
Development of a metroidvania centered
around combat and movement

Álvaro López Ortiz

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 3, 2023

Supervised by: Zoe Valero Ramón

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Zoe Valero Ramón,
for all the help and tips on how to approach my project.

I would also like to thank my mother and my father for supporting me and for doing
everything in their hands to help me.

And thanks to Víctor for helping me find an appropriate name for the video game.
I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their

inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents the Final Degree Work project of Álvaro López Ortiz in Video
Games Design and Development.

The project consists of a video game about a city destroyed by evil corporations.
The player will control Taffy, a part human part cyborg girl who will traverse this city,
defeating enemies and final bosses in order to bring down all the evil corporations. This
will be represented in a 2D environment with action mechanics and pixel art style.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 5

3 System Analysis and Design 7
3.1 Requirement Analysis . 7
3.2 System Design . 8
3.3 System Architecture . 17
3.4 Interface Design . 17

4 Work Development and Results 19
4.1 Work Development . 19
4.2 Results . 28

5 Conclusions and Future Work 29
5.1 Conclusions . 29
5.2 Future work . 30

Bibliography 31

A Game Design Document 33
A.1 Presentation . 33
A.2 Game Summary . 33
A.3 Game States . 33
A.4 Demographics . 34
A.5 Narrative . 35
A.6 Rules, mechanics and game balance . 35

v

vi Contents

A.7 Gameplay . 36
A.8 Graphics . 37
A.9 Tools . 37
A.10 Inspiration . 37

B Others 39
B.1 Disctionary . 39
B.2 References . 39

C Source code 41

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

This chapter contains a presentation of the project and a summary of what is intended
to accomplish. Here there are the reasons why the project is shaped the way it is, all its
first ideas and objectives. There is also a summary of the project, how it started and all
the previous knowledge.

1.1 Work Motivation
The main motivation that made me develop this project was my love for the Metroidvania
genre[1], one of my favourite videogames genres, and I wanted to create my take on them
while learning how they work and what makes them stand out.

The Metroidvania genre consists of a genre of videogames that revolves around ex-
ploration, but platforming and action are also included. One of the main features of this
genre is that as the player advances in the game, new abilities will be unlocked, and these
new abilities will let the player visit new parts of the map that were inaccessible before.
The name Metroidvania comes from the fusion of the names Metroid and Castlevania,
two popular videogame sagas that are the main inspiration for these games

Another motivation I had was that I recently started doing pixel art, and I saw this
as an opportunity to improve my art and develop pixel art skills.

Regarding the theme, I have always enjoyed the cyberpunk aesthetic and have wanted
to include it in a project for a long time, so I thought this was the perfect opportunity.

1

2 Introduction

1.2 Objectives
• Learn how Metroidvania games work and apply this knowledge to create one.

• Implement a diverse and responsive movement system.

• Create a detailed pixel art.

• Animate everything so it feels cohesive.

• Implement a fully functional attack system with multiple diverse attacks and op-
erative combos.

1.3 Environment and Initial State
When I was thinking about the project, I started seeing some problems. While I still
wanted to create a game with a Metroidvania structure, as I started to think more
about it, I realized that these games are too big to be done by just one person with
this small amount of time, so I decided that the best option would be to create a small
Metroidvania, with fewer levels, and focus on specific things like movement and the
environment and art.

The project will be fully done in Unity[2] since is the game engine that I know how
to use the most, and it is also the most fitting for this project, code will be written in
Visual Studio[3]. No free assets will be used for the artistic part of the project; all the
programming and every part of the visual aspect of the project will be made entirely
by the author of the project, however, different sound effects with free royalties will be
used. All the art will be done using Graphicsgale[4] and Krita[5].

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 5

This chapter mainly contains the technical part of the project, its original planning
and the tools used for it. During development, the planning changed a lot, so here is
also included the final schedule used for the project and how much time each took task.

2.1 Planning
This section explains every project objective and shows how much time is expected to
use in each part. The following table consists of the initial planning for the project and
the way I decided to distribute the work (table 2.1).

Implementation of a basic movement 2 hours
Basic attacks with first melee weapon 10 hours
Character design and first 3 melee weapons 5 hours
Implementation of various attacks for each weapon, basic combos 15 hours
Design of first level 7 hours
Movement upgrade adapted to the first level 10 hours
Basic enemies design and implementation 5 hours
Basic AI (artificial intelligence) implementation for the enemies 6 hours
First final boss 12 hours
First 3 ranged weapons implementation 12 hours

3

4 Planning and resources evaluation

Adapt combos to make them work with ranged weapons 20 hours
Parries implementation 10 hours
Roller Skate implementation, movement upgrade 10 hours
Second final boss 15 hours
Add two more melee weapons 10 hours
Add two more ranged weapons 10 hours
Add two more levels 16 hours
Main hub implementation 10 hours
Polish combat and combo system 30 hours
Add last level 10 hours
Third final boss 17 hours
Add various NPCs (non-playable characters) and dialogue system 25 hours
Main screen 3 hours
Saving system 10 hours
Playtesting 5 hours
Final memory and presentation 10 hours

Table 2.1: Initial planning for the project

However, during the development of the project, this table experienced lots of changes,
some things took longer than expected, and others took more priority than others and
got shelved. Therefore, here is the table rescheduled with the final planning (table 2.2).

Design of the main character 2 hours
First animations 12 hours
Movement implementation 7 hours
Jump and physics 8 hours
Implementation of basic attacks 5 hours
Animations and state machines implementation 7 hours
Camera implementation, cinemachine and pixel perfect extension 5 hours
First enemy implementation, AI (artificial intelligence) and design 7 hours
Implementation of diverse attacks 15 hours
Diverse attacks animations 10 hours
Movement animations 12 hours
Level layout design 7 hours
First level design 7 hours
Ladders implementation 2 hour
First final boss 15 hours
Ranged weapon implementation 10 hours
Rollerblades implementation 5 hours
Rollerblades animation 6 hours

2.2. Resource Evaluation 5

Trail implementation 3 hours
Multiple basic enemies addition 15 hours
Second final boss 12 hours
Combat feedback, camera shake, knockback and diverse colors on hit 8 hours
Third final boss 12 hours
Second and third level implementations 10 hours
Background implementations 8 hours
Attacks polishment 20 hours
Settings menu implementation 5 hours
Inventory implementation 12 hours
Addition of diverse items 8 hours
Level progression adaptation 8 hours
Unlockable abilities implementation 5 hours
Main menu implementation 4 hours
Game ending 5 hours
Playtesting 5 hours
Final memory and presentation 20 hours

Table 2.2: Final time distribution for the project

2.2 Resource Evaluation
To create this project, I used mainly the resources I had available. This consists of my
personal computer and software familiar to me. I used this computer because it is my
main work tool, and its components are good enough to use every desired tool. The
elected software also consists of personal preference, all tools used are ones that I feel
comfortable using, and I know how to use already, so I will not need to learn any new
program to develop the project.

1. Main computer (i7 CPU, 16GB RAM, RTX 2060 GPU, Windows 10): 800 euros
approximately

2. Unity 2D 2021.3.18f1: Free

3. Visual Studio 2019 16.11: Free

4. Krita 5.0: Free

5. GraphicsGale 2.09: Free

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 7
3.2 System Design . 8
3.3 System Architecture . 17
3.4 Interface Design . 17

This chapter contains the requirement analysis of the project, the functional require-
ments, the non-functional requirements and some tables explaining these requirements.
An explanation of how the visual interface works is also included.

3.1 Requirement Analysis
Before continuing with the analysis, I think it is convenient to talk about the project.
The game will be an action and platforming game with a Metroidvania structure, and
the game will consist of four levels, the first of them being a main hub with no enemies.
The rest of the levels will have a final boss each; in order to progress through the game,
the player will have to complete these levels and defeat every single boss. Even if there
are multiple levels, the game will be linear, and the player must face the bosses in a
specific order. Each boss will grant the player a new ability that will allow the player to
go to the next level; when the third boss is defeated, the game will be completed.

3.1.1 Functional Requirements

First, this section contains a list of functional requirements [6] explaining how the game
works.

7

8 System Analysis and Design

1. R1. The player can move to the left and to the right

2. R2. The player can jump

3. R3. The player can attack

4. R4. The player can shoot

5. R5. The player can pause the game

6. R6. The player can run

7. R7. The player can use rollerblades

8. R8. The player can slide through pipes when using rollerblades

9. R9. The player can climb ladders

10. R10. The player can damage enemies

11. R11. The enemies can move alongside a determined path automatically

12. R12. The enemies can detect the player automatically

13. R13. The enemies can attack the player automatically

14. R14. The bosses can use multiple attacks automatically

3.1.2 Non-functional Requirements

This section contains a list of non-functional requirements[7] summarising the game’s
qualities.

1. R16. The game will be playable with a keyboard and with a controller

2. R17. The game will have pixel art style

3. R18. The game will have a cyberpunk theme

4. R19. The UI (User Interface) will be simple

5. R20. The animations will be fluid

6. R21. The controls will be easy to understand

3.2 System Design
To end with the requirements of the game, in this section, some tables are presented
explaining how these requirements work and how they are carried through the game.

3.2. System Design 9

Requirement: R1
Actor: Player
Description: The player moves to the left or to the right.
Preconditions:

1. The player is not attacking

Normal sequence:
1. The player presses A or D

2. The character moves

Alternative sequence: None

Table 3.1: Case of use «CU01. Move»

Requirement: R2
Actor: Player
Description: The player jumps.
Preconditions:

1. The player is on the ground

2. The player has the ability to double jump and has one
jump left

Normal sequence:
1. The player presses the space button

2. The character jumps

Alternative sequence:
1. The player has no jumps left

2. The player does not jump

Table 3.2: Case of use «CU02. Jump»

10 System Analysis and Design

Requirement: R3
Actor: Player
Description: The player attacks.
Preconditions: None
Normal sequence:

1. The player presses the attack button

2. The character attacks

Alternative sequence: None

Table 3.3: Case of use «CU03. Attack»

Requirement: R4
Actor: Player
Description: The player shoots in the direction of the mouse.
Preconditions: None
Normal sequence:

1. The player moves the mouse in the direction desired

2. The player presses the shoot button

3. The character shoots

Alternative sequence: None

Table 3.4: Case of use «CU04. Shoot»

3.2. System Design 11

Requirement: R5
Actor: Player
Description: The player pauses the game and opens the options menu.
Preconditions:

1. The game has started

Normal sequence:
1. The player presses the pause button

2. The menu is opened

Alternative sequence: None

Table 3.5: Case of use «CU05. Pause»

Requirement: R6
Actor: Player
Description: The player runs to the left or to the right.
Preconditions:

1. The player is not attacking

2. The player is moving

Normal sequence:
1. The player presses the run button

2. The character runs

Alternative sequence:
1. The player presses the run button

2. The character is not walking

3. The character doesn’t move

Table 3.6: Case of use «CU06. Run»

12 System Analysis and Design

Requirement: R7
Actor: Player
Description: The player moves quicker when using roller blades.
Preconditions:

1. The roller blades are equipped

Normal sequence:
1. The player moves when the roller blades are equipped

2. The character runs faster

Alternative sequence:
1. The roller blades aren’t equipped so the character moves

normally

Table 3.7: Case of use «CU07. Roller blades»

Requirement: R8
Actor: Player
Description: The player slides automatically through a pipe.
Preconditions:

1. The player is wearing the roller blades

Normal sequence:
1. The player jumps on the pipe

2. The character slides through the pipe

Alternative sequence:
1. The player is not wearing the roller blades

2. The character falls through the pipe

Table 3.8: Case of use «CU08. Pipes»

3.2. System Design 13

Requirement: R9
Actor: Player
Description: The player climbs a ladder upwards or downwards.
Preconditions:

1. The player is near a ladder

Normal sequence:
1. The player presses the up button

2. The character climbs the ladder

Alternative sequence:
1. The player is not near a ladder

2. Nothing happens

Table 3.9: Case of use «CU09. Climb ladder»

Requirement: R10
Actor: Player
Description: The player attacks an enemy.
Preconditions:

1. The player is near an enemy

Normal sequence:
1. The player presses the attack button

2. The enemy’s health decreases

Alternative sequence:
1. The player is not near an enemy

2. The character attacks normally

Table 3.10: Case of use «CU010. Damage enemies»

14 System Analysis and Design

Requirement: R11
Actor: Enemy
Description: The enemies move between two determined points.
Preconditions: None
Normal sequence:

1. The enemy moves to the next determined point

Alternative sequence: None

Table 3.11: Case of use «CU11. Enemies movement»

Requirement: R12
Actor: Enemy
Description: The enemies detect the player when is in range.
Preconditions:

1. The player is in range

Normal sequence:
1. The player enters the enemy range

2. The enemy detects the player

Alternative sequence:
1. The player does not enter in range

2. The enemy keeps moving

Table 3.12: Case of use «CU12. Enemies detecting the player»

3.2. System Design 15

Requirement: R13
Actor: Enemy
Description: The enemies attack the player.
Preconditions:

1. The player is in range

2. The player does not go outside the detection range be-
fore being attack

Normal sequence:
1. The player enters the enemy range

2. The enemy detects the player

3. The enemy attacks the player

Alternative sequence:
1. The player leaves before being attack

2. Nothing happens

Table 3.13: Case of use «CU13. Enemies attacking the player»

16 System Analysis and Design

Requirement: R14
Actor: Boss
Description: The enemies use multiple attacks when fighting the player,

these attack are decided randomly.
Preconditions:

1. The boss is not attacking

Normal sequence:
1. The boss selects a random attack

2. The boss uses that attack

Alternative sequence: None

Table 3.14: Case of use «CU14. Bosses using multiple attacks»

3.3. System Architecture 17

3.3 System Architecture
1. Operating system Windows 7 at least

2. CPU with x86 or x64 architecture

3. Graphics card with DX10 capabilities

3.4 Interface Design
The UI [8] is designed to be as clean and as simple as possible, giving only the necessary
information to the player, this only being the character’s current health, appearing at
the top left of the screen. Some inspiration was taken from Hollow Knight (2017)[9] in
order to create this UI.

During boss battles, at the bottom of the screen, the boss’ health bar will also appear,
but the rest of the enemies’ health will not be visible, so the screen is not crammed with
multiple bars.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 19
4.2 Results . 28

Here is the more technical part of the memory. In this chapter, every part of the
work done is presented, as well as all the complications and the results obtained while
doing so.

4.1 Work Development
This section will consist of a discussion of the work development in chronological order.
Most of the things and the mechanics implemented in the project depend on each other,
so explaining it this way makes the most sense.

4.1.1 Main character

The first thing implemented for the project was the main character design, a girl named
Taffy with cyborg characteristics that wanders through the city at night. Taffy being
the most important character of the game, it made sense for her to have a design that
stood up, so the first prototypes were drawn on a piece of paper as sketches, and then
her design was translated to a pixel art style using graphics gale. Some inspiration for
the design was the movie Blade Runner 2049 (2017)[10], especially the characters K and
Joi, these characters represent very well the cyberpunk aesthetic, so Taffy has a trench
coat similar to K’s and a face and hair inspired by Joi. Taffy has great strength thanks
to her cyborg implants, which must be reflected in her design. To create every design of

19

20 Work Development and Results

the project, two different colour palettes were used, one for the characters and another
for the background. After that designing the main character in pixel art was quite easy
(Figure 4.1).

Figure 4.1: Taffy’s design

In order to keep working on her design, the next thing implemented was some move-
ment animations. This was the moment I realised the amount of time and effort that
took animating in pixel art, designing the main character took way more time than I
expected, I had to implement some techniques to make the process quicker, I completely
swapped to Krita because I felt more comfortable using its animation tools and I reduced
the character to simple shapes, each one corresponding to a different type of her body
(Figure 4.2), using this shapes was easier to create movement, and when the anima-
tion was complete using these shapes I draw the character on top of them. With this
technique, I made three animations for three different attacks.

Figure 4.2: Reduction of Taffy’s design to simple shapes

Next, I coded the movement script for the player, here, I had to make the first
important decision, if I wanted to implement a physics-based system or not. A physics-
based movement works so different forces are applied to the character, and these forces

4.1. Work Development 21

determine its movement. A movement system without physics consists of changing the
transform component of the character, creating a variation of its coordinates and creating
movement. The latter is way simpler to implement but lacks precision. I decided not to
implement a physics system since it was simpler, and I felt more comfortable doing so,
also before coding it, I thought that it would not be necessary to have a physics-based
system and that it would not be worth the effort because the game would not need to
be as precise and complex, but when I started to code the jump button I realized that
it didn’t felt good at all, and I was starting to have lots of complications, so I swapped
to a physics-based system, this change of plans took a bit of time but not a lot.

Regarding the character movement, I also added a trail that follows Taffy (Figure
4.3). It does not always follow her, only when she reaches certain speed, for example,
it activates while running, and while dashing. This effect does not give the player an
increase in speed, however, the effect helps to feel the velocity rise, and also makes lots
of sense in this cyberpunk setup.

Figure 4.3: Trail

4.1.2 Combat and enemies

In order to finish with the player scripts, I coded the attacks, and this was quite an
easy task, I used two empty objects to form a square, this square marks the area where
the attacks will deal damage; this area appears when the attack button is clicked and
disappears when is not being clicked. On the other hand, implementing the attack
animation was more difficult since I wanted to implement a simple combo attack[4.4],
I wanted when the attack button clicked multiple times different attacks would follow
each other, and I had to investigate Unity’s animation tools, I ended up using animation
behaviours and state machines[11], this was quite intimidating because I had never used

22 Work Development and Results

them, but it ended up being quite easy and intuitive, and I used them for every animation
in the project[4.5].

(a)

(b)

(c)

Figure 4.4: Taffy’s basic attacks

Figure 4.5: Taffy’s state machine

4.1. Work Development 23

I wanted to try to see if attacks worked right, so I implemented the game’s first
enemy with its design being a placeholder. I wanted to make a simple script that could
work as a primitive script for every enemy of the game, so I implemented a patrolling
system that consisted of two empty objects with the enemy moving between them. I
also added an area in front of the enemy that detects if the player is inside. If it is, it
attacks them. Finally, I added one last script to keep track of the health.

To finish with the character script, I designed three more attacks, a dash attack, a
falling attack and an upwards attack. I also animated more actions, such as walking,
running and jumping. Implementing all of this was simple and easy, but the design took
a lot of time; animating in pixel art was way harder than I expected, especially if I
wanted it to look more or less good.

At this moment, I had another critical problem, I wanted to implement forces to the
player’s attacks so that every time she attacked, she would also move forward a little
bit, I also wanted to implement a knockback system. When I was implementing this, I
had lots of problems with the physics system, and it would not know what was going
wrong. It took me a lot of time, so I decided to book the issue.

4.1.3 First level

The design of the world was simple, I wanted to create a big city with a strong cyberpunk
aesthetic for the main level. To do this, I looked for lots of references from different
media, such as the city from Cyberpunk 2077 (2020)[12] and the movies Blade Runner
(1982)[13] and Blade Runner 2049 (2017)[10], and I eventually came up with a design
that I felt like it fitted. I wanted to give this scenery lots of detail, so it took longer than
expected (Figure 4.6 and Figure 4.7).

Figure 4.6: Background of the first level

I wanted to give the scene a more dynamic feel so I added a parallax effect to it, I
divided the scene into multiple layers, each corresponding to a different building, and

24 Work Development and Results

I assigned different speeds to each building. To create more ambience, I added a small
rain effect too. I also designed the structure of the level and began to design the game’s
progression. After the first boss is defeated, the player will unlock the ability to double
jump, so when the game starts, the player can not go to the left since the platform is
too high; the first boss must be defeated first. Then I designed the rest of the levels
and more unlockables, I also added the possibility to equip rollerblades, which will be
unlocked after defeating the second boss, and I coded a metal pipe where you can go
only when the rollerblades are equipped.

Figure 4.7: Layout of the first level

4.1.4 Bosses

When the main levels were designed, I started coding the first boss (Figure 4.8). I
wanted to make a robot so the move set would be simple and easy to avoid, perfect for
the first boss. I created three unique attacks for the boss, a punch, some stomps and a
laser ray that aims at the player. Since I was already coding the laser ray, I also decided
to give the player a ranged weapon and the ability to shoot it because the code was quite
similar (Figure 4.9). Implementing this boss was quite easy, and it took the expected
time. After finishing this boss, I designed two simple enemies, a robotic security guard
and a robotic hedgehog, both of them patrol between two given points and attack the
player when in range.

Figure 4.8: First boss of the game

4.1. Work Development 25

When coding the punch, I realised that adding a knockback would be perfect, so I
investigated the issue once again, and I eventually solved the problem, the physics of the
movement needed to be disabled when applying this knockback, knowing it was simple
to implement, but finding the problem took a lot of time.

Since the background of the first level took longer than expected, I decided to swap
to use tiles for the rest of the levels, the result was satisfactory, and the time used was
lessened.

Figure 4.9: Player aiming the gun

I wanted to create a bigger challenge for the second boss, so I designed a cyborg
swordsman with a katana and similar skills as the player. I gave him four different
attacks, two slashes in different directions, a punch with great knockback and a dash
attack. The script used for the cyborg inherits from the basic enemy script but changes
it so that instead of moving through two different points, he always runs in the direction
of the player. When in range, the boss makes one attack randomly. The implementation
of this boss was simple, except for the dash attack, which was a bit problematic (Figure
4.10).

Figure 4.10: Second boss of the game

26 Work Development and Results

I also designed the background for this boss battle, I wanted to create a simple
one, so I designed some tiles with a main purple colour and some complementary colours
working as neon lights. While simple, this background kept the essence of the cyberpunk
aesthetic.

Then, to finish with the bosses of the project, I designed the third and last final
boss. For this boss, I wanted to make an eerie design. I liked the idea of floating eyes,
so I designed the boss around it, I created the eyes and a hand, and I made a simple
animation for both of them floating around, for the most part of the battle the boss is
untargetable, the player can not hit its eyes, nor its hand, the only way to damage it
is to wait for its attacks. The attack pattern is simple, the boss has two attacks, one
where it puts its hand above the player, waits for a second and then hits the ground; the
second attack is a horizontal punch. Both attacks have a cooldown. When the attack
finishes, the hand remains still for a second before returning to its initial state, that is
the moment when the player has the ability to damage the boss (Figure 4.11). After
designing this boss, I thought that it would fit better as a second boss better than the
one with a katana, and the background was more fitting as well, so I moved the boss
there. In order to finish adapting the background, I added a new tilemap on top of
the current tilemap, for this new tilemap I created a new tile set with four more tiles,
these tiles consisted of a colour transition from purple to black, so the zone of the level
where the boss stands is completely black. When the boss is defeated, this new tile set
is hidden.

Figure 4.11: Third boss of the game

4.1. Work Development 27

4.1.5 Combat fixes

After testing the battle against the bosses, I realised that there were some issues regard-
ing the combat system, most hitboxes did not work well, and the shooting animations
were not working either. First of all, I fixed the shooting animations; the main problem
was that I designed the shooting mechanic so that when the player shot a new sprite con-
sisting of two arms holding a gun appeared on top of the main sprite, this sprite didn’t
change so it looks like the character had four arms, I had to create variations of the
sprites without arms so when the sprite holding the gun appeared it seemed normal. I
created variations for the idle animation, the walking animation, the running animation,
the jumping animation and the falling animation since these are the moments where the
player is able to shoot. With the use of animation behaviours, these new sprites were
easy to implement. Then, regarding the hitboxes, the only one that worked well was
the main attack one. To fix this, I created new collision boxes. These collision boxes
were inactive for the most part until the player did the desired attack, and then the
corresponding collision box activated for a moment.

4.1.6 Inventory

I was not sure if an inventory system was necessary for the game, it would have been
mandatory if I had added multiple weapons, but since only one was usable, I was starting
to doubt. However, I did some research for the implementation of inventory systems, and
it was quite simple. Taking this into account and the fact that I needed a way to equip
and unequip the rollerblades, I decided to implement an inventory. The implemented
inventory was simple since it is not a fundamental game part. I decided not to give it
lots of layers and to give it only essential functions, when the inventory is opened, a list
of items appears, and the player can click on the items to use them. Having now an
inventory, I realised that I could also add simple items that could give more variety to
the game and could serve as rewards for exploration, such as potions that will heal the
player a bit and upgrade tools that will grant the player more damage (Figure 4.12).
When finishing the inventory I also added a settings menu.

28 Work Development and Results

Figure 4.12: Inventory

4.2 Results
During the development of the project, some changes needed to be made due to time
restrictions, mainly regarding the animations. Animating in pixel art took way more
time than expected, and if I wanted to get satisfactory results, I had to expend more
time in this area than I could afford, so in order to create more mechanics and develop
them correctly, I decided to make simpler animations.

Some other changes needed to be made, I also discarded the idea of having multiple
weapons since using just one would be simpler and easier to understand, and I could
spend more time improving the main weapon. Also, balancing the game around multiple
weapons would take an unnecessary amount of time. After making this decision, I was
really satisfied with the results of the main weapons, the melee one and the ranged one,
so I think that this change was necessary to make a better game.

Regarding the project’s goals, reducing my workload made it easier to accomplish
them. The combat system was fully implemented, it has diverse attacks that work well
with each other and a combo system that works so that when the player hits the attack
button multiple times, the character effectuates diverse attacks, a fully functional range
weapon is also implemented. The implementation of the movement system was also
satisfactory; the character can walk and run, but she can also dash, giving an extra layer
that makes the movement more fun. The running attack also makes the movement quite
interesting because it is a form of movement that also deals damage to the enemies, but
it has a counterpart that, when performing it, the direction can not be changed. Overall
having to spend less time animating more weapons, I could perfect the attacks and the
player’s movement.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 29
5.2 Future work . 30

This chapter contains the conclusions of the work, as well as its future extensions. I
also stated how I feel about the final work and how it could be improved.

5.1 Conclusions

The development of the project was quite a different experience since most of the projects
of the degree are in groups, this is the first video game that I am doing all on my own.
During these months, I experienced many things regarding video game development
that I had never experienced before. One of the most important things that I learn is
to reduce expectations. For the most part, everything takes longer than expected, so
when planning the project is important to take this into account. One of the problems I
had while developing the game was that I wanted to implement way more things than I
could handle, so I had to decide which mechanics should be in the game and which ones
should be shelved.

I also learnt about video game art, even I already knew about its importance I still
underappreciated a lot. The artistic part of the project was the portion that took me
the most time by far, I wanted to cover lots of artistic things but I had to reduce my
workload because I just could not keep with it. And if we talk about pixel art I think
that these characteristics intensify, having a small amount of pixels makes the mistake

29

30 Conclusions and Future Work

stand out more, so everything needs to be really precise, more so if every sprite needs to
be animated too, because that precision needs to be reflected in the animation as well.

Even if I think the art was harder than I expected, I am very proud of the results.
I think that the game looks well and that I did a good work with the animations, I
am especially proud of the results of the background of the first level and the UI of the
inventory.

5.2 Future work
While I am proud of the amount of content the game has, I think it could be expanded
in many ways that would make a better experience. First of all, the weapon variety,
adding more weapons to the game, was an idea that I had wanted to implement since
the beginning, but it needed to be discarded. However, I think it would add variety and
make the game more interesting, besides the game is already programmed with this in
mind, so adding it will not be complicated.

I also think that it would be beneficial to the game to make the map larger, adding
more levels and final bosses, making it a more round experience, I think this type of
game benefits a lot from its length and from its map, making it longer would make the
player be more familiar with the game and with the map, which really enhances the
experience.

Adding more enemies to the game could also be interesting, the combat is inspired
by hack and slash games, so fighting multiple enemies at once would add a new layer to
the combat and it would make everything feel more complete and cohesive.

Finally, even if I think that the game looks good, I think working more on the art
could make a big improvement. The presentation is really important, and Metroidvania
games benefit a lot from it, I think that the pixel art itself is fine and works well enough,
but working more on the animations would improve the looks of the game a lot.

Bibliography

[1] Wikipedia. Metroidvania. https://en.wikipedia.org/wiki/Metroidvania.

[2] Unity Technologies. Unity documentation. https://docs.unity.com.

[3] Microsoft. Visual studio documentation. https://learn.microsoft.com/en-us/

visualstudio/windows/?view=vs-2022.

[4] Humanbalance Ltd. Graphicsgale. https://graphicsgale.com/us/.

[5] The Krita Team. Krita documentation. https://docs.krita.org/en/index.html.

[6] Wikipedia. Functional requirements. https://en.wikipedia.org/wiki/Functional_

requirement.

[7] Wikipedia. Non-functional requirements. https://en.wikipedia.org/wiki/

Non-functional_requirement.

[8] Wikipedia. Ui. https://en.wikipedia.org/wiki/User_interface.

[9] Team Cherry. Hollow knight. https://www.hollowknight.com, 2017.

[10] Denis Villeneuve. Blade runner 2049. https://en.wikipedia.org/wiki/Blade_

Runner_2049, 2017.

[11] Unity. State machines. https://docs.unity3d.com/Manual/StateMachineBasics.

html.

[12] CD Projekt RED. Cyberpunk 2077. https://www.cyberpunk.net/, 2020.

[13] Ridley Scott. Blade runner. https://es.wikipedia.org/wiki/Blade_Runner, 1982.

[14] Overleaf. Overleaf documentation. https://www.overleaf.com/learn.

[15] Vincent Knight. Writing with latex. https://vknight.org/tex/.

[16] The Game Kitchen. Blasphemous. https://thegamekitchen.com/blasphemous/,
2019.

[17] Halberd Studios. 9 years of shadows. https://www.halberdstudios.com/

9-years-of-shadows, 2023.

31

https://en.wikipedia.org/wiki/Metroidvania
https://docs.unity.com
https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2022
https://graphicsgale.com/us/
https://docs.krita.org/en/index.html
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/User_interface
https://www.hollowknight.com
https://en.wikipedia.org/wiki/Blade_Runner_2049
https://en.wikipedia.org/wiki/Blade_Runner_2049
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://www.cyberpunk.net/
https://es.wikipedia.org/wiki/Blade_Runner
https://www.overleaf.com/learn
https://vknight.org/tex/
https://thegamekitchen.com/blasphemous/
https://www.halberdstudios.com/9-years-of-shadows
https://www.halberdstudios.com/9-years-of-shadows

32 Bibliography

[18] Platinum Games. Bayonetta. https://es.wikipedia.org/wiki/Bayonetta, 2009.

[19] Askiisoft. Katana zero. https://www.katanazero.com/age-gate, 2019.

[20] Studio Pixel Punk. Unsighted. https://www.humblegames.com/games/unsighted/,
2021.

[21] Brandon James Greer. Bjgpixel. https://www.youtube.com/@BJGpixel.

[22] Brakeys. Brakeys. https://www.youtube.com/@Brackeys.

[23] Stack Exchange. Stack overflow. https://stackoverflow.com.

[24] Gfx Sounds. Gfx sounds. https://gfxsounds.com.

[25] Pixabay. Pixabay. https://pixabay.com/.

[26] GFX sounds. Retro 8-bit damage sound effect. https://gfxsounds.com/

sound-effect/retro-8-bit-damage/.

[27] GFX sounds. Arcade 8-bit shot sound effect. https://gfxsounds.com/sound-effect/
arcade-8-bit-shot/.

[28] Lesiakower. Impact sound effect 8-bit retro. https://pixabay.com/es/

sound-effects/impact-sound-effect-8-bit-retro-151796/.

[29] Pixabay. Kick-hard (8-bit). https : / / pixabay . com / es / sound-effects /

kick-hard-8-bit-103746/.

[30] Pixabay. Fire. https://pixabay.com/es/sound-effects/fire-88783/.

[31] Pixabay. 8-bit explosion. https : / / pixabay . com / es / sound-effects /

8-bit-explosion1wav-14656/.

[32] Pixabay. Hurt-c-08. https://pixabay.com/es/sound-effects/hurt-c-08-102842/.

[33] Pixabay. Retro video game death. https://pixabay.com/es/sound-effects/

retro-video-game-death-95730/.

[34] Pixabay. Game fail sounds. https : / / pixabay . com / es / sound-effects /

game-fail-sounds-104952/.

[35] Pixabay. Sfx jump 07. https : / / pixabay . com / es / sound-effects /

sfx-jump-07-80241/.

https://es.wikipedia.org/wiki/Bayonetta
https://www.katanazero.com/age-gate
https://www.humblegames.com/games/unsighted/
https://www.youtube.com/@BJGpixel
https://www.youtube.com/@Brackeys
https://stackoverflow.com
https://gfxsounds.com
https://pixabay.com/
https://gfxsounds.com/sound-effect/retro-8-bit-damage/
https://gfxsounds.com/sound-effect/retro-8-bit-damage/
https://gfxsounds.com/sound-effect/arcade-8-bit-shot/
https://gfxsounds.com/sound-effect/arcade-8-bit-shot/
https://pixabay.com/es/sound-effects/impact-sound-effect-8-bit-retro-151796/
https://pixabay.com/es/sound-effects/impact-sound-effect-8-bit-retro-151796/
https://pixabay.com/es/sound-effects/kick-hard-8-bit-103746/
https://pixabay.com/es/sound-effects/kick-hard-8-bit-103746/
https://pixabay.com/es/sound-effects/fire-88783/
https://pixabay.com/es/sound-effects/8-bit-explosion1wav-14656/
https://pixabay.com/es/sound-effects/8-bit-explosion1wav-14656/
https://pixabay.com/es/sound-effects/hurt-c-08-102842/
https://pixabay.com/es/sound-effects/retro-video-game-death-95730/
https://pixabay.com/es/sound-effects/retro-video-game-death-95730/
https://pixabay.com/es/sound-effects/game-fail-sounds-104952/
https://pixabay.com/es/sound-effects/game-fail-sounds-104952/
https://pixabay.com/es/sound-effects/sfx-jump-07-80241/
https://pixabay.com/es/sound-effects/sfx-jump-07-80241/

A
p

p
e

n
d

ix A
Game Design Document

A.1 Presentation

Name: Infinity Holopunk
Platform: Personal Computer
Genre: Metroidvania

A.2 Game Summary

The game developed for the final project will be a Metroidvania game focused in move-
ment and combat, it will be set in a dystopian future in which evil corporations dominate
the world, and the goal of the main character is to stop them. The main character will
traverse through various locations, defeating enemies, obtaining objects and unlocking
new actions to accomplish her goal.

The main focus of the game will not be the plot but the mechanics, there will be a
diverse range of movements available to the player, multiple enemies and various final
bosses, each of them being a challenge to the player.

A.3 Game States

At the beginning of the game, the only thing the player can do is to move the character.
In order to keep progressing, the player will have to kill enemies. There are to types of
enemies, normal enemies and final bosses, if the player defeats a normal enemy nothing
special will happen, however, if the enemy defeated is a final boss the player will gain a
new ability that will grant the player the possibility to go to the next level. In the next

33

34 Game Design Document

Figure A.1: Block diagram of the game states

level, the player will be able to explore, keep moving the player and kill more enemies.
If the defeated boss is the final boss of the last level the game will be over (Figure A.1).

A.4 Demographics

A.4.1 Target

Being an action video game, it will be somewhat violent, with blood and some references
not suitable for children. It will also have adult themes regarding the cyberpunk genre,
so the game will be mostly aimed at young adults. Being a complex and hard video
game it will also be aimed at a more hardcore audience.

A.4.2 Competitive analysis

Combining the Metroidvania genre with the hack and slash genre is a new concept that
has not been explored before, however we can find similar concepts if we explore the
genres individually.

Currently Metroidvania games are experiencing a rise in popularity, lots of them
are being developed and released and it is a fairly popular genre, so the competition
is quite high. Some of the direct competitors, that are also inspiration, are Hollow
Knight (Team Cherry, 2017)[9], Blasphemous (The Game Kitchen, 2019)[16] or 9 Years
of Shadows (Halberd Studios, 2023)[17].

A.5. Narrative 35

On the other hand, hack and slash games are not as popular nowadays, but most of
the competition comes from the AAA industry, with franchises such as Devil May Cry
(Capcom) or Bayonetta (Platinum Games).

A.5 Narrative

A.5.1 Characters

The main character of the game will be Taffy, a girl with cyborg implants that grant
her great strength who wants to destroy all evil corporations just because she enjoys it.
Moreover, she does not speak, so the player can relate more to her.

The other characters of the game are the enemies, they also do not talk, but their
design reflects their personality.

A.5.2 World

The video game will be set in a dystopian cyberpunk world, plagued by evil corporations,
poverty and general despair. However, while everything is falling apart, it also has a
futuristic aesthetic so everything looks beautiful and functional.

A.6 Rules, mechanics and game balance

A.6.1 Rules

The game will be a compound of different mechanics, but the main ones will be every
mechanic regarding the attacks. In order to progress through the game, the player will
have to travel through multiple interconnected levels that will contain a final boss. Each
final boss will grant the player an upgrade or a new mechanic that will help to progress
through the rest of the game.

A.6.2 Mechanics

The main goal of the project is to explore mechanics related to movement and combat,
so the most important mechanics will be focused in these two fields.

Movement

The first form of movement available is running, it helps the player move faster, while
running Taffy can also perform a running attack, which will deal damage but can not
be redirected. Some of the other unlockable movement mechanics will be rollerblades,
that will allow the player to move faster and to grind on metal pipes, or double jump
that will help the player reach new heights. Eventually a dash button which also dodges
enemies attacks will be unlocked.

36 Game Design Document

Combat

The combat of the game will be centered around a combo system, depending on different
combination of buttons the resulting attack will be different, for example, if the player
stands still and hits the attack button the character will do an attack, but if the player
hits the attack button while running the character will do a different attack. The player
can also attack with a ranged weapon that will have just a simple attack, but it can be
interconnected with the melee weapon.

A.6.3 Game balance

The difficulty of the game will be progressive, each stage will be harder. The first enemies
and boss will be easier than the last one, which will be a hard challenge for the player.

A.7 Gameplay

A.7.1 Controls

The game will be playable with controller and with keyboard and mouse. Each button
will be linked to just one action so it’s always clear what button to touch.

The main controls will be simple and intuitive, there will be a button to run, one to
use the melee weapon, another one to use the ranged weapon and one to jump. There
will also be a button linked to a quick weapon change, so it’s easier to do combos with
different weapons.

A.7.2 Interface

The HUD will always be displayed and will be as simple as possible. In the top left corner
will be displayed the player’s health and in the bottom right corner will be displayed the
selected weapons.

However, most of the important information will be displayed in the menu, here will
be shown all the unlocked items and the player upgrades. There will also be another
menu to alter the configuration of the game, like the resolution or the music volume.

A.7.3 Unlockables

Like most Metroidvanias, the game will be heavily based on unlocking new abilities and
obtaining new weapons, in the beginning, the player will only have a simple weapon
and the jumping and running abilities. Scattered through the map there will be lots of
new weapons and objects, some of them hidden, that will add variety to the gameplay
experience, all of these objects will be optional, and it will be possible to complete the
game without collecting any of them, but they are a way to reward exploration.

However, new abilities like the double jump, will be unlocked each time a final boss
is defeated. These abilities are required to finish the game and will help the player to
traverse through the map and to reach new levels.

A.8. Graphics 37

A.8 Graphics
Visually, everything in the game will be made in a pixel art style, it will have simple but
appealing graphics. Every animation will be made with a sprite sheet, this will help to
make a better looking movement but it will also remark on every action and it will be
clearer what is being done.

Aesthetically it will have lots of cyberpunk inspiration, with lots of neon lights and
bright colours, but also dark and scary spaces. Each level of the game will be placed in
distinctive locations, such as a corporate building or a nightclub.

The color palettes will be the following[A.2]:

Figure A.2: Color palettes used for backgrounds and for characters

A.9 Tools
1. Unity Main tool used for developing the game, it will be used for building scenes,

adding characters and to put everything together.

2. Graphicsgale Tool used mainly for pixel art, it will be used for drawing in a pixel
art style.

3. Krita Another tool for drawing, it will be used for altering slightly the pixel art,
making a definitive version and to create animations.

4. Visual Studio Tool used for coding.

A.10 Inspiration
Some of the inspirations for the game will be the following

1. Hollow Knight (Team Cherry, 2017)[9]

2. Blade Runner (Ridley Scott, 1982)[13]

3. Katana Zero (Askiisoft, 2019)[19]

4. Unsighted (Studio Pixel Punk, 2021)[20]

A
p

p
e

n
d

ix B
Others

B.1 Disctionary

1. Metroidvania. Video game genre that revolves around combat and exploration.

2. Cyberpunk. Science fiction subgenre set in a distopian future.

3. NPC. Non Playable Character, character that appears in the game which can not
be controlled bt the player.

4. UI. User Interface, part of the game that gives information to the player.

5. Combo. Combination of multiple attaack that intertwine between themselves.

6. Parry. Deviation of a coming attack.

7. Hub. Central level of a game.

8. Cooldown. Time that a weapon needs to be used again.

B.2 References

For the development of the project I used multiple references and inspirations, my main
one, regarding gameplay, was Hollow Knight[9], but for the aesthetic and for the feel of
it I got lots of inspiration from the movie Blade Runner 2049[10].

For the moment of development and creation I also did online research, it was my
first time doing pixel art, so I had to do lots of investigation to find techniques, learn the
best way to do it and learn tips to make it look better, the place that brought me the

39

40 Others

most information about pixel art was the youtube channel BJGpixel[21]. Regarding of
the coding aspect of the project I also looked for references online, the youtube channel
Brakeys[22] helped me a lot to understand concepts like how movement and physics
work, the other website I frequented the mst was the blog Stack Overflow [23] that
helped me to find problems with my code and to understand why some things didn’t
work.

It was also my first time using LaTeX, so I had to do lots of research to understand
how it works, my main references where the Overleaf documentation[14] and vkinght’s
blog Writing With Latex[15] which taught me how to use useful commands and helped
me understand various concepts.

I also got all the sound effect for the game from diverse sound libraries online, the
main sites that I used were Gfx Sounds[24] and Pixabay[25], I used this sites to get
multiple hit and impact sound effects[26][31][29][28], some shot sound effects [27][30],
some death sound effects[34][33] and a jump sound effect[35].

A
p

p
e

n
d

ix C
Source code

One big part of the project was writing script and developing code, here are listed some
of the scripts that were created for the project.

PlayerAttack script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class PlayerAttack : MonoBehaviour

6 {

7
8 public Transform AttackPosition1;

9 public Transform AttackPosition2;

10 public LayerMask Target;

11
12 public BoxCollider2D UpwardsAttack;

13 public BoxCollider2D FallAttack;

14 public BoxCollider2D DashAttack;

15
16 public int Damage;

17 public Animator animator;

18 Rigidbody2D rb;

19 public float m_Thrust = 20f;

20
21 public static PlayerAttack instance;

22
23 public bool isAttacking = false;

24 public bool isFalling = false;

25
26 public float direction;

41

42 Source code

27 [SerializeField] private float ChargeTime = 0;

28 private float Force;

29 public string AttackType = "";

30 public PlayerController playerController;

31
32 private void Awake()

33 {

34 instance = this;

35 }

36
37 void Start()

38 {

39 animator = GetComponent<Animator>();

40 rb = GetComponentInParent<Rigidbody2D>();

41 UpwardsAttack.enabled = false;

42 FallAttack.enabled = false;

43 DashAttack.enabled = false;

44 }

45 void Update()

46 {

47 PerformAttack();

48 if (rb.velocity.y == 0)

49 {

50 isFalling = false;

51 FallAttack.enabled = false;

52 }

53 }

54 public void PerformAttack()

55 {

56
57 if (rb.velocity.y != 0)

58 {

59 if (Input.GetButtonDown("Fire1"))

60 {

61 isAttacking = true;

62 AttackType = "falling";

63 Attack(AttackType);

64 }

65
66 }

67 else if (Input.GetButton("Fire1"))

68 {

69 ChargeTime += Time.deltaTime;

70 }

71 else if (Input.GetButtonUp("Fire1") && !isAttacking)

72 {

73 isAttacking = true;

74 if (AttackPosition1.position.x > AttackPosition2.position.x) direction = -.1f;

75 else direction = .1f;

76 if (playerController.isRunning) AttackType = "running";

77 else if (Input.GetButton("Vertical") && Input.GetAxisRaw("Vertical") > 0)

78 AttackType = "upwards";

79 else if (ChargeTime >= 1) AttackType = "charged";

80 else AttackType = "default";

Source code 43

81 Attack(AttackType);

82 ChargeTime = 0;

83 }

84 }

85
86 private void Attack(string type)

87 {

88 Collider2D[] Enemies;

89 playerController.canWalk = false;

90
91 switch (type)

92 {

93 case "falling":

94 FallAttack.enabled = true;

95 isFalling = true;

96 playerController.CurrentSpeed = 0;

97 rb.gravityScale = 10;

98 rb.velocity = new Vector2(0, -(rb.velocity.y + ((30 + (0.5f * Time.fixedDeltaTime

99 * -rb.gravityScale)) / rb.mass)));

100 break;

101 case "running":

102 DashAttack.enabled = true;

103 Force = 5f;

104 StartCoroutine(playerController.Dash(Force, .4f, true));

105 Enemies = Physics2D.OverlapAreaAll(AttackPosition1.position,

106 AttackPosition2.position, Target);

107 for (int i = 0; i < Enemies.Length; i++)

108 {

109 Enemies[i].GetComponent<Enemy>().RecieveDamage(Damage, gameObject);//,

110 direction);

111 }

112 break;

113 case "upwards":

114 UpwardsAttack.enabled = true;

115 Debug.Log("upwards");

116 rb.velocity = new Vector2(rb.velocity.x, rb.velocity.y + ((20 +

117 (.5f * Time.fixedDeltaTime * -6)) / rb.mass));

118 break;

119 default:

120 Debug.Log("Ataque normal");

121 if (PlayerController.instance.IsGrounded)

122 {

123 Force = .5f;

124 StartCoroutine(playerController.Dash(Force, .2f, false));

125 Enemies = Physics2D.OverlapAreaAll(AttackPosition1.position,

126 AttackPosition2.position, Target);

127 for (int i = 0; i < Enemies.Length; i++)

128 {

129 Enemies[i].GetComponent<Enemy>().RecieveDamage(Damage, gameObject);//,

130 direction);

131 }

132 }

133 break;

134 }

44 Source code

135 }

136 }

Shoot script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class Shoot : MonoBehaviour

6 {

7 private Camera mainCamera;

8 private Vector3 aimPos;

9
10 public GameObject bullet;

11 public GameObject arms;

12 public Transform bulletTransformRight;

13 public Transform bulletTransformLeft;

14 public bool canFire;

15 private float timer;

16 public float bulletTime;

17
18 public bool isShooting;

19 public bool isFacingRight = true;

20
21 public Animator animator;

22 public static Shoot instance;

23
24 private void Awake()

25 {

26 instance = this;

27 }

28
29 void Start()

30 {

31 mainCamera = GameObject.FindGameObjectWithTag("MainCamera").GetComponent<Camera>();

32 }

33
34 void Update()

35 {

36 aimPos = mainCamera.ScreenToWorldPoint(Input.mousePosition);

37
38 Vector3 rotation = aimPos - transform.position;

39
40 float rotationZ = Mathf.Atan2(rotation.y, rotation.x) * Mathf.Rad2Deg;

41
42 transform.rotation = Quaternion.Euler(0, 0, rotationZ);

43
44 if (!canFire)

45 {

46 timer += Time.deltaTime;

47 if(timer > bulletTime)

Source code 45

48 {

49 canFire = true;

50 timer = 0;

51 }

52 }

53 if (Input.GetButton("Fire2") && canFire)

54 {

55 isShooting = true;

56 canFire = false;

57 if(isFacingRight) Instantiate(bullet, bulletTransformRight.position,

58 Quaternion.identity);

59 else Instantiate(bullet, bulletTransformLeft.position, Quaternion.identity);

60 }

61 if (isShooting)

62 {

63 arms.SetActive(true);

64 }

65 else arms.SetActive(false);

66
67 if (rotationZ > -90 && rotationZ < 90)

68 {

69 isFacingRight = true;

70 arms.transform.localScale = new Vector2(Mathf.Abs(arms.transform.localScale.x),

71 Mathf.Abs(arms.transform.localScale.y));

72 }

73 else

74 {

75 isFacingRight = false;

76 arms.transform.localScale = new Vector2(-Mathf.Abs(arms.transform.localScale.x),

77 -Mathf.Abs(arms.transform.localScale.y));

78 }

79 }

80 }

Bullet script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class bullet : MonoBehaviour

6 {

7 private Vector3 mouse;

8 private Camera mainCamera;

9 private Rigidbody2D rb;

10 public float force;

11
12 public Enemy enemy;

13
14 public float TrailDelay;

15 private float TrailDelaySeconds;

16 public GameObject Ghost;

46 Source code

17 public bool MakeTrail = true;

18
19 void Start()

20 {

21 TrailDelaySeconds = TrailDelay;

22
23 mainCamera = GameObject.FindGameObjectWithTag("MainCamera").GetComponent<Camera>();

24 rb = GetComponent<Rigidbody2D>();

25 mouse = mainCamera.ScreenToWorldPoint(Input.mousePosition);

26 Vector3 direction = mouse - transform.position;

27 rb.velocity = new Vector2(direction.x, direction.y).normalized * force;

28 }

29
30 private void OnTriggerEnter2D(Collider2D collision)

31 {

32 int enemyLayer = LayerMask.NameToLayer("Enemy");

33 if ((collision.gameObject != null) && (collision.gameObject.layer == enemyLayer))

34 {

35 enemy = collision.GetComponent<Enemy>();

36 enemy.RecieveDamage(1, gameObject);

37 }

38 Destroy(gameObject);

39 }

40 }

Knockback script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.Events;

5
6 public class KnockbackFeedback : MonoBehaviour

7 {

8 [SerializeField] Rigidbody2D m_Rigidbody;

9
10 [SerializeField] private float knockbackStr = 16f;

11 [SerializeField] private float knockbackDelay = .15f;

12
13 public UnityEvent OnBegin;

14 public UnityEvent OnEnd;

15
16 public void knockbackFeedback(GameObject sender)

17 {

18 StopAllCoroutines();

19 OnBegin?.Invoke();

20 Vector2 direction = (transform.position - sender.transform.position).normalized;

21 m_Rigidbody.AddForce(direction * knockbackStr, ForceMode2D.Impulse);

22 StartCoroutine(reset());

23 }

24
25 private IEnumerator reset()

Source code 47

26 {

27 yield return new WaitForSeconds(knockbackDelay);

28 m_Rigidbody.velocity = Vector3.zero;

29 OnEnd?.Invoke();

30 }

31 }

Enemy Basic script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.Events;

5
6 public class Enemy : MonoBehaviour

7 {

8 Rigidbody2D m_Rigidbody;

9 public int maxHealth;

10 public int health;

11 public float m_Thrust = 20f;

12
13 public HealthBar healthBar;

14 public Collider2D[] hitboxes;

15
16 public BoxCollider2D _collider;

17 public LayerMask PlayerLayer;

18 public float cooldown;

19 public float range;

20 public float ColliderDistance;

21 public int damage;

22 public float CooldownTimer = Mathf.Infinity;

23
24 public bool damagable = true;

25 public Health PlayerHealth;

26 public KnockbackFeedback knockback;

27 public Animator animator;

28
29
30 void Start()

31 {

32
33 m_Rigidbody = GetComponent<Rigidbody2D>();

34 healthBar.SetHealth(maxHealth);

35 }

36
37 private void OnDisable()

38 {

39 //Parar animacion

40 }

41
42 void Update()

43 {

48 Source code

44 CooldownTimer += Time.deltaTime;

45 }

46
47 public void RecieveDamage(int damage, GameObject attacker)//, float knockback)

48 {

49
50 if (damagable)

51 {

52 CooldownTimer = 0;

53
54 StartCoroutine(damageColor());

55
56 health -= damage;

57 if (health <= 0)

58 {

59 health = 0;

60 Destroy(gameObject);

61 }

62 healthBar.Health(health);

63 Shake.Instance.ShakeCamera(10f, .1f);

64 knockback.knockbackFeedback(attacker);

65 }

66
67 }

68
69 public virtual bool PlayerDetected()

70 {

71 RaycastHit2D hit = Physics2D.BoxCast(_collider.bounds.center + transform.right *
72 range * transform.localScale.x * ColliderDistance,

73 new Vector3(_collider.bounds.size.x * range, _collider.bounds.size.y,

74 _collider.bounds.size.z), 0, Vector2.left, 0, PlayerLayer);

75
76 if (hit.collider != null)

77 {

78 PlayerHealth = hit.transform.GetComponent<Health>();

79 }

80
81 return hit.collider != null;

82 }

83 private void OnDrawGizmos()

84 {

85 Gizmos.color = Color.red;

86 Gizmos.DrawWireCube(_collider.bounds.center + transform.right * range *
87 transform.localScale.x * ColliderDistance,

88 new Vector3(_collider.bounds.size.x * range, _collider.bounds.size.y,

89 _collider.bounds.size.z));

90 }

91
92 private void DamagePlayer()

93 {

94 if (PlayerDetected())

95 {

96 PlayerHealth.RecieveDamage(damage, gameObject);

97 }

Source code 49

98 }

99
100 IEnumerator damageColor()

101 {

102 SpriteRenderer sprite = GetComponent<SpriteRenderer>();

103 sprite.color = Color.red;

104 yield return new WaitForSeconds(0.3f);

105 sprite.color = Color.white;

106 }

107 }

First Boss script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class BossBehaviour : Enemy

6 {

7 [SerializeField] private float timer = 0f;

8 [SerializeField] private float randTime;

9 [SerializeField] private float randAttack = 0;

10 public bool isPunchAttacking = false;

11 public bool isLaserAttacking = false;

12 public bool isSmashAttacking = false;

13 private bool isCharging = true;

14 public bool isAttacking = false;

15
16
17 public GameObject arms;

18 public GameObject player;

19 public GameObject rotationPoint;

20
21 public GameObject SmashAttackRightHitBox;

22 public GameObject SmashAttackLeftHitBox;

23 public GameObject LaserHitBox;

24 public GameObject PunchAttackHitBox;

25
26 public Transform LaserPoint;

27 private Vector3 PlayerPosition;

28 public LineRenderer Laser;

29
30 private float rotationZ;

31
32 public Animator animator;

33 public static BossBehaviour instance;

34
35 private void Awake()

36 {

37 instance = this;

38 }

39

50 Source code

40 void Start()

41 {

42 randTime = Random.Range(2f, 5f);

43 }

44
45 void Update()

46 {

47 if(isCharging) timer += Time.deltaTime;

48
49 if(timer >= randTime)

50 {

51 randAttack = Random.Range(1, 4);

52 isAttacking = true;

53 switch (randAttack)

54 {

55 case 1:

56 PunchAttack();

57 break;

58 case 2:

59 SmashAttack();

60 break;

61 default:

62 isCharging = false;

63 timer = 0;

64 StartCoroutine(LaserAttack());

65 break;

66 }

67 }

68
69 Vector3 rotation = player.transform.position - rotationPoint.transform.position;

70
71 rotationZ = Mathf.Atan2(rotation.y, rotation.x) * Mathf.Rad2Deg;

72
73 if (rotationZ < -90 || rotationZ > 90)

74 {

75 if(!isAttacking) transform.localScale = new Vector3(-9, 9, 1);

76 arms.transform.localScale = new Vector3(-1, -1, 1);

77 }

78 else

79 {

80 if (!isAttacking) transform.localScale = new Vector3(9, 9, 1);

81 arms.transform.localScale = new Vector3(1, 1, 1);

82 }

83
84 if (isLaserAttacking) arms.SetActive(true);

85 else arms.SetActive(false);

86 }

87
88 void PunchAttack()

89 {

90 isAttacking = true;

91 PunchAttackHitBox.SetActive(true);

92 isPunchAttacking = true;

93 isLaserAttacking = false;

Source code 51

94 timer = 0;

95 randTime = Random.Range(2f, 5f);

96 }

97
98 IEnumerator LaserAttack()

99 {

100 isLaserAttacking = true;

101 isAttacking = true;

102 rotationPoint.transform.rotation = Quaternion.Euler(0, 0, rotationZ);

103 PlayerPosition = player.transform.position;

104 yield return new WaitForSeconds(1f);

105
106 Laser.SetPosition(0, LaserPoint.position);

107 Laser.SetPosition(1, PlayerPosition);

108
109 Laser.enabled = true;

110 yield return new WaitForSeconds(0.75f);

111 Laser.enabled = false;

112
113 randTime = Random.Range(2f, 5f);

114 isCharging = true;

115
116 yield return new WaitForSeconds(randTime);

117 isAttacking = false;

118 }

119
120 void SmashAttack()

121 {

122 isAttacking = true;

123 SmashAttackRightHitBox.SetActive(true);

124 SmashAttackLeftHitBox.SetActive(true);

125 isSmashAttacking = true;

126 isLaserAttacking = false;

127 timer = 0;

128 randTime = Random.Range(2f, 5f);

129 }

130 }

First Boss State Machine script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class BossIdleBehaviour : StateMachineBehaviour

6 {

7 // OnStateEnter is called when a transition starts and the state machine starts to evaluate this state

8 //override public void OnStateEnter(Animator animator, AnimatorStateInfo stateInfo, int layerIndex)

9 //{

10 //

11 //}

12

52 Source code

13 // OnStateUpdate is called on each Update frame between OnStateEnter and OnStateExit callbacks

14 override public void OnStateUpdate(Animator animator, AnimatorStateInfo stateInfo, int layerIndex)

15 {

16 if (BossBehaviour.instance.isPunchAttacking)

17 {

18 BossBehaviour.instance.animator.Play("Attack1");

19 }

20 else if (BossBehaviour.instance.isSmashAttacking)

21 {

22 BossBehaviour.instance.animator.Play("SmashAttack");

23 }

24 else if (BossBehaviour.instance.isLaserAttacking)

25 {

26 BossBehaviour.instance.animator.Play("LaserAttack");

27 }

28 }

29
30 // OnStateExit is called when a transition ends and the state machine finishes evaluating this state

31 override public void OnStateExit(Animator animator, AnimatorStateInfo stateInfo, int layerIndex)

32 {

33 BossBehaviour.instance.isPunchAttacking = false;

34 BossBehaviour.instance.isSmashAttacking = false;

35 //BossBehaviour.instance.isAttacking = false;

36 }

37
38 // OnStateMove is called right after Animator.OnAnimatorMove()

39 //override public void OnStateMove(Animator animator, AnimatorStateInfo stateInfo, int layerIndex)

40 //{

41 // // Implement code that processes and affects root motion

42 //}

43
44 // OnStateIK is called right after Animator.OnAnimatorIK()

45 //override public void OnStateIK(Animator animator, AnimatorStateInfo stateInfo, int layerIndex)

46 //{

47 // // Implement code that sets up animation IK (inverse kinematics)

48 //}

49 }

Health script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class Health : MonoBehaviour

6 {

7 public int maxHealth;

8 public int health;

9
10 public KnockbackFeedback knockback;

11
12 private void Start()

Source code 53

13 {

14 health = maxHealth;

15 }

16 public virtual void RecieveDamage(int damage, GameObject attacker)

17 {

18 health -= damage;

19 StartCoroutine(damageColor());

20 knockback.knockbackFeedback(attacker);

21 }

22
23 IEnumerator damageColor()

24 {

25 SpriteRenderer sprite = GetComponent<SpriteRenderer>();

26 sprite.color = Color.red;

27 yield return new WaitForSeconds(0.3f);

28 sprite.color = Color.white;

29 }

30 }

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Game Design Document
	Presentation
	Game Summary
	Game States
	Demographics
	Narrative
	Rules, mechanics and game balance
	Gameplay
	Graphics
	Tools
	Inspiration

	Others
	Disctionary
	References

	Source code

