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Abstract

Most COVID-19 studies commonly report figures of the overall infection at a state- or

county-level, reporting the aggregated number of cases in a particular region at one time.

This aggregation tends to miss out on fine details of the propagation patterns of the virus.

This paper is motivated by analyzing a high-resolution COVID-19 dataset in Cali, Colombia,

that provides every confirmed case’s exact location and time information, offering vital in-

sights for the spatio-temporal interaction between individuals concerning the disease spread

in a metropolis. We develop a non-stationary spatio-temporal point process, assuming that

previously infected cases trigger newly confirmed ones, and introduce a neural network-based

kernel to capture the spatially varying triggering effect. The neural network-based kernel

is carefully crafted to enhance expressiveness while maintaining results interpretability. We

also incorporate some exogenous influences imposed by city landmarks. The numerical re-

sults on real data demonstrate good predictive performances of our method compared to the

state-of-the-art as well as its interpretable findings.

1 Introduction

The outbreak of coronavirus disease 2019 (COVID-19) since 2020 has swept the world and is

still developing. It causes a dramatic loss of human lives (Chriscaden, 2020) and presents an

unprecedented challenge to public health, food systems, and the world systems. Tracking the

dynamics of COVID-19 enables the human being to take target protecting measures to curb

the pandemic’s spread and design health surveillance systems. However, limited and biased

information about local COVID-19 cases makes it extremely difficult to control strategies against

the pandemic effectively.

There is a large amount of aggregated data consistently collected and publicly available, which

contains rich information about COVID-19 cases. For instance, Johns Hopkins Center for Systems
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Science and Engineering (JHU CSSE) establishes an interactive COVID-19 dashboard to track

the global coronavirus development (John Hopkins University, 2020) which reports the daily

confirmed cases and deaths worldwide up to the state level. New York Times (2020) also tracks

daily the county-level counts of confirmed cases and deaths in the United States. Such data help

the scientific researcher model the disease transmission on an aggregated level and play a pivotal

role in tracking the propagation patterns of the virus and helping policymakers act effectively to

revitalize economic and social development.

However, such aggregated data lack precise information about individual cases and present

a significant challenge in modeling the spatio-temporal dynamics of human-to-human disease

transmission when capturing the fine spatial heterogeneity of case distribution in a small region.

Aggregated data cannot reflect the actual situation, which will lead the administrative officials

to make biased decisions. For example, it is reported in Bizzarri et al. (2020) that the unreliable

preliminary data, as well as inaccurate models, significantly affected the political decisions of the

Italian administration. Another example in Guenther et al. (2020) documented a superspreader

event in Germany in a meat processing plant; modeling such an event requires accounting for the

precise plant location information, and aggregated data may miss such crucial local information.

In this paper, we consider an unprecedented high-resolution dataset for individual cases of

COVID-19 in Cali, Colombia, the second-largest city in the country. This data records individual

confirmed cases during six months, from March 15 to September 30 of 2020, with time and location

information of the case. To take full advantage of the fine-grained dataset, we develop a non-

stationary spatio-temporal point process model, assuming that previously infected events trigger

the newly confirmed cases. We assume the triggering effect is non-stationary (Hendry and Pretis,

2016) since the virus is likely to spread more slowly in sparsely populated rural than densely

populated areas. This fact entails stationary point processes non-applicable: the stationary kernel

is “shift-invariant” and only depends on the temporal and location differences between events.

Moreover, we consider the exogenous promotion of densely populated city landmarks in the model

since the COVID-19 virus proves to spread quickly through respiratory droplets (Jasper et al.,

2020), and aerosol transmission in crowded and inadequately ventilated spaces (Leclerc et al.,

2020). We represent parameters of the non-stationary kernel by neural networks to enhance

model flexibility while maintaining the interpretability of results. The model is estimated by

solving a maximum likelihood problem via a computationally efficient strategy to tackles the

intractable numerical integration in the log-likelihood function. We conduct an extensive real-

data study, which reveals the unique transmission dynamics of COVID-19 and confirms that a few

landmarks in the city play an essential role in spreading the virus. The model and results will help

policymakers monitor coronavirus dynamics and provide a template for tracking real-time data

for future epidemics and implementing health surveillance systems. Since similar high-resolution

datasets will not be so rare in the future, the need for such an approach is not limited to the

situation of Cali.

The paper is organized as follows. The rest of this section discusses some relevant literature

on COVID-19 modeling and spatio-temporal point processes. We then introduce our motivating
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(and unique) dataset in Section 2. In Section 3, we review some fundamentals about point

processes and propose our framework with a non-stationary spatio-temporal kernel, and illustrate

our fine-crafted parameterization scheme with a simple neural network. Section 4 presents the

computational strategies for model estimation with an approximation to the likelihood. Section 5

interprets the results from real data and compares them with several benchmark models. Lastly,

Section 6 concludes the paper.

Related work Compartmental models are widely developed to describe the overall COVID-19

infection in a region. The simplest SIR compartmental model (Harko et al., 2014) assigns the

population into three compartments with labels S (susceptible), I (infectious), andR (recovered),

respectively. Deterministic differential equations fit the transition rates between each kind of

compartment. Advanced compartmental models are further designed by reframing the basic one

with different compartments (Lin et al., 2020; Nande et al., 2020). SEIRD in Korolev (2021)

and forced SEIRD models in Loli Piccolomini and Zama (2020) are adopted in various epidemic

scenarios by introducing compartments of exposed and deceased populations into the system.

Other extensions, such as splitting the infected population according to infection severity (Nande

et al., 2020) and introducing unreported infected population (Lin et al., 2020) are also considered.

Compartmental models assume a stable population of the inspected region, thus perform well

when applied to large regions such as a country or state. However, they usually do not consider

detailed spatial information such as population migration across regions.

Much work has been done on predicting the number of COVID-19 cases and deaths. Kraemer

(2020) and Woody et al. (2020) adopted Generalized linear models to predict the number of

daily cases and deaths during the first-wave COVID-19 in China and the United States, respec-

tively. Autoregressive models are also widely used to forecast confirmed cases at a state-level

(Mamode Khan et al., 2020; Triaccaa and Triacca, 2021; Agosto and Giudici, 2020). There

are also several studies (Northeastern University, Laboratory for the Modeling of Biological and

Socio-technical Systems, 2021; Institute for Health Metrics and Evaluation, 2020) adopted by the

Centers for Disease Control and Prevention (CDC) for COVID-19 case forecast in the United

States. Our approach differs from these methods in two ways: (a) Our model provides finer-

grained predictions based on the unique data, and (b) we focus on capturing the spatio-temporal

correlation between confirmed cases and emphasize the interpretability of the proposed model.

Spatio-temporal analysis of the COVID-19 plays a pivotal role in understanding the dynamics

of the spread of COVID-19. Angulo et al. (2013) introduces a spatio-temporal BME-SIR model

integrating the disease representation at different locations to generate disease predictions. Bai

et al. (2020) divides the regional-level COVID-19 time series data in the United States into several

periods and develops a piecewise stationary SIR model coupled with spatio-temporal dependence.

In addition, a vector autoregressive model developed by Zhu et al. (2021a) considers local spatio-

temporal correlations, mobility, and demographic factors, aiming to estimate COVID-19 cases

and deaths at a county level in the United States. In Chiang et al. (2020), a multivariate

Hawkes process is adopted to model the occurrence of confirmed cases across the U.S. counties
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by incorporating social and health covariates. However, most of these methods use spatially or

temporally aggregated data, which hinders us from understanding the spread of COVID-19 at an

individual level.

A few studies attempt to model the dynamics of COVID-19 using point processes. Gajardo

and Müller (2021) proposes a point process regression framework of COVID-19 cases and deaths

conditioned on mobility and economic covariates. Giudici et al. (2021) focuses on country-level

case prediction in 27 European countries by augmenting spatio-temporal point process model

with mobility network covariates. Li et al. (2021) introduces a generative and intensity-free

point process model based on an imitation learning framework to track the spread of COVID-

19 and forecast county-level cases in the United States. Compared to the previous methods,

our approach is more flexible by considering non-stationarity in the spatial correlation, which is

highly interpretable and expressive in representing the spread of the disease.

We also note that some related studies use similar techniques developed in this paper. First,

similar to our proposed framework, Du et al. (2016); Mei and Eisner (2016); Zhang et al. (2020)

model discrete events using neural-network-based point process models. However, most of these

works aim to enhance the representative power by taking advantage of the recurrent neural

structure (Hochreiter and Schmidhuber, 1997) or the attention mechanism (Vaswani et al., 2017)

to represent the historical information, which lacks interpretability and is unable of capturing

long-term effects. Second, a wide array of research focuses on characterizing the triggering effects

between events using a fine-crafted kernel function. For example, original works Ogata (1988,

1998) introduce a parametric kernel in Epidemic Type Aftershock Sequence (ETAS) to capture

the triggering effects between earthquakes. Recent works (Zhu et al., 2021b,c) extend the ETAS

model by introducing neural networks and allowing for non-stationarity in representing the spatial

correlation. The main difference of our method is that we consider both inter- and intra-influences

between spatial kernel components, which significantly improve the expressiveness of the model.

A few works incorporate the exogenous effects into point process models by adding terms in the

conditional intensity function (Zhu et al., 2021d; Rizoiu et al., 2017; Farajtabar et al., 2017).

2 Data description and preliminary analysis

The COVID-19 dataset provided by the Municipal Public Health Secretary of Cali1 documents

the individual-level confirmed COVID-19 cases, collected from Cali, one of the major cities in

Colombia, the capital of the Valle del Cauca department and the most populated city in southwest

Colombia, with 2,227,642 residents according to the 2018 census. As shown in Fig. 1(a), more than

half of the population concentrates in neighborhoods of low socioeconomic strata located mainly

in the east, northeast, and west. Almost a tenth of the population under the line of poverty

agglomerates in the city’s eastern neighborhoods. The population with higher socioeconomic

strata distributes in the other city areas, concentrating the wealthiest population in the city’s

1https://www.cali.gov.co/salud/
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(a) Population distribution (b) Landmarks

Figure 1: (a) Population distribution in Cali. Each polygon bounded by black lines represents a

comuna (a municipality-level subdivision in Cali); there are 22 comunas in the city of Cali. (b)

Landmarks in Cali. Each dot represents the landmark’s location, and its color indicates the type

of the landmark, where the red dot is a town hall, the blue dot is a church, and the green dot is

a school.

(a) March 29, 2020 (b) May 17, 2020 (c) July 12, 2020 (d) August 23, 2020

Figure 2: Snapshots of confirmed COVID-19 cases at four particular weeks. Each dot represents

the location of a confirmed case. Note that darker dots indicate multiple dots being overlapped.

south. The city spans 560.3 square kilometers (216.3 square miles) with 120.9 square kilometers

(46.7 square miles) of the urban area, making it the second-largest and the third most populated

city in the country. As the only major Colombian city with access to the Pacific coast, Cali is

the leading industrial and economic center in the country’s south, with one of Colombia’s fastest-

growing economies. Cali’s international airport is located in the northeast part of the city, and

it is Colombia’s third-largest airport in terms of passengers (Wikipedia, 2021).
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The dataset records 38,611 cases from March 15 to September 30 of 2020, including 28 weeks.

Specifically, a COVID-19 case was recorded once confirmed, with the diagnosed date of the patient

and the geographical location (measured in longitude and latitude) of their residence. The testing

procedures were carried out across the entire urban area, with similar testing rates in each local

community. Unlike other commonly-seen COVID-19 datasets that only report the aggregated

number of cases or deaths at a state or county level, this dataset records the exact location and

time information of each single confirmed case. In practice, we have observed periodic weekly

oscillations in daily reported cases and deaths, which may have been caused by testing bias (higher

testing rates on certain days of the week). To reduce such bias, we aggregate the number of cases

and deaths of each county by weeks. Fig. 2 presents the spatial distribution of confirmed cases

at four particular weeks in Cali. We note that the first confirmed case of COVID-19 in Colombia

appeared on March 6, 2020. On March 12, the country soon declared a state of emergency. On

March 15, Cali reported the first positive person. Then the authorities announced the mandatory

isolation for the entire city for just eight days (Presidency of the Republic of Colombia., 2020).

The first case reported in the city based on people who went to health services occurred in

high socioeconomic strata. However, the disease quickly spreads and concentrates in the most

vulnerable areas with low socioeconomic strata. After early efforts of the government to contain

the pandemic, inevitably, the virus spread throughout the city, affecting a large part of the

population. The above public health decisions are known not significantly to affect the dynamics

of the virus spreading. Thus, we do not consider the impact of these decisions in our model for

simplicity.

Besides COVID-19 events, we also collected the location of three kinds of landmarks in Cali,

including churches, schools, and town halls, from the Administrative Department of Municipal

Planning2, as these locations play an important role in understanding the wide and rapid spread-

ing of the virus. According to James et al. (2021), there is a high COVID-19 positive rate among

attendees to events at places, such as churches. As a clear note in this line, among 92 atten-

dees at a rural Arkansas church during March 6–11, 35 (38%) developed laboratory-confirmed

COVID-19, and three persons died (James et al., 2021). The landmark dataset has three town

halls, 49 small and large churches, and 77 schools. Fig. 1(b) shows the exact locations of these

collected landmarks.

Our preliminary study suggests that the confirmed cases are unevenly distributed across the

city and correlated in time and space. In Fig. 3, we show the spatial distribution of all the

confirmed cases. As we can see, most of the reported cases concentrate in the city’s center,

particularly in Comuna 11. More cases are reported in the eastern Cali than in the western Cali,

which presents a heterogeneous spatial profile of the COVID-19 cases in Cali. The first three

panels in Fig. 4 show the partial autocorrelation functions (PACF) (Brockwell and Davis, 1991)

of daily confirmed cases for three comunas in Cali. Short lags (less than one week) appear to be

highly relevant to the current confirmed cases at each comuna, highlighting a significant temporal

dependence. The last panel of Fig. 4 shows the spatial correlation versus the distance between

2https://www.cali.gov.co/planeacion/
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(a) Case density by comuna (b) Case density estimated by KDE

Figure 3: Spatial distribution of the confirmed cases at two spatial resolutions. The color depth

indicates the number of confirmed cases in one square kilometer; (a) shows the case density per

comuna. (b) represents the spatially continuous case density estimated by KDE.

different locations in Cali. Specifically, we investigate the time series of cases occurrence rate

(estimated by KDE) at 1,000 arbitrary locations. As we can see, a strong spatial correlation

is observed in the vicinity of an arbitrary location, while the correlation between two locations

weakens with their distance.

3 Methodology

This section presents our non-stationary spatio-temporal point process model for COVID-19

cases. In the following, we first revisit some essential background of spatio-temporal point pro-

cesses. Then we propose a novel point process model with a non-stationary kernel function, which

captures complex triggering effects between events in time and space. Lastly, we characterize the

influence of city landmarks as an exogenous promotion.

3.1 Background: Spatio-temporal point processes

Spatio-temporal point processes (STPPs) is a popular model for discrete events data that occur

in space and time González et al. (2016); Reinhart (2017). Denote the observation space as

X = [0, T ]×S ⊆ R+×R2, where T is the time horizon and S represents the space of geographic

coordinate system (GCS). Each confirmed case is a discrete event defined by a data tuple x :=

(t, s), where t ∈ [0, T ] is the time when the individual was diagnosed with COVID-19 and s ∈ S
represents the location of residence of confirmed case. Let Ht := {xi = (ti, si)|ti < t} denote the

events’ history before time t. Let N be a counting measure on [0, T ] × S corresponding to HT ,
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(a) PACF 1 (b) PACF 2 (c) PACF 3 (d) Spatial correlation

Figure 4: (a), (b), and (c): PACFs of the time series of confirmed cases in three communities. The

x-axis is the time lag in days. The shaded area represents non-significant PACFs. (d) Correlation

coefficients between the series of confirmed cases density at an arbitrarily chosen location and

those at other 199 locations in its neighborhood against the separating distances measured in

kilometers.

i.e. for any S ⊂ [0, T ]×S,N(S) = |S ∩HT |, the number of occurred events in the set S. For any

function f : [0, T ]× S → R, the integral w.r.t. the counting measure is defined as∫
S
f(τ, r)dN(τ, r) =

∑
(ti,si)∈S∩HT

f(ti, si).

Given the observed history Ht, the probability structure of the point process is characterized by

the conditional intensity function λ(t, s) (for notational simplicity, we omit the dependence on

Ht), which is defined as:

λ(t, s)dt · |B(s, ds)| = E[dN(t, s)|Ht]. (1)

Here B(s, ds) is a ball centered at s in the space S with radius ds, and |B(s, ds)| is the Lebesgue

measure.

Hawkes processes (Hawkes, 1971) is a type of self-exciting point process that captures the

triggering effects between events. Assuming that influences from past events are linearly additive

towards the current event, the conditional intensity for a Hawkes point process takes the form of

λ(t, s) = λ0 +

∫ t

0

∫
S
k(t, τ, s, u)dN(τ, u), (2)

where λ0 > 0 denotes the background intensity, and k(t, t′, s, s′) is a triggering kernel function

that captures the influence of past events on the likelihood of event occurrence at the current

time; in this work, we do not assume the kernel function to be positive or shift-invariant (to

capture the non-stationary process as we will define later on).

The parameters can be estimated by maximum likelihood estimation (MLE). Given the ob-

served point pattern x, we can write the log-likelihood as

`(x) =

N([0,T ]×S)∑
i=1

log λ(ti, si)−
∫ T

0

∫
S
λ(τ, u)dudτ, (3)
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where N([0, T ]× S) is the number of observed events (see the derivation of the log-likelihood in

Appendix A).

The Epidemic Type Aftershock-Sequences (ETAS) model is one of the most common spatio-

temporal point processes (Ogata, 1988, 1998), which has been widely adopted in modeling typical

spatio-temporal datasets such as earthquakes. ETAS model uses a Gaussian diffusion kernel

k(t, t′, s.s′) =
Ce−β(t−t

′)

2π
√
|Σ|(t− t′)

· exp

{
−(s− s′ − µ)>Σ−1(s− s′ − µ)

2(t− t′)

}
,

where Σ ≡ diag(σ2x, σ
2
y) is a two-dimensional diagonal matrix representing the covariance of the

spatial correlation, β is the decaying rate, µ is the mean shift, and C is a constant. However,

the diffusion kernel is stationary and only depends on the spatio-temporal distance between two

events. In addition, the kernel assumes the spatial correlation is isotropic and unable to capture

complex spatial dependence.

3.2 A non-stationary triggering Gaussian kernel

We introduce a non-stationary triggering kernel, which can vary continuously over space and

plays a vital role in capturing the heterogeneous spatial correlation across different regions. For

model simplicity and computational efficiency, we adopt the commonly used assumption that the

triggering effect of past events is separable in space and time:

k(t, t′, s, s′) = ν(t, t′) · υ(s, s′),

where ν(t, t′) is a kernel that captures the dependence between time t and t′, and υ(s, s′) is a

spatial kernel that captures the non-stationary correlation between location s and s′.

A stationary temporal kernel As the virus spreads and affects a significant portion of the

population in a short period, we can assume temporal virus transmission is through a shift-

invariant kernel with exponential decay:

ν(t, t′) = Ce
− 1

2σ20
(t−t′)2

, t > t′.

Here C > 0 is a parameter that controls the magnitude of the kernel, σ0 > 0 is a parameter that

controls the decaying rate of the event’s temporal influences, and we assume t > t′ to capture

the fact that historical event at time t′ has an impact on the current time t but not vice versa.

A non-stationary spatial kernel The complex nature of the spatial spread of COVID-19

requires a non-homogenenous and non-stationary spatial kernel function in the point process.

Given two arbitrary locations s, s′ ∈ S, we define the spatial kernel υ(s, s′) as a inner product

between two feature mappings φs and φs′ , i.e,

υ(s, s′) = 〈φs, φs′〉 , s, s′ ∈ S,

9



Figure 5: An example of the non-stationary spatial kernel with two feature functions evaluating

at location s (the center of the box), i.e., υ(s, s′) = 〈φs, φs′〉 , ∀s′ ∈ S, where φs = κ
(1)
s + κ

(2)
s .

The purple boxes indicate the cross-correlated terms (κ
(1)
s · κ(2)s′ and κ

(2)
s · κ(1)s′ ); the red and blue

boxes indicate the self-correlated terms (κ
(1)
s · κ(1)s′ and κ

(2)
s · κ(2)s′ ).

where the inner product for functions 〈f, g〉 :=
∫
R2 f(u)g(u)du. We represent the feature map-

ping φs as a weighted sum of a set of R independent kernel-induced feature functions {κ(r)s :=

κ(r)(s, ·)}Rr=1:

φs =
R∑
r=1

w(r)
s κ(r)s ,

where κ(r) : S × S → R+ is a general kernel and w
(r)
s is the corresponding weight of that feature

function at location s. The location-dependent weight satisfies
∑R

r=1w
(r)
s = 1 at any arbitrary

location s. Hence the spatial kernel can be rewritten as

υ(s, s′) =
∑

1≤r1,r2≤R
w(r1)
s w

(r2)
s′

〈
κ(r1)s , κ

(r2)
s′

〉
.

The rationale of this design is two-fold: (a) Using a linear combination of the product of

feature maps enhances the representative power of the spatial kernel. Note that when r1 = r2,

the kernel captures self-correlation (self-similarity of feature functions) and otherwise captures

the cross-correlation (similarity between two feature functions). (b) The spatial kernel can also

be highly interpretable if κ(r) takes a specific parametric form; following the idea in Higdon et al.

(1998); Zhu et al. (2021c), we choose κs to be a Gaussian function centered at s with covariance

matrix Σs, since the spatial correlation between two events decays as their distance increases in

general. The spatial kernel is specified to be:

υ(s, s′) =
∑

1≤r1,r2≤R

w
(r1)
s w

(r2)
s′

2π|Σ(r1)
s + Σ

(r2)
s′ |

1
2

exp

{
−1

2
(s− s′)>(Σ(r1)

s + Σ
(r2)
s′ )−1(s− s′)

}
. (4)

See detailed derivation of (4) in Appendix B. Fig. 5 gives an example of the spatial kernel with

two feature functions.
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Figure 6: An illustration of a deep neural network that maps an arbitrary spatial location s to a

spatial kernel, consists of features maps (represented through focus points) and weight ws.

Now we specify the kernel-induced feature function κs. According to Higdon et al. (1998),

there exists a one-to-one mapping between a bivariate normal distribution specified by Σs and

its one standard deviation ellipse. Note that κs is centered at s, so the ellipse’s center is fixed

at s. Thus we can specify the ellipse by a pair of focus points and the fixed area A. The focus

points are denoted by ψs = (ψx(s),ψy(s)) and −ψs = (−ψx(s),−ψy(s)), where ψs ∈ Ψ ⊂ R2.

Hence, given ψs and A, the corresponding Σs can be written as

Σs = τ2z

(
Q+ ‖ψs‖2

2 cos 2α ‖ψs‖2
2 sin 2α

‖ψs‖2
2 sin 2α Q− ‖ψs‖

2

2 cos 2α

)
,

where Q =
√

4A2 + ‖ψ‖4π2/2π, α = tan−1(ψy(s)/ψx(s)), τz > 0 is a scaling parameter that

controls the overall level of the covariance (see the derivation in Appendix C). We consider A as

an hyper-parameter.

Neural network-based kernel representation We develop a neural-network-based repre-

sentation for the kernel-induced feature function similar to the idea in Zhu et al. (2021c,e). A

key feature of our non-stationary spatial kernel is that for any location s ∈ S, we can estimate a

mapping that obtain the focus point ψ
(r)
s and the corresponding location-dependent weight w

(r)
s .

To this end, we represent the mapping ϕ : S → Ψ× [0, 1] from the location to the space of focus

points Ψ and the weights [0, 1] using a fully-connected multi-layer neural network. The input of

the neural network is the two-dimensional location vector s, and the output is the concatenation

of the corresponding focus point ψs and its weight ws. Here, each hidden layer is equipped with

a softplus activating function f(x) = log(1 + ex) (see the detailed specification of the neural

network in Section 5). Neural networks allow a flexible representation of the covariance and the

corresponding kernel-induced feature function due to their well-known universal approximation

power. In our implementation, we adopt the same network architecture for all R kernel-induced

feature functions, as illustrated in Fig. 6.

3.3 Exogenous promotion of city landmarks

To consider the influence of city landmarks, we consider each landmark as a constant exogenous

promotion to the virus spread at their locations. To achieve this, we adopt an idea similar to

11



Zhu et al. (2021d) and introduce an additional term to the conditional intensity function λ(t, s)

(2):

λ(t, s) = λ0 +

L∑
l=1

γlg(s|sl,Σl) +
∑
t′<t

k(t, t′, s, s′) . (5)

The second and third terms represent the exogenous promotion at location s and the endogenous

excitation at location s and time t, respectively. We use L to denote the number of landmarks,

and γl indicates the significance of landmark l. We assume that the exogenous effect induced

by landmarks decays with distance to them. Hence, the influence of landmark l located at sl is

modeled by a Gaussian function g(s|sl,Σl) centered at location sl ∈ S with covariance Σl. Here

we define Σl := σ2l I, where I is an identity matrix.

4 Efficient computation of the log-likelihood function

The log-likelihood of the spatio-temporal point process defined in (3) is often intractable due

to the double integral term. Numerical integral can also be expensive: if the number of ran-

domly sampled points in a three-dimensional space is K, and the total number of events is N ,

the computational complexity is O(KN) (K � N) using commonly-used numerical integration

techniques. In our case, we can write the integral term as∫ T

0

∫
S
λ(τ, u)dudτ = λ0|S|T+

∫ T

0

L∑
l=1

γl

∫
S
g(u|sl,Σl)du

︸ ︷︷ ︸
(i)

dτ+

∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ ·
∫
S
υ(u, si)du

︸ ︷︷ ︸
(ii)

,

(6)

where |S| is the Euclidean area of the city, and evaluating (i), (ii) are difficulty in general because

(a) Both (i) and (ii) require the integral over the geographical space of Cali S, which has an

irregular shape; (b) In (ii), υ(u, si) is location-dependent and parameterized by a neural network.

We circumvent these two difficulties by simplifying without significantly impacting the model’s

accuracy: (a) We expand the integration region S to the entire geographical space R2 and account

for the boundary effect error by ε1. Note that the kernel g or κs are Gaussian concentrated around

s and most events are located in the interior of S when choosing sufficiently large S. As suggested

by Ogata (1998), such boundary effect is usually negligible due to the decreased activity in the

region’s edges. (b) We assume the distance between two focus points (ψs and −ψs) at an

arbitrary location s is bounded by a threshold 2c (which can be obtained by rescaling the output

of neural networks); a large distance between focus points leads to an overstretched ellipse, which

is unrealistic in practice. Therefore, when performing numerical integration, we approximate

the kernel-induced feature function κs by a standard Gaussian function denoted by κ0s, which

corresponds to a standard deviation ellipse centered at s with area A. The resulted relative error

of the integral approximation is denoted by ε2. In short, these two assumptions reduce the double

integral (6) to an analytical form that can be evaluated directly without numerical integration.
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Figure 7: Surface plot for the upper bound of the relative error ε2 with regards to hyper-

parameters A and c. The horizontal coordinates represent the value of A and c, respectively,

and the vertical coordinate represents the value of ε2(A, c). The red solid line is a surface contour

valued at 0.05. The grey shaded area in the horizontal plane represents the set of (A, c) that

satisfies ε2(A, c) < 0.05. We can observe that the higher the value of A and the the lower the

value of C, the smaller the upper bound of the relative error.

Proposition 1 (Approximation of the integral in the likelihood function). Assume the area of

the corresponding ellipse of κs is A and the distance between its focus points is restricted to be

smaller than 2c, then the integral in (6) can be approximated by

∫ T

0

∫
S
λ(τ, r)drdτ = (1 + ε2)

λ0|S|T + T
L∑
l=1

γl +
√

2πCσ0

N([0,T ]×S)∑
i=1

{
h

(
T − ti
σ0

)
− 1

2

}− ε1,
(7)

where the function h is the cumulative density function of the standard normal distribution and

ε1, ε2 are the boundary effect error and the relative error of the integral approximation, respec-

tively. Ignoring the boundary effect error ε1, the relative error ε2 ∈ (−1,+∞) can be bounded

by:

|ε2| < max

{
U − 1, 1− 1

U

}
,

where U = (
√

4A2 + c4π2 + c2π)/2A. (see the proof in Appendix D)

Remark. Proposition 1 leads to a computationally efficient calculation of the integral with com-

plexity O(N). We denote the upper bound of the relative error as ε2 and its dependence on

hyper-parameters A and c is illustrated in Fig. 7. In general, a larger c results in a more ex-

pressive spatial kernel but requires a larger A to control the approximation error. In practice, we

select c = 0.1 and A = 0.5 to limit the relative error ε2 under 0.05 and ensure a certain level of

expressiveness for the spatial kernel.
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(a) Performance of different Rs (b) Performance of different Neural network architectures

Figure 8: Performance of the proposed model with different numbers of components R in the

feature mapping φs or different neural network architectures: (a) MAE and GPU memory usage

of the in-sample estimations with R = 1, 2, 3, 4. The red, green, and blue lines represent three

different quartiles of MAE for the in-sample estimations, respectively, and the black line represents

the increase of GPU memory usage when R grows. (b) MAE of the in-sample and out-of-sample

estimation with four different neural network architectures. The color code and the corresponding

number series represent different neural network structures; for example, “32-16” indicates a two-

hidden-layer neural network, and there are 32 and 16 nodes for each layer. The left three groups

show the MAEs of in-sample estimation. The right three groups show the MAEs of out-of-sample

estimation. In the following experimental results, we adopt the architecture 32-16.

5 COVID-19 data case study in Cali

In this section, we present the numerical results for studying the real COVID-19 data in Cali,

which is described in Section 2. We first investigate the model’s explanatory power by evaluat-

ing the in-sample performance and visualize the estimated kernel-induced feature functions and

their corresponding spatial kernel. We also study the exogenous effects of the city landmarks.

Finally, we compare the out-of-sample predictive performance of the proposed method with four

baseline approaches. In this section, {MAEQinq ,MAEQoutq } denote to the lower q-quantile of the

mean absolute error (MAE) (Willmott and Matsuura, 2005) for the in-sample and out-of-sample

estimation, respectively.

Our experimental settings are as follows. We consider a mixture kernel with R = 3 com-

ponents, which achieves the balance between the predictive performance and the computational

efficiency according to the results shown in Fig. 8(a). Fig. 8(b) compares the out-of-sample perfor-

mance for four network architectures; we choose a network architecture that achieves good perfor-

mance for our data: a two-hidden-layer neural network with 32 and 16 nodes in each hidden layer

for each kernel-induced feature function. We select the hyper-parameters A = 0.35 and c = 0.1

based on actual needs, and estimate model’s parameters {λ0, C, σ0, τz, {γl}Ll=1, {σl}Ll=1, {ϕ(r)}Rr=1}
by solving the maximum likelihood problem via gradient descent. We train the model with the

entire training set in each epoch. The initial learning rate is 1 and will decay to 0.1 of its last

14



Figure 9: Comparison of the proposed model with baseline models. The green lines and shaded

areas represent the ground truth. The black lines indicate the in-sample estimation of our non-

stationary point process model. The red, yellow, and blue lines represent the in-sample estimation

of the ETAS model, SIR model, and AR(3) model, respectively.

Table 1: Performance of in-sample estimation. The numbers in the brackets are one standard

deviation.

Models Log-likelihood(×104) MAE Qin
0.25 MAE Qin

0.5 MAE Qin
0.75

Random / 5.000 11.000 18.000

SIR / 1.862 3.759 7.391

AR(3) / 1.307 2.880 6.496

ETAS 4.868 (0.0058) 1.486 4.737 14.895

NSSTPP−Exo (R=1) 8.671 (0.0772) 0.834 3.145 7.922

NSSTPP−Exo (R=2) 9.138 (0.0886) 0.806 2.728 7.119

NSSTPP−Exo (R=3) 9.190 (0.0906) 0.853 2.613 7.000

NSSTPP (R=3) 9.331 (0.0937) 0.797 2.620 6.757

value when there is no likelihood increment for 10 epochs. The algorithm stops when the like-

lihood oscillation is less than 1 for 30 epochs. We use Adam optimizer (Kingma and Ba, 2017)

for all experiments. In the following, we refer to the proposed framework as a Non-Stationary

Spatio-Temporal Point Process (NSSTPP).
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(a) κ
(1)
s (b) κ

(2)
s (c) κ

(3)
s

Figure 10: Visualization of three learned kernel-induced feature functions over Cali. Each panel

shows one κs over space. The red line segments are edges that connect two focus points of location

s. The blue shaded area shows the intensity of weight w
(r)
s of each κ

(r)
s over space. Darker colors

mean larger weights.

5.1 Model interpretation

To evaluate our model’s goodness-of-fit, we compare the in-sample estimations of different models

on the one-week-ahead number of cases, which is performed as follows. We first fit the model

using the entire 28 weeks of data. The in-sample estimation can then be obtained by feeding

the same data into the fitted model and finding an empirical expectation of the conditional

intensity at a given week according to the equation (5). We compare our model with five baselines

that are commonly adopted in modeling infectious epidemics: (a) Homogeneous Poisson process

(as a sanity check); (b) Susceptible-Infectious-Recovered (SIR) model; (c) Autoregressive (AR)

time series model; (d) Epidemic-type aftershock sequence (ETAS) model; (e) Our model without

exogenous effects (NSSTPP−Exo). See Appendix E for a detailed review of the baseline methods

and their hyper-parameter choices. Fig. 9 shows the estimated number of cases by different models

in each comuna of Cali. More results are summarized in Table 1, where we adopt two commonly-

used metrics for performance evaluation, including log-likelihood and MAE. The results show that

our method outperforms other baseline approaches in both log-likelihood and MAE. Besides, we

observe a significant performance gain compared to the ETAS model, which emphasizes the

importance of the non-stationarity of the spatial kernel in capturing complex spatio-temporal

pattern.

We first study the in-sample explanatory power of our model and interpret the estimation

results on the data in Cali. First, we visualize three learned spatial kernel-induced feature func-

tions, which reveal the underlying spatio-temporal transmission dynamics of COVID-19 in Cali,

as shown in Fig. 10. Recall that at any location s, κ
(r)
s is a Gaussian kernel with a spatially

varying covariance matrix represented by two focus points of its one standard deviation ellipse.
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(a) Airport (b) Center of Comuna 15 (c) Center of Comuna 18 (d) Center of Comuna 1

Figure 11: Evaluation of the spatial kernel υ(s, ·) with s fixed at four typical locations over space.

These panels intuitively show the spatial influence of the regional hubs located in different parts

of the city. The dots represent the fixed location. The color depth indicates the intensity of the

kernel value. Darker color represents a higher kernel value.

Therefore, we connect two focus points of each sampled covariance matrix over space using a red

line segment for visualization. The angle and length of each red line can be interpreted as the

direction and strength of influence at the particular location. The color depth of the background

represents the value of the corresponding weight w
(r)
s at location s of each κ

(r)
s , indicating the

significance of κ
(r)
s at that location. These results suggest that the virus is spreading rapidly

across the region following the diagonal direction from Southwestern to the city’s Northeastern.

We can also observe a more subtle but complicated spreading pattern near the border of the city.

Fig. 11 visualize the estimated spatial kernel υ(s, ·) given one of its input s, which can be

treated as the influence of the location s. Here we present four examples, including the airport,

the center of Comuna 1, Comuna 15, and Comuna 18. Each example demonstrates that each

location radiates the influence to its surrounding region in a different manner. The results show

that the airport significantly influences the other city region as most of the northern area has

relatively high kernel values. As the most populated community in Cali, Comuna 15 also casts

its influences on the city’s Southeastern side. In addition, the impact of the location in Comuna

1 extends narrowly to two different directions, which correspond to two major routes in Cali. We

note that these examples also emphasize the significance of the non-stationarity of the proposed

method.

We also visually and quantitatively examine the exogenous effect of the city landmarks, as

shown in Fig. 12. Recall that the exogenous effect of each landmark is assumed to be an isotropic

bivariate normal distribution, where γl and σl can be interpreted as the intensity and the sphere

of influence of the exogenous effects of landmarks l, respectively. We visualize the learned σl
and γl on the map of Cali in Fig. 12(a),(b). We also report the distribution of these two learned

parameters for different categories of landmarks. As we can observe, the exogenous effects of

the landmarks located in the center of the city (the most severely affected areas) tend to have
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(a) σl’s spatial distribution (b) γl’s spatial distribution

(c) σl’s distribution for different cat-

egories

(d) γl’s distribution for different cat-

egories

Figure 12: Estimated exogenous effects of landmarks in Cali. (a) and (b) visualize the learned

{σl} and {γl} on the map of Cali, respectively. (c) and (d) show the distribution of learned

parameters for different categories of landmark.

smaller intensities (γl) but larger sphere of influences (σl) to their neighborhood. This result also

indicates that town halls may have a more significant influence than other landmarks. We see a

real explanation here: The landmarks located at the center receive more people during the day

and they act as super spreaders of the virus which is indicated by larger spheres of influence.

5.2 Predictive performance

Now we assess the model’s predictive power by performing the one-week-ahead out-of-sample

prediction of the number of cases. The out-of-sample prediction withholds the future data after

a certain time point, trains the model based on the previous data, and then uses the estimated

model to forecast the data in the next week. To be specific, we compare the number of predicted

cases for the last five weeks. Fig. 13 shows the predicted conditional intensity at four particular

weeks, which represent four different stages of the pandemic: (a) the early stage, (b) the week

before the first outbreak, (c) the week before the second outbreak, and (d) the week in the

stabilized plateau of the pandemic development. As we can observe, our method can capture

the spatial occurrence of these cases, detect regions with sparsely distributed cases by showing
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(a) March 22, 2020 (b) May 17, 2020 (c) June 28, 2020 (d) August 30, 2020

Figure 13: Predicted conditional intensity at four different weeks. The black dot represents an

actual case reported in that week. The color depth indicates the conditional intensity at the

corresponding location. A darker color means a higher risk for citizens to be infected.

Table 2: Out-of-sample estimation performance.

Models MAE Qout
0.25 MAE Qout

0.5 MAE Qout
0.75

Random 5.190 8.660 14.900

SIR 2.253 5.713 8.554

AR(3) 2.219 3.776 8.915

ETAS 4.413 8.234 14.153

NSSTPP−Exo (R=1) 1.732 6.051 8.779

NSSTPP−Exo (R=2) 1.962 5.151 8.575

NSSTPP−Exo (R=3) 1.762 5.190 8.342

NSSTPP (R=3) 2.051 4.702 7.450

a lower intensity, and shows a higher intensity in other regions with densely distributed cases.

We then examine the one-week-ahead prediction of the number of cases. Table 2 summarizes the

quantitative results between the proposed method and the baselines. The result confirms that

our model significantly outperforms other baseline methods. It is worth noting that SIR and

the linear AR model only provide predicted aggregated numbers in each comuna, which is less

challenging than our finer-grained prediction.

6 Conclusions

Based on an unprecedented fine-grained COVID-19 dataset in Cali, Colombia, we propose a

spatio-temporal point process framework equipped with a non-stationary kernel to model the
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epidemic transmission at an individual level. The kernel is composed of a set of kernel-induced

feature functions. Each feature function is represented by a neural network aiming to enhance the

model flexibility while being interpretable. We also develop an efficient log-likelihood estimation

by approximating the double integral using an analytical expression. Our numerical study in

Cali has shown that the proposed approach achieves promising predicting performance and the

learned model is highly interpretable.

We believe our methodology combines in a natural while novel way theory of point processes

with artificial intelligence methods (such as neural networks), providing a unified framework

for dealing with highly non-stationary spatio-temporal point patterns. The method is more

general than the focused application and can be used, extended, and adapted to several natural

phenomena represented by locations in space and time.

There are many ways the proposed method can be extended, and one possibility could be

considering non-Gaussian kernels and alternative neural network methods. In any case, the data

should always guide these ad-hoc adaptations.

The global results finding in this work for the city of Cali show an increased risk of contracting

COVID-19 in the center, northeast, and northeast of the city, which are located the communes

with more unsatisfied basic needs. On the other hand, in the south of the city, the risk of

contagion is lower, and it is an area where people with greater purchasing power live. Considering

the locations of the landmarks of the city into the model as transmission sources is undoubtedly

an indispensable tool for predicting the spread of the virus. These outputs are very close to the

reality experienced in that region of Colombia during the pandemic. The current official figures

for Cali city show significant progress in the fight against the COVID-19, although a new peak

is feared in the near future.
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Álvaro Gajardo and Hans-Georg Müller. Point process models for COVID-19 cases and deaths. Journal

of Applied Statistics, pages 1–16, March 2021. doi: 10.1080/02664763.2021.1907839. URL https:

//doi.org/10.1080/02664763.2021.1907839.

Paolo Giudici, Paolo Pagnottoni, and Alessandro Spelta. Network self-exciting point processes to measure

health impacts of COVID-19. SSRN Electronic Journal, 2021. doi: 10.2139/ssrn.3892998. URL https:

//doi.org/10.2139/ssrn.3892998.

Shuang Li, Lu Wang, Xinyun Chen, Yixiang Fang, and Yan Song. Understanding the spread of COVID-19

epidemic: A spatio-temporal point process view. CoRR, abs/2106.13097, 2021. URL https://arxiv.

org/abs/2106.13097.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. Re-

current marked temporal point processes. In Proceedings of the 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining. ACM, August 2016. doi: 10.1145/2939672.2939875.

URL https://doi.org/10.1145/2939672.2939875.

Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating multivariate

point process. CoRR, abs/1612.09328, 2016. URL http://arxiv.org/abs/1612.09328.

22

https://doi.org/10.1016/j.idm.2021.01.003
https://doi.org/10.1016/j.idm.2021.01.003
https://doi.org/10.3390/risks8030077
https://doi.org/10.3390/risks8030077
https://covid19.gleamproject.org/
https://doi.org/10.1371/journal.pone.0072168
https://doi.org/10.1101/2020.09.14.20194548
https://www.medrxiv.org/content/early/2020/12/20/2020.06.06.20124149
https://doi.org/10.1080/02664763.2021.1907839
https://doi.org/10.1080/02664763.2021.1907839
https://doi.org/10.2139/ssrn.3892998
https://doi.org/10.2139/ssrn.3892998
https://arxiv.org/abs/2106.13097
https://arxiv.org/abs/2106.13097
https://doi.org/10.1145/2939672.2939875
http://arxiv.org/abs/1612.09328


Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process. In Hal Daumé
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A Derivation of the point process log-likelihood

Assume that we have total number of N([0, T ] × S) observations in x. For any given t ∈ [0, T ], we

assume that n events happened before t and denote the occurrence time of the latest event as tn. Let

Ω = [t, t + dt) × B(s, ds) where s ∈ S. Let F (t) = P(xn+1, tn+1 < t|Htn ∪ xn) be the conditional

cumulative probability function, and Htn ∪ xn represents the history events happened up to time tn and

at tn. Let f(t, s) , f(t, s|Htn ∪ xn) be the corresponding conditional probability density function of new

event happening in Ω. As defined in (1), λ(t, s) can be expressed as

λ(t, s) = P{xn+1 ∈ Ω|Ht} = P{xn+1 ∈ Ω|Htn ∪ xn ∪ {tn+1 ≥ t}}

=
P{xn+1 ∈ Ω, tn+1 ≥ t|Htn ∪ xn}

P{tn+1 ≥ t|Htn ∪ xn}

=
f(t, s)

1− F (t)

We multiply the differential of time and space dtds on both side of the equation, and integral over s

dt ·
∫
S
λ(t, u)du =

dt ·
∫
S f(t, u)du

1− F (t)
=

dF (t)

1− F (t)
= −d log (1− F (t)).

Hence, integrating over t on (tn, t) leads to F (t) = 1− exp(−
∫ t
tn

∫
S λ(τ, u)dudτ) because F (tn) = 0. Then

we have

f(t, s) = λ(t, s) · exp

(
−
∫ t

tn

∫
S
λ(τ, u)dudτ

)
,

The joint p.d.f. for a realization is then, by the chain rule, f(x1, ..., xN([0,T ]×S)) =
∏N([0,T ]×S)
i=1 f(ti, si).

Then the log-likelihood of an observed sequence x can be written as

l(x) =

N([0,T ]×S)∑
i=1

log λ(ti, si)−
∫ T

0

∫
S
λ(τ, u)dudτ.

B Derivation of the non-stationary spatial kernel

In this section we prove the formulation of the function v(s, s′) between two bivariate normal kernels as

appears in (4). Let two independent bivariate Gaussian variables Xs, Xs′ be centered at locations s, s′

with Σs,Σs′ parameterized by

Σs =

(
a2 ρab

ρab b2

)
, Σs′ =

(
a′

2
ρ′a′b′

ρ′a′b′ b′
2

)
,

By common knowledge, the probability density function fZ of the sum Z of two independent random

variables X,Y , i.e Z = X + Y , is the convolution of the probability density functions fX and fY , i.e.

fZ(z) =

∫ ∞
−∞

fY (z − x)fX(x)dx,

In our case, let us denote the probability density function of Xs, Xs′ as κs(·), κs′(·). Then, we have

fXs+Xs′ (x) =

∫
R2

κs(u)κs′(x− u)du,
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We also have the following equalities due to the property of Gaussianity

κs(2s− u) = κs(u), κs′(2s
′ − u) = κs′(u).

Writing x = 2s′, we therefore have

fXs+Xs′ (2s
′) =

∫
R2

κs(u)κs′(u)du = v(s, s′),

Now it is easy to write that Xs +Xs′ ∼ N (s+ s′,Σs + Σs′), and thus

v(s, s′) = fXs+Xs′ (2s
′) =

1

2π|Σs + Σs′ |
1
2

exp

{
−1

2
(s′ − s)>(Σs + Σs′)

−1(s′ − s)
}

=
1

q1
exp

{
− 1

q2
(s− s′)>W (s− s′)

}
,

where

W =

(
b2 + b′

2 −(ρab+ ρ′a′b′)

−(ρab+ ρ′a′b′) a2 + a′
2

)
,

q1 = 2π|Σs + Σs′ |
1
2

= 2π

√
−(2ρρ′aa′bb′ + a2((ρ2 − 1)b2 − b′2) + a′2((ρ′2 − 1)b′2 − b2)),

q2 = −2(2ρρ′aa′bb′ + a2((ρ2 − 1)b2 − b′2) + a′
2
((ρ′

2 − 1)b′
2 − b2)).

C Derivation of the covariance function

Assume an ellipse centered at the origin with area A and two focus points of the ellipse in R2 which are

(ψx,ψy), (−ψx,−ψy), where ψx,ψy ∈ R. In what follows, we use the same notation of Σ as before. For

the ellipse parameters, we denote the semi-major and semi-minor axis of the ellipse as σ1, σ2. According

to the ellipse formula, we have {
πσ1σ2 = A

σ2
1 − σ2

2 = ψ2
x +ψ2

y = ‖ψ‖2 .

We can also compute

σ1 =

(√
4A2 + ‖ψ‖4π2

2π
+
‖ψ‖2

2

) 1
2

, σ2 =

(√
4A2 + ‖ψ‖4π2

2π
− ‖ψ‖

2

2

) 1
2

. (8)

As the rotation angle α of the ellipse is α = tan−1(ψy/ψx), we can write the bivariate normal random

variable X as follows

X =

(
cosα − sinα

sinα cosα

)
Z,

where Z =

(
Z1

Z2

)
with covariance matrix

(
σ2
1 0

0 σ2
2

)
.

Now we introduce the kernel scale parameter τz, and write down the covariance matrix of X as

Σ = τ2z

(
σ2
1 cos2 α+ σ2

2 sin2 α (σ2
1 − σ2

2) cosα sinα

(σ2
1 − σ2

2) cosα sinα σ2
1 sin2 α+ σ2

2 cos2 α

)
.
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Plugging (8) into this equation we get

Σs = τ2z

(
Q+ ‖ψs‖2

2 cos 2α ‖ψs‖2
2 sin 2α

‖ψs‖2
2 sin 2α Q− ‖ψs‖

2

2 cos 2α

)
, (9)

where Q =
√

4A2 + ‖ψ‖4π2/2π, α = tan−1(ψy(s)/ψx(s)).

D Proof of Section 4

For convenience, we denote our approximation, λ0|S|T+T
∑L
l=1 γl+

√
2πCσ0

∑N([0,T ]×S)
i=1

{
h
(
T−ti
σ0

)
− 1

2

}
,

of the intractable double integral as IApprox. Error ε1 satisfies
∫ T
0

∫
S λ(τ, r)drdτ + ε1 =

∫ T
0

∫
R2 λ(τ, r)drdτ

according to the first assumption. Based on the second assumption, we approximate the location-dependent

kernel induced feature functions κs with κ0s to solve the intractable integration in (6). We first derive the

upper bound ηbound(A, c) of the approximation error
〈
κ
(r1)
s , κ

(r2)
s′

〉
−
〈
κ0s, κ

(r2)
s′

〉
. Given any location s and

history event s′, for the convenience of computation while without loss of generality, we can locate the

origin of the coordinate system at s and align x-axis and y-axis with the semi-major and semi-minor axis of

the one standard ellipse of κs. Thus according to Section B, the second inner-product
〈
κ0s, κ

(r2)
s′

〉
equals to

the probability density function f
X0+X

(r2)

s′
(2(s′−s)) of the summation of two independent random variable

X0 and X
(r2)
s′ , where X0 ∼ N (0,Σ0),Σ0 =

τ2
zA
π I2 and X

(r2)
s′ ∼ N (s′ − s,Σ(r2)

s′ ), Σ
(r2)
s′ is the covariance

matrix of κ
(r2)
s′ in the preset coordinate system. For the first term we re-write the inner-product in polar

coordinate system and have〈
κ(r1)s , κ

(r2)
s′

〉
=

∫
R2

κ(r1)s (u)κ
(r2)
s′ (u)du

=

∫ 2π

0

∫ +∞

0

κ(r1)s (r, θ)κ
(r2)
s′ (r, θ)rdrdθ

(i)
=

∫ 2π

0

∫ +∞

0

r

2πτ2z

√
Q2 − ‖ψs‖

4

4

exp

{
− r2

2τ2z

(
cos2 θ

Q+ ‖ψs‖2
2

+
sin2 θ

Q− ‖ψs‖
2

2

)}
· κ(r2)s′ (r, θ)drdθ

=

∫ 2π

0

∫ +∞

0

r

2τ2zA
exp

{
− r2π2

2τ2zA
2

(
Q− ‖ψs‖

2

2
cos 2θ

)}
· κ(r2)s′ (r, θ)drdθ

(ii)

≤
∫ 2π

0

∫ +∞

0

r

2τ2zA
exp

{
− r2π

τ2z (
√

4A2 + c4π2 + c2π)

}
· κ(r2)s′ (r, θ)drdθ, ∀r1, r2. (10)

Here Q is defined in Append C. We plug in the analytical form of κ
(r1)
s (r, θ) at (i). The inequality at (ii)

holds because:

Q− ‖ψs‖
2

2
cos 2θ ≥ Q− ‖ψs‖

2

2
=

√
4A2 + ‖ψs‖4π2 − ‖ψs‖2π

2π

=
2A2

π(
√

4A2 + ‖ψs‖4π2 + ‖ψs‖2π)

≥ 2A2

π(
√

4A2 + c4π2 + c2π)
(because ‖ψs‖ ≤ c) .
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For the final formula on the right of the inequality operator, we find that

1

2τ2zA
exp

{
− r2π

τ2z (
√

4A2 + c4π2 + c2π)

}

=

√
4A2 + c4π2 + c2π

2A
· 1

2π
τ2
z

2

(√
4A2/π2 + c4 + c2

) exp

− r2

2
τ2
z

2

(√
4A2/π2 + c4 + c2

)
 .

It takes the form of the multiplication of a constant and a probability density function of a Gaussian

distribution with zero mean and covariance matrix Σ1, where Σ1 = τ2z

√
4A2/π2+c4+c2

2 I2. We assume a

random variable X1 conforms to the corresponding distribution X1 ∼ N (0,Σ1) and denote the constant√
4A2+c4π2+c2π

2A as U (the same one in the proposition 1). Combining the result of (10) we can write the

upper bound of the approximation error as〈
κ(r1)s , κ

(r2)
s′

〉
−
〈
κ0s, κ

(r2)
s′

〉
≤ U · f

X1+X
(r2)

s′
(2(s′ − s))− f

X0+X
(r2)

s′
(2(s′ − s)) . (11)

We introduce a new notation υ0(s, s′) to denote the spatial kernel with κs replaced with κ0s, that is

υ0(s, s′) =
∑

(r1,r2)∈[R]×[R] w
(r1)
s w

(r2)
si

〈
κ0s, κ

(r2)
si

〉
, [R] = {1, 2, ..., R}. Based on above results, for any given

history event si we have

∫
R2

υ(u, si)du−
∫
R2

υ0(u, si)du

=

∫
R2

∑
(r1,r2)∈[R]×[R]

w(r1)
u w(r2)

si

(〈
κu, κ

(r2)
si

〉
−
〈
κ0u, κ

(r2)
si

〉)
du

≤
∫
R2

∑
(r1,r2)∈[R]×[R]

w(r1)
u w(r2)

si

(
U · f

X1+X
(r2)
si

(2(si − u))− f
X0+X

(r2)

s′
(2(s′ − u))

)
du (Plug in (11))

=

∫
R2

R∑
r2=1

w(r2)
si

(
U · f

X1+X
(r2)

s′
(2(s′ − u))− f

X0+X
(r2)

s′
(2(s′ − u))

)
du (sum over r1)

=

R∑
r2=1

w(r2)
si

(
U

∫
R2

f
X1+X

(r2)

s′
(2(s′ − u))du−

∫
R2

f
X0+X

(r2)

s′
(2(s′ − u))du

)

=

R∑
r2=1

w(r2)
si (U − 1) (Integration of probability density function over R2 equals to 1)

= U − 1 .

Also notice that ∫
R2

υ0(u, si)du =

∫
R2

∑
(r1,r2)∈[R]×[R]

w(r1)
u w(r2)

si

〈
κ0s, κ

(r2)
si

〉
du

=

∫
R2

R∑
r2=1

w(r2)
si

〈
κ0s, κ

(r2)
si

〉
du (because

R∑
r1=1

w(r1)
u = 1)

=

R∑
r2=1

w(r2)
si

∫
R2

〈
κ0s, κ

(r2)
si

〉
du =

R∑
r2=1

w(r2)
si = 1 .
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Thus the upper bound of ε2 can be controlled by

ε2 =

(∫ T

0

∫
R2

λ(τ, r)drdτ − IApprox

)/
IApprox

=

{
λ0|S|T + T

L∑
l=1

γl +

∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ ·
∫
R2

υ(u, si)du− IApprox

}/
IApprox

=

{∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ

(∫
R2

υ(u, si)du− 1

)}/
IApprox

=

{∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ

∫
R2

(υ(u, si)− υ0(u, si)) du

}/
IApprox

≤

{
(U − 1) ∗

∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ

}/
IApprox ,

because IApprox >
∫ T
0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ =
√

2πCσ0
∑N([0,T ]×S)
i=1

{
h
(
T−ti
σ0

)
− 1

2

}
, we have

ε2 < U − 1 . (12)

On the other hand,〈
κ(r1)s , κ

(r2)
s′

〉
=

∫ 2π

0

∫ +∞

0

r

2τ2zA
exp

{
− r2π2

2τ2zA
2

(
Q− ‖ψs‖

2

2
cos 2θ

)}
· κ(r2)s′ (r, θ)drdθ

(iii)

≥
∫ 2π

0

∫ +∞

0

r

2τ2zA
exp

{
−r

2π(
√

4A2 + c4π2 + c2π)

4τ2zA
2

}
· κ(r2)s′ (r, θ)drdθ

=
1

U
f
X2+X

(r2)

s′
(2(s′ − s))− f

X0+X
(r2)

s′
(2(s′ − s)) , (13)

where X2 ∼ N (0,Σ2),Σ2 =
τ2
zA
πU I2. The establishment of (iii) can be deduced by

Q− ‖ψs‖
2

2
cos 2θ ≤ Q+

‖ψs‖2

2

=

√
4A2 + ‖ψs‖4π2 + ‖ψs‖2π

2π

≤
√

4A2 + c4π2 + c2π

2π
.

We can use the lower bound (13) to similarly obtain∫
R2

υ(u, si)du−
∫
R2

υ0(u, si)du ≥
1

U
− 1 .

Thus we have

ε2 ≥

{(
1

U
− 1

)
∗
∫ T

0

∑
ti<τ

Ce
− 1

2σ20
(τ−ti)2

dτ

}/
IApprox ≥

1

U
− 1 . (because

1

U
− 1 < 0)

Combining the result (12) we have

|ε2| < max

{
U − 1, 1− 1

U

}
.
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E Detailed description of the baseline methods

In this section, we provide a detailed description of three baseline models used in Section 5 and their

hyper-parameter selection.

Homogeneous Poisson process assumes events occur at a constant intensity λ over space. The parame-

ter indicates the expected number of events occurring in a unit interval or region. We estimate λ using the

average number of confirmed cases over time and space and randomly sample events in the spatio-temporal

space. The results of homogeneous Poisson process act as a sanity check.

Susceptible-Infectious-Recovered (SIR) model is one of the most fundamental compartmental models

that aim to model infectious disease spread. It splits the whole population into three compartments of

susceptible (S), infected (I) and recovered (R) individuals. SIR makes each compartment a function of t

since the population of each compartment may vary over time, and three ordinary differential equations

about these three functions can describe the integral SIR system. Parameters βSIR and γSIR represent the

emerging rate of new infections and the recovery rate of patients, respectively. Both parameters are fitted

according to the real data based on least squares. We fit a SIR model for each community, choosing the

initial infected population I(0) to be the number of cases at the week of the first case.

Linear prediction is another popular method used to do forecasting tasks. We choose an autoregressive

(AR) time series model to predict the number of infected cases. It specifies that the current output value

depends linearly on its history and a white noise term. A parameter p in AR model represents the

number of most recent lags that the current output depends on, which can be determined by choosing the

appropriate number of significant lags of PACF about the data series. We choose p = 3 for the AR model

according to PACF plots of confirmed case series in each community in Fig. 14.

ETAS is a benchmark model in modeling specific spatio-temporal data, as we mentioned in Section

3. We replace the spatio-temporal kernel in (2) with a Gaussian diffusion kernel. We estimate model

parameters by applying stochastic gradient descent with regard to model likelihood.

Figure 14: PACF plot for each community. The x-axis is the lag number of the time series itself

to the current output and the y-axis is the value of PACF at the corresponding lag. For example,

the PACF of a time series X at lag 2 refers to the partial autocorrelation between Xt and Xt−2.

The dash line represents the lower bound of significant PACF value.
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