using statistical tools (e.g., residual analysis, lack of fit) rather
than considering only the value of R or R2. Several guides encourage the use of ILIS and matrix-
match calibration, or standard addition, also permitting the use of single-point calibration if the
concentration in the sample does not differ more than ca. 30% from the standard. Another re-
quirement is that the calibration range should begin at (or near) the LOQ and span a range broad
enough to cover the analyte concentrations in samples. Importantly, several guidelines require the
calibration integrity to be checked, through the repeated injection of standards, along the analysis
sequence (16, 17, 20, 21).

Robustness/Ruggedness

Robustness (ruggedness) refers to the capacity of an analytical method to remain unaffected
by small variations in method parameters, thus providing an indication of the method’s relia-
bility during normal usage, for example, due to small changes in temperature, compositions of
eluents, or, most importantly, to matrix variability. Although robustness is commonly underin-
vestigated in studies, several guidelines include the evaluation of this parameter by either testing
different alterations in the method or validating the method trueness, precision, and sometimes
LOD/LOQs with different matrixes. This last approach seems highly convenient in the case of
chromatographic-MS analysis, particularly in LC-MS applied to environmental samples, owing
to the relevant and variable matrix effects (see the subsection titled Matrix Effects below).

Selectivity and Specificity

This term refers to the capacity of an analytical method to not lead to false positives related to the
presence of other chemicals that are relatively similar to the analyte in the samples. Some standards
[e.g., Eurachem or SWGTOX (20, 21)] require that method performance is assessed with samples
spiked with those potential interferents. Indeed, this is more relevant to nonselective detectors,
but it should not be overlooked in MS, particularly because of potential cross talk from ILIS that
produces some signal in the mass-to-charge ratio (m/z) ions of the native substances and signals
from the matrix itself (20).

In any case, in LC-MS/MS methods, the presence of so-called visible interferent compounds
is uncommon in samples due to the use of selective/specific MS/MS transitions. However,
the presence of coeluting compounds may affect the ion intensity ratio if, for example, one of
the transitions has interference, which increases the risk of reporting false negatives because of
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the noncompliance of ion ratios. This problem is particularly relevant for unspecific transitions
(e.g., neutral loss of H2O), which should be avoided as far as possible (15).

In contrast to other fields (20), in chromatography-MS analysis of OMPs, it is complicated
to evaluate selectivity/specificity due to the inherent characteristics of these techniques and the
unknown variable composition of the environmental samples. Therefore, this parameter is not
usually evaluated.

Stability

Some guidelines include the evaluation of reference standard and sample stability at different
temperatures (14) or during freeze-thawing (20). Although stability of the analytes in samples
and standard solutions is essential for producing accurate results, this parameter is not always
sufficiently studied. The most common way to prevent potential degradation of environmental
samples, particularly water, is freezing (e.g., <−18°C). Another strategy is the addition of preser-
vatives (e.g., ascorbic acid to quench chlorine or sodium azide to hamper biological processes).
Acidification of the sample is also a common practice, but this must be performed with care, as it
may lead to the conversion of some acid analytes to neutral species, which are more hydropho-
bic and might be sorbed to, for example, sample containers. Filtration is another critical step that
needs to be investigated, particularly for relatively hydrophobic analytes (24, 25).

Whenever acidification and other strategies to mitigate degradation are not fruitful, an alter-
native is to perform a rapid or in situ extraction of the compounds. This can be done through,
e.g., solid phase extraction (SPE), and then preserving the SPE (or other extractant) material
instead (26).

Blanks

Most guidelines indicate the need to check that blanks are free of analytes or to confirm that
analyte concentrations are lower than the reporting level or LOQ. The possibility of blank-
related problems depends strongly on the nature of the target analytes and can be relevant
in plastic-related compounds (such as phthalates or organophosphate flame retardants), per-/
polyfluoroalkylated substances (PFAS), and hydrophobic analytes due to cross-contamination (27,
28).Therefore, blanks should always be investigated in order to design strategies to minimize their
impact onmethod performance, particularly on key parameters such as method LOD/LOQ,when
true blanks are not available. In such cases, the LOD/LOQ can be calculated from the standard
deviation of the blank and not from S/N in MS analysis.

Matrix Effects

Matrix effects are not always covered as such in guidance documents but intrinsically considered
when validation is performed in several matrices. Although this problem can occur with other
analytical techniques, it is especially relevant in LC-MS(/MS) methods due to the inherent mech-
anism of atmospheric-pressure ionization techniques, which results in signal suppression and less
commonly in signal enhancement (29).Matrix effects greatly affect quantification if not efficiently
eliminated or corrected. Produced by unknown matrix components that affect ionization of ana-
lytes, matrix effects can be evaluated by comparison of either the analyte signal when prepared in
solvent and in matrix or calibration slopes in solvent and matrix. High concentrations of analytes
in the original blank matrix can complicate this assessment, but this may be circumvented by using
ILIS of the analytes as a proxy for matrix effect evaluation.

Several strategies can be used formatrix effect correction, reduction, and elimination.Examples
include matrix-match calibration, the method of standard additions, application of cleanup steps,
sample dilution, and the use of analyte-ILIS (30).
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Although less common, matrix effects may also occur in GC-MS analysis (31, 32). These are
more frequently encountered in the analysis of vegetable or biota samples, rather than aque-
ous samples because the matrix blocks injector active sites. This results in signal enhancement,
which needs to be tackled in ways similar to those mentioned for LC-MS or by using analyte
protectants (31). Luckily, in this case, LOD/LOQ are seldom negatively affected but are instead
improved.

Identification: Chromatography

A critical point in any analytical method is granting confidence in the identification of analytes.
In chromatography-based methods, identification is normally associated with retention time (Rt),
supported by further evidence provided by the detector (typically MS information). Thus, it is
necessary to establish which Rt deviation is acceptable when comparing standards and samples
because the sample matrix may affect this parameter. Some guidelines set up a 0.01–2.5% variation
onRt or, preferably, relative Rt (to an internal standard).A 0.1-min threshold is also applied instead
of relative deviation, but the use of internal standards is encouraged so that relative Rt can be
calculated, as the internal standard can help identify Rt shifts due to the sample matrix. In addition,
the EU Directive 96/23/EC (14) indicates that the analytes need to have a retention factor ≥1,
i.e., an Rt at least twice the dead time. Although this is not essential in other guidelines, it is a good
practice in LC-MS whenever possible. This is because the coelution of analytes with nonretained
substances induces severe matrix effects, which may impair method performance.

Identification: Mass Spectrometry

Rt itself is not sufficient for a positive identification, and today confidence is gained by selec-
tive MS detection. The EU Directive 96/23/EC (14) established one of the first guidelines on
the number of ions to be measured and the tolerances for ion ratios, depending on the particu-
lar technique used (HRMS, low-resolution MS, or MS/MS). Most current guidelines require at
least three ions in single-stage MS methods or two transitions in MS/MS analysis. The ion ratio
tolerance when comparing standards and samples differs in the different guidelines, as some pro-
vide a wider range for lower-intensity ions, while others establish a maximum deviation of 30%
in all cases. Surprisingly, the US EPA Method 1694 only requires that one MS/MS transition be
recorded (23). Indeed, this is certainly not enough, and updating this method from 2007 is re-
quired. However, ion ratios are not deemed important when a scanning HRMS technique is used
to record full MS(/MS) spectra. In such cases, at least two ions with a maximum mass error of
5 ppm (1 mDa for small ions) are required. Alternatively, a library matching can be used instead
of using ion ratios whenever the full spectrum is recorded (15).

Validation of Screening and Qualitative Methods

Screening and qualitative methods are especially useful in environmental analysis, particularly
HRMS, which allows searching a large number of compounds in samples. Validation of these
methods is not an easy task, particularly when a large list of compounds is included in the search.
Method validation must ensure the robustness of the screening, independently of the samples’
origin and matrix sample variability, as well as the reliable identification of the compounds down
to certain concentrations. Thus, the screening LOD is the key parameter in validating screen-
ing methods. This is established as the lowest level tested for which the reliable detection and
identification (i.e., it must also fit the criteria of identification) of an analyte are empirically demon-
strated in at least 95% of the samples included in validation. This requires the analysis of typically
10–20 spiked samples (14, 15, 21).
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Different approaches can be applied in HRMS-based screening, such as target (utilizing refer-
ence standards), suspect (using large databases of suspect compounds for the search and without
standards), and nontarget (without apparent restrictions in the search of compounds, which do
not necessarily have to be included in a suspect list) analysis. Validation of a wide-scope screen-
ing is, in principle, only possible in the target approach. It should be aimed at demonstrating the
applicability of the screening to a large list of target compounds using reference standards, em-
pirically establishing the screening LODs, and ensuring that the compounds detected are also
correctly identified (33–39). A recent norm developed in The Netherlands dedicated to nontarget
screening may also be useful if it reaches further agreement at the international level (12).

Suspect and nontarget approaches allow the tentative identification of the compounds, which
should be confirmed in a subsequent step through a comparison with reference standards. Several
tools allow higher confidence in tentative identifications, such as Rt or MS/MS spectra predic-
tion (40–43). For example, ion mobility separation (IMS) in combination with HRMS makes the
identification process easier and more secure in both target and suspect screening (44).

ENSURING METHOD PERFORMANCE DURING NORMAL
OPERATION: THE IMPORTANCE OF QUALITY CONTROL

An essential step in addition to method validation is to regularly check for method performance
during its application (e.g., for monitoring purposes). Although not all guidelines consider this
topic, the most common practice is including the following in each sample batch: standards in-
jected along the sequence to check signal stability, blanks to check for (cross-) contamination,
and spiked individual or pooled samples, typically at or near the LOQ or decision limit, to check
for method overall performance. However, the tolerance for deviations from the initial validation
figures is not always specified or is highly variable.

A key question is whether the samples used in validation are representative of those that will
be analyzed in subsequent studies. In other words, it is unclear whether the validation process can
be considered reliable enough if, for example, only one sample (although analyzed in quintupli-
cate) was used for such validation. The answer seems rather clear: A single validation, even if the
figures of merit are fully satisfactory, is not sufficient. The analytical method needs to be tested
periodically in a variety of samples to ensure its correct application in environmental studies.

Ensuring the quality of data is commonly achieved by the analysis of quality control samples
(QCs) included in the sample batch. QCs can be prepared from blank real-world samples spiked
at different analyte concentrations. Ideally, a large number of QCs should be analyzed to obtain a
good picture of the analytical problems affecting the samples included in a given study.

The use of real-world samples for the preparation of QCs and evaluation of matrix effects
implies some difficulties, for example, finding a representative blank sample to be spiked. This
is quite evident when monitoring PhACs or some illicit drug biomarkers in urban wastewater,
as these compounds are commonly present in all the samples analyzed, sometimes at high con-
centrations. The fact that blanks used for QC preparation contain the compounds under study
complicates the calculation of recoveries at low analyte concentrations, close to the LOQ. There-
fore, it complicates not only the initial method validation but also the subsequent quality control
at low concentrations (discussed further below).

CURRENT RESEARCH PRACTICES OUTLINED
IN THE SCIENTIFIC LITERATURE

Even if we limit the search to publications related to OMPs in environmental samples, there
are many articles covering method validation and/or reporting analyte concentrations, usually at

www.annualreviews.org • Efficient Validation in Water Analysis 411

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:4

01
-4

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
t J

au
m

e 
I 

on
 0

7/
19

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



sub-µg/L levels. These ultratrace analyses in complex matrices may be affected by important
errors, and, therefore, method validation and quality control are critical aspects to ensure reliable
analysis. A critical review of the specialized literature may allow us to establish whether enough
data on this issue exist and to discuss the essential parameters required to support the data reported.
To address these issues,we reviewed articles published over five years (from2017 to 2021), focusing
on information on analytical validation figures, quality control/assurance, and data reporting.

The Scopus electronic database (Elsevier) was selected for the literature search. That was
aimed at quantitative methods based on chromatography-MS analysis used to determine CECs,
particularly PhACs and illicit drugs, as well as pesticides, as they are widely monitored and
reported in the aqueous environment and may well represent other OMP analysis scenarios.
The search query string used was [TITLE-ABS-KEY (mass AND spectr∗) AND TITLE-ABS-
KEY (wastewater) OR TITLE-ABS-KEY (surface AND water) OR TITLE-ABS-KEY (ground
AND water) AND TITLE-ABS-KEY (pharmaceuticals) OR TITLE-ABS-KEY (pesticides) OR
TITLE-ABS-KEY (antibiotics) ORTITLE-ABS-KEY (drugs ANDof AND abuse) ORTITLE-
ABS-KEY (illicit AND drugs) AND TITLE-ABS-KEY (determination) OR TITLE-ABS-KEY
(quantification) OR TITLE-ABS-KEY (validation)] AND [LIMIT-TO (PUBYEAR, 2022) OR
LIMIT-TO (PUBYEAR,2021)ORLIMIT-TO (PUBYEAR,2020)ORLIMIT-TO (PUBYEAR,
2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017)].

The Scopus search (December 27, 2021) yielded 528 published articles. A first filter was ap-
plied, evaluating titles, abstracts, and conclusions and dividing the publications into four groups:
(a) priority papers that provide information regarding method validation and/or references to
previous validation supporting the analytical data provided (210 papers, 40% of articles searched);
(b) papers reporting analyte concentration data without information on the method validation or
previously developed method (128 papers, 24%); (c) off-topic publications (e.g., reviews, nonaque-
ous matrices, different analytical techniques) (153 papers, 29%); and (d) papers with limited access
and/or in a different alphabet (37 papers, 7%).

As illustrated, approximately 25% of the publications (group 2) provided only concentration
data of OMPs without any analytical evidence or support. The 210 papers included in group 1
were carefully reviewed and evaluated according to the information available on method valida-
tion and quality control. First, information was collected on compounds included in the study, the
matrix analyzed, sample treatment, and the chromatography-MS technique used. Second, a score
rank (Supplemental Table 1) was proposed for scoring (a) the validation strategy that was applied,
(b) support to the data provided and the value of analytical information, (c) the depth of discus-
sion on analytical issues, (d) how the LOQ was established, and (e) the level of quality assurance.
Between 1 and 3 points were assigned to each topic evaluated, except for the validation strategy,
where up to 6 points could be reached as a function of the information available. The scoring
system, similar to that applied by others (45), must be understood as a global overview of how
different issues affecting the subject treated are considered in the scientific literature. A higher
score does not necessarily imply a higher quality of the paper, but it does mean that the article in-
cludes more analytical information and/or is more focused on analytical issues and provides more
support to the data reported.

When information was available, the validation strategies seemed to have been well designed,
according to the issues highlighted in this review. Approximately 90% of papers from group 1
obtained at least 13 points, i.e., ≥50% of the maximum number of points, with an average of
16–17, but only 13% got at least 21 points, i.e., ≥80% of the maximum score. Owing to space
limitations, only the references with the highest scores are included in Table 2 (Supplemental
Table 2 contains the full list of reviewed publications). In these papers, more emphasis is given to
analytical issues, which are treated in more detail below.
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As mentioned above, a critical issue when evaluating the validation protocols is the lack of
guidelines for environmental analytical chemistry. Some papers used analog guidelines such as
those from SANTE (46, 47) or the Commission Decision 2002/657/EC (48, 49), whereas most
publications used arbitrary validation requirements and/or those previously published in the sci-
entific literature. The use of spiked samples to perform method validation is a common standard
due to the lack of CRMs for OMPs in water samples. Only one publication mentions the use
of an interlaboratory study for the validation of an analytical method (50). Regarding the use of
spiked samples, two different groups of studies were identified: those that used an authentic matrix
for performing method validation, which obtained 4 points for validation strategy, and those that
used ultrapure water, drinking water, or a different water for method validation, which obtained
2 points. The lack of CRMs inferred that the maximum score of 6 points for validation strategy
could not be achieved.

Althoughmost papers provide validation data in the main text (3 points for validation data), ap-
proximately 19%of publicationsmove this information to the supplemental information (2 points)
and focus on concentration data obtained and their evaluation.The remaining 8% referred to pre-
vious publications dealing with validation (1 point). Regarding the discussion of validation data,
only 20% of publications provide a detailed interpretation of results (3 points for analytical dis-
cussion), and approximately 50% provide only general comments (1 point). This is a pivotal fact,
particularly when some compounds are not satisfactorily validated,when critical problems or steps
are observed, or where a detailed analytical discussion would be required to fully understand and
interpret the reported data. To support the data obtained, only 22% of the papers provide visual
evidence such as chromatograms and/or spectra at the established LOQ or near the LOQ or sup-
port the specificity or compound identification (3 points for analytical evidence). A total of 52%
of publications provide only limited specific data (2 points), and the remaining 26% only provide
summarized results (1 point).Note that several articles focus on the development of newmaterials
or devices for sample treatment, such as SPE sorbents (51–53), solid phasemicroextraction [SPME
(54, 55)], or novel methodologies such as bag-based liquid-phase microextraction (56). Some of
these publications do not include validation data and/or do not provide a detailed discussion on
the validation results, even though this information is critical to demonstrate the applicability of
the new material.

The use of ILIS seems to be the gold standard in chromatography-MS analytical meth-
ods. Nearly 50% of the reviewed studies used ILIS for correction of both sample treatment
errors/losses and matrix effects (3 points for quantification strategy). Another 18% used matrix-
matched standards (2 points), although the limitations of this approach in environmental analysis
are scarcely discussed. Finally, 35% of the studies used solvent calibration and/or the standard
preparation for quantification was not specified (1 point).

It is remarkable that a key aspect such as compound identification is usually not described or
scarcely discussed in regard to method validation and/or method application. For example, more
than 40% of publications do not specify the criteria used to consider a compound as identified
(1 point in identification criteria). Another 38% use arbitrary criteria indicated in the publication
(2 points), and only 20% refer to a guideline (3 points) independent of whether it applies to the
addressed topic.

Regarding LOQ establishment, only 14% of the publications used the most restrictive criteria,
considering the LOQ as the lowest validated level in terms of accuracy and precision (3 points for
LOQ establishment). Many papers (54%) used statistical estimation, considering the LOQ as
a peak with S/N = 10 in a sample spiked close to the estimated LOQ (2 points). Approximately
30% used the same criterion but from samples spiked at much higher levels and/or in pure solvent
(1 point).
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One of the main weak aspects detected in our literature survey is the lack of quality control in
the methods application. For example, 78% of the publications do not mention the use of QCs
(1 point for QCs analyzed in batch) for assuring the quality of results and to support method
reliability when applied to real-world samples. Another 20% mentioned the use of QCs during
sample analysis (2 points), and only 2% (4 out of 210) showed and discussed the results on QCs
included in the sample batch (3 points). Although some studies involved new materials for sample
treatment (e.g., SPE sorbents) and method development, information on the analysis of QCs and
acceptability criteria would also be of great interest if the method was applied to samples.

CRITICAL ISSUES AND ANALYTICAL CHALLENGES

Now that the relevant guidelines have been discussed, and in light of the literature reviewed,
several key issues and analytical challenges can be highlighted in relation to method validation
and subsequent application. The main topics can be summarized as follows.

1. There is a general lack of specific guidelines in environmental analytical chemistry, which
leads to the application of criteria from other guidelines [e.g., EU Directive 96/23/EC or
SANTE for (pesticide) residue analysis]. But these criteria do not necessarily consider the
specifics of the analysis of OMPs in the (aquatic) environment.

2. Little or no regulation exists on most OMPs in waters. Although it has improved in the
last five years, the existing regulation is usually limited to a few compounds, which are not
necessarily representative of the whole group of OMPs. The absence of reference values
implies difficulties in establishing key parameters such as LOQs (or LODs). This may lead
to an unreasonable competition between reporting the most sensitive methods ever pub-
lished and the lowest LODs or LOQs ever achieved. In some cases, there would be serious
doubts about whether those values are realistic and achievable in day-to-day research.

3. There are numerous compounds of potential interest, possessing quite different physico-
chemical characteristics. An additional difficulty is that no universal methods exist;
therefore, a combination of different methodologies is necessary to cover the task of de-
termining such a wide group of compounds. Although many multiclass methods based on
LC-MS/MS and GC-MS/MS already exist, some compounds cannot be determined using
those methodologies owing to their special characteristics, such as high polarity (e.g., per-
sistent mobile organic contaminants) or volatility, which require differential and sometimes
individual methods (57).

4. Matrix composition of environmental samples is highly variable,which leads one to question
whether a method validated in a given sample is applicable to other samples, even those of
the same type (e.g., surface water or wastewater) but from different origins and locations.

5. It is difficult to acquire an elevated number of reference standards.There are also the associ-
ated problems derived from the high cost, expiration date, and lack of commercial reference
standards (e.g., metabolites, ILIS and TPs).

6. Real-world representative blank samples are lacking. This makes method validation and
preparation of QCs troublesome, particularly at low concentrations (e.g., near the LOQ).
This situation usually occurs for many pharmaceuticals in wastewater.

7. There is a lack of CRMs for method validation, an approach that cannot be easily used
for OMPs in the aquatic environment. Although a trend toward the organization of
interlaboratory tests is observed, such tests are still limited to a few target analytes.

In addition to the abovementioned general aspects of method validation and subsequent appli-
cation,Supplemental Table 3 summarizes critical questions specifically related to each parameter
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evaluated. The issues highlighted in the table are commonly questioned by analytical chemists
involved in this type of analysis and could be used for further discussion among specialists.

A PROPOSED PROTOCOL FOR METHOD VALIDATION AND TO
SUPPORT THE QUALITY OF DATA IN ENVIRONMENTAL ANALYSIS

In this section, a thoughtful proposal is made for an efficient method validation and to support the
quality of data reported in the analysis of OMPs in the (aquatic) environment.Table 3 summarizes
our proposal for method validation, distinguishing between the minimum requirements and an
ideal situation, which would be balanced depending on the number of samples to be measured
(e.g., a new method demonstration may not be as exigent as one used in regular monitoring) and
the objectives of the study. Further key issues related to every parameter evaluated and relevant
remarks on the function of the complexity and particularities of each parameter (e.g., problems of
high concentrations of blank samples, deviations in the criteria established, calculation problems)
are discussed in more detail in Supplemental Table 3. The summarized information in Table 3
and complete information in Supplemental Table 3 comprise a proposal that can be refined upon
discussion with the scientific community.

When reporting concentration data, researchers should find a robust approach to support the
quality of data reported.For example, they should consider key aspects related to the quantification
and identification of OMPs, the objective of the analyses, the legal requirements, if applicable,
and requirements of the journals where their papers are published. Reporting large data sets of
compounds quantified in samples with little or no analytical information may generate doubts
about these data. In some cases, the compounds are problematic from an analytical perspective,
and with the minimal information provided, the reliability of determinations may be questioned.
For other researchers to trust the data, it is essential to provide key examples (e.g., chromatograms
and mass spectra) of problematic compounds, support the proposed LOQs, and clearly specify
the criteria used for the quantification, identification, and acceptance of data. Researchers must
be aware that their data can be used for environmental risk assessment, to evaluate trends across
time and space, and to establish legislation or control measures.

Next, some recommendations are given for the support of data reported from an analytical
point of view.

� Method validation must be included in the article or the authors must make reference to
such validation, considering the key issues discussed so that the reader can trust the values
given for relevant parameters (e.g., LOQs).

� The criteria applied for the identification of compounds found in samples should be
specified.

� Authors should include illustrative examples or figures of real-world positive samples found
at low concentrations; if possible, these should be near the LOQ.

� Researchers should include illustrative examples or figures of real-world positive samples
where the criteria for identification are applied (e.g., chromatograms corresponding to
quantification and confirmatory ions, with information on ion ratios and deviations with
respect to reference standards and QCs).

� QCs analyzed together with the samples should be included, indicating the criteria applied
for acceptability of quantitative data. Authors should also report the recoveries in analysis
of the QCs.

� Researchers should differentiate between identifications confirmed using reference stan-
dards and tentative identifications without the use of standards based on, e.g., matches with
spectra libraries, the presence of several reported ions, or the interpretation of mass spectra.

www.annualreviews.org • Efficient Validation in Water Analysis 417

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:4

01
-4

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
t J

au
m

e 
I 

on
 0

7/
19

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://www.annualreviews.org/doi/suppl/10.1146/annurev-anchem-091222-112115


T
ab

le
3

P
ro

po
sa
lo

fg
ui
de

lin
es

fo
r
th
e
va
lid

at
io
n
of

ch
ro

m
at
og

ra
ph

ic
-M

S
m
et
ho

ds
fo
r
O
M

P
s
de

te
rm

in
at
io
n
in

w
at
er

sa
m
pl
es
.S

ee
Su

pp
le
m
en

ta
l

T
ab

le
3
fo
r
fu
rt
he

r
de

ta
ils

,e
xa
m
pl
es
,a

nd
re
m
ar
ks

Pa
ra
m
et
er

M
in
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

O
pt
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

A
cc
ep

ta
bi
lit
y
cr
it
er
ia

A
cc
ur
ac
y/
tr
ue

ne
ss

an
d
pr
ec
is
io
n

P
er
fo
rm

va
lid

at
io
n
by

re
co
ve
ry

ex
pe

ri
m
en

ts
in

re
al
-w

or
ld

sa
m
pl
es

of
th
e
sa
m
e
ty
pe

as
th
os
e

th
at

w
ill

be
su
bs
eq

ue
nt
ly

an
al
yz
ed

,e
ac
h

sp
ik
ed

at
tw

o
an
al
yt
e
co
nc

en
tr
at
io
ns

(lo
w

be
tw

ee
n
1–

10
tim

es
L
O
Q

an
d
hi
gh

ca
.

10
–5

0
tim

es
th
e
lo
w
le
ve
l).

To
gr
an

tm
et
ho

d
ro
bu

st
ne

ss
an
d
pe

rf
or
m
an

ce
w
ith

va
ry
in
g
m
at
ri
x
co
m
po

si
tio

n,
va
lid

at
io
n

sh
ou

ld
be

pe
rf
or
m
ed

w
ith

at
le
as
t3

di
ff
er
en

t
sa
m
pl
es

of
th
e
sa
m
e
ty
pe

,a
nd

th
e
to
ta
l

nu
m
be

r
of

an
al
ys
es

sh
ou

ld
be

at
le
as
t6

.
D
iff
er
en

tc
om

bi
na

tio
ns

ar
e
po

ss
ib
le
(s
ee

Su
pp

le
m
en

ta
lT

ab
le

3
fo
r
ex
am

pl
es
).

In
cl
ud

e
an

ot
he

r
sp
ik
in
g
le
ve
l(
m
ed

iu
m

co
nc

en
tr
at
io
n,

in
to
ta
l3

sp
ik
in
g
le
ve
ls
).

In
cr
ea
se

th
e
nu

m
be

r
of

di
ff
er
en

ts
pi
ke
d

sa
m
pl
es

to
at

le
as
t5

an
d
th
e
to
ta
l

nu
m
be

r
of

an
al
ys
es

to
at

le
as
t1

0.

R
ec
ov
er
ie
s
be

tw
ee
n
70

an
d
12

0%
an
d
ov

er
al
l

R
SD

be
lo
w
30

%
.

In
ex
ce
pt
io
na

lc
as
es
,a
ve
ra
ge

re
co
ve
ry

ou
ts
id
e

70
–1

20
%

co
ul
d
be

ac
ce
pt
ed

if
th
ey

ar
e

co
ns
is
te
nt

(R
SD

≤
30

%
)a

nd
ar
e

≥3
0%

or
≤1

40
%
.I
n
su
ch

ca
se
s,
a
co
rr
ec
tio

n
fa
ct
or

as
a
fu
nc
tio

n
of

th
e
va
lid

at
io
n
re
co
ve
ry

an
d

su
pp

or
te
d
by

Q
C

re
co
ve
ry

m
ig
ht

be
ap
pl
ie
d
to

th
e
co
nc
en

tr
at
io
ns

m
ea
su
re
d
in

sa
m
pl
es
.S

ee
Su

pp
le
m
en

ta
lT

ab
le

3.

L
O
D

an
d
L
O
Q

E
st
im

at
e
L
O
Q

an
d
L
O
D

in
a
w
at
er

sa
m
pl
e

(f
ro
m

th
e
sa
m
e
ty
pe

th
at

w
ill

be
m
on

ito
re
d

la
te
r)
sp
ik
ed

at
an
al
yt
e
co
nc
en

tr
at
io
ns

ne
ar

th
e
L
O
Q
;t
he

m
ax
im

um
sh
ou

ld
be

10
tim

es
th
e
L
O
Q

fin
al
ly

pr
op

os
ed

.
C
on

fir
m

th
e
id
en

tit
y
of

th
e
co
m
po

un
d
at

th
e

le
ve
lt
es
te
d
by

ac
qu

ir
in
g
at

le
as
t2

tr
an

si
tio

ns
(3

io
ns

in
si
ng

le
M
S
m
et
ho

ds
).

P
er
io
di
ca
lly

te
st
th
at

at
le
as
tt
he

L
O
Q

is
at
ta
in
ab
le

in
da
ily

w
or
k,
an
al
yz
in
g
Q
C
s
sp
ik
ed

at
a
le
ve
ln

ea
r
(m

ax
im

um
10

tim
es

hi
gh

er
)t
he

L
O
Q
.

E
st
im

at
e
th
e
L
O
Q

an
d
L
O
D

in
5
di
ff
er
en

ts
am

pl
es

an
d
ca
lc
ul
at
e
th
e

av
er
ag
e
va
lu
e
fin

al
ly

pr
op

os
ed

as
L
O
Q

an
d
L
O
D
,a
ls
o
in
di
ca
tin

g
th
e
ra
ng

e.
T
he

io
n
ra
tio

m
us
tb

e
ac
co
m
pl
is
he

d
en

su
ri
ng

th
e
re
lia
bl
e
id
en

tifi
ca
tio

n
of

th
e
an
al
yt
e
at

bo
th

th
e
L
O
Q

an
d
L
O
D

le
ve
ls
(m

ax
im

um
de

vi
at
io
n
30

%
).

T
he

es
tim

at
io
n
m
us
tb

e
m
ad
e
fr
om

th
e

ch
ro
m
at
og

ra
m
s
of

sp
ik
ed

sa
m
pl
es
,

co
rr
es
po

nd
in
g
to

th
e
qu

an
tifi

ca
tio

n
tr
an

si
tio

n,
ba
se
d
on

a
S/
N

=
10

(L
O
Q
)o

r
S/
N

=
3
(L

O
D
).

Fo
r
th
e
L
O
Q

le
ve
l,
id
en

tifi
ca
tio

n
of

th
e

an
al
yt
e
m
us
ta

ls
o
be

en
su
re
d.

T
hu

s,
at

le
as
t

on
e
qu

al
ifi
ca
tio

n/
co
nfi

rm
at
io
n
tr
an

si
tio

n
m
us
tb

e
al
so

ob
se
rv
ed

an
d
th
e
io
n
ra
tio

de
vi
at
io
n
cr
ite

ri
on

ac
co
m
pl
is
he

d
(m

ax
im

um
de

vi
at
io
n
w
ith

re
sp
ec
tt
o
a

re
fe
re
nc
e
st
an
da
rd

±3
0%

).
Fo

r
th
e
L
O
D
,t
he

ch
ro
m
at
og

ra
ph

ic
pe

ak
co
rr
es
po

nd
in
g
to

th
e
se
co
nd

tr
an

si
tio

n
m
us
tb

e
ob

se
rv
ed

(m
in
im

um
)a

nd
th
e
io
n

ra
tio

ac
co
m
pl
is
he

d
(o
pt
im

al
).

(C
on
tin
ue
d)

418 Hernández et al.

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:4

01
-4

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
t J

au
m

e 
I 

on
 0

7/
19

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://www.annualreviews.org/doi/suppl/10.1146/annurev-anchem-091222-112115


T
ab

le
3

(C
on
ti
nu
ed
)

Pa
ra
m
et
er

M
in
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

O
pt
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

A
cc
ep

ta
bi
lit
y
cr
it
er
ia

C
al
ib
ra
tio

n
P
er
fo
rm

ca
lib

ra
tio

n
w
ith

st
an

da
rd
s
in

so
lv
en

t
(in

cl
ud

in
g
th
e
sa
m
e
IL

IS
as

in
sa
m
pl
es
),
w
ith

at
le
as
to

ne
po

in
tb

el
ow

th
e
co
nc
en

tr
at
io
n

co
rr
es
po

nd
in
g
to

th
e
L
O
Q
.

T
he

ca
lib

ra
tio

n
sh
ou

ld
in
cl
ud

e
at

le
as
t5

le
ve
ls
,

an
d
th
e
st
an
da
rd
s’
co
nc
en

tr
at
io
ns

co
rr
es
po

nd
in
g
to

th
e
(t
w
o
or

th
re
e)

le
ve
ls

sh
ou

ld
be

va
lid

at
ed

an
d
ex
te
nd

ed
up

to
co
nc

en
tr
at
io
ns

co
m
m
on

ly
fo
un

d
in

th
e

sa
m
pl
es
.

N
A

R
ep
or
tt
he

va
lu
e
of
R
2
an

d
ei
th
er

so
m
e
vi
su
al

ev
id
en

ce
or

da
ta

on
re
si
du

al
s,
la
ck
-o
f-
fit
,o

r
ot
he

r
te
st
s.

N
on

lin
ea
r
ca
lib

ra
tio

ns
ca
n
be

us
ed

,b
ut

th
ey

sh
ou

ld
be

cl
ea
rl
y
m
en

tio
ne

d
an
d
su
pp

or
te
d

by
ap
pr
op

ri
at
e
in
fo
rm

at
io
n,

as
in

lin
ea
r

ca
lib

ra
tio

n.
O
ne

-p
oi
nt

ca
lib

ra
tio

n
ca
n
be

us
ed

fo
r

es
tim

at
iv
e
pu

rp
os
es

(s
em

iq
ua
nt
ifi
ca
tio

n)
as

lo
ng

as
th
is
is
cl
ea
rl
y
in
di
ca
te
d
an
d
th
e

co
nc

en
tr
at
io
n
in

th
e
sa
m
pl
es

do
es

no
td

iff
er

m
or
e
th
an

30
%

fr
om

th
e
ca
lib

ra
to
r’s
.

E
va
lu
at
io
n
of

m
at
ri
x

ef
fe
ct
s

U
se

of
IL

IS

Sp
ik
e
3
di
ff
er
en

ts
am

pl
es

(in
D
I-
ba
se
d
m
et
ho

ds
)

or
3
di
ff
er
en

ts
am

pl
e
ex
tr
ac
ts
(e
.g
.,
in

SP
E
-b
as
ed

m
et
ho

ds
)a

ta
m
ed

iu
m

co
nc
en

tr
at
io
n
le
ve
la
nd

co
m
pa
re

th
e

m
ea
su
re
m
en

tw
ith

a
re
fe
re
nc
e
st
an
da
rd

in
so
lv
en

ta
tt
he

sa
m
e
co
nc
en

tr
at
io
n.

In
je
ct

sp
ik
ed

sa
m
pl
es
/e
xt
ra
ct
s
an
d
st
an

da
rd
s
in

qu
in
tu
pl
ic
at
e
an
d
ob

ta
in

th
e
av
er
ag
e
re
sp
on

se
.

P
ay

at
te
nt
io
n
to

th
e
bl
an
k
m
ea
su
re
m
en

ti
n

or
de

r
to

su
bt
ra
ct

its
re
sp
on

se
in

ca
se

th
e

an
al
yt
e
un

de
r
st
ud

y
is
pr
es
en

ti
n
th
e
bl
an

k
sa
m
pl
e.

A
no

th
er

ap
pr
oa
ch

,b
ut

le
ss
us
ef
ul

in
en

vi
ro
nm

en
ta
ls
tu
di
es
,i
s
co
m
pa
ri
ng

m
at
ri
x-
m
at
ch

ca
lib

ra
tio

n
an
d
ca
lib

ra
tio

n
in

so
lv
en

t.
H
er
e,
th
e
di
ff
er
en

ce
in

th
e
sl
op

es
w
ill

in
di
ca
te

th
e
m
at
ri
x
ef
fe
ct
s.

N
A

M
at
ri
x
ef
fe
ct
s
ar
e
co
ns
id
er
ed

si
gn

ifi
ca
nt

if
th
ey

ex
ce
ed

±2
0%

.T
hu

s,
if
th
e
m
at
ri
x

ef
fe
ct

is
le
ss
th
an

±2
0%

,n
o
co
rr
ec
tio

n
is
,i
n

pr
in
ci
pl
e,
ne

ce
ss
ar
y.
N
ev
er
th
el
es
s,
th
e
fin

al
re
co
ve
ry

of
th
e
m
et
ho

d,
co
ns
id
er
in
g
al
l

as
pe

ct
s
af
fe
ct
in
g
th
e
ov

er
al
lp

ro
ce
du

re
,

in
cl
ud

in
g
m
at
ri
x
ef
fe
ct
s,
w
ill

in
di
ca
te

w
he

th
er

so
m
e
co
rr
ec
tio

n
is
re
qu

ir
ed

.

(C
on
tin
ue
d)

www.annualreviews.org • Efficient Validation in Water Analysis 419

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:4

01
-4

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
t J

au
m

e 
I 

on
 0

7/
19

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



T
ab

le
3

(C
on
ti
nu
ed
)

Pa
ra
m
et
er

M
in
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

O
pt
im

al
va
lid

at
io
n
re
qu

ir
em

en
ts

A
cc
ep

ta
bi
lit
y
cr
it
er
ia

Id
en

tifi
ca
tio

n
A
cq
ui
re

at
le
as
t3

M
S/
M
S
tr
an

si
tio

ns
in

M
S/
M
S

m
et
ho

ds
an

d
ob

ta
in

th
e
io
n
ra
tio

s
(n
or
m
al
ly

us
in
g
pe

ak
ar
ea
s)
.O

ne
tr
an

si
tio

n
(n
am

ed
Q
)

w
ill

be
us
ed

fo
r
qu

an
tifi

ca
tio

n,
an

d
th
e
re
st

(n
am

ed
q1

,q
2,
et
c.
)w

ill
be

us
ed

as
co
nfi

rm
at
or
y
tr
an

si
tio

ns
.O

bt
ai
n
th
e
av
er
ag
e

q/
Q

ra
tio

s
(q
1/
Q
,q

2/
Q
,e
tc
.)
fo
r
th
e
st
an

da
rd
s

in
cl
ud

ed
in

th
e
ca
lib

ra
tio

n
an

d
us
e
th
em

as
a

re
fe
re
nc
e
w
he

n
an
al
yz
in
g
sa
m
pl
es
.C

om
pa
re

th
e
io
n
ra
tio

s
in

sa
m
pl
es

w
ith

th
os
e
of

th
e

re
fe
re
nc
e
st
an
da
rd

an
d
ca
lc
ul
at
e
th
e
de
vi
at
io
n.

A
cq
ui
re

at
le
as
t3

io
ns

in
si
ng

le
M
S
m
et
ho

ds
,

ob
ta
in

th
e
io
n
ra
tio

s,
an
d
co
m
pa
re

w
ith

th
e

re
fe
re
nc
e
st
an
da
rd
s.

A
cq
ui
re

at
le
as
t2

ac
cu
ra
te

m
as
s
io
ns

in
H
R
M
S

m
et
ho

ds
.

C
al
cu
la
te

th
e
R
td

ev
ia
tio

n
w
ith

re
sp
ec
tt
o
th
e

re
fe
re
nc
e
st
an
da
rd
.

A
cq
ui
re

th
e
m
ax
im

um
nu

m
be

r
of

M
S/
M
S

tr
an

si
tio

ns
or

io
ns
,i
ff
ea
si
bl
e,
to

im
pr
ov

e
th
e
id
en

tifi
ca
tio

n
in

pr
ob

le
m
at
ic
ca
se
s
(s
ee

re
m
ar
ks

in
Su

pp
le
m
en

ta
lT

ab
le

3)
.

A
tl
ea
st
on

e
io
n
ra
tio

(q
1/
Q

or
q2

/Q
)i
n
th
e

sa
m
pl
e
m
us
tn

ot
ex
ce
ed

a
de

vi
at
io
n
of

±3
0%

w
ith

re
sp
ec
tt
o
th
e
re
fe
re
nc
e

st
an
da
rd

(e
.g
.,
av
er
ag
e
of

th
e
st
an
da
rd
s

in
cl
ud

ed
in

th
e
ca
lib

ra
tio

n)
.

M
ax
im

um
er
ro
r
fo
r
ac
cu
ra
te

m
as
s
m
ea
su
re
d

io
ns

in
H
R
M
S
m
et
ho

ds
<
5
pp

m
(<

1
m
D
a

fo
r
an

m
/z

<
20

0)
.

Id
en

tifi
ca
tio

n
cr
ite

ri
a
al
so

in
cl
ud

e
th
e

de
vi
at
io
n
in

th
e
ch

ro
m
at
og

ra
ph

ic
R
t,

no
rm

al
ly

±0
.1

m
in

or
±0

.5
%

if
re
la
tiv

e
to

an
IL

IS
.

Q
ua
lit
y
co
nt
ro
l

P
re
pa
re

Q
C
s
at

tw
o
co
nc
en

tr
at
io
n
le
ve
ls
(lo

w
an
d
hi
gh

)i
n
se
le
ct
ed

sa
m
pl
es

to
be

an
al
yz
ed

la
te
r
(s
ee

Su
pp

le
m
en

ta
lT

ab
le

3
fo
r
th
e

nu
m
be

r
of

Q
C
s
to

be
pr
ep

ar
ed

).
W

he
n
th
e
sa
m
pl
es

us
ed

fo
r
Q
C

pr
ep

ar
at
io
n
ar
e

no
tt
ru
e
bl
an
k
sa
m
pl
es

(i.
e.
,t
he

y
co
nt
ai
n
th
e

an
al
yt
es

at
co
nc
en

tr
at
io
ns

si
m
ila
r
or

hi
gh

er
th
an

th
e
sp
ik
ed

on
es
),
th
e
re
co
ve
ry

ca
lc
ul
at
io
n

is
co
m
pr
om

is
ed

,a
nd

su
ch

Q
C
s
m
ig
ht

be
di
sc
ar
de

d.
Su

bt
ra
ct
in
g
th
e
bl
an

k
co
nc

en
tr
at
io
n
fr
om

th
e
sp
ik
ed

Q
C

is
co
m
pu

ls
or
y,
bu

tt
hi
s
ap
pr
oa
ch

m
ay

no
tb

e
su
cc
es
sf
ul

in
su
ch

ca
se
s.
Fo

r
th
is
re
as
on

,o
nl
y

so
m
e
Q
C
s
(n
or
m
al
ly

th
os
e
at

hi
gh

an
al
yt
e

co
nc

en
tr
at
io
ns
)m

ay
be

us
ef
ul

to
su
pp

or
tt
he

qu
al
ity

of
da
ta
.

In
cl
ud

e
a
th
ir
d
co
nc
en

tr
at
io
n
le
ve
l(
i.e
.,

lo
w,

m
ed
iu
m
,h

ig
h)

an
d
in
cr
ea
se

th
e

nu
m
be

r
of

sa
m
pl
es

us
ed

fo
r
Q
C

pr
ep

ar
at
io
n
(s
ee

Su
pp

le
m
en

ta
l

T
ab

le
3)
.

A
cc
ep

ta
bi
lit
y
pr
op

os
ed

fo
r
in
di
vi
du

al
Q
C

re
co
ve
ry

is
60

–1
40

%
.

W
he

n
re
co
ve
ri
es

ar
e
ou

to
ft
hi
s
ra
ng

e,
th
e

qu
an

tifi
ca
tio

n
is
co
m
pr
om

is
ed

.I
n
su
ch

ca
se
s,
co
nc

en
tr
at
io
n
da
ta

m
ig
ht

be
re
po

rt
ed

as
es
tim

at
ed

,i
nd

ic
at
in
g
th
e
Q
C

re
co
ve
ri
es

ob
ta
in
ed

fo
r
th
e
co
m
po

un
d
or

th
at

th
e

sa
m
pl
es

sh
ou

ld
be

re
an

al
yz
ed

.W
he

n
ro
bu

st
an

d
re
pr
od

uc
ib
le
re
co
ve
ri
es

ar
e
ob

ta
in
ed

,
w
ith

lo
w
R
SD

(e
.g
.,

<
20

%
),
ev
en

if
th
ey

ar
e

ou
to

ft
he

ac
ce
pt
ab
ili
ty

ra
ng

e,
a
co
rr
ec
tio

n
fa
ct
or

m
ig
ht

be
ap
pl
ie
d;

th
is
ci
rc
um

st
an

ce
sh
ou

ld
be

in
di
ca
te
d
in

th
e
re
po

rt
.

A
bb

re
vi
at
io
ns
:D

I,
di
re
ct

in
je
ct
io
n;

H
R
M
S,

hi
gh

-r
es
ol
ut
io
n
M
S;

IL
IS
,i
so
to
pi
ca
lly

la
be
le
d
in
te
rn
al
st
an
da
rd
;L

O
D
,l
im

it
of

de
te
ct
io
n;

L
O
Q
,l
im

it
of

qu
an
tifi

ca
tio

n;
M
S,

m
as
s
sp
ec
tr
om

et
ry
;

M
S/
M
S,

ta
nd

em
M
S;

N
A
,n

ot
ap
pl
ic
ab
le
;O

M
P,
or
ga
ni
c
m
ic
ro
po

llu
ta
nt
;Q

C
,q

ua
lit
y
co
nt
ro
ls
am

pl
e;
R
SD

,r
el
at
iv
e
st
an
da
rd

de
vi
at
io
n;

R
t,
re
te
nt
io
n
tim

e;
S/
N
,s
ig
na
l-
to
-n
oi
se

ra
tio

;S
P
E
,s
ol
id

ph
as
e
ex
tr
ac
tio

n.

420 Hernández et al.

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

02
3.

16
:4

01
-4

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
t J

au
m

e 
I 

on
 0

7/
19

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://www.annualreviews.org/doi/suppl/10.1146/annurev-anchem-091222-112115


This mainly applies to HRMS-based methods, where a careful discussion on the (tenta-
tive) identification of the suspect compounds should be included in the publication. The
nomenclature proposed by Schymanski et al. (58) is recommended.

� Authors should pay special attention to problematic cases and appropriately discuss these
from an analytical perspective.

Some critical situations may occur.

� Only one good transition (product ion) is available using MS/MS methods, e.g., because
the compound is minimally fragmented and/or the remaining potential ions are not selec-
tive enough (e.g., low m/z ions) and have high chemical noise. Only one transition is not
sufficient to support identification of the compound; therefore, if no additional analysis is
conducted to confirm the identification, this should be noted in the published report.

� The ion ratio deviation exceeds the level of established tolerance. Tolerances (e.g., ±30%)
are a guideline, not a strict criterion, and therefore the knowledge and expertise of the
analyst are crucial in questionable cases. The previous acquisition of more ions is quite
helpful, as the initially selected ions may have interference and/or more chemical noise.
This situation may occur at low concentrations in particular. Using the ion ratios obtained
for QCs instead of the standards included in the calibration is recommended to assess the
deviations in samples.

� The Rt deviation exceeds the level of established tolerance. This is rather common because
of the peak shifts due to the sample matrix.Using the Rt of spiked samples (i.e.,QCs) and/or
relative Rt (e.g., using ILIS) may resolve doubts in most cases.

� Some QCs exceed the tolerance range (e.g., 60–140%). First, make a judicious interpreta-
tion of the data in light of the spiking level and analyte concentration in the blank used for
QC preparation. Second, try to identify a trend and evaluate the robustness of QC recov-
eries. Third, consider applying both statistical tests (e.g., Dixon’s Q) to discard potential
outliers and a correction factor if enough reproducibility and robustness are observed. The
data obtained might be reported as estimated or semiquantitative concentrations whenQCs
are not satisfactory but it is essential to include the necessary information so that other
researchers can interpret them.
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