N UNIVERSITAT
JAUME |

Development of interactive model-based
grass tools for open worlds featuring a
fluid-simulation-based wind system

Marc Pitarch Dos Santos

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume |

June 15, 2023

Supervised by: Carlos Gonzdlez Ballester.

©0Ce

http://creativecommons.org/licenses/by-nc-sa/3.0/

To nature lovers

Acknowledgments

First of all, | would like to thank my Final Degree Work supervisor, Carlos Gonzdlez
Ballester, for keeping an overview of my progress during the last months.

| would like to thank my friends at Blekerslaan who made me see the world with
a brighter light in the Netherlands. My family and friends supported and saw the
progress too, so | am really grateful to Victor, Fatima, Juan Carlos and Carla.

| also would like to thank Sergio Barrachina Mir and José Vte. Marti Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which | have used
as a starting point in writing this report.

http://lorca.act.uji.es/curso/latex/

Abstract

This report shows the process to implement an optimized model-based grass ren-
dering system alongside a fluid simulation based dynamic wind that is able to run
in open worlds using Unity and compute shaders. Compute shaders are a powerful
tool used vastly in AAA titles, so researching about them and trying them out first
hand is a must. They offer quick computation on the GPU and are able to manage
big streams of data that the CPU can’t, so they are ideal for blades of grass or man-
aging 3D textures in an optimized manner. Furthermore, both systems are found in
AAA games but there has yet to be an implementation that includes both. Hereby,
this project implements a model-based grass rendering system where each blade is
independently rendered alongside a fluid simulation that provides deep interaction
in open worlds.

Contents

1

Introduction

1.1 Work Motivation
1.2 Related Subjects
1.3 Keywords
1.4 Objectives

Planning and resources evaluation

21 Planning
2.2 Resources Evaluation

System Analysis and Design

3.1 Requirement Analysis
3.2 SystemDesign
3.3 System Architecture.
3.4 Visual Style & Scene

Work Development and Results

4.1 GrasslInstancing
4.2 Grass Animation & shape

4.3 Manual Placement of the grass

4.4 World Partition
45 GPU Optimizations
4.6 Playerinteraction
4.7 Fluid Simulation
48 Results.

Conclusions and Future Work

5.1 Conclusions
5.2 Futurework

Bibliography

Contents

Vi

Contents

A Important links

B Source code

63

65

Chapter

Introduction
Contents
1.1 Work Motivation 1
1.2 RelatedSubjects 2
1.3 Keywords 2
1.4 Objectives 2

1.1 Work Motivation

Incorporating natural phenomena in videogames adds a layer of realism to these in-
teractive experiences that makes immersion even more captivating. Moreover, when
we factor in the key differentiating aspect of videogames - interactivity - the result
is a truly meaningful experience.

As a nature lover and Erasmus participant in late 2022, my time as an exchange
student in the Netherlands has really inspired me to work on vegetation and grass.
As a matter of fact, | was thinking about this matter for a long time. | had a thought
in the back of my mind about creating beautiful grass, and coincidentally, various
Youtube videos sparked my interest into implementing a grass and wind system.
The first one is a deep dive into the interactive wind and vegetation system inside
God of War (2018) [6], showing how they use a fluid simulation in order to recreate
realistic and interactive wind behavior.

On the other hand, another video from youtuber and technical artist Acerola [1]

1

Introduction

shows an overview of the utility of compute shaders in grass generation. This was
a useful starting point into researching and gathering information on the topic. Fur-
thermore, compute shaders are a crucial tool in making modern games as they
offer the ability to quickly compute big chunks of arbitrary data, making them flex-
ible for many goals including non-rendering related subjects. This work uses com-
pute shaders to implement complex nature phenomena: grass and wind. This way
| intend to learn about this technology and challenge myself to make it run even
on mobile devices, implementing optimization techniques and profiling the perfor-
mance.

Another point that motivates the work is the lack of games with fluid simulation
wind and blade-model grass. The fluid simulation idea is for wind in games is quite
innovative and has only been seen (or at least mentioned) in God of War (2018) [6].
On the other hand, single blade grass can be seen across a small number of games
such as Breath of The Wild[14] or Ghost of Tsushima([8].

Although this would make the project blow out of proportion, developing the
grass tool and wind system will open the doors to creating a game over the devel-
oped technology. As they say, technology determines the development and design
of videogames and with the creation of these tools, inspiration would come easily.

1.2 Related Subjects

e VJ1227 - Game Engines.
e V]J1221 - Computer Graphics.
e VJ1216 - 3D Design.

e VJ1208 - Programming Il (Computing).

1.3 Keywords

Computer graphics, vegetation, grass rendering, fluid simulation, compute shaders

1.4 Objectives

The main objective of this work is to implement both systems in an optimized manner
within Unity 3D. The main points that should be addressed are:

e Model Grass Rendering: create an efficient and flexible model grass render-
ing system that can be used in open worlds using GPU instancing in order to
render thousands of blades of grass. The density of vertices allows a beautiful
animation.

1.4. Objectives

¢ Grass Design Tools: development of the necessary tools/parameters to make
the generation of the grass as customizable as possible. This includes the abil-
ity to place the grass, change color, size and other parameters.

e Static wind: implement a basic animation system in a vertex shader in order
to modify the position of vertices in the 3D grass model.

e Fluid Simulation: implement a 3D grid where a fluid simulation is computed
and make it affect the animation though a texture. This works on top of the
static wind to create more detailed animation for certain elements.

¢ Keeping things optimized: in the implementation of the forementioned items,
compute shaders will be highly involved, so learning about them is unavoid-
able to keep the systems as optimized as possible. Because we are using GPU
instancing, these techniques do not come 'for free’ with the engine, so we need
to implement them on our own, also giving the chance to learn about them.

Chapter

Planning and resources evaluation

Contents
2.1 Planning B
2.2 Resources Evaluation 7
2.1 Planning

In this section Table 2.1 showcases the main tasks that should be completed and the
expected amount of time they would take. The tasks are separated in four different
categories: documentation, grass development, wind development and gameplay.
This makes it easier to work organize the tasks independently. It is clear, however
that each task also turned into even smaller objectives as the work progressed, fitting
the needs detailed in the requirements and system design.

A Gantt Chart is also provided, detailing the dependencies and time distribution
across the months of work (see Figure 2.1).

Planning and resources evaluation

aow4 Buisn spunos jo uonejuawalduw)

spunos Jafe|d jo uoneain

19]|041U02 JalorIeyD uosiad pig diseg
sjuawa|g Aejdowen

siojesauab puim Jo uopeal)

Jafe|d ayi mojjo} pub ayl Buniep

pub Qg e uj uonenwis pinj4
juawdojaaap puip

sself yum sioeiaiul Jahe|d jo uonisod

(@O ‘Buyno wmsni4) suoneziwndo N4

spjel} Big Bunenoo 1oy Buiuonied eoedg

sself ay} jo Juswaoe|d |ENUBLW J0) WBISAS

uoljeLWIUE 10} JOPEYS XaUBA

|epow sseif sy} jo Buuapuai paouelsu]
Juawdojanag sseln

uopejussa.d |euly jo uoiesedaid
Aowaw [euy Bum
'sap pue sishAleue ayl Bunum g Buiyosessay
jesodoud [eajuyoa
sjuawnaoqg

dad uonejebap

Figure 2.1: Gantt chart

2.2. Resources Evaluation

Task Type Time (h)
Technical proposal	Documentation	5
Researching & writing the analysis and design document	Documentation	20
Instanced rendering of the grass model	Grass Development	2
Vertex shader for animation	Grass Development	10
Space partitioning for covering big fields	Grass Development	25
GPU optimizations (Frustum culling, LOD)	Grass Development	30
System for manual placement of the grass	Grass Development	15
Basic 3rd person character controller	Gameplay	10
Position of player interacts with grass	Wind Development	20
Fluid simulation in a 3D grid	Wind Development	50
Making the grid follow the player	Wind Development	20
Creation of wind generators	Wind Development	15
Creation of player sounds	Gameplay	10
Implementation of sounds using FMOD	Gameplay	15
Writing final memory	Documentation	40
Preparation of final presentation	Documentation	10

TOTAL 300

Table 2.1: Tasks

2.2 Resources Evaluation

For the development of this work the main resources that are needed can be sepa-
rated into hardware and software.

e Hardware: at first, it was not clear whether my personal laptop with would
be enough, but it turned out to be capable. The model is a MSI GS65 valued
around 1.250 euro.

— CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
— GPU: NVIDIA GeForce GTX 1660 Ti - 6GB GDDR6 VRAM
- RAM: 16GB

e Software: all of the software that was going to be used could be free of charge,
however at certain points photoshop was used, althought it could be swapped
for a free alternative.

Planning and resources evaluation

— Unity (free): the free version of Unity, for personal use and small teams. It
was the main rendering platform and the playground where to implement
everything that was needed, as it has support for compute shaders.

— Visual Studio Community 2022 (free): as a programming environment,
as it comes by default with Unity and the 2022 version is quite easy on
the eyes and has useful features.

— GitHub (free): the version control desktop program chosen for safety and
ease of use. It helps during the development when doing certain steps
which are not safe.

— Trello (free): in order to keep track of the working hours and the remain-
ing tasks at each point in the development, Trello proved to be useful in
gathering all the infromation, keeping track of progress and as a hub to
everything related to the work.

— Blender (free): the open source 3D suite that enables the creation of any
necessary 3D element in the scene, including the grass blades.

— Photoshop (19,66 euros/month): for the creation of certain textures and
the mofication of others, it was necessary to make use of an image editing
software.

— Overleaf (free): writing the final report was done using the free version of
Overleaf, the web LaTeX editor.

If we were talking about a professional environment, the time of the staff in
charge of this matter would be part of the cost. However, as proved by the team
at Santa Monica [6], the tasks of creating a fluid simulation and the rendering and
application of the wind are handled by different sections.

So if we took into account that one person is in charge of the project, an approx-
imate of 33 euros/hour is the salary of a junior software engineer in Santa Monica
[9], so counting on 300 hours, the cost would be 9.900 euros. Adding the cost of
all hardware and software necesities during 4 months, we end up with a forecasted
price of 11.228,64 euros.

Chapter

System Analysis and Design

Contents
3.1 Requirement Analysis 9
3.2 SystemDesign 13
3.3 System Architecture 16
3.4 VisualStyle&Scene 17

3.1 Requirement Analysis

In this section we will go through the requirements for the design of the grass ren-
dering system and the wind simulation within Unity. We should list all the elements
that are necessary for the design to satisfy the objectives listed previously.

The system should render grass blades, as everything else will be added to this.
The tool should be as flexible as possible, introducing parameters to modify gener-
ation, such as placement, density and randomness in position. Furthermore length,
colour and bend of the blades should also be a modifiable part of the system. The
position of the player should interact with the grass. All of this will be done through
the main component that manages the grass inside of the scene and runs the com-
pute shader and the blade’s material shader that controls the rendering and vertex
displacement, as part of the rendering pipeline.

On the other hand, for the static wind system, it should be possible to modify its
strength or overall effect over the grass, speed and direction. The dynamic wind
system needs to be implemented using fluid simulation and should feature gener-

)

System Analysis and Design

ators of wind such as directional generators and wake generators which affect the
system only when they are moved. This will be done through another component
that manages wind.

This should all run in open worlds (min. 500x500 units), at a high framerate
(+100fps) and even on mobile devices.

3.1.1 Functional Requirements

In the next section, taking into account the description given above, the functional
requirements that define this project will be listed alongside a table explaining its in-
puts, outputs and behaviour of each element. These are functionalities that should
be implemented. The utilities that the ideal system will have and should be devel-
oped are the following:

e GRASS1. Generate blade positions (see Table 3.1).

e GRASS2. Paint a placement texture (see Table 3.2).

e GRASS3. Adjust density of grass (see Table 3.3).

e GRASS4. Adjust randomness of blade positions (see Table 3.4).

e GRASSS5. Modify the colour of blades (see Table 3.5).

e GRASSG6. Modify LOD distance (see Table 3.6).

e GRASS7. Modify cutoff distance (see Table 3.7).

e GRASSS8. Modify bending of the grass through player position (see Table 3.8).
e WIND1. Generate wind through a fluid simulation (see Table 3.9).
e WINDZ2. Interact with the grass through wind (see Table 3.1).

e WIND3. Create static wind generator (see Table 3.11).

e WINDA4. Create dynamic wind generators game objects (see Table 3.12).

3.1. Requirement Analysis

11

Input: Map Size, Heightmap

Output: Positions buffer

The user inputs the map size and the heightmap corresponding to the terrain
that should be filled, the blade positions are calculated through a compute
shader

Table 3.1: Functional requirement «GRASS1. Generate blade positions»

Input: Mouse location

Output: Texture with the positions of the grass

The user paints directly in the editor where they want the grass to grow.
When rendering the grass only in the places where this control texture has
alpha, it will be rendered

Table 3.2: Functional requirement «GRASS2. Paint a placement texture»

Input: Density (grass/unit)

Output: More positions in the position buffer

The user specifies a density number in the grass main component and the
number of blades will change

Table 3.3: Functional requirement «GRASS3. Adjust density of grass»

Input: Randomness amount

Output: Position are randomly offset

The user specifies randomness amount int the X and Y axes so the blades’
positions look more natural

Table 3.4: Functional requirement «GRASS4. Adjust randomness of blade positions»

Input: Top color, bottom color

Output: Blades color change

The user specifies two colors, one for the top of the blade, and another one
for the bottom. The fragment shader interpolates between them across the
V axis in the UV map

Table 3.5: Functional requirement «GRASS5. Modify the colour of blades»

12

System Analysis and Design

Input: LOD distance

Output: Model is swapped at the specified distance from the cam-
era

The user inputs a distance where they want the higher poly model to change
to a lower one in order to save resources

Table 3.6: Functional requirement «GRASS6. Modify LOD distance»

Input: Cutoff distance

Output: Blades are not rendered from cutoff distance

The user inputs a distance and the grass will not be rendered from that dis-
tance to the camera

Table 3.7: Functional requirement «GRASS7. Modify cutoff distance»

Input: Player position

Output: Blades move from position

The user moves the character and its position bends and pushes the blades
downwards

Table 3.8: Functional requirement «GRASS8. Modify bending of the grass through
player position»

Input: Volume size, viscosity
Output: A 3D Texture for X, Y and Z

The user specifies the size of the simulation volume and 3 textures store the
velocities of each voxel

Table 3.9: Functional requirement «WIND1. Generate wind through a fluid simula-
tion»

Input: Wind Strength

Output: Blades move scaled to strength

The user specifies the strength of the wind so that the movement is stronger

Table 3.10: Functional requirement «WIND2. Interact with the grass through wind»

3.2. System Design 13

Input: Wind direction

Output: General wind texture

The user specifies the direction of the static wind that affects all blades of
grass

Table 3.11: Functional requirement « WIND3. Create static wind generator»

Input: Wind Motor game object

Output: Influence over the fluid volume

The user can create game objects that influence the behaviour of the fluid
in the simulation, such as a directional motor or a circular motor

Table 3.12: Functional requirement «WIND4. Create dynamic wind generators game
objects»

3.1.2 Non-functional Requirements

As stated in the initial description of the system, the non-functional requirements
which represent conditions or limitations that the system should accomplish are:

e NF1. The grass can be placed in huge areas of terrain, minimum 500x500 units.

e NF2. The rendering of the grass and wind simulation must keep a playable
high frame rate (+100 fps).

e NF3. The overall look should be stylized and compelling.

3.2 System Design

In order for the reader to have a clearer understanding of the working of the systems,
two diagrams will be presented in this section.

Firstly, the use case diagram 3.1 showcases how the user can interact with the
grass through parameters that modify position, look and displacement of vertices
of the blades. Wind is also a part of this system, therefore it can also modify the
position of vertices.

Secondly, the activity diagram 3.2 portraits the way the generation of the grass
works. The structure of the tiles is a quadtree, where every piece of terrain that
has a standalone heightmap should be a independent parent node. The subdivision
condition of the quadtree will be further discribed in the next section.

14

System Analysis and Design

Grass & wind interaction

Paint
placement
texture

—
<include>
\

Generate blade

<include> position
Adjust density

d

<include>
-

Adjust
randomness

Maodify LOD / cutoff

User

Modify colour

Modify scale, bend,
rotation

~_
<include>
~
Move blades'
<include> vertices
Woalk on grass
<include>

Create wind
generators

Figure 3.1: Use case diagram

15

3.2. System Design

Dp3yp 03 saji 18y30 ON]

®

% [sp|y> ssow uiDjUOD Jou sso(]
[oiawips woly Jp4]

[8PON A0 MpIQ

(aandwo))
suonIsod
SSDID) 3)DIAUSD

[pl1y2 suiyuo]] [maiA ul]

3|3 PHOM 34D |-

S2(13 PIY2 234
[>23y2 031 Y| S8 =40 a3y] % i

{ssnib suipyuo))]

[maia urjou)1]

[p1awp3 03 3s0|3 5[] {sspib uipuod Jou sso]

[2pon
|PWION MPIQ

yols
wpiboid ssoug

iagram

: Activity di

Figure 3.2

16

System Analysis and Design

3.3 System Architecture

In this section, the specifics on the tools and structures used to develop the program
and hardware requirements of the end user will be detailed.

For the creation of the scripts, C# and Compute Shaders (HLSL) [26] inside of
Unity 2021.3.11f1 are used. Compute shaders are separate from the normal renering
pipeline, and enable the programmer to compute any type of data in an efficient
manner, so they are perfect for generating lots of positions efficiently. As one of
the bottlenecks of rendering so many elements is the action of passing information
around the GPU and CPU, GPU instancing [20] enables us to render the same object
multiple times in an efficient manner.

In order to achieve this, AppendStructuredBuffer<T> [19] is used for populating
the buffers, as it is a flexible sized compute buffer that will make the programming
of LOD and culling easier. These structures enable passing arbitrary data from the
CPU to the GPU, that way we can generate the positions of only the blades that will
show up on the screen. If we used a normal Structured Buffer, its size should be
known beforehand, and as we want to cull positions to be sent to the drawing func-
tion during runtime, creating a structured buffer with the desired grass blades would
not be straightforward as explained by Acerola in his video 'Modern Foliage Render-
ing’ [2]. Using append structured buffers as seen in the demo created by Brian from
UpRoom Games [7], fixes this problem by providing a felixible sized buffer.

For the vertex and fragment shaders, Shader Graph, the visual scripting solution for
shaders by Unity is used. This makes the creation and understanding of the shader
logic much easier, and almost all the functionality available through scripting can
also be done here. With it, the visual appearance and the animation of the grass are
implemented.

The partitioning of the world is based on a region quadtree [28], in order to make
frustum culling faster and to access data in the world, such as placement textures or
heightmaps. Thanks to this data structure, we can store all of the information about
the grass in the game world efficiently and only access the parts that are important
at any certain point, mainly the frustum of the player’s camera. The quadtree nodes
store: the heightmap corresponding to the area they contain, the placement mask,
the materials (one for each LOD), the compute shader that generates the positions
and compute buffers for the positions, the LOD positions and the indirect arguments
for both (needed for the drawing function). When building the quadtree, the main
input is the placement texture, as the tree will only subdivide where there is detail in
the placement textures, in other words, where there is grass. The maximum depth is
user editable as we don’t want regions too small so that the GPU becomes inefficient
at generating the positions.

3.4. Visual Style & Scene

17

For the fluid simulation, compute shaders and 3D textures are used instead of
buffers, because as explained by Rupert Renard in his GDC talk in 2019 'Wind Sim-
ulation in God of War’ [16], using a separate 3D texture for each axis, proved to
be more efficient. The simulation proposed here is closely based on Jakub Micka’s
implementation in his master’s thesis 'Voxel-based fluid simulation in Unity’ [12],
changing however, the approach on using textures instead of buffers. This proved
to be a solid resource, however it was crucial to understand the holy grail of real-time
fluid simulations, Jos Stam’s 'Real-time fluid dynamics for games’ [18].

Finally, we can discuss the memory cost of the system. For the grass rendering,
each chunk of grass uses 5 buffers. The main one is the grass data where position
and scale information is stored using 3 floats for position and 3 floats for scale, the
size for each elementis: 6 * 4 bytes = 24 bytes. Then, we have the arguments buffers
in order to keep track of how many elements we are rendering - one for each LOD -
and uses 5 unsigned integers (4 bytes), adding up to 20 bytes each (this is shared
accross all chunks, so it is insignificant). Finally, two buffers - one for each LOD -
store the final culled positions that are used, also 24 bytes each. If the density of the
chunk is 6, meaning that we have 6 blades of grass per unit (enough to make it look
dense) and the area of the chunk is 16 meters squared, that means the chunk stores
a maximum of: (16 x6)? = 9.216 blades. As mentioned, we use one buffer for all the
data and then two buffers to store the culled position of each LOD, meaning the final
storage size of the chunkiis: 9.216 * 24 + (9.216 * 24) * 2 = 663.552 bytes (0.110592
MB). If at any given moment we have an average of 25 visible chunks, the total cost
of VRAM on the GPU of the grass is 16.588.800 bytes, or 16,59 MB. This is a decent
cost, and it is achieved thanks to the world partitioning, otherwise, we wouldn’t be
able to render small chunks and all grass positions would be stored from the begin-
ning, and the size would blow out with the world size. Thanks to the quadtree, the
cost of each node much smaller and enables the system to scale infinitely, because
we load and free up the chunks dynamically during run-time.

3.4 Visual Style & Scene

The scene will be, at least, a 500x500 units of terrain area filled with grass and veg-
etation. It will have some hills and mountains and other natural features sculpted
with the terrain editor inside of Unity. Furthermore, other types of vegetation such
as trees, flowers and bushes can be added. As the wind system is based on a tex-
ture that indicates the movement in each axis, interaction with other vegetation is
added modifying the shader of the corresponding element’s material.

The character is taken from Unity’s asset store’s 'Starter Assets - Third Person Char-
acter Controller’ asset [23], including animations and the basic controller for camera
and movement. A stylized approach will be used for everything in the scene. Real-
ism is not a goal here. The style of the grass in Breath of the Wild [14] is the main
inspiration in looks and the grass in God of War (2018) [13] is in behaviour.

18 System Analysis and Design

Figure 3.3: Breath of the Wild’s grass

As we can see in the original game (see Figure 3.3), the grass does react to
lighting and it receives but does not cast shadows. We can also see a difference
in colours, between different blades but also between the top and the bottom of
the blades. What's more, it even changes looks depending on the place it grows.
There’s also a difference in the height, for example in the transition between places
filled with grass and empty planes (see Figure 3.4).

Figure 3.4: Grass height falloff

3.4. Visual Style & Scene

19

Figure 3.5: God of War's fluid simulation debug

In terms of the behaviour, as seen in God of War (see Figure 3.5), the grass will
react to generators of wind in a detailed way. This is done by using the fluid sim-
ulation, which mimics the behaviour of wind closely, creating a deep interactivity
between the events in the game and the grass.

These are the main references for the visual style of the grass. However in the
end, the color variation between blades was not implemented and only one type
additional vegetation (a tree) was added.

Chapter

Work Development and Results

Contents
4.1 Grasslinstancing 21
4.2 Grass Animation &shape L Lo 28
4.3 Manual Placementofthegrass 34
4.4 World Partition 37
45 GPUOptimizations 39
4.6 Playerinteraction 40
4.7 Fluid Simulation 43
48 Results 46

In this section, a breakdown of the developed technology is detailed, going over
the steps taken to achieve each of the tasks presented beforehand. Some simplified
code snippets are added as figures so the reader can follow the explanation at a
base level.

4.1 Grass Instancing

The steps taken here follow the overview of Acerola’s video '"How Do Games Render
So Much Grass? [1]. The first objective was to render grass in a plane, using GPU
instancing.

As we want to visualize what is happening, we need somewhere to place our
grass. A plane and a 2m height cube to have a size reference are added (see Fig-
ure 4.1). Then, we want to start generating the positions so... How do we even start?
To keep things simple, we can start with the typical grass that is used in the majority

21

22

Work Development and Results

3
= l

Figure 4.1: Scene’s Initial State

Plane gras2
12 Vertices, 6 Triangles | UV1 128x128 RGBA Compressed DXT5|BC3 sRGB 7.7 KB

Figure 4.2: Billboard mesh and texture

of games, billboard grass. This grass is based on a group of planes positioned in
a way that they create a cross section in the middle and using textures to give the
impression of dense grass. We can see the model that | first created and its tex-
ture, using Blender and Photoshop (see Figure 4.2). After we have the grass and the
scene set up, we can start generating positions.

As we have mentioned in order to render the grass using GPU instancing, we
have to calculate positions, we will use compute shaders as they process data quickly
and store the data directly in the GPU. For that purpose the script GrassMaster.cs is
created. It manages everything related to the generation of grass and the shader.
We also need to create a compute shader asset using Unity’s Project Window. We
rename the file GrassCompute.compute. In order to utilize the shader we need to
describe and understand its elements first (see Figure 4.3).

In a compute shader, we have to create what's called a kernel which is not more
that a function that will execute whenever we dispatch this shader through a script.
This kernel will have a specific size of thread groups (up to 3 dimensions) that will

4.1. Grass Instancing

23

in (uint3 id : SV_DispatchThreadID)
code here

Result[id.xy] = floatd(id.x & id.y, (id.x & 15)/15.0, (id.y & 15)/15.@, 0.8);

Figure 4.3: Compute shader. In red, kernel; blue, parameters and green group thread
size

igma kernel GrassGenerator

RWStructuredBuffer<float3> _Positions;

rerator (uint3 id : SV_DispatchThreadID) {
_Positions[id.x, id.y * 8] = float3(id.xy, 8);

Figure 4.4: Calculating the positions

work in parallel to process whatever we tell it to. Besides, we can pass in buffers
and other types of parameters such as floats, vectors, etc.

A first approach we can take is to generate a position for each thread. In this
case we will cover an area od 128*128 units. So we can make the threadgroup
size 8*8, dispatch 16 groups and generate one position for each thread id (see Fig-
ure 4.4). The size of the threadgroup can be fiddleded around with to get the best
performace possible. Now, in the GrassMaster script, we have to hold a reference of
the compute shader, create the buffer, have a reference of the model and mate-
rials and dispatch the compute. In order to create the buffer, we can hold a private
attribute in the component and create a new ComputeBuffer object. As these ob-
jects will allocate memory, it is a good practice to initialize them when the object is
enabled and free the memory when the object is disabled (Unity’s functions OnEn-
able and OnDisable). Next, we have to link up the buffer with the shader, so we
use the function SetBuffer. Besides, in the grass material we also need to link the

24

Work Development and Results

Figure 4.5: Injection in Shader Graph

Figure 4.6: First generation result

buffer so it can move the grass where it should be. This also means creating a ma-
terial shader that is compatible with GPU instancing, which is not default in Shader
Graph so we need a quirky workaround. Thanks to the tutorial by Catlike Coding on
Compute Shaders [5], we see that we can create some custom nodes to 'inject’ the
necessary code to enable procedural instancing, in other words, to use GPU instanc-
ing (see Figure 4.5). This is done in the vertex shader. Finally, we can tell the GPU to
render our grass using the model and material that we specified, using the function
Graphics.DrawMeshlnstancedIndirect()[21] one of the options to procedurally draw
meshes, in this case it needs an argument buffer that hold information about the
mesh and the number of instances that we want to draw..

The result of all of this can be seen in Figure 4.6. We observe that the positions
are not natural, so the next step would be to add a random offset to the location.
Creating new parameters in the compute shader and the script follows the same
pattern as before, so we can also add logic to change the size and density always

4.1. Grass Instancing

25

co)

return(frac(sin(dot(co.xy, float2(12.9898, 78.233))) * U3758.5U53)) * 1;

osition (uint3 id)
if (id.x < _Resolution && id.y < _Resolution)

Xoffset 1(id.xy) *_OffsetXAmount;
1(id.xy) *_OffsetYAmount;

8.6f;

* _Step — _Size * 0.5 + Xoffset;
pos.z id.y * _Step - _Size * 0.5 + Yoffset;

_Positions[id.x + id.y * _Resolution] = pos;

Figure 4.7: Random offset

Figure 4.8: Increased density and random offset generation

taking into account the size of the threads, buffers and the previously required set up
steps, so no further explanation will be done. We just need to add a random offset
when generating the positions, so we can modify the compute shader to do this (see
Figure 4.7). Increasing the density and the random offset, the field looks much more
natural and appealing (see Figure 4.8).

The next step would be to modify the terrain and have the grass stick to it.
Thankfully, the Unity Terrain package allows the user to export the heightmap of

26

Work Development and Results

Figure 4.9: Grass sticking to terrain

the generated terrain, so if we calculate the world-space UV, we can sample this
texture in the compute shader and offset the position’s Y axis to the desired height
(see Figure 4.9).

Now that we have a basic system, we can swap the billboard for a blade model.
First of all we will have to create it. As before, Blender is the chosen tool. The first
model that | produced has 9 vertices, in order to have enough detail for an eye catch-
ing animation (see Figure 4.10). However, when we simply swap one model for the
other, it looks pretty bad. First of all we have to up the density, and second, the color
of the blade is now missing. One of the ways we can colorize the blade is using a
different color for the top and the bottom, faking ambient occlusion. In the fragment
shader, the two colors are linearly interpolated across the UV’s V axis, so the color
changes from bottom to top. The result of this can be seen in Figure 4.11. Itis also of
crucial importance to mention the direction the vertices’ normals should be facing. In
the first version of the model, the normals point parallel to the ground and depending
on the position of the sun, it can look pretty bad, so in further versions (shown in the
next sections), the normals are manually fixed.

4.1. Grass Instancing

27

i

Figure 4.10: First blade model

Figure 4.11: Model generation

28

Work Development and Results

Figure 4.12: Shader Graph world-space UV

4.2 Grass Animation & shape

The next objective is to have animation on the grass. Because we have high density
in the vertices, we can really take advantadge of the vertex shader.

One of the many ways we can fake wind is to have a scrolling noise [6] texture in
the world displace the vertices of our blades. To get this, we first need to calculate the
world-space UV in the shader, and then offset (move) it by adding the running time
of the scene. In Shader Graph, we use the position X and Z coordinates, rotate them
using a wind direction parameter and use a Tiling and Offset node to adjust what
we explained. We will also keep a copy without the offset (see Figure 4.12). Then,
this UV can be plugged in any texture. As a first instance, we can hook it up to a sine
wave to process the UV, as it is the base for more complex wind noises. Eventually it
was changed by an implementation of Blender’s distorted noise as seen in this post
in Stack Exchange. Furthermore, if we just displaced the vertices, the blades would
start to float, so a key point is to mask the displacement of the wind using (again)
the V coordinates of the UV map, this way, the base of the blade is not displaced
(see Figure 4.13). This translation of vertices actually generates a stretch that is not
loyal to reality, but as we have stated, realism is not an objective for this work.

The movement is hard to appreciate in a still image, but in Figure 4.14 we can
see a bit of the sway created by the displacement of the noise.

https://blender.stackexchange.com/questions/268607/how-to-understand-the-distortion-parameter-in-procedural-texture-node

4.2. Grass Animation & shape 29

Figure 4.13: Wind inside the shader

Now we have a nice movement, but when we look sideways, we can clearly see
the planar nature of the model (see Figure 4.15). One way to fix this is to add a
random Y rotation to each blade. | decided to do this using another noise texture
that will drive the strength of the rotation, effectively giving us random rotation. To
perform this correctly, we should use the instance position instead of the vertex’s, as
it gives a homogeneous rotation throughout the whole blade (see Figure 4.16).

Figure 4.14: First wind generation

30 Work Development and Results

-

| ‘«“\Wﬂ.u AN “.w' ll

.'-k.d"

Figure 4.15: Grass field from the side

Random Rotate on Y

Figure 4.16: Shader random Y calculation

Another matter that should be tackled is the top view. Similarly to the side view,
the blades seem thin when looking from the top. We can fix this bending the blades.
Another section of the shader graph is responsible for this movement. After some
iterations, | opted to give the user to chose whether the wind direction drives the
bend or the blade just bends around its X axis. The bend strength is randomly as-
signed to grass blades and it is also modified by the wind strength at that point (see
Figure 4.17).

To further improve this we can create another model which has a small bend
baked in the Y axis. This helps with the feeling of density. Some optimizations to the
model were also introduced throughout the whole development, iterating over the
number of vertices, shape and normal direction of vertices. The final model can be
seen in Figure 4.18.

4.2. Grass Animation & shape

31

The final look of the field after bend, more density and additional parameters
added to the shader (size randomness, smoothness, detail textures, etc) are applied
can be seen in Figure 4.19.

Figure 4.17: Shader bend calculation (only blade’s X axis)

Figure 4.18: Final blade model

32

Work Development and Results

» ﬁ._ ,[A i"l;“{li. fl h “ ‘ llll
W/)‘ m lﬂ’ r(/af Nii ".r. .,I'Hiz, I

Figure 4.19: Final look of the grass

An additional feature/detail we can implement, is view dependent parameters.
For example, we can make the bend dependent on the view angle. This means that
when the player is looking down, we increase the bend in a subtle manner so that
the field always looks as dense as possible. The calculation of the vector is done in
the GrassMaster script: the parameter MaxAdditionalBend is added to the normal
bend and its value is scaled by the remapped angle between the view vector and the
up axis in Unity (Y axis). An dramatization of the effect can be seen in Figure 4.20.

The full implementation of the GrassMaster.cs and the GrassCompute.compute
scripts can be found in the repository in Appendix A, where we can see the parametriza-
tion of all the parameters (also inside Shader Graph).

4.2. Grass Animation & shape

33

I
] Il‘ | 1{ [‘ '

Figure 4.20: Dramatization of view-dependent bend

34

Work Development and Results

4.3 Manual Placement of the grass

Approaching a system that enabled the user to paint the grass wherever they want
was a challenging problem. From the beginning the idea was to let the user draw
over the terrain in the editor and the grass would appear in those areas.

The first approach | took was driven by Minions Art's work published in her pa-
treon post [3] where she attatches the scripts of her painters. The editor is really pol-
ished and has many functions, however adapting so many parameters to my grass
would be challenging and | would not have the freedom to design it as | would want.
Besides, her approach uses a mesh that stores all positions in its vertices. While
this has its advantages, such as placing grass wherever in the world and not de-
pending on the heightmap, it also meant that it has a limit, concretely up to 65.536
vertices [22] (the 32 bit index format enables up to 4 billion vertices, but it is not
compatible with all platoforms, so in order to maximize compatibility only the 16-bit
buffer is used). We need a huge density as we are working with single blades so
generating hundreds of thousands of vertices is not ideal. Morover, displaying these
positions in the editor isn’t ideal either; at this point in development, the grass was
not optimized, so having to constantly render all blades is not an option and dis-
playing a gizmo at each vertex killed the performance in the editor. It was clear that
another approach should had to be taken.

Looking at the GDC talk of Sucker Punch’s rendering engineer Eric Wohllaib [30],
we can see that they use a tiling system where each tile holds a placement texture.
This looked like the proper way to create my own system as it offers flexibility and
scalability. The system implemented in this work is divided in 3 scripts. The Ter-
rainPainterComponent, the TerrainPainterEditor and the GrassMaskDisplayer. Let’s
start with the TerrainPainterComponent.

The painter component is the one in charge of all painting behaviour. Here all
of the brush parameters and necessary textures are stored. The main attributes
are: the mask texture, brush strength, texture and size. In order to make it easier
to work with, a custom editor component (TerrainPainterEditor) changes the looks
of the component in the inspector and also allows us to create buttons that execute
functions in the main painter component (see Figure 4.21). So for example when the
user wants to clear the whole position mask, the button Clear Mask enables that
functionality. It is also crucial to mention that the script will execute in the editor so
the [ExecutelnEditMode] attribute is stated at the top of the class.

The mask texture is created when the button Create Texture is pressed, and takes
into account the size of the terrain’s internal alphamap textures, which hold data of
the applied texture at a certain location in the terrain. Then, using Unity’s editor
events (SceneView.duringSceneGui) we can tell it to do whatever we want. In this
case, a raycast will check collision at the mouse position, transform that location to
the terrain’s local space and then transform it into the texture space. Finally using the

4.3. Manual Placement of the grass

B5

a + Terrain Painter Component (Script)

Terrain

Bru rength

Mask Texture

Terrain Object = Terrain_origin (Terrain)

On Painting Mask ()

Listis Empty

Clear Mask

Create Texture

Figure 4.21: Terrain Painter Component in inspector

brush texture, size and strength, we will go through all the pixels of the brush texture
and set the pixels’ alpha value of the mask texture according to the parameters we
set. Another important parameter is the Brush Mode, as it allows the user to either
paint or erase pixels in the texture.

In order to display the texture so the user has feedback when using the tool, the
GrassMaskDisplayer displays the texture. At first the idea was to interact direcctly
with Unity’s terrain system. However this proved to be cumbersome, as there is no
clear way to edit the splatmaps in a separate way to their own systems in the terrain
or use one of the channels differently. So instead we can use a more flexible system
using a decal object that projects the texture over everything. The GrassMaskDis-
player is added to the painter object alongside a child object with the decal. The
script moves and scales the decal depending on the size of the terrain. It also links
the texture of the mask to the decal’s texture. Furthermore, the decal object is only
activated when the user has the GrassPainter game object selected so no interfer-
ence is had in other situations. An example of what can be achieved is shown in
Figure 4.22.

The final point that should be addressed is how to actually use the texture. An
important detail that | wanted to add as a way to make the system look more appeal-
ing is a kind of size falloff at the edges of the grass (as described in Section 3.4). In
other words, making the grass shrink as it approaches areas where there is no grass.

Work Development and Results

Figure 4.22: Terrain Painter in action

A straightforward way to achieve this is to use the alpha value to drive the size. This
way, | had to add a new parameters to the compute buffers that held the blade infor-
mation (which to this point only held position data, but as described in Section 3.3,
we stored more information per blade), should be expanded to also hold size data,
that way we can read in the compute shader from this texture and not only place
grass where the texture has alpha, but also drive the size (see Figure 4.23). Then in
the vertex shader, we can tell it to use the size as well as the position.

GrassData

Loat3 position;
Loat3 scale;

Figure 4.23: New grass data struct for the buffer

Finally we can wrap all of this up into a prefab, taking into account the relation-
ship between components and the order in which textures and references are taken.
This was a longer process into making a convenient tool, however, there is still room
for improvement. To begin with, there is an annoying bug that breaks the control of
the camera in the editor until another mouse event is triggered which can be very
enfuriating. Another problem is the dependency to Unity’s terrain, although it could
be easily changed knowing the size of the terrain that would want to be used.

4.4. World Partition

37

Figure 4.24: First quadtree test

4.4 World Partition

Now that we have a decent system with great looks and customization, we should
start thinking about optimization. As of right now, the system draws all blades
regardless of their position in the world (that means up to hundreds of thousands
of blades). Because we are using GPU instancing, the GPU can’t perform frustum
culling for free (deleting all blades outside of the camera’s view). Furthermore, if we
want to scale the world, it is not a good idea to treat the grass as one big chunk. With
these limitations, a great technique that has been at use since the original Doom [25]
is space partitioning. As we are focusing on open worlds that do not necessarily need
verticality and as one of the data structures that called my attention the most in the
subject Game Engines, quadtrees have been chosen to divide the world into chunks.
They offer efficient querying and are not too hard to implement (see Append B for
the whole implementation).

First of all, | started gathering information about quadtree implementation and
other matters. Wikipedia [29] and The Coding Train’s series of videos on the mat-
ter [24] proved to be very useful when developing a quadtree of my own. The first
approach | took was very similar to The Coding Train’s, creating custom classes for
everything that is related to it. This served as a type of practice and learning period
to understand how this data structures works and how | could take advantadge of
it. When it finally worked (see Figure 4.24), the next step is working on a custom
solution for the grass system.

This implementation of the quadtree stores additional information at each node,
so that during runtime it can be accessed, as explained in Section 3.3. The main

38

Work Development and Results

Figure 4.25: Quadtree culling

methods are: Build(), SubdivideTexture() and TestFrustum().

Each quadtree is created by the GrassMaster at the start of the first frame, and
it will create a parent quadtree for each GrassPainter game object (each chunk of
terrain). Then, the Build() function is in charge of creating all of the tree, subdividing
the mask texture only where it needs to (where there is detail). SubdivideTexture()
creates smaller copies of the mask texture and the heightmap for each node that
needs it. The condition to keep subdividing is given by the method GrassTexture-
ContainsAlpha(), if a node does not have more information about the position, it is
not subdivided further. If it has information, it is subdivided into four smaller chunks
that cover the same area and the same test is done for them.

Now that we have created a quadtree, we can start testing the frustum against
it. In the Update() function (executed each frame) of the grass master, we check
the quadtrees for the visible nodes. This is done through the TestFrustum() function,
which revursively checks if a node of the quadtree is inside the frustum, if it contains
grass and if it's whithin the quadtreeCutoffDistance, a parameter that helps the user
optimize the system. The nodes that are visible, are inserted to a list. Then this list
is compared to the same list in the previous frame, and all the nodes that are not
visible anymore, free up the memory allocated by their buffers. Then, for all visible
nodes, if they have not been initialized yet, we allocate memory for their buffers
and dispatch the positions compute shader. This way, we have a dynamic system
that at any point only uses the memory that is necessary in exchange of generating
positions each frame. This is great for performance, as only the grass near the player
is rendered and the quadtree enables to query the chunks efficiently. The chunking
of the grass can clearly be seen in Figure 4.25.

4.5. GPU Optimizations

EY

4.5 GPU Optimizations

Figure 4.26: Gpu Optimizations

Even though using quadtrees for a low detail frustum culling method is quite op-
timized, we can really get a performance boost by culling more accurately to the
frustum and even adding LOD (level of detail). As we are using GPU instancing,
none of these optimizations come ‘for free’ with the engine, so we have to imple-
ment them on our own.

For this goal, a new compute shader is in charge of the frustum culling. In this
shader, we perform frustum culling the same way as Acerola’s his implementation
found in GitHub [10], transforming the position to clipspace. We can even add a
parameter for distance culling, which will eliminate grass positions farther away
from that distance to the camera. This shader is executed at each visible chunk, and
takes the original grass data buffer to cull the positions. A new buffer is generated,
which is the actual one we will use to draw, update the arguments for the chunk
and as the buffer for the material of the chunk (instead of the buffer we were using
previously, finally in line with what was described in Section 4.1).

For Level Of Detail a new model had to be created. This is very simple task as
we only need one quad with the correct normals (see Figure 4.27). As for the code
structure, we always keep two buffers, one for the normal positions, and another
one for the LOD positions. We can make use of the culling shader for this matter, as
it already checks distances and the frustum. So at the end of the shader, we make
one last comparison checking whether the distance to the camera is bigger than
the LOD_DISTANCE parameter and appending the grass data to the main buffer or
the LOD buffer. This way, in the end we have 3 different buffers at each node of
the quadtree: one for the total data, one for the culled normal blades, and another
one for the culled LOD blades. We call Graphics.DrawMeshinstancedIndirect() twice,

Work Development and Results

once for normal blades and another one for the LOD blades.

This process seems pretty straightforward now, as every-
thing that has been described before fits everything needed
for the GPU optimizations. However, during development
it was not as easy and many of the forementioned de-
sign decision had to be changed in order to suit these
GPU optimizations. Mainly, the use of AppendStructured
buffers, the use of argument buffers that store information
about the mesh and number of instances that will be ren-
dered and the choice of using the drawing function Graph-
ics.DrawMeshlinstancedindirect(), which was the one that
worked best for my case. Things were, many times, discov-
ered by experimentation and trial and error as it is hard to
find documentation on these matters, even more so in Unity.
This resulted in a frustating experience that took a longer time
than this section evokes.

Figure 4.27: LOD
Model

4.6 Player interaction

Finally, our grass is capable of running even in mobile devices. That is quite an
achivement. However, when adding a character, moving around the environment
feels quite dull and as we said in the beginning, videogames can offer something
more to us. That means it is time to add some player interaction. In this case, the
obvious thing to do is make the player position displace the position of the grass.

In order to do this, Feeley’s video on God of War’s vegetation [6] mentions how
other games approach the subject. More specifically, he mentions how Uncharted
uses a normal texture that follows the player to move the grass away from the player,
according to the direction the normal texture stores. This looked like a nice idea so |
applied the same concept.

First of all we need a 2D circle with the outfacing normals. For this, | took an
image from Stack Overflow [15], which has the perfect shape and directions we
want. Now we need a system to tell the grass to move wherever the player is moving.
This is done using a render texture as it can be seen in many tutorials, including one
about snow displacement [17]. However all of these tutorials miss one thing, and
that is to make the system infinitely scalable.

The system works using a camera that renders from the top view to the bottom to
a custom render texture (see Figure 4.28). It will only render the normal textures that
we want. This texture is then used to drive whatever we need inside a shader. As
we can deduce, this will only work in the region where the camera is rendering. | was
always curious to make this work on an infinite scale so | took this as an excercise
to find the solution. What we can do is make the camera follow the player. Only

4.6. Player interaction

41

Figure 4.28: Player position system

doing this would not have any effect, so the next step is to in the shader, subtract
the position of the player from the world coordinates. This way we align the blade’s
world UV with the player at all times. This is useful if we want to maintain some
type of trail or keep some change behind the player. In our case, the camera follows
the player, who has a plane attached with the texture of the normal circle, and these
normals will push the vertices away from it. The effect can be seen in Figure 4.29.

AR L TR TR N O R R L ‘ SO AR Rl (R o
%“ \‘Q .\\Q‘\\\ ‘\\‘ TRV l‘,\. | ':s W S .;,ﬂ. ’
‘\ WA \,\\ [;‘i'| !A Vi J\lg“_r 1“ u-N \ LA

N YA \u AT ! i) { "(f; A ’ﬂ {/ / {
\) | { ¥ fl }, Ji | Y
'l\wf}‘.l.‘*t A} A A | iy "
Ay | y !
| 1|'t&'vm‘7 .‘“lﬂ m,ﬁ r’ .,‘/ \ j (i
vy lj‘{* {.‘ ‘\‘IH’” 411 7 VAP | t/;', y
| ",)‘-,“") b .r./ \ / 4
\ Wy ‘\' "“““;‘ %n '.‘;’ . // | !
VANV U) Y,
LA (A S TR D) '
N Ol
W) i) Vo
PR |, A ,(, N f’/ (/I W
i s | | I' Jt,} /

BN ‘ f”
CSURNS W) Ve
\," \"{ M‘ ﬁ l/ A “'“" ”*{
!ﬁ \“\\\\? L ‘n. »Wj-’ ‘

Figure 4.29: Player position interaction

42

Work Development and Results

In the end, however, a trail renderer from a particle system was also added, so
the path the player walks through is left behind in the grass (see Figure 4.30). This
approach is closer to what Feeley describes for God of War. The particle properties
of the system make the trail left behind come up slowly, so the effect is quite pleasant.
There is, unfortunately a small glitch in the movement, due to the nature of Unity’s
trail renderer, where the end of the trail cuts off abruptly. This could be fixed in future
revisions. There is one caviat to this system with the render texture though; we can
only send vertical data of a certain amount of elements, because we need to take
into account their heights if we don’t want ghosts to be running on our grass. For
that reason only the player’s Y position is taken into account for the displacement of
grass, masking the center of the render texture when the player is off the ground.

We can see a debug of the effect in Figure 4.31, where we can also appreciate
how other objects can be added to the system.

Figure 4.31: Player position trail

4.7. Fluid Simulation

43

4.7 Fluid Simulation

The final and greaest detail and one of the reasons this grass system is created in
the first place, is to add dynamic wind.

As explained in both videos about God of War’s dynamic wind system [[16], [6]],
a fluid simulation inside a 3D grid is the backbone of the effect. Implementing a real-
time fluid simulation is quite a challenge and so a lot of time went into researching
about it and what options would be avaliable for me and my knowledge. The ma-
jority of papers on the problem, go deep into the mathematical structure of the algo-
rithm. However, they also proved a high quality resource into grasping and getting
an overview on how the simulation works. The most useful sources were Mike Ash’s
'Fluid Simulation for Dummies’ [4], NVIDIA's 'GPU Gems’ book entry on fluid sim-
ulation [11] and the foundation of real-time dynamic fluid’s, Jos Stam’s paper [18].
Spending time trying to understand them was good, however, | never fully undertood
them, so the pseudocode implementation in Jakub’s master thesis proved to be really
useful. The implementation is closely based on his. Nevertheless, as already stated
in previous sections, a change was introduced when analizing Ruper Renard’s GDC
talk on his implementation for God of War [16]. There, the team uses three 3D tex-
tures instead of buffers, as in the end they proved to be faster. In the end it worked
and got to use 3D textures for the first time making it a fruitful experience.

The implementation uses 2 sets of manually double-buffered single-channel tex-
tures: velocity sources and velocities. They both have copies for each axis and an-
other copy for double-buffering. Double buffering is a technique used to reassure
parallel tasks in the GPU do not interfere with a texture as we are reading and writ-
ing to it [27].

3 main steps are taken in the simulation: adding
forces, advection, and diffusion. Adding forces mod-
ifies the sources textures. Advection is a prop-
erty of water which moves the velocities and what-
ever is inside of it around. And finally diffusion
'dilutes’ the contents around so that the state of
the whole body is homogeneous. The implemen-
tation of each step will be omitted as it is quite
complex and requires a lot of mathematical un-
derstanding that can be found in the references. O —————
Each of this steps is performed using chained com-
pute shaders in order to maintain a tidy workspace. Figure 4.32: Velocity 3D tex-
The result of these steps can be seen in Fig- turein Z axis
ure 4.32.

A 3D voxel grid in which each cell is 1x1x1 units is used as the simulation vol-

44

Work Development and Results

Figure 4.33: Vertex shader: dynamic wind subgraph

ume. It gives enough detail around the player and can be managed to be kept per-
formant. For now, only a 16x16x16 grid has been tested, but as seen in God of War
a 32x16x32 grid would be enough for far reaching objects. It is important to note,
that it also should follow the player anywhere in the world, in a similar way to the
position of the player affects the grass. However, it is more challenging here as we
also have to take into account the position of the wind generators and the state of
the fluid when we move. For the system follows the player although it breaks every-
time the grid has to move, where we loose all data. This should be addressed in the
future.

A topic we just flew by are wind generators or motors. In order to create wind
and let the player interact with the simulation we need motors that add forces to
the wind. In this case, only a directional motor is implemented. It adds a constant
force in one direction but as seen in God of War there are plenty of possibilities to
create motors with different effects. The motors are in world-space so converting to
the grid’s local position is needed when calculating their effect. They also have to be
taken into account when moving the grid.

Finally, when we have the simulation working, we should add it to the vertex
shader of whatever element we want to be affected by dynamic wind. In our case,
the first element is the grass. Here, after all the calculations for the UV coordinates
after the displacement of the grid in the world (similar to position), we sample from
each of the velocities on each axis, clamp its value and add displacement to the ver-
tex. We can also use parameters to scale the strength. An additional noise texture
is scrolled on the output of the combined axis to give high frequency detail. Finally,
this displacement is added to the static wind described in the animation Section 4.2.
Everything in the graph that calculates the dynamic wind can be packed into a sub-
graph in order to keep a tidier shader graph (see Figure 4.33).

The final effect can be seen in Figures 4.34 and 4.35 where we can see that
using the same node, we can apply dynamic wind to the tree model that | added to
the scene, which uses another custom shader.

4.7. Fluid Simulation

45

/A

‘,é.f 1‘ / AN

Figure 4.34: Fluid simulation debug on grass

R 'h", 4 A G
A M. o ik A,,!!.f.,, " i erj Yy

Figure 4.35: Fluid simulation debug on a tree

46

Work Development and Results

4.8 Results

In this section, we will outline the things that were accomplished, complimenting the
information given in the past sections where each objective was explained.

First of all we can compare the original table 2.1 with the times that were actu-
ally put in the work 4.1. In red, the ones that took longer than expected, in blue, the
ones that took less than expected. The comparison shows us that the grass related
tasks were even harder than expected and many of the things that were created
during development had to be tweaked many times, this resulted in an increase in
their duration. The tasks related to gameplay were given a lower priority, changed
by simpler and faster approaches. The wind system also took a long time, and as will
be discussed promptly, it should still be in development. Finally, the documentation
side, was pretty on point, although some more work than expected had to be putin.

Task Type Time (h) | True time (h)

Technical proposal Documentation 5 5
Res_eorchlng & writing the analysis and Documentation 20 20
design document
Instanced rendering of the grass model Grass 20 27
Vertex shader for animation Grass 10 25
S_pclce partitioning for covering big Grass o5 57
fields
GPU optimizations (Frustum culling, Grass 30 33
LOD)
System for manual placement of the Grass 15 17
grass
Basic 3rd person character controller Gameplay 10 5
Position of player interacts with grass Grass 20 22
Fluid simulation in a 3D grid Wind 50 52
Making the grid follow the player Wind 20 26
Creation of wind generators Wind 15 5
Creation of player sounds (discarded) Gameplay 10 0
Implementation of sounds using FMOD
o Gameplay 15 0
Writing final memory Documentation 40 44
Preparation of final presentation (ex- Documentation 10 15
pected)

TOTAL 300 313

Table 4.1: Tasks - True times

4.8. Results

47

No optimization (fps) | + Quadtree culling (fps) | + GPU optimization (fps)
Editor 75 170 150
PC Build 85 110 140
Android Build - 15 25

Table 4.2: Performance comparison between platforms and optimizations

All of the objectives were achieved in various degrees of completition. We have
a flexible grass rendering system, a useful tool that enables customization, static
and dynamic wind systems and everything is well optimized. All of them do still
need some work to get right, as there are some big problems in some of the systems
that make the tools not so user friendly, but it can be worked on. Mainly, the place-
ment tool bugs the input in the editor and the user cannot move around the map.
Also, the grid of the wind system does not move correctly across the world, so this
should also be fixed.

The performance of the system can be analyzed by testing in different plat-
forms with different optimizations. Table 4.2 shows the comparison between frame
speeds. In these examples, the editor and PC build use the exact same parame-
ters and include the fluid simulation, the Android build uses the same density but
the culling of quadtrees and cutoff is closer to the camera and the wind simulation
is omitted. The size of the terrain is 128*256 (to make a fair test with the version
without optimization).

Firstly we can observe that, with no type of optimization, the performance is not
ideal, hovering around 70 to 90 frames per second in both the build and the editor
(see Figure 4.36). As there is no type of customization other than rendering less grass
(which is not what we want), an Android device is not even capable of running the
app.

In the editor, with the computer described in Section 2.2, the performance is 170
fps average using only quadtree culling. When we add tighter frustum culling, LOD
and cutoff, the performance is reduced by an average of 20 frames per second,
around 150 fps as seen in Figure 4.37.

On the other hand, for the PC build, there is an increase in performance when
adding more optimizations, which is what would be expected (see Figure 4.38).

Looking at the Android build, we can see an average of 25 fps, as seen in Fig-
ure 4.39, when GPU optimizations are added, otherwise the game becomes barely
playable at an average of 15 fps.

48

Work Development and Results

It is interesting to observe that, in the editor, the performance takes a hit when
using gpu optimizations, but andoid benefits greatly. We have to note that while the
optimizations can be expensive, in weaker graphical computers and mobile devices
where drawing is even more expensive, reducing draw calls avoids the bottleneck of
GPU power.

Finally, we can assure that the tools are reusable and customizable, and | will def-
initely use them in the future as an asset for games. If all of the rough edges were
smoothed out, it could even be sold as an asset in Unity’s asset store. The whole
project can be found in GitHub and a build is also available to download in Append A.

All of the parameters available to the user are shown in Figure 4.40. Some ex-
amples of the looks that can be achieved with the grass tools are presented in Fig-
ures 4.41, 4.42, 4.43, 4.44, 4.45, 4.46 and 4.47. It is interesting to note that the bike
shown in Figure 4.47 is also modelled for this project.

https://github.com/Pitarcus/Grass-FDP-2023

4.8. Results

49

BuUlld

|

Figure 4.36: Comparison between editor

and build without optimization

FAVEARTIAAYA B}

Statistics
LULIGH

Graphics:
U: main 5.9m:

[
QUL

1

Sta
Audio:

140.1 FPS (7.1ms)

Figure 4.37: Editor optimizations compar-

ison

50

Work Development and Results

\\\W*\\\

\\ \ \\'\\\Q W \‘ \ *A.
Quadtree + Gpu Optlmlzcltlon
\\ : L\ AN DAL A\

Figure 4.38: PC build optimizations com-
parison

Figure 4.39: Android optimizations com-
parison

4.8. Results

51

Grass Material parameters

Bottom Color
Top Color

World UV Tiling

Scale

r

Random Y Scale Noise
Min Random Y

Max Random Y

Rotation

Max Y Rotation

Random Y Rotation Noise
Max Bend

Max Additional BEend

Bend Randomness Scale

Wind
Wind Strenght

Wind Speed

Wind Rotation

Wind Scale Noise

Wind Distortion

Player Transform

Player Position Modifier }
Player Position Modifier ¥

Player Position Modifier

Figure 4.40:

0.08

@
0.02
0.93

 PlayerArmature (Transform)

. -0.5

Default grass parameters

52

Work Development and Results

Figure 4.42: Short grass

\‘M.

4.8. Results 53

Figure 4.43: Stylized purple/blue grass

Figure 4.44: Normal height, strong random bend, path placement

54

Work Development and Results

Figure 4.46: Bend in the direction of the wind

4.8. Results

55

T TN
i i ,‘“ |
..: ¢ ‘ l'i",‘ﬂ "U)”{”’ | \‘: 3 '\‘- L) J f »\)
(U LR
i’y } [. ‘1 1 \

b bl

H‘*‘“"“é‘- iy * |

M wi

v _f 4@‘_1’ | |
!’f ‘/‘?m 1/ m V‘ [N“

Figure 4.47: Artistic composition and object 'collision’

Chapter

Conclusions and Future Work

Contents
5.1 Conclusions 57
5.2 Futurework 58

5.1 Conclusions

Very hard work from my side had to be put inside this project, I've been working on it
since the end of 2022. It's incredible to think that so much effort has been put in and
yet there are still so many things to fix and polish in order to have a solid system. The
knowledge gained in the degree was useful up to some point, as many of the things
that were discussed here are never touched upon. It was useful to know concepts
and ideas that then | could research on and implement, but there is still so much to
learn. And that is one of the things that | take with me from this experience, you can
never stop learning.

Even if it will not be perfect anytime soon | am proud of this and will be showing
it off in games and other types of media such as videoclips and such for my musical
persona Pitarcus. Besides, itis also a really eye catching project to show off, specially
in the technical art department, a role I'm very interested in for my future professional
career.

57

https://www.youtube.com/channel/UCAZ_pHoJCwzPlFjjXPkXJqA

58

Conclusions and Future Work

5.2 Future work

Even though the system is pretty well optimized, we have to be aware that the ver-
tex shader is very expensive right now. Generating noises for every vertex for each
blade of grass is not fast at all. A really simple trick that would fix this is to pre-
compute the noises, as in using textures instead of generative noises. This way, the
system would gain quite some speed. Besides, time should be spent fixing some
bugs involving the disappearance of chunks at seemingly random moments and the
blocky movement of the fluid simulation when following the player.

As mentioned in the previous section, if the bugs were fixed, the tools could be
sold as an asset in Unity’s Asset Store as they would make for an eye catching
system that many people would want to put their hands on. Additional parameters
could be added such as dynamic wind strength and even more flexibility in the frag-
ment shader to affect the looks of the grass with specular color or even transulency
for example. Some other types of vegetation should also be generated to create a
less monotonous field of grass. This could include small leaves, clumps of flowers,
bushes, etc.

Other types of natural phenomena could be developed over the fluid simulation,
such as water or smoke. These would need to have a custom voxel renderer so the
user can visualize what appears on screen. Water is a very complex matter although
it also interests me.

As mentioned in the work motivation, | would love to develop a game using this
technology. I've been gathering ideas for a game where the player takes on the
role of the princess of a nature-based human-like race who wakes up in a desolated
kingdom and she will have to bring back the life of all vegetation. It is quite a long
project and probably will need fixes, reworks and extensions of the systems created
here but | will push towards this idea. A small team should probably be gathered for
this, as | discovered through the game | created in Game Engines, the whole process
is quite hard, but | love it and learning all about it makes me closer to being a game
director.

https://pitarcus.itch.io/blue-blood

(1]

(2]

(3]

(4]

(5]

[6]

(/]

(8]

(9]

(10]

[11]

Bibliography

Acerola. How do games render so much grass? https://youtu.be/YOKoOkvwfgA.
Accessed: 2023-04-28.

Acerola. Modern foliage rendering. https://youtu.be/jwO0OMbljcrk?t=370. Ac-
cessed: 2023-04-30.

Minions Art. Grass update part 1, painting tool improvements.
https://www.patreon.com/posts/61761853. Accessed: 2023-05-02.

Mike Ash. Fluid simulation for dummies. https://mikeash.com/pyblog/fluid-
simulation-for-dummies.html. Accessed: 2023-05-04.

Catlike Coding. Compute shaders. https://catlikecoding.com/unity/tutorials/basics/compute-
shaders/. Accessed: 2023-05-02.

Sean Feeley. Interactive wind and vegetation in 'god of war’
https:/lyoutu.be/MKX45_riWQA. Accessed: 2023-04-28.

Briaon UpRoom Games founder. Procedural terrain in unity.
https://www.uproomgames.com/dev-log/procedural-terrain. Accessed: 2023-
04-30.

Sony Games. Ghost of tsushima web page. https://www.playstation.com/es-
es/games/ghost-of-tsushima/ Accessed: 2023-05-16.

Glassdoor. Salary details for a software developer at santa monica stu-

dio. https://www.glassdoor.com/Salary/Santa-Monica-Studio-Software-
Developer-Salaries-E716413_D_K020,38.htm?selectedLocationString=N%2C1&filter.jobTitleExact=
Accessed: 2023-06-14.

Garrett Gunnell. Grass. https://github.com/GarrettGunnell/Grass. Accessed:
2023-05-04.

Mark J. Harris. Chapter 38. fast fluid dynamics simulation on the
gpu. https://developer.nvidia.com/gpugems/gpugems/part-vi-beyond-
triangles/chapter-38-fast-fluid-dynamics-simulation-gpu. Accessed: 2023-
05-04.

59

60

Bibliography

[12] JAKUB MICKA. Voxel-based fluid simulation in unity.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Santa Monica. God of war. https://www.playstation.com/es-es/games/god-of-
war/. Accessed: 2023-05-02.

Nintendo. Breath of the wild. https://www.zelda.com/breath-of-the-wild/es/.
Accessed: 2023-05-02.

Rabbid76. Drawing a sphere normal map in the fragment shader.
https://stackoverflow.com/questions/53271461/drawing-a-sphere-normal-
map-in-the-fragment-shader. Accessed: 2023-05-04.

Rupert Renard. Wind simulation in god of war
https://youtu.be/dDgyBKkSf7 A?t=297. Accessed: 2023-04-30.

Daniel Santalla. Interactive snow in unity.
https://twitter.com/danielsantalla/status/1391135820229222401. Accessed:
2023-05-04.

Jos Stam. Real-time fluid dynamics for games. In Proceedings of the game
developer conference, volume 18, page 25, 2003.

Unity Technologies. Computebuffertype.append.
https://docs.unity3d.com/ScriptReference/ComputeBufferType.Append.html.
Accessed: 2023-05-02.

Unity Technologies. Gpu instancing. https://docs.unity3d.com/Manual/GPUIlnstancing.html.
Accessed: 2023-05-02.

Unity Technologies. Graphics.drawmeshinstancedindirect.
https://docs.unity3d.com/ScriptReference/Graphics.DrawMeshinstancedIndirect.html.
Accessed: 2023-05-03.

Unity Technologies. Mesh.indexformat. https://docs.unity3d.com/ScriptReference/Mesh-
indexFormat.html. Accessed: 2023-05-02.

Unity Technologies. Starter assets - third person character controller.
https://assetstore.unity.com/packages/essentials/starter-assets-third-person-
character-controller-196526. Accessed: 2023-05-01.

The Coding Train. Coding challenge #98.1: Quadtree - part 1.
https://youtu.be/OJxEcsOw_kE. Accessed: 2023-05-03.

Doom Wiki. Doom rendering. https://doomwiki.org/wiki/Doom_rendering_engine.
Accessed: 2023-05-03.

OpenGL Wiki. Compute shader. https://www.khronos.org/opengl/wiki/Compute_Shader.
Accessed: 2023-05-02.

Bibliography 61

[27] Wikipedia. Buffer multiple. https://es.wikipedia.org/wiki/Buffer_m Accessed:

2023-05-04.

[28] Wikipedia. Quadtree. https://en.wikipedia.org/wiki/Quadtree. Accessed: 2023-
04-30.

[29] Wikipedia. Quadtree. https://en.wikipedia.org/wiki/Quadtree. Accessed: 2023-
05-03.

[30] Eric Wohllaib. Procedural grass in ’'ghost of tsushima’

https://youtu.be/lbe1)BF5i5Y. Accessed: 2023-05-02.

Appendix

Important links

Repository: https://github.com/Pitarcus/Grass-FDP-2023
Build: https://drive.google.com/file/d/1toeKujmMQOrkvTsd9eYBCclsO_FRemsk/view?usp=share_link

63

https://github.com/Pitarcus/Grass-FDP-2023
https://drive.google.com/file/d/1toeKujmMQOrkvTsd9eYBCclsO_FRemsk/view?usp=share_link

©O© 0 N O U1 A W N P

e el
o A W N - O

16
17
18

19
20
21
22
23
24
25
26

Appendix

Source code

Quadtree Implementation

Listing B.1: Quadtree for grass implementation

() s=====cssss GRASS QUADTREE ----------------
public class GrassQuadtree : IEquatable<GrassQuadtree>
{

public AABB boundary;
public int maxDepth;
public int currentDepth;
public bool containsGrass;
public bool hasBeenSet;

public Texture2D grassMask;

public Texture2D heightMap;

public Material material;

public Material materialLOD;

public ComputeShader grassCompute;

public uint numberOfGrassBlades; // Max number of visible blades in the

node
public uint numberOfInstances; // Actual number of instances
public ComputeBuffer grassDataBuffer; // Fist data buffer with all the

positions
public ComputeBuffer culledGrassDataBuffer;
public ComputeBuffer culledGrassDataBufferL0D;
public ComputeBuffer argsBuffer;
public ComputeBuffer argsLODBuffer;

public GrassQuadtree northWest = null;
public GrassQuadtree northEast = null;
public GrassQuadtree southWest = null;

65

66

Source code

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53}
54
b5

56
57
58

59
60
61

62
63
64
65
66

67
68
69
70

public GrassQuadtree southEast = null;

public bool subdivided = false;

public GrassQuadtree (AABB boundary, int currentDepth, int maxDepth,

{

Texture2D grassMask, Texture2D heighMap)

this.boundary = boundary;

this.maxDepth maxDepth;
this.currentDepth = currentDepth;

this.grassMask = grassMask;

this.heightMap = heighMap;

public void Subdivide ()

{

float x = boundary.p.x;
float y = boundary.p.y;
float w = boundary.halfDimension / 2; // Half the width of the parent

AABB nw = new AABB(x - w, y + w, w);

northWest = new GrassQuadtree(nw, currentDepth + 1, maxDepth,
SubdivideTexture (grassMask, false, true, true), SubdivideTexture(
heightMap, false, true, false));

AABB ne = new AABB(x + w, y + w, w);

northEast = new GrassQuadtree(ne, currentDepth + 1, maxDepth,
SubdivideTexture (grassMask, true, true, true), SubdivideTexture(
heightMap, true, true, false));

AABB sw = new AABB(x - w, y - w, w);

southWest = new GrassQuadtree(sw, currentDepth + 1, maxDepth,
SubdivideTexture (grassMask, false, false, true), SubdivideTexture (
heightMap, false, false, false));

AABB se = new AABB(x + w, y - w, w);

southEast = new GrassQuadtree(se, currentDepth + 1, maxDepth,
SubdivideTexture (grassMask, true, false, true), SubdivideTexture(
heightMap, true, false, false));

subdivided = true;

private Texture2D SubdivideTexture(Texture2D texture, bool positiveX, bool

{

positiveY, bool isPosition)

Texture2D resultTexture;
if (isPosition)

{

Source code

71 resultTexture = new Texture2D(texture.width / 2, texture.height /
2, TextureFormat.RGBA32, false);
72 resultTexture.wrapMode = TextureWrapMode.Clamp;
73 resultTexture.filterMode = FilterMode.Bilinear;
74 }
75 else
76 {
77 resultTexture = new Texture2D(texture.width / 2, texture.height /
2, TextureFormat.R16, false);
78 resultTexture.wrapMode = TextureWrapMode.Clamp;
79 resultTexture.filterMode = FilterMode.Bilinear;
80 b
81
82 int startX, startV;
83
84 if (positiveX)
85 startX = texture.width/2;
86 else
87 startX = 0;
88
89 if (positiveY)
90 startY = texture.height / 2;
91 else
92 startY = 0;
93
94 for(int y = startY; y < startY + texture.height / 2; y++)
95 {
96 for(int x = startX; x < startX + texture.width / 2; x++)
97 {
98 resultTexture.SetPixel(x) (texture.width / 2), y % (texture.
height / 2), texture.GetPixel(x, y));
929 X
100 b
101
102 resultTexture.Apply () ;
103
104 return resultTexture;
105 %
106
107 private bool GrassTextureContainsAlpha()
108 {
109 for (int y = 0; y < grassMask.height; y++) // Loop through the size of
the mask
110 {
111 for (int x = 0; x < grassMask.width; x++)
112 {
113 Color currentPixel = grassMask.GetPixel(x, y);
114 if (currentPixel.a > 0.1f)
115 {
116 containsGrass = true;
117 return true;
118 }
119 b

120 }

68

Source code

121
122
123
124
125

126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165

166

containsGrass = false;
return false;

// Subdivide the whole quadtree at the same time taking into account the

max depth

public
{

void Build ()

// Only keep subdividing if there is alpha (grass) in the texture - The

if
{

}
if
{

// Test the frustum against a quadtree,

(!GrassTextureContainsAlpha())
return;

(currentDepth < maxDepth - 1)
this.Subdivide () ;
northEast.Build () ;
northWest.Build () ;

southEast.Build () ;
southWest.Build () ;

will appear

public

float quadtreeCutoffDistance,

bool TestFrustum(Vector3 cameraPosition,

validQuadtrees)

if (! boundary.IsOnFrustum(frustum))

{

//
if

return false;

(!containsGrass)

return false;

only visible quadtrees with grass

float leafCutoffDistance,

Plane[] frustum, ref List<GrassQuadtree>

(Vector3.Distance (cameraPosition, new Vector3(boundary.p.x, 10,

boundary.p.y)) > quadtreeCutoffDistance)

return false;

Quadtree is in frustum, in distance && contains grass

(subdivided)

if (northWest.TestFrustum(cameraPosition, leafCutoffDistance,
quadtreeCutoffDistance, frustum, ref validQuadtrees) |
northEast.TestFrustum(cameraPosition, leafCutoffDistance,

quadtreeCutoffDistance, frustum,

ref validQuadtrees) |

167

168

169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
98]
194
195

196
197

Source code

69

southEast.TestFrustum(cameraPosition, leafCutoffDistance,
quadtreeCutoffDistance, frustum, ref validQuadtrees) |
southWest.TestFrustum(cameraPosition, leafCutoffDistance,
quadtreeCutoffDistance, frustum, ref validQuadtrees))

{
return false;
}
else
{
if (Vector3.Distance(cameraPosition, new Vector3(boundary.p.x,
10, boundary.p.y)) > leafCutoffDistance)
{
return false;
}
validQuadtrees.Add (this);
return true;
}
}
else
{
if (Vector3.Distance(cameraPosition, new Vector3(boundary.p.x, 10,
boundary.p.y)) > leafCutoffDistance)
{
return false;
}
validQuadtrees.Add (this) ;
return true;
}

public bool Equals(GrassQuadtree other)

{

return this.boundary.p.x == other.boundary.p.x && this.boundary.p.y ==
other.boundary.p.y;

	Contents
	Introduction
	Work Motivation
	Related Subjects
	Keywords
	Objectives

	Planning and resources evaluation
	Planning
	Resources Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Visual Style & Scene

	Work Development and Results
	Grass Instancing
	Grass Animation & shape
	Manual Placement of the grass
	World Partition
	GPU Optimizations
	Player interaction
	Fluid Simulation
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Important links
	Source code

