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Topological magnetoelectric effect in semiconductor nanostructures:
Quantum wells, wires, dots, and rings

Josep Planelles ,1,* Jose L. Movilla ,2 and Juan I. Climente 1

1Departamento de Química Física i Analítica, Universitat Jaume I, 12080 Castelló, Spain
2Departamento d’Educació i Didàctiques Específiques, Universitat Jaume I, 12080 Castelló, Spain

(Received 29 December 2022; revised 7 March 2023; accepted 20 April 2023; published 24 May 2023)

Electrostatic charges placed near the interface between ordinary and topological insulators induce magnetic
fields through the so-called topological magnetoelectric effect. Here we present a numerical implementation
of the associated Maxwell equations. The resulting model is simple, fast, and quantitatively as accurate as the
image charge method but with the advantage of providing easy access to elaborate geometries when pursuing
specific effects. The model is used to study how magnetoelectric fields are influenced by the dimensions and
the shape of the most common semiconductor nanostructures: quantum wells, quantum wires, quantum dots,
and quantum rings. Pointlike charges give rise to magnetic fields of the order of mT, whose sign and spatial
orientation are governed by the geometry of the nanostructure and the location of the charge. The results are
rationalized in terms of the Hall currents induced on the surface, which constitute a simple yet valid framework
for the deterministic design of magnetoelectric fields.
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I. INTRODUCTION

Early works introducing axion electrodynamics in quan-
tum field theory showed that the ordinary Maxwell equa-
tions had to be complemented with additional terms whereby
static electric fields would induce magnetic polarization and,
in turn, static magnetic fields would induce charge polariza-
tion [1]. This phenomenon, known as the magnetoelectric
effect, has been later on predicted and observed in a num-
ber of condensed-matter systems [2,3]. One such system
is topological insulators (TI) [4,5]. Here the magnetoelec-
tric polarizability—responsible for the coupling of magnetic
and electric fields—is isotropic and takes quantized val-
ues in terms of the fine-structure constant [6,7]. This is in
contrast to ordinary insulators (OI), where the polarizabil-
ity is zero. Experimental verifications of this effect have
been recently reported in TI materials such as thin films of
Crx(Bi0.26Sb0.74)2−xTe3 [8] and even-layer MnBi2Te4 [9,10],
and potential technological applications are being proposed
already [11].

An interesting manifestation of the topological magne-
toelectric effect (TME) takes place in the presence of an
interface between TI and OI, if a local magnetization M
lifts the time-reversal symmetry in its proximity [12]. When
an electric charge is placed close to the interface, in addi-
tion to the usual dielectric polarization, a magnetoelectric
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polarization builds up on the TI surface. This triggers Hall
currents on the interface, which in turn generate local mag-
netic fields [5]. Experimentally, the local magnetization can
be achieved using, e.g., chemical doping with transition metal
elements, and the resulting TME can be monitored by means
of terahertz detection methods [13]. Other setups have been
proposed in the literature as well [14,15].

The TME has been well studied in the simplest heterostruc-
ture, namely, a planar interface between two semi-infinite
bulks of TI and OI materials, subject to the electric field gen-
erated by a pointlike charge. Because of the analogy with the
dielectric mismatch effect, the theoretical models developed
for such systems have often relied on the image charge method
[16,17], albeit extended for axionic Maxwell equations [3,5].
The same method has been recently used to derive analytical
solutions for the magnetoelectric fields arising at the double
interface of a TI slab embedded within an OI [3], and the same
structure but including all possible combinations of materials
and external magnetizations [18]. A few other geometries
have been modeled too, including spheres with a centered
charge [19] or semispherical cavities [20]. Equations for pla-
nar, spherical, and cylindrical boundaries have been proposed
using the Green’s matrix method [21], but these become in-
creasingly involved as the system symmetry is lowered.

Semiconductor nanostructures constitute a particularly rich
playground to further investigate the properties and prospects
of the TME. When compared to micro and mesoscopic mate-
rials [3], the smaller dimensions make the induced magnetic
fields potentially more relevant in affecting the properties of
confined particles. Also, the fact that these particles are in the
quantum regime facilitates the experimental observation of
fine effects [22–24]. In addition, the synthetic routes currently
deployed in the fabrication of semiconductor nanostructures
enable the development of boundaries with a wide variety of
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controlled geometries. Such structures can be placed in con-
tact with TI of different materials and shapes [4,25–28]. The
curvature and symmetries of such interfaces can be expected
to have a profound effect on the induced electromagnetic
fields [29], which is worth exploring.

In this work we report a systematic study on the effect
of the nanostructure shape and size on the magnetic field
induced by electrical point charges. We focus on the most
paradigmatic semiconductor nanostructures: quantum wells,
quantum wires, quantum dots (spherical or cuboidal), and
quantum rings, embedded within TI media. Maxwell equa-
tions, including axionic terms, are solved by means of a
simple and accessible numerical model based on the finite
elements method, which is shown to reproduce with great
accuracy the results of image charge methods for planar inter-
faces but allows one to go beyond them and describe arbitrary
shapes. The results evidence that the curvature and position
of the nanostructure boundaries, with respect to the source
charge, can be engineered to either suppress or reinforce
the induced magnetic field, and the field orientation can be
switched from roughly that of a magnetic dipole to complex,
multipolar architectures.

II. THEORETICAL MODEL

Our starting points are the ordinary Maxwell equations in
Gaussian units:

∇ · D = 4πρ, (1)

∇×E = −1

c

∂B
∂t

, (2)

∇ · B = 0, (3)

∇×H = 1

c

∂D
∂t

+ 4π

c
J. (4)

The constitutive equations of displacement and magnetic
fields are then modified to accommodate the axionic terms
[5,30]:

D = ε E − P
α θ

π
B, (5)

H = B
μ

+ P
α θ

π
E. (6)

Here, ε and μ are the relative dielectric constant and magnetic
permeability, respectively. α = e2/(h̄c) is the fine-structure
constant and θ the magnetoelectric polarizability. In OI ma-
terials, θ = 0, so that Eqs. (5) and (6) become the usual
expressions of displacement, D = εE, and magnetic field H =
B/μ. In bulk TI, however, θ = π [6,7]. The sign is set by
the pseudoscalar P = sgn[M · n], which relates to the sense
of rotation of the Hall conductance. Here, M is an external
magnetization lifting the time-reversal symmetry near the in-
terface and n the interface surface vector [5,18].

In electrostatic systems, with no time-dependent field and
absence of electrical currents J, Eqs. (2) and (4) become
∇×E = 0 and ∇×H = 0. This allows us to obtain the vector
field E as the gradient of its scalar potential, E = −∇V ,
and the field H as the gradient of its pseudoscalar potential,

H = −∇W . Then, Gauss law, Eq. (1), can be written as

∇[−(ε + μ S2) ∇V + P μ S∇W ] = 4πρ, (7)

with S = α θ/π . In turn, Gauss law for magnetism, Eq. (3),
can be written as

∇[−μ∇W + P μ S∇V ] = 0. (8)

Equations (7) and (8) can be cast in matrix form as

−∇
(

ε + μ S2 −P μ S
−P μ S μ

)
∇

(
V
W

)
=

(
4 π ρ

0

)
. (9)

One can notice that off-diagonal terms vanish unless
∇(μ S) �= 0. That is, magnetoelectric coupling arises at the
interface between materials with different magnetoelectric po-
larizability θ .

The latter system of equations can be integrated for arbi-
trary 3D geometries using standard finite element methods by
defining appropriate values of ε, μ, and θ in each region of
the space. We do so for a pointlike electric charge of positive
sign (Q = e, with e the fundamental unit of charge), located
at a position rQ, near the TI–OI interface. Boundary condi-
tions are set at the edges of a large supercell surrounding the
nanostructure, far enough for the magnetoelectric potentials
to be negligible, V = 0 and W = 0. We shall see in the next
section that this approximation, which greatly simplifies the
model, enables accurate estimates of the fields while bypass-
ing the need to explicitly account for the TI-OI interface
boundary conditions. The latter procedure, which is required
in the image charge method [3,18], is often a complex (and
sometimes impossible) task.

In our calculations the integration of Eq. (9) is carried
out using the finite element routines of COMSOL MULTI-
PHYSICS 4.2. The accuracy depends on the mesh density. We
use a very dense mesh in the region of interest and a coarse
one in the external supercell. The computing times range from
tens of seconds to a few minutes on an ordinary PC. As shown
later, this provides an accuracy of 0.05 mT or better in the
calculated fields for planar interfaces, where image charge ex-
pressions are available for benchmarking. The accuracy must
be of the same order in more elaborated geometries, because
the mesh density is similar.

Having the electric and magnetic potentials, V and W , we
can obtain the magnetic field B as

B = −∇U, (10)

where the associated potential is U = μ(W − PSV ).
For a qualitative analysis, the magnetic field originating

from a static source charge ρ can be understood by replacing
Eq. (6) into Ampere’s circuital law, Eq. (4). In the absence of
time-dependent displacement D, the equation can be written
as

∇×H′ = 4π

c
(J + Jθ ), (11)

with H′ = B/μ and Jθ = −α c P (∇θ×E)/(4 π2). It follows
from Eq. (11) that the electric field E generated by a source
charge ρ induces (Hall) currents Jθ on the interface between
materials with different θ , where ∇θ �= 0. These Hall cur-
rents, in turn, give rise to magnetic fields, H′ and B.
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FIG. 1. TME on a planar interface. (a) Schematic of the structure. The thickness of the circles represents qualitatively the intensity of the
Hall currents induced by the charge Q. (b) Bz projection of the magnetic field along the z axis, calculated with numerical (solid line) and image
charge (dashed line) methods. (c) Absolute value of B on the xz plane. The circle shows the position of the charge impurity. (d) Logarithmic
plot of the (Bx, Bz ) on the xz plane. (e)–(g) Magnetic field distributions arising from a magnetic monopole (e), a circular current, quasidipole
(f), and a Pearl vortex (g).

We close this section by noting that COMSOL MULTIPHYSICS

is designed to solve, by means of finite elements, any set of
coupled differential equations up to second order, with ap-
propriate boundary conditions. As such, in principle it can go
beyond the basic case considered in this work (an electrostatic
system with Dirichlet boundary conditions) and be used to
solve the general set of time-dependent axion-Maxwell equa-
tions involved in electrodynamic problems.

III. RESULTS

We study the magnetic fields B resulting from a point
charge Q, placed near TI–OI (semiconductor) interfaces with
different geometries. Even though our numerical method is
of general validity, we consider the specific case where the
nanostructure is made of an ordinary semiconductor material,
surrounded by a TI. The opposite case, TI nanostructures
embedded in OI, can be also found in experiments [4,31,32],
but spatial confinement is expected to reduce the magne-
toelectric polarizability θ [33] and eventually suppress the
topological behavior [4,31]. More elaborated systems, such
as an external cloud density charge instead of a pointlike
one, can be addressed with the current model by simply re-
placing ρ in Eq. (7), but the fundamental case of a point
charge will suffice to showcase the basics of the TME in
nanostructures.

Typical material parameters are used to describe ordinary
semiconductors (μ1 = 1, ε1 = 5, θ1 = 0) and TI, such as bulk
Hg chalcogenides (μ2 = 1, ε2 = 10, θ2 = π ). We assume
the external magnetization M is such that P = −1 for all

interfaces, which allows comparing with earlier works study-
ing simple heterostructures [3].

A. Planar interface

We start by considering the case where a semi-infinite
bulk of OI (semiconductor) is placed on top of a semi-
infinite bulk of TI, separated by a planar interface. The
point charge Q is located in the TI, at a distance d from
the interface, see Fig. 1(a). We take d = 1 nm, which is
a plausible distance for controlled doping in nanostructured
semiconductors [34,35].

Figure 1(b) shows the Bz projection of the magnetic field
induced along the z axis, which is perpendicular to the planar
interface and crosses the charge position. For this simple
geometry, the field can be calculated analytically using the
image charge method [3,5,18]. The comparison between nu-
merical (solid line) and analytical (dashed line) calculations
shows an excellent agreement, which illustrates the quantita-
tive accuracy of the numerical method. The figure also reveals
that Bz has a maximum of few mT on the interface. Even
if weak, the magnitude of B is orders-of-magnitude greater
than in millimetric structures, where values of fT are expected
[19], and experimental detection of electronic effects under
fields of similar magnitude have been reported in quantum
nanostructures [22]. Yet, Bz decays rapidly with the distance
from the interface. Along the z axis, Bz ∝ (|z| + d )−2, with
z = 0 corresponding to the interface plane. Remarkably, this
is a magnetic monopole-like decay [5]. The fast decay of
the field can also be observed in Fig. 1(c), which shows the

023119-3



PLANELLES, MOVILLA, AND CLIMENTE PHYSICAL REVIEW RESEARCH 5, 023119 (2023)

absolute value |B| on the xz plane containing Q. The magnetic
field is largely a local effect, arising in the vicinity of the
interface under Q. It follows from the fast decay of B that the
use of multiple charge dopants may extend the field domain,
but not its peak intensity, unless the concentration is very high
(>1 nm−3).

Figure 1(d) is a logarithmic plot showing the magnetic
field orientation for the same plane as Fig. 1(c). It is clear
from the figure that the orientation of B reflects neither a
magnetic monopole [Fig. 1(e)], nor the quasidipole associated
to a circular current [Fig. 1(f)]. It has been recently pointed
out that for sufficiently small d , the distribution in this setup
corresponds to a Pearl vortex instead [Fig. 1(g)] [36].

The deviation of the field orientation from that of a mag-
netic dipole can be understood by analyzing the Hall current,
Jθ . As mentioned before, an electrical charge ρ induces a cur-
rent Jθ = α c (∇θ×E)/(4 π2). Because ∇θ = π δ(ri ) n, with
ri the interface coordinate and n a surface vector pointing
towards the TI, the sign and intensity of Jθ are mainly given
by the cross product n×E. As can be seen in Fig. 1(a), a point
charge generates circular currents Jθ . Each of the (infinite)
loops behaves as a quasidipole, but their superposition does
not. It is worth noting that the intensity of the currents is set
by two factors:

(i) The distance from Q. Since |E| scales as 1/|r − rQ|2,
currents will become weaker at longer distances.

(ii) The angle between n and E. The cross product becomes
null when the two vectors are aligned (right below Q) and
increases as they become orthogonal (longer distances).

The tradeoff between the previous effects leads to the most
intense Hall currents taking place for radii R = d , where n and
E form an angle of π/4. Weaker currents are expected closer
or farther from Q, as sketched by the different thickness of
the lines in Fig. 1(a). The dominating character of such loops
imposes a magnetic field distribution loosely resembling that
of a dipole, albeit with clear deviations originating from the
interferences with other loops. The absence of vortices around
the inbound and outbound current in Fig. 1(d), as compared to
the quasidipole of Fig. 1(f), is one example. Another example
is that, in Fig. 1(c), the strongest field does not arise around
the dominating current Jθ (R = d) but for R < d (notice the
maxima in the figure take place for lateral displacements
smaller than 1 nm from the center). The latter fact is related
to the inverse proportionality between |B| and the loop radius
R, which makes the inner loops have a significant contribution
even if they host moderate current Jθ .

B. Quantum well

A semiconductor quantum well (QW) embedded in a TI
material involves two parallel planar interfaces [37]. As such,
one can design the properties of the induced magnetic field
from the superimposed effects of two simple planes, each with
a different sign of ∇θ .

Consider first the high-symmetry case where the charge Q
is in the center of the QW, Fig. 2(a). The Hall currents Jθ

on top and bottom interfaces have the same magnitude but
opposite sense of rotation, set by the product n×E. The result
is that magnetic fields of identical magnitude but opposite sign
are induced on each surface, and these can be expected to

(a) (b)

(c)

FIG. 2. TME in a QW with a centered charge. (a) Schematic of
the structure and the induced Hall currents Jθ . Notice the opposite
sense of rotation on top and bottom interfaces. (b), (c) Numerical
calculations for a QW with thickness L = 5 nm. (b) Absolute value
of B on the xz plane. The circle shows the position of the charge
impurity. (c) Logarithmic plot of the (Bx, Bz ) on the xz plane.

cancel out at the position of Q. This is indeed observed in
actual calculations: |B| is suppressed around Q [Fig. 2(b)], and
the field distribution (Bx, Bz ) exhibits a nodal plane for Bz at
the center of the QW [Fig. 2(c)], which is reminiscent of that
arising from two quasidipoles of opposite sign. All of these are
manifestations of the magnetoelectric interaction between the
two QW planes and set a first example on how nanostructures
can be composed to design the resulting magnetic field.

We next consider the case where an off-centered charge Q
is placed in the TI material at a distance d = 1 nm from the top
of the QW. Figure 3 analyzes the resulting magnetic field. The
field is very similar to that of a single plane studied in Fig. 1,
because the electric field E reaching the bottom interface is
already weak, which reduces its influence. A few signatures
of the interplane interaction can, however, be observed. Notice
in Fig. 3(c) that the field is severely quenched under the QW.

(a) (b)

(c)

FIG. 3. TME in a QW with an off-centered charge. (a) Schematic
of the structure and the induced Hall currents Jθ . The currents of
the bottom interface provide a weak compensation to the top ones.
(b), (c) Numerical calculations for a QW with thickness L = 5 nm
and d = 1 nm. (b) Absolute value of B on the xz plane. The circle
shows the position of the charge impurity. (c) Logarithmic plot of the
(Bx, Bz ) on the xz plane.
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FIG. 4. Bz projection of the magnetic field along the z axis for
different QW thicknesses, L. (a), (b) QW with Q centered at z = 0,
having L = 5 nm and L = 1 nm, respectively. (c), (d) Same but with
Q on top of the QW, with d = 1 nm. Solid (dashed) lines are results
calculated with numerical (image charges) method.

This is a consequence of the Hall currents on the bottom plane
compensating for those on the top one [3,18].

The results in Figs. 2 and 3 correspond to a QW with
thickness L = 5 nm, which is a representative value for epi-
taxial wells [38]. Qualitatively similar results are obtained for
narrower QWs, such as colloidal nanoplatelets, which can be
as thin as L = 1 nm [31]. To illustrate this point, in Fig. 4
we compare the magnetic field Bz along the z axis for QWs
of different L. Figures 4(a) and 4(b) compare Bz induced by a
centered charge in QWs with L = 5 nm and L = 1 nm, respec-
tively. In both cases the field is antisymmetric with respect to
the z = 0 plane. The fields are stronger in the narrow QW for
the simple reason that Q is closer to the interface. In the case
of off-centered charges, Figs. 4(c) and 4(d), since d = 1 nm
for both QW thicknesses, the maximum value of Bz, around
2 mT, is fairly unsensitive to L.

The accuracy of the numerical results in this section is
again supported by the excellent agreement with analytical
calculations using series of image charges [3,18]. We com-
pare the results of the two methods in Fig. 4 using solid and
dashed lines, respectively. This provides further support to the
reliability of the numerical integration for the more elaborate
nanostructures we address in the next sections.

C. Quantum wire

We consider now a cylindrical, semiconducting wire [37]
with radius R = 2.5 nm embedded in a TI material. As we
shall see below, the curvature of the quantum wire (QWW)
brings about some characteristic features when compared to
the QW.

In a QWW, the high-symmetry configuration corresponds
to the charge Q placed at the center of the circular cross
section. As shown in Fig. 5(a), no Hall currents are expected
at any point of the radial boundary of the z = zQ plane, be-
cause n ‖ E and hence Jθ = 0. By contrast, radial currents are
formed at all distances above and below Q. Interestingly, the

(a) (b)

(c)

FIG. 5. TME in a cylindrical QWW with a centered charge.
(a) Schematic of the structure and the induced Hall currents Jθ .
The currents above and below Q have opposite senses of rotation.
(b), (c) Numerical calculations for a QWW with radius R = 2.5 nm.
(b) Absolute value of B on the xz plane. (c) Logarithmic plot of the
(Bx, Bz ) on the xz plane. The position of the strongest current loops
is marked with � and ⊗ symbols.

product n×E leads to Jθ having opposite sense of rotation in
each case. This anticipates another suppression of B in the
vicinity of Q, analogous to that of QWs, despite the different
geometry. This effect is confirmed by the numerical calcula-
tions. In Fig. 5(b), |B| shows a clear quenching at around Q.
At the same time, in Fig. 5(c) the field orientation reveals that
the xz plane containing Q acts as a nodal plane for Bz.

The magnetic field generated by a centered charge in
a QWW closely corresponds to that induced by two qua-
sidipoles with opposite sign above and below Q. In Fig. 5(b),
two axially symmetric maxima of the field are observed at
z − zQ ≈ ±R. At that position, in Fig. 5(c) vortexlike circula-
tions of the field allow one to identify the positive and negative
poles of the dipole, which we represent using standard sym-
bols of inbound (⊗) and outbound (�) current. It is inferred
that B results mainly from two circular Hall current loops,
which prevail over others. The formation of dominating loops
can be rationalized through the schematic in Fig. 5(a). As
mentioned in Sec. III A, the intensity of the currents Jθ is set
by the trade-off between the distance from Q, which weakens
|E|, and the angle between n and E. As in planar interfaces,
this occurs for an angle of ±π/4, which sets z − zQ ≈ ±R.
Unlike in planes and QWs, however, here all the current loops
have the same radius R, so the most intense currents translate
into the strongest |B|.

Figure 6 analyzes the magnetic field induced by an off-
centered charge Q, placed outside the QWW. As shown in
Fig. 6(a), the Hall currents Jθ are no longer circular. Another
characteristic feature is that, contrary to the planar interfaces
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(a)
(b)

(c)

FIG. 6. TME in a QWW with an off-centered charge.
(a) Schematic of the structure and the induced Hall currents Jθ .
Noncircular currents loops are formed. (b) Top view of the xy plane
containing Q. (c) Logarithmic plot of the (Bx, Bz ) on the xz plane, for
a QWW with R = 2.5 nm, and d = 1 nm.

of the QW, here the sign of the Hall currents on the front
and back sides of the QWW have the same sign. This can
be understood from the diagram in Fig. 6(b), which shows a
top view of the xy cross section containing Q. No matter the
distance d from Q to the wire, the angle between n and E has
the same sign for front and back sides. A direct consequence
is that the magnetic field arising on the back interface does
not compensate for that of the front one. This implies that the
calculated field, plotted in Fig. 6(c), is not suppressed as the
back interface is approached, and it can be felt on the opposite
side of Q. This is in sharp contrast with the QW, Fig. 3(c).
We stress that this behavior results from the circular curva-
ture of the QWW cross section, but increasing the ellipticity
should eventually retrieve the QW behavior. Therefore, one
can anticipate the existence of a critical eccentricity at which
E ‖ n on the back interface, at which the B sign is reversed.
A related mechanism has been put forward for semispherical
cavities, where the sign of the magnetic field can be reversed
through the distance d between Q and the center of the
sphere [20].

D. Quantum dot

Quantum dots (QDs) exhibit nanometric confinement in
all three directions of space [37]. When embedded inside a
TI, this involves magnetoelectrically polarized boundaries, all
within short distances from each other. Sizable interactions
may then take build up within them. Combined with the
precise synthetic control of their size and shape [39], these
properties make QD systems particularly suited to modulate
the TME. To investigate such interactions, here we consider
two basic geometries, namely, spherical and cuboidal QDs.

(a) (c)

(b) (d)

FIG. 7. TME in a spherical QD. (a) Schematic of a QD with a
centered charge. No Hall currents are formed, and hence no magnetic
field is induced. (b) Same but for an off-centered charge, within the
TI. (c), (d) Numerical calculations for a QD with R = 2.5 nm and
d = 1 nm. (c) Absolute value of B on the xz plane. (d) Logarithmic
plot of the (Bx, Bz ) on the xz plane, induced by the off-centered
charge.

QDs with geometries resembling these limit cases are now
routinely achieved with colloidal chemistry [39].

Figure 7 shows results for a spherical QD. If the source
charge Q is centered, the spherical symmetry of the system
leads to n ‖ E all over the boundary, see Fig. 7(a). Therefore,
no Hall currents are formed, and no magnetic field is induced.
The suppression of the TME is, however, lifted as soon as
the charge is off-centered. Figure 7(b) shows the expected
Hall currents triggered by a charge outside the QD. These
are spherical and, as in the QWW, have the same sign on the
front and back sides of the nanostructure. The ensuing mag-
netic field intensity is strongest near the QD cap close to the
charge, Fig. 7(c), and the field distribution, plotted in Fig. 7(d),
exhibits circulating vortices, which makes it reminiscent of
a simple quasidipole field. This behavior is in contrast to
that of a planar interface, Fig. 1(d), and reflects the fact that
interferences between concentric Hall currents on the sphere
surface are less destructive than those on a plane.

Cuboidal QDs are a paradigmatic example of how the
proximity of boundaries in QDs can be manipulated to shape
the TME. Compare the Hall currents Jθ induced by a charge
Q in the center of a cube or outside it, top and bottom rows
of Fig. 8(a), respectively. In the former case (top schematic),
circular currents with opposite sign form on each pair of
parallel faces. These tend to compensate each other, similar to
the QW case, Fig. 2(a). On the contrary, if the charge is outside
(bottom schematic), the Hall currents are similar to those of
a simple plane but with extra currents with some sense of
rotation formed on the lateral sides, which reinforce the re-
sulting magnetic field. The contrasting behavior is reflected
in Fig. 8(b), where |B| is plotted for a cross section of the
QD containing the charge Q. The cube side is L = 5 nm,
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(a) (c)(b)

FIG. 8. TME in a cuboidal QD with centered (top row) and off-centered (bottom row) charge. (a) Schematic of the structure and the
resulting Hall currents. (b), (c) Numerical calculations for a QD with L = 5 nm and d = 2.5 nm (off-centered charge). (b) |B| on the cube
plane containing the charge Q. (c) Corresponding plots of field distribution (Bx, Bz ).

and, for the sake of comparison, Q is placed at d = 2.5 nm
from the surface both in the centered and off-centered config-
urations. When Q is centered (top panel), a broad area with
quenched magnetic field is formed. On the contrary, when
Q is off-centered (bottom panel), the resulting field becomes
stronger and a slow decay is observed inside the QD, which
is in contrast with the fast decay outside the QD. Both the
quenching and the enhancement of the magnetic field are more
efficient than those observed in QWs of similar dimensions
[cf. Figs. 2(b) and 3(b)]. Drastic changes are seen in the field
distribution as well depending on the charge location, owing
to the cuboidal geometry [see Fig. 8(c)], with a prominent role
played by the cube edges.

E. Quantum ring

Doubly connected, ringlike semiconductor nanostructures
have attracted attention in the solid-state community for
their ability to reveal topological phenomena, such as the
Aharonov-Bohm effect in the presence of external magnetic
fields [22,40]. We consider here an ideal, torus-shaped quan-
tum ring (QR). Because the QR can be seen as a bent wire,
the magnetic fields induced by off-centered charges close to
one side of the QR are similar to those of QWW, albeit with
deviations arising from the curvature of the ring arm (not
shown). If the charge Q is centered, however, the analogy is
less straightforward.

Analyzing the Hall currents Jθ induced by a centered
charge [Fig. 9(a)], one infers that these spin in circles around
Q, with opposite sense of rotation above and below the zQ

(equatorial plane), which is again reminiscent of the cylindri-
cal QWW. This behavior is confirmed by the calculated field
distribution, plotted in Fig. 9(c), which corresponds roughly

(a)

(b)

(c)

FIG. 9. TME in a QR with a centered charge. (a) Schematic of
the structure and the induced Hall currents Jθ . The currents above
and below Q have opposite senses of rotation and circulate around Q.
(b), (c) Numerical calculations for a toroidal QR with major radius
10 nm and minor (section) radius 2.5 nm. (b) Absolute value of B
on the xz plane. (c) Logarithmic plot of the (Bx, Bz ) on the xz plane.
The position of the strongest current loops is marked with � and ⊗
symbols.
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to that set by two dominant quasidipoles, marked by � and ⊗
symbols in the figure. The field intensity, however, is strongest
on the inner side of the QR, Fig. 9(b). In this regard the
behavior is closer to that of an off-centered charge near a
spherical QD, Fig. 7(b).

IV. CONCLUSIONS

We have introduced a simple numerical model to calculate
magnetoelectric fields generated by electrostatic charges in
TI-OI heterostructures of arbitrary geometry. The model is
quantitatively as accurate as the image charge method but with
the advantage of providing easy access to nonplanar and elab-
orate geometries. It thus constitutes a fast and versatile tool to
build models pursuing specific effects. We have then used the
model to investigate the TME in the most common semicon-
ductor nanostructures: quantum dots, rings, wells, and wires.
By changing the position of a source electric charge with

respect to the nanostructure, the strength and orientation of
the resulting magnetic field undergoes severe changes. These
results confirm that low-dimensional nanostructures, embed-
ded in TI media, constitute a particularly rich playground to
investigate and exploit the TME.

The most conspicuous influence of the nanostructure ge-
ometry is observed in cuboidal QDs, where the interactions
between boundaries can be used to efficiently enhance or
quench the induced magnetic fields.
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