
Contagia Y Pica

Ángel García Sorribes

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 3, 2023

Supervised by: Raúl Montoliu Colás, PhD.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

I would like to thank my mother, my father and my sister for helping and supporting
me at the hardest and more stressful moments. I would also like to thank my classmates
for giving me moments of caml. I would also like to thank Raúl Montoliu Colás for his
patience and help during the writing of this report and Sergio Barrachina Mir and José
Vte. Martí Avilés for their inspiring LaTeX template for writing the Final Degree Work
report, which I have used as a starting point in writing this report.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

iii

http://lorca.act.uji.es/curso/latex/

Abstract

This TFG is made to show, Contagia y Pica videogame. This videogame is a single
player, first-person puzzle solver made in Unreal Engine 5. It will be focused in a
closed space where the player will interact with the different NPCs. The purpose of this
project is to test, improve and show the skills acquired during the Video Game Design
and Development degree at UJI applied on a videogame and learn Unreal Engine system
of making games. Specifically, it has been made to apply knowledge about lighting and
colors managment on a enviroment, programming behaviours in both blueprints and
C++ code using artificial intelligence techniques to achieve respectively simple routines
and behaviors that are capable of changing according to the actions of the player or the
environment.

v

Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Game overview and Results preview . 1
1.2 Key words . 2
1.3 Work Motivation . 2
1.4 Goals . 4
1.5 Environment and Initial State . 5

2 Planning and resources evaluation 7
2.1 Planning . 7
2.2 Resource Evaluation . 12

3 System Analysis and Design 13
3.1 Introduction . 14
3.2 Rules . 15
3.3 Clothing . 20

4 Work Development and Results 21
4.1 Work Development . 21
4.2 Fulfilled goals . 36

5 Conclusions and Future Work 39
5.1 Conclusions . 39
5.2 Future work . 39

Bibliography 41

A Source code 43

vii

List of Figures

1.1 Preview of the mine . 2

2.1 A view of all the task approximately scaled to the time frame of the task. . . 11

3.1 A view of the tools of the game . 13
3.2 A view of the mine limits . 14

4.1 The NPC model created in blender with no clothes or materials 22
4.2 A screenshot of the rig . 23
4.3 A screenshot of Unreal blueprints . 24
4.4 Variables from the Blackboard. 26
4.5 Distribution and rules of execution of virus tasks. 27
4.6 View of the foreman routine. 28
4.7 View of the miner routine. 29
4.8 View of the builder and builder junior tasks. 29
4.9 A image that shows the different variables and functions stored in the game

state. 31
4.10 A screenshot of the NPC clothing. The colors change depending on the NPC

wearing them . 32
4.11 A screenshot taken in the Unreal Editor used to create the different animation

clips . 33
4.12 Preview of the mine . 34
4.13 A view of all the tools . 35
4.14 Tool set in a Unreal default manequinn . 36

ix

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Game overview and Results preview 1
1.2 Key words . 2
1.3 Work Motivation . 2
1.4 Goals . 4
1.5 Environment and Initial State . 5

As mentioned above, this Final Degree Project (TFG) aims to showcase the skills
acquired throughout my Video Game Design and Development career at UJI within a
first-person game created using Unreal Engine 5. The project serves as an application of
my knowledge in various areas, including project management, game engine optimization
for performance, lighting, and color schemes. Additionally, it incorporates programming
skills in both C++ and blueprints, demonstrating proficiency in creating interactive
gameplay elements.

A piece of gameplay can be found here: https://youtu.be/R_vUR0KS7-M

1.1 Game overview and Results preview
The TFG encompasses artificial intelligence techniques implemented to create both
straightforward routines and behaviors that challenge the player. By utilizing Unreal
Engine 5’s powerful features, the TFG offers an immersive and visually appealing game-
play experience. The combination of technical expertise and creativity allows for the
effective implementation of various game development principles.

1

https://youtu.be/R_vUR0KS7-M

2 Introduction

Figure 1.1: Preview of the mine

In the game the player will move through a mine alongside different NPCs who
have different jobs, routines, and personalities. Each task has different animations and
depending on the personality of a NPC, it will change the animation. On the other hand,
there will be a virus that will infect NPCs by contact and will try not to be discovered
at the same time.

1.2 Key words
This TFG is made to demonstrate knowledge in:

• AI techniques.

• Blueprints and C++.

• Scene creation and lighting.

• Animations.

• Unreal Engine 5.

1.3 Work Motivation
The main motivation of this work is to be able to develop a small and entertaining game.
During the years of my degree I have been making games but always under a series of
conditions that, due to time, knowledge or subject restrictions, I have not been able to
develop. I do not doubt that they have been necessary to continue learning but now I

1.3. Work Motivation 3

see in this work an opportunity not only to create a small but complete game in which
I am satisfied, but also to put all the knowledge I have obtained to the test.

Games like The biding of Issac[11], Return of the Obra Dinn[12] or books such as
I robot[1] inspire me to create games that explore unusual mechanics and interactive
stories.

Table 1.1: Three images. From up to down, left to right are the biding of Issac, I robot,
and Return of the obra Dinn.

This work also intends to make use of NPCs and enemies controlled by algorithms
which make use of AI techniques that respond or act dynamically not only to the player
but also to their environment. Also the utilization and learning of AI techniques will be
usefull in future developments.

4 Introduction

1.4 Goals

The project has the following goals:

Design and develop in Unreal Engine: Unreal Engine is a game engine developed
by Epic Games, which has gained widespread popularity in recent years due to its pow-
erful and versatile features. It provides game developers with a comprehensive set of
tools and technologies to create high-quality games that can run on multiple platforms,
including PC, consoles, and mobile devices.

With the rise of the gaming industry and the increasing demand for high-quality
games, it is no surprise that learning Unreal Engine has become a highly valuable skill
for aspiring game developers and enthusiasts. By mastering Unreal Engine, developers
can create engaging and immersive games that can captivate players and stand out in
the competitive gaming market.

Furthermore, Unreal Engine has a large and active community, which provides ex-
tensive support, tutorials, and resources for beginners and experienced developers alike.
As such, learning Unreal Engine can not only lead to a rewarding career in the game
development industry, but it can also provide a platform for creativity and innovation
in various fields.

AI bots: As It was said before the motivation of this project is to approach to the
field of AI and it was thought that the best way was through developing a series of
computer-controlled bots that implemented AI techniques. Even if it is on the project
scale, it is intend that these bots could work with more than if-elses statements and to
make one action or other taking into account the environment and the player state.

Reinforce programming capabilities: During my studies, I often encountered pro-
gramming subjects that were focused on specific aspects of game development. Topics
such as data management, object-oriented programming, and efficient algorithm design
were covered individually, without much integration between them. This project aims
to consolidate the knowledge gained throughout my academic career by creating a game
that showcases the application of these concepts within the constraints of time and the
requirements of the final degree project. Both blueprints and C++ will be utilized in
the development process.

Attractive demo: Similar to programming, scene creation, decoration, and setting
in game development have often been addressed as separate subjects. However, in this
project, the goal is to combine these elements to create a cohesive and immersive mining
environment. Instead of relying on temporary placeholders, the intention is to incorpo-
rate models with realistic materials and colors that align with the overall aesthetic of the
other assets, even if they are relatively simple in design. By integrating these compo-
nents effectively, the resulting scene will convey the desired atmosphere of an authentic
mine, albeit on a smaller scale.

1.5. Environment and Initial State 5

1.5 Environment and Initial State
It has received valuable guidance and assistance from my tutor in preparing the docu-
ments that I have submitted to the University. However, when it comes to the design
and development aspects of the project, I have worked independently. It is worth men-
tioning that I have acquired knowledge about the workflow of Unreal Engine and its
various features through self-learning. This was accomplished by referring to numerous
YouTube videos and the official documentation available on the Unreal Engine website.
All the YouTube channels and resources I have referenced for my learning journey are
appropriately cited in the bibliography.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 7
2.2 Resource Evaluation . 12

2.1 Planning

This has been the original planning it was supposed to be made:

Task 1: Model NPC. The aim of this task is to create a fundamental human model
complete with a fully articulated skeleton, which will accurately represent workers in
a mining environment. To achieve this, both the mesh and its corresponding skeleton
will be designed and constructed using Blender, a popular 3D modeling and animation
software. It is crucial for the human model to have similar geometric proportions as
the default mannequin model in Unreal Engine, as this will ensure compatibility and
facilitate seamless integration into Unreal Engine projects. By aligning the geometry of
the two models, the skeleton of the human model can be easily re-targeted to match the
existing Unreal Engine mannequin skeleton. This compatibility will enable the utiliza-
tion of pre-existing animations and tools designed for the Unreal Engine mannequin. To
accomplish this task, a dedicated time frame of approximately 12 hours has been allo-
cated. Within this period, the creation and refinement of the human model, including
its mesh and skeleton, will take place.

7

8 Planning and resources evaluation

Task 2: Rigging IK. Because the access to MOCAP from UJI facilities is not possi-
ble, create a Rig over the NPC model will save time on doing animations and will make
easy to change them in case of needing it. This task should last 4 hours and must be
done after the first task.

Task 3: Classes. This phase of the project involves defining the various classes of
NPCs, including miners and constructors, along with their respective attributes and
methods. These NPCs will be implemented using Unreal Engine’s Blueprints, a visual
scripting system that allows for the creation of interactive gameplay elements.

To ensure a comprehensive implementation of the various NPC classes, a dedicated
time frame of approximately 11 hours has been allocated.

By employing Unreal Engine’s Blueprints and beginning with the default mannequin,
this phase of the project aims to expedite development while delivering tangible and
visible outcomes. The combination of well-defined NPC classes and the utilization of
existing assets will allow for a more efficient and productive development process, setting
the stage for subsequent stages of the project.

Task 4: Events. This stage of the project focuses on defining the routines and behav-
iors of the NPCs. The aim is to establish the specific actions and interactions that the
NPCs, such as miners and constructors, will undertake within the virtual environment.
This task will be undertaken concurrently with the development of the NPC classes in
Unreal Engine’s Blueprints.

By allocating a specific time frame for this task, it is possible to focus on creating
detailed and comprehensive routines that encompass various aspects, such as movement
patterns, task execution, interaction with objects and other NPCs, and responses to
different environmental conditions. This time frame also allows for iterative testing and
fine-tuning of the routines to ensure optimal performance and desired outcomes.

The parallel execution of the NPC classes and routines tasks maximizes efficiency
and enables quick iteration cycles. Any necessary adjustments to the NPC classes can
be seamlessly incorporated into the routines, ensuring a coherent and cohesive system.

Task 5: State machine. This task will handle the game flow. The game will start
on a tittle screen, will pass to the game scene and depending if the player wins or losses,
a screen from each one will be show and the player will be able to go back to tittle or
restart the game. As the tittle screen is not much important, could be done any time
before the forward model or the observer.

Task 6: NPC clothes. This phase of the project focuses on creating clothes models
and objects for the NPCs within the virtual environment. It is essential to ensure that
the geometry of the cloth models is specifically designed to work seamlessly with Unreal
Engine’s physics simulation. Additionally, after creating the cloth model, it is crucial
to assign the appropriate properties to the object and ensure proper attachment to the
NPCs’ mesh and skeleton, allowing for smooth integration with animations. While the

2.1. Planning 9

initial stages may rely on the Unreal default mannequin, it is necessary to develop a
custom model of the NPC before proceeding with this task, which should be completed
within a timeframe of no more than 10 hours.

To guarantee the accurate functioning of the clothing models and objects, careful
attention must be given to their geometry. This includes considering factors such as ap-
propriate edge flow, topology, and physical constraints to ensure realistic movement and
interactions with the environment. By adhering to Unreal Engine’s physics simulation
requirements, the cloth models will respond naturally to external forces, enhancing the
overall immersion of the virtual world.

To maintain project efficiency, a dedicated time frame of no more than 10 hours has
been allocated for this task.

Task 7: NPC clips. All NPC animations of each personality on each task. There
are several task such as mining, walking and pulling the wagon. Each of them will have
a variation for each personality. It is needed to have the NPC rig and the custom NPC
model because is needed to confirm that the re-target works properly.

Task 8: Forward Model. This class will be dedicated to simulating the behavior
of the virus within the game. Its primary responsibility will involve interacting with
an observer class and taking one step in the game’s progression. For instance, when
the observer identifies a machinist in its list of nearby NPCs, the virus will cause the
machinist to disappear in the next step, as machinists typically don’t remain in one
location for an extended period.

Given the complexity and potential impact on the overall project, this task is best
suited to be undertaken towards the later stages of development. Allowing ample time
for adjustments and fine-tuning ensures that the virus’s behavior aligns seamlessly with
the project’s objectives. Implementing this class towards the end of the project offers
flexibility, as any necessary changes or modifications can be made with relative ease
when most other components of the game are already in place.

Task 9: Observer. This class will serve as the forward model for the virus, responsible
for collecting information about the environment based on a given NPC. Its main role
will be to analyze and gather relevant data regarding the NPC’s surroundings.

As the forward model, this class plays a critical role in the virus’s decision-making
process and understanding of the game world. It enables the virus to assess the current
state of the environment and make informed choices based on the information collected.

To ensure the accuracy and effectiveness of the forward model, it is recommended
to prioritize the development and implementation of this class. By dedicating sufficient
time and resources to this task, it allows for a comprehensive understanding of the NPC’s
environment and facilitates more intelligent decision-making by the virus.

Considering the significance of this class in shaping the virus’s behavior, it is advisable
to integrate it into the project once the foundational components and systems are in
place. This approach ensures that the forward model is built upon a solid framework,

10 Planning and resources evaluation

utilizing the available data and interactions within the game to provide meaningful
insights for the virus’s decision-making process.

Task 10: Heuristics. This class will serve the purpose of simulating the virus, similar
to the previous two classes mentioned. It will be responsible for implementing several
methods that take two observers as inputs and return a value. These methods will be
designed to facilitate the virus’s decision-making process within the game.

Given the critical role of this class as a forward model, it is advisable to prioritize
its development and completion towards the later stages of the project. By doing so,
the groundwork for the rest of the project can be laid first, ensuring that the necessary
components and systems are in place. This approach allows for a more comprehensive
understanding of the game’s mechanics, enabling the development of more accurate and
effective methods within the virus class.

By postponing this task until the majority of the project is completed, it provides
the opportunity to incorporate the knowledge and insights gained throughout the devel-
opment process. This allows for better alignment of the virus’s behavior with the overall
gameplay, enhancing the quality and coherence of the final product.

Task 11: Walls of the mine. This task focuses on developing a more suitable mine
environment. The objective is to create a small landscape object that accurately rep-
resents a mining site. This involves shaping the terrain, adding appropriate colors and
textures, and implementing suitable lighting to enhance the overall visual quality and
realism of the environment.

Task 12: Mine items: This task will consist on making different models to set in the
mine to make it look better, such as rails or other objects that will help to the correct
execution of the routines

Task 13: Tools. This task involves the creation of pickaxes for miners, a wagon for
the machinist, and helmets for all workers.

Task 14: Itch.io page. In the context of the video game industry, effective communi-
cation of your project holds great importance. With this in mind, a dedicated task was
undertaken to ensure clear and concise presentation of your TFG within this industry.

Task 15: Memory. This task involves thoroughly documenting both the process and
the outcomes of the project. Documentation plays a crucial role in capturing the devel-
opment journey and providing valuable insights into the project’s objectives, method-
ologies, and achievements.

In addition to documenting the process, it is equally important to document the
results and outcomes achieved. This involves capturing and presenting various aspects
of the project, including the final human model with its skeleton, the defined NPC
classes and their attributes, the implemented routines and behaviors, and the cloth

2.1. Planning 11

models and objects. It is essential to provide visual representations, such as screenshots
or renderings, to showcase the project’s visual quality and demonstrate the successful
integration of the various components.

To ensure clarity and accessibility, it is important to structure the documentation in
a logical manner, with clear headings, subheadings, and a well-organized flow of infor-
mation. Additionally, including references and citations to external sources or relevant
academic literature strengthens the credibility of the documentation and demonstrates
a thorough understanding of the field.

By dedicating sufficient time and effort to properly documenting the process and
results of the project, future developers, researchers, or stakeholders will have a valu-
able resource that enables them to understand, replicate, and build upon the project’s
accomplishments. Effective documentation contributes to the project’s overall success
by facilitating knowledge transfer, encouraging collaboration, and fostering continued
innovation in the field.

Figure 2.1: A view of all the task approximately scaled to the time frame of the task.

12 Planning and resources evaluation

2.2 Resource Evaluation
The resources for the realization of this final project degree, can be divided into three
types, hardware, software and human level. Only one person taking care of all the work.

Hardware cost: It has been necessary to have a powerful computer to handle Unreal,
that give lots of problems such as crashed.

• Operating system: Windows 11 64-bit

• Processor: Intel I7-7700 @3.60GHz

• Memory: 16GB RAM (15GB usable)

• Graphics Card: NVIDIA 3060

Software cost: All programs which are have used are free as they are to non-commercial,
they are:

• Unreal Engine : Unreal Engine 5 is a cutting-edge game development engine cre-
ated by Epic Games. It offers a wide range of powerful tools and features to
empower developers in building high-fidelity and immersive games across various
platforms. Unreal Engine 5 represents a significant leap forward in game develop-
ment technology, empowering developers to create visually stunning, highly immer-
sive, and expansive gaming experiences across multiple platforms. Its cutting-edge
features and tools make it an ideal choice for developers seeking to push the bound-
aries of what is possible in game design. See more information y official site on
[5].

• Visual Studio : Visual Studio is an integrated development environment (IDE)
developed by Microsoft. It provides a comprehensive set of tools and features to
support software development across various platforms and languages. Visual Stu-
dio is a versatile IDE that caters to a wide range of developers, from beginners
to seasoned professionals. Its feature-rich environment, extensive language sup-
port, and integration with other Microsoft technologies make it a powerful tool for
building a wide variety of software applications.

• Blender: Blender’s open-source nature, combined with its feature-rich tool set,
makes it a popular choice among 3D artists, animators, and game developers. Its
active community and extensive documentation further contribute to its versatility
and accessibility. Blender is continuously evolving, with regular updates and new
features being added by the dedicated community of contributors. To see more
information and official site [3].

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Introduction . 14
3.2 Rules . 15
3.3 Clothing . 20

Figure 3.1: A view of the tools of the game

13

14 System Analysis and Design

3.1 Introduction

3.1.1 Description

Contagia y Pica is a single-player, first-person game developed using Unreal Engine
5 for the Windows platform. The game revolves around the player’s exploration of a
mine, accompanied by various non-player characters (NPCs) who possess distinct job
roles, routines, and personalities. These roles include mining, digging, and transporting
filled carts along rails. Additionally, NPCs will engage in tasks such as building rails
and providing structural support while excavating the mine or observing their fellow
workers.

Each job is accompanied by unique animations, and the specific animation employed
by an NPC depends on their individual personality traits. Meanwhile, a hidden virus will
be present, capable of infecting NPCs through physical contact, while actively avoiding
detection.

3.1.2 Objectives

The goal of the player is to ensure that no NPC is infected. To do this, the player will
do a health test on all those NPCs that they think may be infected. If he is wrong, he
will lose credibility and if he loses it three times in a row, he will have lost.

3.1.3 Limits

The player can only test the health of two NPCs in a row by failing, on the third the
game ends. Both the player and the workers will be contained in a mine that will expand
as the miners dig. The games last from a quarter of an hour to a half.

Figure 3.2: A view of the mine limits

3.2. Rules 15

3.2 Rules

3.2.1 Operational rules

NPCs

Each NPC in the game will possess a distinct personality and will be assigned a specific
job. The assigned job will require them to navigate designated areas within the game
map and interact with specific NPCs at predetermined times. Depending on the NPCs
they come into contact with, they will adopt the personality traits of one group or
another.

NPCs can only transmit the virus through physical contact. Once infected, the virus
will gradually spread within the NPC’s system, resulting in altered behavior. The virus
will fully take control of the NPC once it reaches a certain level of growth, as explained
in the foundational rules of the game.

Miner

Miners work in groups of 3 workers. A foreman assigns each group a position in which
to mine. They mine until the Machinist arrives in their area. Then they pick up what
they have chopped with the shovel and load it into the wagon.

Machinist

Each one goes back and forth moving the cart along the mine on the rails. At the
opposite ends to the entrance, are the miners working. When the engineer reaches them
the miners will stop mining and load the wagon until it is full with their shovels.

Constructor

The NPC’s route in the game follows a path similar to that of a machinist within a mine.
At the start of the mine, there are materials available for construction purposes. The
NPCs will gather the necessary materials and proceed to the designated location where
they need to build supports.

The NPCs will work in pairs, consisting of a senior and a junior member. The senior
NPC will take the lead, determining the specific construction site, deciding what needs
to be built, and choosing the appropriate path to reach the destination. The junior
NPC will simply follow the lead of the senior NPC, assisting in the construction process
without making independent decisions.

Foreman

The foreman is in charge of supervising the other workers. If he don’t see nothing to
build, he’ll cyclically will go to the different groups of miners. If there’s something to
build, he will find a builder and will assign him the place and the type of building.

16 System Analysis and Design

Virus

At the beginning of the game the virus will start on an NPC with a percentage of 1%.
What the virus is capable of according to how much has infected it’s NPC, is detailed in
the founding rules. Every time the virus infects another NPC, the other NPC will have
another instance of the virus that she will think up for itself. They can be coordinated,
but it will be necessary for the two NPCs infected, to be able to communicate. Once
in the body of an NPC, the virus will have a series of actions available and others that
will be unlocked as it infects that NPC. The number of available actions will also vary
depending on where you are located relative to other NPCs. The virus will have 4 ways
to work, 4 ways to choose your next action, each one of them will be chosen at the
beginning of the game and will be applied to all the instances of the virus that will be
created:

Random The next action that the virus will take will be random among those avail-
able. It does not take into account the player or the consequences it may cause.

Rules In the event that the player is close or in sight, the virus will wait a few moments
for it to leave. Whether it is not there or if it has waited, it will try to infect the near
NPC that has the personality most similar to that of the group.

OSLA This method of looking for the next action will work on intervals. The intervals
have a time frame where the action to be taken is processed and when that moment ends,
the virus freezes for a few seconds. Having a series of actions available, they are assigned
a heuristic value. Half of the actions with the lowest value are eliminated, if the actions
have the same value, the first one in the list of actions remains. Compound actions are
then created until the same number of actions as before is reached. A compound action
is a list of actions that are executed one after the other, for example, go to a mine site
and infect someone. The heuristic value of the compound actions are checked and the
lower value of the half are eliminated. This process is repeated until a state in which
the player loses is reached or the time of procesing has ended.If the virus has arrived to
a lose player state, the list of actions will be saved and the virus will wait twice as long
for the next cycle. The next time will calculate start from scratch.

Monte Carlo The different actions take an arrangement of nodes in a tree. According
to the heuristic result by simulation of having chosen an action divided among the times
that it has been chosen, the node will be taken as ideal. Next, other nodes will be
created and this process will be followed recursively. The resulting tree will be saved for
the next time by saving the data of each node.

Player

Moves through the mine with WASD, left stick. Move the camera with the mouse or the
right stick. You can test an NPC by looking at it and clicking the left mouse button.

3.2. Rules 17

With the right he tells him to stop. The NPC will stay there for 30 seconds if you don’t
right click a location on the map. To do so, the NPC would go to that address. If you
use the latter you will not be able to use it again in 3 minutes unless you discover an
infected NPC earlier. You can immobilize an NPC with the middle button, but if they
are not infected because they have not been tested by the detector, you will lose one of
three opportunities until you find another infected.

3.2.2 Foundational Rules

Creation of NPCs and distribution of personalities

In a normal match, 13 NPCs will appear. The jobs are fixed and there are always 9
miners, 2 builders, 1 machinists and 1 foreman. Each NPC will have 1 traits that they
will display in their animations. In each match, 4 personalities will be drawn from all.
Each of them is assigned a number. To the first one, a number from 1 to 20 and the
following ones, the previous number plus 20. Then foreach NPC, a random number from
1 to 100 will be created in that NPC and the personality with the closest number will
be assigned to the number.

Traits and personalities

In each game, 4 of these traits will be chosen:

• Satisfied: Head and shoulders high, back straight.

• Dissatisfied: Declined, the opposite of the above.

• Energetic: Can’t sit still, works fast.

• Tired: The opposite of the above. It is difficult for him to start moving and he
works reluctantly moving slowly.

• Nervous: Shakes when making any movement.

• Shy: It withdraws when someone approaches it, it is always looking at the ground
and tries not to look at others.

• Extrovert: He usually opens his arms, claps his hands and always looks at the face.

• Dancer: He moves to the rhythm of the song he has in his head, taking steps and
movements that have nothing to do with what he is doing.

• Animated: When he walks, he walks with his arms and knees. With circular and
irregular movements.

• Disciplined: Regular and rigid straight movements.

18 System Analysis and Design

• Freaked Out: Exaggerate gestures. For example, when chopping, the knee opposite
to the hand with which it has the beak goes up and accompanies the blow with
the torso. He puffs out his chest and lifts his chin as if he weren’t looking where
he was going.

Virus Rules

The virus starts the game by infecting an NPC at 1 percent. Each NPC that is infected
starts with the 5 percent. The different states are reached:

• From 12 %, give a positive health test. From here the virus begins to think and
make calculations for the domain of the mine.

• From 25 %, the NPC already begins to copy the personality of those around him.

• From 30 %, you can communicate with nearby infected NPCs.

• From 45 %, you can move the NPC around the mine. If he is a foreman, he can
also give him orders.

• From 60 %, the NPC can infect another. If he infects another, his percentage drops
to 15

• After 90 %, you will be unable to heal the NPC and you will lose forever one of
the chances you had.

Virus actions: The percentage increases by one point every eight seconds. To get to
100 percent, it takes 13 minutes from 0 percent.

Index Action Precondition
1 Indicate on the arrival of the player Have reached 30% infection
2 Exchange information Both NPCs have passed the

among infected NPCs 30% infection
3 Move around the mine (Various actions Reached 45% infection

for different points around the map) (This action does not apply to constructors)
4 Break a support (various actions in That an infected NPC has overcome

depending on the supports built) 45% of the infection
5 Infect another NPC Have reached 60% infection.

3.2. Rules 19

Virus actions, heuristics: If the way to calculate the next action needs a heuristic
value, in the case of OSLA and Monte Carlo, it will use the following values:

Num NPC Status Heuristic Value
1 - +100
2 Are you a miner? +200
2 Are you another NPC? -10
3 Is a junior, miner, machinist or builder -1000
3 Is a senior foreman or builder +50
4 Have you isolated the player? +1000
4 Have you isolated infected NPCs from the player? +100
4 You have isolated at least one NPC +100infected with another that is not?
4 Have you isolated an NPC infected with the player? -100
5 Have you infected a Miner or junior builder? +50
5 You infected a Machinist, +1000senior builder or foreman?

(Each row, corresponds to the row of the table of virus actions, which have the same
number of the first column)

Conditions of defeat

The primary victory condition in the game is to ensure that none of the NPCs are in-
fected, maintaining a zero infection percentage. Conversely, the player’s defeat condition
is losing all credibility points.

The player can lose credibility points if any of the following conditions are met:

• Do a health test which outcome be negative

• That a NPC reach the 90% of the infection.

Written Rules

Basic controls, you move with WASD on the keyboard and the left stick on the controller.
You move the camera with the mouse and the right stick of the controller. To achieve
victory, the player must detect all the infected people. When the virus infects a person,
it will make his character like the rest around him. Also, when the virus has lived long
enough in an NPC, you can move it around the map.

Player Action Table

Here is shown the player possible actions.

20 System Analysis and Design

Action Description Dynamic Actions Called by
Move – The different NPCs at the

sight will know your
position

Press the WASD keys or
the left stick of the

gamepad
Move
the

camera

– – Move the mouse or the
right stick of the gamepad

Test
health

Will test the
NPC infection
actual state

Subtract or leave as was
the credibility

Left mouse click or
button to command.

3.3 Clothing
All NPCs will be wearing a hardhat, miners and machinists yellow and builders and
foreman orange. The miners will be dressed in a simple shirt and pants with brown and
black suspenders respectively. The drivers are the same but with blue pants. Builders
and foreman will wear a reflective vest and blue and black pants respectively.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 21
4.2 Fulfilled goals . 36

4.1 Work Development
For the correct description of the project’s development it will be an explanation for
each task defined on the planning:

4.1.1 NPC model:

Is a 3d model made in blender. For the realization of the mesh it was used the Unreal
default NPC mesh so it could be compatible with the skeleton. This allowed to create
NPC classes and events with the default model before making the NPC.

21

22 Work Development and Results

Figure 4.1: The NPC model created in blender with no clothes or materials

4.1.2 NPC rig:

A control rig in 3D computer graphics is a system of control objects or bones that are
used to manipulate a character or object in a 3D scene. These control objects or bones
are typically placed on a rigging hierarchy and can be used to deform and animate a
polygonal mesh.

The control rig defines the movement and deformation of the mesh through the
manipulation of these control objects. By adjusting the position and rotation of the
control objects, animators can create complex movements and expressions that can be
applied to the mesh.

The use of a control rig allows animators to create more realistic and natural move-
ments and expressions, and provides greater flexibility and control over the final anima-
tion. Additionally, control rigs can be used to streamline the animation process, making
it faster and more efficient to create complex animations.

The rig has been made in the Unreal default mannequin for later retargeting. Ani-
mation Retargeting is a feature that allows animations to be reused between characters
that use the same Skeleton asset but may have vastly different proportions. Animations
are bound to a Skeleton asset. The Skeleton asset is really just a list of bone names
and hierarchy data, but it also stores the initial proportions from the original Skeletal
Mesh used to define the Skeleton asset. This data is stored as bone translation data. It
is important to note that the retargeting system only retargets the bone’s translation
component. The bone’s rotation always comes from the animation data. Also with
Animation Retargeting, there is no significant difference in performance between using
retargeted and non-retargeted animations. The benefit of using animation retargeting

4.1. Work Development 23

Figure 4.2: A screenshot of the rig

is increasing the number of unique characters without having to create an entirely new
set of matching animations which could seriously cut down on your animation memory
budget.

The rig it has been created applying the knowledge from Unreal rig[4]. Retargeting
has been learn on the Retargeting Unreal documentation page[10].

4.1.3 Classes and Events:

Even if they are two separate task, they go together on the implementation. Classes
were made with Unreal Blueprints, a way of programming Unreal custom classes with a
visual interface, not in code. This allows developers to program faster even if you don’t
have a deep understanding of how Unreal works at the time of creating actors.

To see more about blueprints, documentation can be found here [8] in the official
page of Epic Games, Unreal 5 documentation.

Classes were made through inheritance. Each of the jobs like Miner, Builder, Fore-
man, and Machinist inherit from the NPC classes. This is so that when an NPC is
infected, it has the same methods as the other NPCs but at the same time it allows

24 Work Development and Results

Figure 4.3: A screenshot of Unreal blueprints

NPCs with different routines.
At first the events were done by means of blueprints but due to the difficulty involved

when following the thread of execution, methods and variables scattered by classes, it
was decided to use unreal behavior trees that group and locate the thread of execution.

Behavior Trees assets in Unreal Engine 5 can be used to create AI for NPC. While
the Behavior Tree asset is used to execute branches containing logic, to determine which
branches should be executed, the Behavior Tree relies on another asset called a Black-
board which serves as the "brain" for a Behavior Tree. The Blackboard contains several
user defined Keys that hold information used by the Behavior Tree to make decisions.
For example, you could have a Boolean Key called Is Light On which the Behavior Tree
can reference to see if the value has changed. If the value is true, it could execute a
branch that causes a roach to flee. If it is false, if could execute a different branch where
the roach maybe moves randomly around the environment. Behavior Trees can be as
simplistic as the roach example given, or as complex as simulating another human player
in a multiplayer game that finds cover, shoots at players, and looks for item pickups.

4.1. Work Development 25

The Behavior Tree consists of three panels: the Behavior Tree graph, where you
visually layout the branches and nodes that define your behaviors, the Details panel,
where properties of your nodes can be defined, and the Blackboard, which shows your
Blackboard Keys and their current values when the game is running and is useful for
debugging.

The Behavior Tree graph is build by composites. This are a form of flow control and
determine how the child branches that are connected to them execute.

Composites Description
Selector Executes branches from left-to-right and are typically used to select between

subtrees. Selectors stop moving between subtrees when they find a subtree
they successfully execute.

Sequence Executes branches from left-to-right and are more commonly used to exe-
cute a series of children in order. Unlike Selectors, the Sequence continues
to execute its children until it reaches a node that fails.

Task nodes are the actions that you want the Behavior Tree to perform. More
documentation of behaviour tree can be found here [7].

Table 4.1: A screenshot of the Unreal behaviour tree blueprint. The left image defines
the flow of the different task meanwhile the other is an example of a task.

Blackboard variables:

It has been considered that at the time of making events, it is important to group for
later utilization few variables. All NPC classes have access to this Blackboard variables
which can be accessed and changed any time.

Self actor: It is included by default and cannot be removed. It is a reference to the
Actor who is using this Behavior Tree blueprint.

26 Work Development and Results

Figure 4.4: Variables from the Blackboard.

Work: It is a enumerable type that mark the NPC work. Depending on whether it is
a miner, builder, builder junior, foreman or machinist a task or several of them will be
executed.

Virus action: It is a Boolean that indicates whether the next task of the NPC is going
to execute would be from its normal routine or a virus controlled action.

Resting: It is a Boolean that indicates if the NPC finished its routine. If so, it will go
to the initial place where the NPC was located at the beginning of the match and wait
for orders of the foreman.

In work: It is a Boolean that indicates if the NPC is located at its work place.

Freezed: It is used when a task require to wait in a place but it is needed to continue
executing code. This variable is used for debugging behaviours and has no real use.

VAction, VPosition, VNPC: These variables are used by the virus execution thread
to properly realice their actions. VAction is an enum type which indicates which task
is gonna be executed. If is gonna execute an action of going to a location, this location
will be indicated in VPosition. If it is going to Infect an NPC or communicate with one
its reference and location are sotred in VNPC.

4.1. Work Development 27

Events from the virus:

All virus tasks are focused on a part of the Behavior Tree graph. To understand how
it works. At the top it can be see a gray rectangle that contains a blackboard based
condition and a sequencer. When the thread of execution gets to this rectangle, it is
checked if Virus action boolean is set to true. If is it, then the sequencer will be executed.
A sequencer behavior it is explained above but to sum up, execute all it’s tasks from up
to down, left to right.

So it will alway execute the wait task, and depending on the action (determined by
VAction) it is executen one task or another.

Figure 4.5: Distribution and rules of execution of virus tasks.

Do nothing: It is simple, it just waits 5 seconds. It won’t be executed Simple Resset
task.

Communicate: The NPC will go to VNPC location and share the list of near NPC
it acquired in the past, so the new NPC controlled by the virus, will be able to relate to
more NPCs.

Go to location: The NPC will go to VPosition and take a look to near NPCs so it
would be related to more NPCs.

Infect: The NPC will aproach to other and will infect it.

28 Work Development and Results

Simple Resset: After all three task that have been mentioned before, the NPC will
come back to its job.

Foreman:

Figure 4.6: View of the foreman routine.

The foreman is the one who leads all the other NPCs. The only blackboard condition
here is whether the variable work is set on foreman or other. If it is, all task will be
executed with no more conditions. It’s routine loop starts waiting five seconds. This is
for giving the player time to take a short view to the mine. After this will check all work
places and assign to NPC which won’t be busy at the moment. It will go to all mine
locations and after this will return to its initial place.

4.1. Work Development 29

Miner:

The miners have a more sophisticated system but still easy to understand. First of all,
they take their pickaxe from their back. This is intentionally set before miners get to
their job places because otherwise does not work correctly for technical reasons. After
this they will go to their work place set to true their boolean In work and start mining.

Figure 4.7: View of the miner routine.

Builder and builder junior:

Figure 4.8: View of the builder and builder junior tasks.

The builder routine is simple. The builder goes to the place where the wood is
located and grabs one. It goes to the job place, where the construction is meant to be
and when it arrives, puts the wood so is construction is more near to the end. When

30 Work Development and Results

the foreman reviews work places, only assign a place to builders which don’t have an
assigned construction already. The builder can also be resting at its initial place waitting
to the foreman to assign it a construction.

The builder junior just follow its superior.

Machinist:

They are not controlled by behaviour tree. To make it, it is needed to acquire more
Unreal knowledge. It is not by behaviour tree, because it is needed to access NPC
events in a timeline which is not possible through tasks.

4.1. Work Development 31

4.1.4 State machine:

This task involves creating and displaying a title screen, victory screen, and defeat
screen as needed, and transitioning to the game scene when necessary. This has been
accomplished using the Unreal Engine’s level blueprint functionality and UI blueprints.

For storing global variables it has been used a blueprint class that it does inherits
from game instance.

Table 4.2: A image that show the global variables and how they can be accessed.

In the same scene it is use to control the flow of the match, the variables and the
functions of the game state.

Figure 4.9: A image that shows the different variables and functions stored in the game
state.

4.1.5 NPC clothes:

In Unreal Engine, a cloth object is a type of simulated mesh that can be used to create
realistic clothing, flags, banners, curtains, and other flexible or deformable objects. The
cloth object is simulated using physics-based algorithms that calculate how it would
behave in response to external forces like gravity, wind, or collision with other objects.

32 Work Development and Results

The mesh form has been done in blender for later customization and application in
Unreal.

Figure 4.10: A screenshot of the NPC clothing. The colors change depending on the
NPC wearing them

To create properly the cloth objects it has been seen Unreal’s tutorials such as Unreal
cloth[2] and Custom Clothes[6] just to mention a few.

4.1. Work Development 33

4.1.6 NPC clips:

A big set of animations were made in the Unreal editor moving the NPC rig objects and
saving their transforms. The animations are made to recreate different actions such as
walking, pulling a wagon and mining. Each of this task have a variation for each of the
personalities written in the third section of the memory.

Figure 4.11: A screenshot taken in the Unreal Editor used to create the different anima-
tion clips

https://youtu.be/MMJH0NMS5Ag

34 Work Development and Results

4.1.7 Forward Model, Observer and Heuristics:

Although these tasks are separate, they have been approached and developed in a uni-
fied manner using C++ classes. The virus class, implemented as a blueprint, interacts
with these classes as attributes. The algorithm for each class was initially designed and
documented on paper before the actual implementation took place in Visual Studio. Ex-
tensive planning was undertaken to ensure optimal results, emphasizing the importance
of thoughtful design over rushed implementation.

Algorithms have been made inspired on [9] and [13] videos.

4.1.8 Walls mine:

This task involves creating the atmospheric environment within the mine. It includes
designing and placing objects such as the floor, walls, and rocks to shape the scenario.
Additionally, attention is given to lighting and materials to enhance the overall visual
experience. The lighting within the mine is primarily provided by lanterns, which are
defined in the tools task discussed below. However, fine-tuning and adjusting the lighting
falls under the responsibility of this task.

The Unreal Editor is utilized to accomplish these objectives, employing object in-
stancing techniques and utilizing a landscape object to shape the mine. Furthermore, a
ceiling is created, and the intensity of the light sources is adjusted to achieve the desired
visual effect. This includes adjusting the lighting within the helmets of NPCs and the
player, as well as ensuring proper illumination for each construction within the mine.

Figure 4.12: Preview of the mine

4.1. Work Development 35

4.1.9 Mine items:

There are three models made for the mine, constructions and rails. The rails are created
in blender and the constructions in the Unreal Editor.

Table 4.3: The entire mine from the top and from a perspective view.

In none of these pictures ceiling is visible but this is only for showing the entire mine.

4.1.10 Tools:

The task consist on making three models a pickaxe, a lantern, a helmet and the helmet
lantern. After making the model it has given a light object and adjust the lighting for
both lanterns. They go all in specific places. The pickaxe, the helmet and it’s lantern
are attached in a socket on the skeleton mesh. These are transforms attach to the bones.
When an object or a model is attach to a socket, it will move as the bone does. The
helmet and it’s lantern are attached to all NPC but the pickaxe only to the Miner.

Figure 4.13: A view of all the tools

In the skeleton of the mannequin mesh, are defined several of sockets on a certain
position and rotation which will provide a platform to attach the different tools to a
specific bone. It can be seen here

36 Work Development and Results

Figure 4.14: Tool set in a Unreal default manequinn

4.1.11 Itch.io page:

The page will be available at: Here

4.2 Fulfilled goals

4.2.1 Design and development in Unreal Engine:

After several months of development, my understanding of Unreal Engine 5 has signifi-
cantly improved. While I wouldn’t claim to have an extensive expertise, my knowledge is
sufficient to work with procedural meshes and utilize a wide range of objects available in
Unreal Engine. Although there is still more to learn, my current level of understanding
is adequate to achieve the desired goal of the project.

4.2.2 AI bots:

The bots developed for game operation have successfully met the objectives outlined
in this project. The primary goal was to ensure that each bot is capable of issuing a
sequence of actions to an NPC, thereby presenting a challenge to the player. Above all,
our aim was to achieve this behavior without relying on conditional statements such as
if-else, but instead enabling dynamic changes in response to the player’s actions.

To accomplish this, a sophisticated system was implemented to allow the bots to
adapt their behavior dynamically based on the player’s actions. Instead of using fixed
if-else conditions, the bots employ flexible mechanisms that dynamically adjust their
actions. This approach ensures that the gameplay remains engaging and unpredictable,
as the bots intelligently assess the player’s strategies and adapt their own tactics accord-
ingly.

https://hagso.itch.io/contagia-y-pica

4.2. Fulfilled goals 37

By moving away from static if-else conditions, it has achieved a more fluid and
responsive gameplay experience. The bots’ ability to dynamically alter their behavior
based on the player’s actions adds an element of surprise and challenge, enhancing the
overall enjoyment and replay value of the game.

Through extensive testing and iterations, it has refined the bot system to deliver a
seamless and immersive gameplay experience. The dynamic behavior of the bots not
only meets our initial expectations but also surpasses them by providing an engaging
and interactive encounter for the player.

4.2.3 Reinforce programming capabilities:

An effort has been made to transition from Unity to Unreal Engine 5, with the aim
of changing the programming approach. Initially, extensive research was conducted on
Unreal functions, libraries, and pre-existing classes to facilitate their adaptation and
utilization in the project. Numerous blueprints were created and their functionality
was comprehended in a general sense. Understanding the distinctions between events,
functions, and macros proved pivotal in the project’s execution. Lastly, and perhaps
most importantly, I not only gained a comprehensive understanding of the sublanguage
employed by Unreal, but also familiarized myself with its unique notation. This allowed
me to develop C++ code that is both compilable and compatible for use in blueprints,
thereby combining the advantages of the two programming paradigms. These advantages
include the simplicity and readability offered by blueprints, as well as the precision and
accuracy provided by C++ code.

4.2.4 Attractive Demo:

The visual quality of the demo is subjective, but considering the scene and taking into
account the time and limitations of the project, it can be considered a visually appealing
demo.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 39
5.2 Future work . 39

5.1 Conclusions

The development process has been challenging and demanding, particularly since it was
my first experience working with Unreal Engine. While I had previously conducted a
small test using Unreal Blueprints, creating an entire game presented new difficulties.
Furthermore, completing the final degree project alongside practical work added an
additional layer of complexity. Despite these challenges, I am content with the final
result considering the project’s scope, time frame, and my level of knowledge. However,
given the opportunity, I would have welcomed more time to further refine and expand
upon the project.

5.2 Future work

My aspiration is to complete and release my demo, aiming to potentially sell it on
platforms like itch.io. Due to time constraints, I was unable to include all the features
and ideas I had envisioned for the project.

Looking ahead, my goal is to complete my degree, preferably by next year. I am
optimistic about the prospects of working in the video game industry or, alternatively,

39

40 Conclusions and Future Work

in a role involving game engines. Ultimately, my dream is to be actively involved in
game development, creating games of my own in the near future.

Bibliography

[1] Isaac Asimov. I robot. Gnome Press, Boston, 1950.

[2] Matt Aspland. How to create and use cloth simulation in unreal engine 5 (tutorial)
| flag physics with wind in ue5. Video file, 2022.

[3] Blender. Blender.

[4] Evans Bohl. How to animate characters in ue5. Video file, 2022.

[5] Epic Games Inc. Unreal official pagpage, 2004-2023.

[6] Nils Gallist. Custom clothes for ue metahuman / ue4-5 / blender 3+ /marvelous-
designer 11. Video file, 2022.

[7] Epic Games Inc. Behavior tree overview. Webpage, 2004-2022.

[8] Epic Games Inc. Introduction to blueprints. Webpage, 2004-2023.

[9] John Levine. Monte carlo tree search.

[10] Unreal magic. Rig a character for unreal engine 5 to use it for retargetting and all
the animations of mannequin. Video file, 2022.

[11] Edmund McMillen. The binding of isaac. Microsoft Windows, OS X, and Linux,
2014. https://store.steampowered.com/app/250900/TheBindingofIsaacRebirth/.

[12] Lucas Pope. Return of the obra dinn. Windows and ma-
cOS, Nintendo Switch, PlayStation 4, and Xbox One, 2018.
https://store.steampowered.com/app/653530/ReturnoftheObraDinn/.

[13] Videojuegos UJI. Evolutionary algorithms in games.

41

A
p

p
e

n
d

ix A
Source code

The project is located on a git hub repository; Contagia y Pica
To see the code, as is it written in blueprints it is need to have Unreal Engine 5.2

version installed.
To access a build of the project, can be found here.

43

https://github.com/HAGSO2/ContagiaYPica.git
https://drive.google.com/file/d/1g2SHXbZ9NTdex99oya1Hus7z1AbW4prR/view?usp=sharing

	Contents
	List of Figures
	Introduction
	Game overview and Results preview
	Key words
	Work Motivation
	Goals
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Introduction
	Rules
	Clothing

	Work Development and Results
	Work Development
	Fulfilled goals

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

	anm1:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

