
Performing a High Realistic Video
Game Environment

Razvan Alexandru Tocitu

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

May 25, 2022

Supervised by: Inmaculada Remolar Quintana.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Abstract

One of the most important parts of video game development is the art style of the game.
There are different types of art, from cartoon to realistic. In this case we use the realistic
style which is characterised by its closeness to reality. Thanks to the approach to reality
that this type has, it facilitates the immersion of the player in the video game.

Therefore, in this Final Degree Project a video game will be made based on an Escape
Room using these high realistic graphics, developing different 3D elements for it with
a high quality graphics to engage the player to enjoy an immersion in the video game.
The video game consists of an Escape Room, that is to say, a video game in which the
player will be trapped in a room and will try to escape by solving 4 different puzzles
to unlock the main exit. In addition, the game will have a variety of mechanics that
the player will have to use to solve the different puzzles that will be found throughout
the game play. It will be a first-person adventure in which the protagonist will have no
memory of how he/she ended up locked in that room, being forced to investigate what
happend with the clues in the room.

ii

Contents

Contents iii

List of Figures v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Related Subject . 2
1.4 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3

2.1.1 Study Video Game Engine . 4
2.1.2 Model Environment And VFX . 4
2.1.3 Coding And Solving Errors . 4
2.1.4 Work Report . 6

2.2 Resource Evaluation . 6

3 System Analysis and Design 7
3.1 Game Design . 7

3.1.1 Game Concept . 7
3.1.2 Game Art . 8
3.1.3 Game Controls . 8

3.2 Requirement Analysis . 8
3.2.1 Functional Requirements . 9
3.2.2 Non-functional Requirements . 10

3.3 System Design . 11
3.4 System Architecture . 11
3.5 Interface Design . 12

4 Work Development and Results 13
4.1 Work Development . 14

4.1.1 Study Game Engines . 14
4.1.2 3D Modeling Process . 14

iii

iv Contents

4.1.3 Programming . 30
4.1.4 Player Movement . 31

4.2 Results . 37

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future work . 44

Bibliography 45

List of Figures

2.1 Estimated time over the months to complete the project. 5

3.1 Modeling working process. 10
3.2 Activity diagram of the main cycle in the game. 11
3.3 The Rise Of The Tomb Rider. 12
3.4 Call Of Duty: Vanguard. 12

4.1 Inspiration Board used on the project. 15
4.2 Half Unity Wall without Mirror Modifier. 16
4.3 Half Unity Wall with Mirror Modifier applied. 16
4.4 Unreal UV’s map inside Unreal Editor from wall Plane Decoration 17
4.5 Alpha Map used on Unreal from Plane Decoration. 18
4.6 Final wall result in Unreal Engine. 18
4.7 Wall Final Model . 18
4.8 Blender First Table Model . 19
4.9 Blender Table Model with decorations on Unreal Engine. 19
4.10 Lamps for the Puzzle 1 that mark the position with a symbol under them. . 20
4.11 Uncharted Rotating Puzzle. 20
4.12 Genshin Impact Rotating Puzzle. 20
4.13 How to enable Nanite in a mesh. 21
4.14 Nanite Owl Stats. 21
4.15 Blender Owl Model. 22
4.16 Unreal model with new texture and small changes. 22
4.17 Final Owl Sculpture in the environment. 22
4.18 Frame material with displacement and normal map. 23
4.19 Frame in blender model. 23
4.20 Final Frame and Moon with textures in Unreal. 23
4.21 Base Moon sculpture mesh. 23
4.22 Orb Material in Unreal Engine with movable variables. 24
4.23 Base Moon sculpture mesh. 24
4.24 Cabinet Model. 25
4.25 Coat Rack model. 25
4.26 Book 1 Model. 26
4.27 Book 2 model. 26

v

vi List of Figures

4.28 Book 3 Model. 26
4.29 Glass Bowl Model. 26
4.30 Candle Model. 27
4.31 Carpet Model. 27
4.32 Chest Model. 27
4.33 Small Wooden Chest Model. 27
4.34 Door Model. 28
4.35 Sample Bottles Model. 28
4.36 Jar Model. 28
4.37 Lamp Model. 28
4.38 Table Model. 29
4.39 Niagara Particle Effect Visualized. 29
4.40 Owl Model. 29
4.41 Parchment 1 Model. 29
4.42 Parchment 2 Model. 30
4.43 Picture Frame Model. 30
4.44 Sofa Model. 30
4.45 Table 2 Model. 30
4.46 Unreal Project Templates . 31
4.47 Unreal Puzzle 1 Components Inside Editor 32
4.48 Hide message and enable camera change. 32
4.49 Hide message and enable camera change. 33
4.50 Owl component Schema. Yellow color represents the area of interaction of

the player. Green color represents the Trigger area that checks the collision
with the white ball for correct position. 34

4.51 Owl in correct position. 34
4.52 RayCast function in Unreal Engine. 35
4.53 Change Material function and Plane Changer function. 36
4.55 Final Render 1. 38
4.56 Final Render 2. 39
4.57 Final Render 3. 39
4.58 Final Render 4. 39
4.59 Final Render 5. 40
4.60 Final Render 6. 40
4.61 Final Render 7. 40
4.62 Final Render 8. 41
4.63 Final Render 9. 41
4.64 Final Render 10. 41
4.54 Actual time spent over the months to complete the project. 42

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Related Subject . 2
1.4 Environment and Initial State . 2

1.1 Work Motivation
The development of the project is based on the ambition to recreate a realistic space for
a video game. This has its origin in the desire to study the needs and demands that are
expected on the way to achieve this visual quality. In addition to this, it is desired to
learn about the different game engines that are currently used in the industry and the
capacity of each one when calculating the lighting.

1.2 Objectives
The main objectives to be achieved in the project are as follows:

• Achieve High Realistic Quality.

• Learn About Video Games Engines.

• Learn how to create Visual Effects in video games.

• Put into practice modelling skills acquired during the degree course.

1

2 Introduction

The basic objective of the project is to create an original space that aims to achieve a
high visual quality. In order to do this, we first have to study and choose a game engine
that meets the requirements needed for the project.

Once the engine has been chosen, we have to work on the creation of the scenario.
This involves personally modelling the vast majority of elements throughout the game,
from interface elements, main level elements and scene decoration. Of course, after
modelling each element, it has to be textured to achieve a realistic finish.

Once the modelling of the scene is completed, the scene has to be assembled in the
game engine. Then the player has to have mechanics such as movement and interaction
with objects in order to solve the puzzles he has to face, as well as writing the code for
the puzzles that are scattered around the scene.

1.3 Related Subject
This project is related to several subjects taught in the degree course. Any subject
related to programming can be linked to this project through the way of approaching
the different related problems such as moving the character, creating the different classes
needed, etc.

On the other hand, the main objective of this final degree project is to acquire as much
realism as possible from the student’s own models. Therefore, other related subjects are
mainly VJ1204-Graphic Expression, where we get a first contact with the modelling
program Blender and VJ1216- 3D Design.It will also require the knowledge acquired in
the subjects VJ1204-Artistic Expression and VJ1223-Video Game Art in which
we learn how to form a composition when choosing colours and themes so that the
scenario has a unitary sense.

When developing the narrative of the game, we have used the knowledge acquired
in the subject VJ1222-Conceptual Design of Video Games, in which we learn all
the preparations prior to the development of the narrative of a game.

Finally, we mention VJ1227-Game Engines, in which we learn what a game engine
is, and what differentiates one from the other. Being an important part due to having to
analyze several game engines to choose the best among them with which you can achieve
greater visual realism.

1.4 Environment and Initial State
The project starts from scratch. This involves spending time choosing a game engine
and modelling the environment. Therefore it will be necessary to use the game engine,
3D modelling software such as Blender [1] and 3DSMax [7]. The project has to have a
programming part which is required as part of the final degree project, therefore the idea
was born not only to recreate a realistic space but to create a video game from it. The
conclusion reached was to create an Escape Room [2] style game in which the player
will be forced to examine the environment and in this way give importance to the visual
quality of the game.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 6

“Those who plan do better than those who do not plan, even should they rarely stick
to their plan.” [10]

2.1 Planning

In this section I will draft the biggest sections that will be necessary for the development
of the project. Each section will consist of a block of work and a Gantt (Figure 2.1)
diagram will be attached to see the whole of it together with the expected time for its
conclusion.

The Bachelor Final Project should take around 300 hours including creating the
game, the report and the exposition. In the following table there is an estimated value
of the hours that it will take for each part of the project.The total amount of hours is
expressed in the following table.

3

4 Planning and resources evaluation

Work to be performed Expected amount of time
Studying Video Game Engines 10h
Model environment 70h
Create magic VFX 60h
Learn Unreal Engine 4 basics 30h
Code the basic movement 50h
Testing and error fixing 30h
Writing the project report 40h
Preparing exposition 10h

2.1.1 Study Video Game Engine

The first step to consider in the project is to analyse the different engines that can be
used and which of them best suits the final objectives. It is mainly a decision between
Unity [3], Unreal Engine 4 and Unreal Engine 5 [4]. After choosing the game engine, it
is also necessary to choose a 3D modelling software that can accommodate the needs of
the project, being a decision between Blender[1] and 3DS Max[7].

2.1.2 Model Environment And VFX

At this stage of the project, all the elements of the video game must be modelled in 3D.
These elements range from those necessary to complete the game and with which the
player must interact with them to purely decorative elements to give a greater realism
to the visual environment.

It is desired to introduce special effects, also known as VFX1 related to magic in the
project, since in the game story is related to the magic ambience. For this purpose, it is
planned to spend some time studying and learning through online research the method
of working with these effects. This will be developed using the tools offered by Unreal,
specifically a particle system called Niagara Particle Effect [12].

2.1.3 Coding And Solving Errors

For the functioning of the project, the code that allows the functioning of the mechanics
that will be in the game has to be created. This entails basic mechanics such as character
movement and interaction with objects to the code for the inner workings of each of the
puzzles that must be solved to complete the game. In this part we have to study the
way of programming offered by the chosen game engine and I have to adapt myself to
it, since not all the existing game engines are programmed in the same language.

1Visual Effects

2.1. Planning 5

Figure 2.1: Estimated time over the months to complete the project.

6 Planning and resources evaluation

2.1.4 Work Report

During the project development process, a report, i.e. this document, will be developed in
parallel, detailing the process and all interesting and important details to be emphasised
and considered relevant.

2.2 Resource Evaluation
These are the Softwares that have finally been used for the development of the project
and the use that has been made of each of them

• Blender [1]: This design software has been used as the main modelling resource
with which almost the entire project has been modelled.

• Autodesk 3DS Max [7]: This design software has been used as a support for
Blender. Especially at the time of the UVs in certain models I have used it as
support simply to be able to check the correct state of these.

• ZBrush [14]: This software used this software specialised in modelling by means
of the spitting technique to give some light touches to a specific model. This will
be detailed later in its corresponding section.

• Unreal Engine 5 [4]:Game engine chosen for the main development of the whole
project.

• Adobe Photoshop [8]: Used to develop mainly the different textures used in the
3D models and the adjustment of these to their corresponding UV’s.

• Adobe Illustrator [6]: Used for the creation of interface elements. This has
been used instead of Photoshop because I have considered that it makes my work
much easier thanks to the primitive figures that it offers and the vectorial design
of elements with which I can work without losing quality of the elements.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Game Design . 7

3.1.1 Game Concept . 7
3.1.2 Game Art . 8
3.1.3 Game Controls . 8

3.2 Requirement Analysis . 8
3.2.1 Functional Requirements . 9
3.2.2 Non-functional Requirements 10

3.3 System Design . 11
3.4 System Architecture . 11
3.5 Interface Design . 12

3.1 Game Design

3.1.1 Game Concept

The story of a video game helps the player to become fully immersed in it. After studying
various ideas, this resulted in a story of magic represented as a synopsis of the project:

You just remember being quietly in your tower, resting and doing your magic studies.
But when night falls, something strange happens and you wake up in a room you don’t
recognise. You try to open the door but, you realise that it is sealed, you are trapped
here. No matter how or why, right now there is only one thing on your mind: Escape
from this place.

The game as explained above is a escape room style game. These types of games
consist of escaping from a room by solving different riddles and puzzles to do so. Some

7

8 System Analysis and Design

games of this style can be for example The Witness [13] or The Room [9].In the video
game the player will be trapped in a room without a clue. Therefore, he will have to
explore the room to locate the four different puzzles. Solving each of these puzzles will
destroy a lock on the main door. Once all four locks have been unlocked, the player will
have completed the game, allowing them to interact with the main door and finish the
game.

3.1.2 Game Art

The art of the video game will be inspired by a mix of fantasy with fictional touches of
magic and the style of romanticism. Therefore, decorations similar to the aforementioned
style will be used to set the project in that style. The magical feature of the environment
will be reflected when observing elements in the environment such as magic circles,
crystal balls, etc.

3.1.3 Game Controls

• W Key : Walk forwards.

• A Key : Walk right.

• S Key : Walk backwards.

• D Key : Walk left.

• E Key : Interact Button 1.

• F Key : Interact Button 2.

• ESC Key : Close Menu.

• Mouse: Move Camera / Move Object.

• Mouse Left Click : Grab Object.

3.2 Requirement Analysis
In order to develop the project we will need several elements. First of all we will need
to choose a game engine in which to develop the project. For this, after an analysis of
the characteristics of each one, I have opted for Unreal Engine 5. I have picked Unreal
because, unlike Unity, it has a more powerful algorithm for calculating the lighting, and
with it we achieve a closer approximation to the reality we want to obtain. On the
other hand, I have not chosen Unreal Engine 5, even though it is more powerful than its
previous version, due to lack of documentation because of its recent release.

On the other hand, 3D modelling software will be needed. In this case, depending
on the needs, I will use Blender or 3DS Max. As main software I will use Blender, but

3.2. Requirement Analysis 9

3DS Max libraries can be very useful for modelling. Therefore, I will alternate between
these 2 programs.

When it comes to programming I will have to start learning from scratch about how
to use Unreal Engine’s Blue Prints [4]

3.2.1 Functional Requirements

Input: The player will have to solve a puzzle to unlock each lock of
the main door to escape. There will be 4 locks on the door.

Output: The player will have to solve a puzzle to unlock each lock of
the main door to escape. There will be 4 locks on the door.

The player will have to solve a puzzle to unlock each lock of the main door to
escape. There will be 4 locks on the door.

Table 3.1: Functional requirement «Unlocking Main Door»

Input: The player will press a specific keyboard keys to move the
character around the map.

Output: The player will press a specific keyboard keys to move the
character around the map.

The player will press a specific keyboard keys to move the character around the
map.

Table 3.2: Functional requirement «Movement»

Input: The player will press a specific keyboard keys to interact with
specific objects. These interactions can be classified as a
"Clicking" and "Holding" a key to either activate and object
functionality or grab it.

Output: The player will press a specific keyboard keys to interact with
specific objects. These interactions can be classified as a
"Clicking" and "Holding" a key to either activate and object
functionality or grab it.

The player will press a specific keyboard keys to interact with specific objects.
These interactions can be classified as a "Clicking" and "Holding" a key to either
activate and object functionality or grab it.

Table 3.3: Functional requirement «Interact with Environment»

10 System Analysis and Design

Input: The player will be able to check his progression on the in-
terface. There will be marks that show the total spells he
managed to achieve to open the main door .

Output: The player will be able to check his progression on the in-
terface. There will be marks that show the total spells he
managed to achieve to open the main door .

The player will be able to check his progression on the interface. There will be
marks that show the total spells he managed to achieve to open the main door
.

Table 3.4: Functional requirement «Progression Marks»

Input: The player will be able to use the mouse for a puzzle to move
and drag objects to place them in their correct position.

Output: The player will be able to use the mouse for a puzzle to move
and drag objects to place them in their correct position.

The player will be able to use the mouse for a puzzle to move and drag objects
to place them in their correct position.

Table 3.5: Functional requirement «Mouse Controls»

3.2.2 Non-functional Requirements

The main non-functional requirement is the polygon loading of the 3D models in the
project, therefore the total cost that can generate these polygons has to be taken into
account in order to obtain a smooth result that does not cause the game to run slowly.
The development process of each object in the project is represented in the following
diagram (Figure 3.1).

Figure 3.1: Modeling working process.

3.3. System Design 11

3.3 System Design

The main activity flow of the video game consists of a first phase where the player
searches for one of the puzzles in the room. Once he has found it, he has to try to solve
it. If the player does not succeed, he/she tries again until the puzzle is solved. Once
the puzzle is completed, the seal corresponding to the puzzle located on the main door
will be destroyed. In order to complete the game you need to solve all the 4 puzzles and
open the main door to escape from the room. In this diagram (Figure 3.2) you can see
the flow of activity in the game.

Figure 3.2: Activity diagram of the main cycle in the game.

3.4 System Architecture

Minimum system requirements, drawn by comparison after studying different similar
games when it comes to the level of realism. Also, since the project does not need to be
installed on the computer as it is an application, the minimum memory required in this
case is the memory occupied by the project itself.

• OS: 64-bit Windows 7 or 64-bit Windows 8 (8.1).

• Processor: Intel CPU Core i5-2500K 3.3GHz, AMD CPU Phenom II X4 940.

• Graphics: Nvidia GPU GeForce GTX 1050 or AMD GPU Radeon HD 8970.

• RAM: 6GB.

• Disk space: 10 GB.

12 System Analysis and Design

3.5 Interface Design
In recent years many big games have opted for minimalism in their interface design. This
is because in many cases the interface can be distracting to the player and by cleaning
up the screen with a minimalist interface it forces the player to admire the environment
in a certain way. Because of this, and taking into account that we want to develop an
Escape Room, I have also opted for a minimalist interface. This will consist of a simple
white dot in the centre of the screen so that the player can locate the point the player
is looking at. Initially it was intended to leave the screen without this dot, but after
testing the game several times I came to the conclusion that this dot is necessary to help
the player’s orientation, especially in one of the puzzles that will be described in one of
the following sections.

Also as part of the interface I have integrated some messages on the screen following
the example of games like Call of Duty : Vanguard (Figure 3.4) or Rise of The Tomb
Rider (Figure 3.3) an indicator of the key that the player has to press or keep pressed
to be able to interact with the elements of the environment.

Figure 3.3: The Rise Of The Tomb Rider. Figure 3.4: Call Of Duty: Vanguard.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 14

4.1.1 Study Game Engines . 14
4.1.2 3D Modeling Process . 14

House Base . 15
Puzzle 1 . 19
Puzzle 2 . 20
Puzzle 3 . 22
Puzzle 4 . 24
General Decoration . 24

4.1.3 Programming . 30
4.1.4 Player Movement . 31

Puzzle 1: Interaction with player and Camera Change 31
Puzzle 2 : Rotating Actor on Correct Position 33
Puzzle 3: Grab and Place Objects in the correct position . . . 34
Puzzle 4 . 36
Main Door . 36
Interface . 37

4.2 Results . 37
Errors . 37
Planning Errors . 38
Graphic Results . 38

The project can be divided into 6 development blocks, which will be analyzed be-
low. Each block corresponds to the tasks that have been planned in the Gantt chart
(Figure 2.1) inserted previously.

13

14 Work Development and Results

4.1 Work Development

4.1.1 Study Game Engines

At the beginning of the project, the first thing to analyze was which game engine to
use. Unity had been discarded in the first place because, although it is one of the best
game engines on the market and is still used by a large number of companies, it is more
specialized in cartoon graphics. This does not mean that its process of calculating the
lights is bad, in fact, this is a great point in favor of the game engine, but when compared
to other more powerful game engines, this one is left behind.

Unreal Engine, on the other hand, is an engine that, like Unity, is used in many
video games due to its great power of light calculation. This engine is used for Triple
A1 games such as Kingdom Hearths III, Sea Of Thieves, etc [5]. Usually the learning
curve of Unreal Engine is more complicated compared to Unity but it must be taken into
account that the visual quality of this engine is notoriously superior to that of Unity.
Therefore the first version of the project was created in Unreal Engine 4.

After a month of development, the Epic Games platform published an update called
Unreal Engine 5, being this an engine similar to the previous one at the time of the
interface and the way of use. The big difference that this one brought was the Lumen
and Nanite technology, two technologies that I will explain below and for which I finally
decided to dedicate a day of work to migrate all the progress I got to this new engine.
Below is an analysis of the advantages and disadvantages between Unreal Engine 5 and
Unreal Engine 4.

Points of interest Unity Engine Unreal Engine 4 Unreal Engine 5
Available information A lot information available A lot information available Less information available
Graphics Specialised Cartoon Realistic Realistic
Lightning No Dynamic Lighting with Ray Tracing Dynamic Lighting with Ray Tracing Dynamic Lighting. combined with Lumen and Nanyte technology

Table 4.1: Analysis table of each video game engine.

Lumen implements real-time indirect lighting with pretty amazing precision, and
emissive lighting contributes with Global Illumination. So if you have a big light mate-
rial, it will light up your scene. Lumen also provides reflections and integrates Global
Ilumination into reflections. This was not possible with the previous lighting calcula-
tion version of Unreal Engine 4 which used Ray Tracing. In addition, Unreal Engine 5
not only relies on lumen technology, but also implements the help of Nanite technology
which works with internal meshes for the rendering of object details, so that only what
is visible to the player is rendered.

4.1.2 3D Modeling Process

Before starting the modelling process we needed to be clear about the concept that
the project should convey. After analysing several games, researching about magic and

1 Informal classification used to categorise games produced and distributed by a mid-sized or major
publisher, which typically have higher development and marketing budgets than other tiers of games.

4.1. Work Development 15

fantasy environments, we came to the conclusion that the most suitable for this project
was to create the room of an alchemist.

From the beginning, after arriving at this conclusion, we had a mental image of how
we wanted the room in which the video game would take place to look like. However,
a simple and small inspiration (Figure 4.1) was developed and used to reinforce the
ideas and aesthetics. The function of the inspiration board was rather to observe small
aesthetic details that were used later to decorate the room and give it a less artificial
appearance.

Figure 4.1: Inspiration Board used on the project.

House Base

Now that the idea was clear, the modelling process began. I started with the walls of
the room. I wanted to create a modular model, that is to say, a simple fraction of a wall
that could be cloned when assembling a room. Finally a satisfactory result was achieved,
which could be linked together without the cut between the individual wall blocks being
noticeable. All this process was done in Blender, as it was a simple model and the only
difficulty it had was the fact of being able to concatenate one with the other. I solved
this problem using the Blender Mirror modifier (Figure 4.2). This modifier allows us

16 Work Development and Results

to make an inverted copy in one of the axes making the mirror effect. Therefore all
the vertices of the ends, had the same height and the same finishing point, allowing to
concatenate several units of this model without being perceivable the cut between one
and another.

Figure 4.2: Half Unity Wall without Mirror
Modifier.

Figure 4.3: Half Unity Wall with Mirror
Modifier applied.

The next step in modelling is the texturing of these walls. This process is identical
for all 3D models. The first step is to select certain edges to declare them as seams.
These edges are the cutting points of the UV’s where they are separated when generating
the maps. The map generation can be done by hand or automatically. In the case of
this project, it is started from the automatic UV’s map (Figure 4.7) and then it is
studied carefully to correct errors such as texture directions, scaling, etc. The next step
is working on Photoshop, where the UV map are imported and placed on it the textures
that I want to be captured at this point. Normally models can have more than one
material, so it is often not necessary to capture all the elements of the model in a single
texture. Therefore in Photoshop, it is only ensured that the most visible parts of the
models are placed in the correct position.

4.1. Work Development 17

Figure 4.4: Unreal UV’s map inside Unreal Editor from wall Plane Decoration

In this model, a texturing map called Alpha is also used (Figure 4.5). This map
delimits the elements that are rendered. In the case of Unreal Engine materials, the
parts of the material where the Alpha texture is black are rendered and the white colour
of the Alpha texture is not rendered.

The second modelling step was dedicated to modelling the 4 puzzles that were in the
game as they are the main elements of the game. However, the same modelling process
has been used for all the objects in the project.

18 Work Development and Results

Figure 4.5: Alpha Map used on Unreal from
Plane Decoration.

Figure 4.6: Final wall result in Unreal Engine.

Figure 4.7: Wall Final Model

4.1. Work Development 19

Puzzle 1

The first puzzle to be modelled was the lamp puzzle. For this one we had to model a
table, a parchment, simple wooden tiles and a hanging lamp model. Each of the tokens
had a personalised material on which a different symbol was placed. For the hanging
lamps, 4 of the symbols on the tokens were chosen and one was placed on each of the
lamps. On the parchment a texture was created with a drawing of the room and 4 marks
marking the position of each lamp. The idea was for the player to place the correct token
in the correct position using the lamps as indications of the position of each one.

Figure 4.8: Blender First Table Model

After finishing the main elements, purely aesthetic elements were modeled to decorate
the table since, with only the parchment, it was too empty and gave a very artificial
feeling. To decorate the table, elements such as different types of books (new books,
worn books, etc.), closed scrolls, storage boxes, jars, glass containers, etc. were modeled
(Figure 4.9).

Figure 4.9: Blender Table Model with decorations on Unreal Engine.

20 Work Development and Results

Figure 4.10: Lamps for the Puzzle 1 that mark the position with a symbol under them.

Puzzle 2

The second puzzle is a well-known puzzle that has been recreated in several games
throughout the history of video games. It is a puzzle in which the player has to rotate
certain objects, usually sculptures, until he finds the correct position for each one of
them. For example, this puzzle can be found in games such as Uncharted (Figure 4.11),
Genshin Impact (Figure 4.16) and many more.

Figure 4.11: Uncharted Rotating Puzzle. Figure 4.12: Genshin Impact Rotating Puz-
zle.

This puzzle concept has been developed for this project. Tables have been modelled
on which a modelled figure will be placed. This modelled figure has been downloaded
from a website, and is the only non-personal model[11] of the whole project. Even so,
some imperfections have been edited in the ZBrush [14] program, specifically on the
chest of the sculpture. The feathers of the owl’s wings have also been polished and its

4.1. Work Development 21

textures have been modified to fit in with the aesthetics of the project. Finally, it has
been implemented in the game scene. The reason why this model has been downloaded
from the internet is because we wanted to implement and study the Nanite technology
offered as an innovation by Unreal 5.

Figure 4.13: How to enable Nanite in a
mesh.

Figure 4.14: Nanite Owl Stats.

Nanite is a technology that implements the latest version of Unreal 5 which uses a new
geometric virtualised system to render a new mesh format. With this new technology,
it is able to render pixel-scale detail with high polygon count objects. This means that
when the Nanite option is activated and applied to a mesh, this process analyses the
mesh and decomposes it into clusters of triangle groups (Figure 4.14). Finally, when
rendering, the system only renders the clusters according to the position of the player,
showing only the details that are visible to the player and ignoring those that are hidden.

22 Work Development and Results

Figure 4.15: Blender Owl Model. Figure 4.16: Unreal model with
new texture and small changes.

For this second puzzle to test this new technology, the owl model has approximately
5 million polygons. In the first version we tried to instantiate all 5 owl models at the
same time in the scene. I didn’t manage to get to the point of producing a visible frame
delay. Later, when programming the movement of the owls, it was observed that there
really was a frame delay when the player interacted with the sculpture. By activating
the Nanite this stopped happening.

Figure 4.17: Final Owl Sculpture in the environment.

Puzzle 3

The third puzzle consists of an arrangement of objects. This one didn’t require much
effort for modelling as it consisted of a cupboard and a single trophy-like model (Fig-
ure 4.20)to place the textures.For the order of the moons, the player was expected to
find the order of a picture that changed the image it projected. When it comes to the

4.1. Work Development 23

painting, a very flat and simple container has been modelled and to achieve all the details
that can be seen in the final result of this one, Normal maps have been used. Thanks to
the normal maps (Figure 4.21), the rendering system calculates the lights and recreates
a displacement in the plane of the object creating a sensation that the object really has
relief when in fact it is a totally flat object. (Figure 4.19)

Figure 4.18: Frame material with displace-
ment and normal map. Figure 4.19: Frame in blender model.

Figure 4.20: Final Frame and Moon with
textures in Unreal. Figure 4.21: Base Moon sculpture mesh.

24 Work Development and Results

The central table of the room has also been modelled, on which a sphere will be
placed, with which the player will come into contact in order to change the image
of the painting. Everything has followed the same modelling process as explained in
Puzzle 1. However, the orb that the player comes into contact with is not a 3D model.
This is a Niagara particle system. This has been created from a template provided by
Unreal Engine that generates particles constantly. Then different materials have been
created using variables that multiply noise maps. In the Niagara system these materials
are applied and a timeline is created which increases and decreases these variables to
produce the animation effect. Some Niagara properties have also been added. Once the
material was applied, the base colour of the material was tested in order to achieve a
more satisfactory result in terms of colour.

Figure 4.22: Orb Material in Unreal Engine
with movable variables. Figure 4.23: Base Moon sculpture mesh.

Puzzle 4

The fourth puzzle is about sliding several pieces together to get a clear picture. To do
this, a container had to be modelled in which the puzzle would be solved and a piece
that, later in Unreal, would be duplicated and assigned to the appropriate part of the
image. The image has been divided into a 3 x 3 grid, and to cut the image in an exact
way I have simply worked in Photoshop[8] with some tools called "rulers" to be able to
measure to the millimetre the cutting area of each piece.

General Decoration

Once all the puzzles of the project had been modelled, they were assembled in the Unreal
scene. Once assembled, purely aesthetic elements have been modelled to make the room
come to life and give the sensation that it is indeed a real stage. These are purely
aesthetic objects that the player cannot interact with, but they give a lot of life to the
room. Among these objects we can find elements such as the sofa, scrolls, glass vases,
books, etc.

4.1. Work Development 25

None of these models have been a big problem to model, as the same techniques used
for the puzzles have been used. The only difference is that, in 2 objects in particular
have been used a modifier called Cloth of Blender, which recreates a simulation in the
behaviour of the object to which it has been applied of how that element acts over time
once applied a value of engraving and collision when in contact with other objects.The
following are images of objects modelled using the methods explained above. These
results are image captures inside the Unreal Engine 5 editor after going through the
modelling process and generating the UV map in Blender, and the subsequent texturing
in Unreal Engine 5.

Figure 4.24: Cabinet Model. Figure 4.25: Coat Rack model.

26 Work Development and Results

Figure 4.26: Book 1 Model. Figure 4.27: Book 2 model.

Figure 4.28: Book 3 Model. Figure 4.29: Glass Bowl Model.

4.1. Work Development 27

Figure 4.30: Candle Model. Figure 4.31: Carpet Model.

Figure 4.32: Chest Model. Figure 4.33: Small Wooden Chest Model.

28 Work Development and Results

Figure 4.34: Door Model. Figure 4.35: Sample Bottles Model.

Figure 4.36: Jar Model. Figure 4.37: Lamp Model.

4.1. Work Development 29

Figure 4.38: Table Model.
Figure 4.39: Niagara Particle Effect Visual-
ized.

Figure 4.40: Owl Model. Figure 4.41: Parchment 1 Model.

30 Work Development and Results

Figure 4.42: Parchment 2 Model. Figure 4.43: Picture Frame Model.

Figure 4.44: Sofa Model. Figure 4.45: Table 2 Model.

4.1.3 Programming

As explained above, a system integrated in Unreal Engine has been used for program-
ming, which avoids the process of writing code, instead it works in blocks and these

4.1. Work Development 31

are connected to each other in order to carry out the different functions. After some
time programming for the project, we have come to the conclusion that, in reality, this
method is not so different from the traditional method of programming, as in written
programming, variables are declared, functions have to be created and called, etc. There-
fore, rather than a new programming style, I would call the Blueprints system nothing
more than a method to visually see the code.In the following, we will detail the most
important elements for the programming of the project, explaining how they work in
detail.

4.1.4 Player Movement

For the main movement of the player, the Unreal 5 First Person Shooter template has
been used as a basis, which provides us with a simple code already created. The only
thing that needed to be changed was to disable the character’s fire button and remove the
mesh component of the weapon inside the main player actor. The template is chosen
at the moment when you create a project, and there are different types of templates
(Figure 4.46).

Figure 4.46: Unreal Project Templates

Puzzle 1: Interaction with player and Camera Change

The first programming challenge has been to interact with the objects. Therefore, in
order to develop it, a Trigger component was added, which has a function that calculates
when the player’s collider comes into contact with the scroll’s Trigger. A new camera
has also been added for camera switching to have a sky view of the scroll and to have a
good visibility of the scroll. (Figure 4.47)

32 Work Development and Results

Figure 4.47: Unreal Puzzle 1 Components Inside Editor

As soon as the player comes into collision with the Trigger of puzzle one, it sends
out a call that is made to all objects that the player comes into contact with and can
interact with. What this does is to check if the colliding object is the player and if
so, it allows to read a keyboard input of the key indicated in the message to interact
with it. In the following code fragment (Figure 4.48) we can see the opposite of what
is explained. Once the player has pressed the key to interact, it hides the interaction
message and proceeds to perform a Blend function that makes a smooth transition to
the new camera. At the end of this, the mouse is displayed on the screen, as it will be
needed next to complete the puzzle.

Figure 4.48: Hide message and enable camera change.

Once the above has been done, we now have a code that allows the camera to be
changed. For the player’s convenience, a code similar to the previous one has been
implemented with another key so that the player can leave this camera position at any
time.

For the programming of puzzle 1 itself, a similar system of triggers has been used.
In this one, 4 triggers have been placed in specific positions on the scroll, and these
detect collisions with tokens that are component child objects of the scroll object. In

4.1. Work Development 33

this picture (Figure 4.47) we can see the triggers and the children in the hierarchy on
the right side. To check that it is the correct token, once a token collides with any of
the triggers, it checks if the interacting actor in question is the same actor that has been
previously assigned to the script manually. If all 4 triggers have the correct position for
each of the tokens, this code destroys the Niagara particle system associated with the
puzzle, the corresponding seal on the main door is destroyed.

Puzzle 2 : Rotating Actor on Correct Position

For this puzzle, the same Trigger system has been used as in the previous one to check
whether the player can interact with the object or not. Once the player presses the
key to interact, the owl that activates the code performs a rotation using the Rotation
property of the object. This is calculated from a variable created in which the range of
rotation of the sculptures can be modified. (Figure 4.49)

Figure 4.49: Hide message and enable camera change.

In order to check if it is in the correct position or not, the sculptures have an addi-
tional Trigger placed in front of them that rotates with them. When this trigger comes
into contact with a hidden actor in the scene, it changes the value of a Boolean to indi-
cate that it is in the correct position (Figure 4.50). To give feedback to the player that
he has placed the sculpture in the correct position, I have implemented a function that
changes the emission value of the material of the owl’s sphere, so that it lights up for
2 seconds when the owl is in the correct position. To avoid errors, once you activate a
sculpture and it starts to rotate, the interaction button is blocked until the owl finishes
rotating. (Figure 4.51)

34 Work Development and Results

Figure 4.50: Owl component Schema. Yellow color represents the area of interaction of
the player. Green color represents the Trigger area that checks the collision with the
white ball for correct position.

Figure 4.51: Owl in correct position.

Puzzle 3: Grab and Place Objects in the correct position

In the fourth puzzle a puzzle to grab objects and place them in the right position has
been made. The same philosophy as in the previous puzzles has been used to check the
collisions of these with Triggers that are components of the same object. In this case, 5

4.1. Work Development 35

different Triggers have been placed and a table on which the 5 sculptures to be moved
are positioned. To indicate to the player the order of these, a box has been implemented
which, when interacting with the central table, changes the image displayed and the
player has to place the Moons on the shelf in the order in which they appear in the
images.

The most important points of this puzzle are the actions of taking each of the Moons.
For this, a RayCast (Figure 4.52) system has been implemented, which generates a ray
from the player’s position to a distance. If in the path of this ray, it collides with the
collider of one of the Moons, these are set as a "Grabbed Object". This works only with
moons, because when the RayCast comes into contact with the moon, it is checked as a
moon type object, so the player cannot grab any other object. As long as the player holds
down the left mouse click, the "Grabbed Object" will change its position depending on
the player’s movement, setting Moon’s object on the center of the player camera screen.

Figure 4.52: RayCast function in Unreal Engine.

Once the player moves the moon object closer to an indicated position, it will come
into contact with one of the 5 triggers for each position of each moon. Upon contact it
is checked to see if it is a moon object, if it is, this fixes the position of the moon object
in the centre of the Trigger and the player releases the object. After it is placed, it is

36 Work Development and Results

checked by the name of the moon type object to see if it is in the correct position. When
all 5 objects meet this condition, the corresponding seal on the main door is destroyed.

Figure 4.53: Change Material function and Plane Changer function.

For the picture code, it was first necessary to duplicate the plane on which the image
is displayed. This is because, the material that provides the burning effect of the frame,
remains invisible as it performs its effect. Therefore, by means of code what is done is
to place the next image in the plane placed 0.1 millimetres behind the front plane and
when the burning animation is finished, the material of the back plane is assigned to the
front plane and the next image is assigned to the back plane (Figure 4.53). As the player
cannot move from the place when interacting with the orb, the instantaneous change
between these 2 materials is imperceptible from the player’s camera.

Puzzle 4

For this puzzle, as it is the last one to be programmed, parts of code from previous puzzles
have been reused. For the sliding of the tiles between them, we have simply implemented
the code used in puzzle 1 to move the tiles. In this case it was only necessary to check
that there was not a piece in the position to which you wanted to move. The movements
of each piece are restricted on the X and Y axes, so they cannot move diagonally.

To check the correct position of each of the pieces, the same method used in puzzle
3 has been used. It is an individual trigger for each piece that checks by means of a
boolean if the piece in its position is the correct piece. Once all the pieces are in the
correct position, the corresponding seal of the main door is destroyed.

Main Door

This is the end of the game, and it has a simple code that checks if all 4 seals have been
destroyed. If they have, the player is allowed to interact with the door and move on to
the endgame scene.

4.2. Results 37

Interface

For the interface, a simple pre-game menu has been created, which is the one we are
returned to once we complete the game. This has been created using a class provided
by Unreal Engine that specialises in this. This creates a canvas in which we can add all
the elements we want and, in turn, add to those elements the necessary Blue Prints to
perform the actions we want.

For the In-Game HUD, as explained above, we have opted for a minimalist style,
which simply consists of a white dot in the centre of the screen to help the player know
exactly where the character is looking.

4.2 Results

Errors

Several errors have been detected in the programming of the entire game. The first bug
detected was that, when you interacted at the beginning with any object, it automatically
took you to the camera of the first puzzle. To fix this I had to identify each time the
player interacts with an object, which is the object in question. It was simply to create
a Branch2 and check the name of the object.

Secondly, I had errors with the pivots of the objects. For example, in puzzle 1, when
moving the pieces, they miscalculated their positions because the pivot was not in the
centre of the object. This is due to the fact that when modelling in blender I was moving
the object from side to side and when exporting it, it was not centred in the centre. To
solve these persistent errors, the only thing I had to do was to centre the object in
blender and re-import the mesh, an option that has been used repeatedly offered by
unreal in which you import the mesh of the object again without having to re-assign all
the materials and re instantiate all the objects of this type.

Several bugs were found in puzzle 3, which by all accounts was the most difficult
puzzle of all. First of all, the picture planes did not work in the correct order. This was
solved by creating 2 arrays that stored the materials in the same order + 1. That is, the
position of the material [0] in the first list, which in this case belongs to the front plane,
is the position [4] of the secondary plane, that is, the last position of this one.

A bug was also found after 3 days of trying to find it, which meant that the moons
could not be moved out of place. This was because the Unreal module used to calculate
the position initially only calculated the global position. To solve it, we only had to
change the module to one that calculates the position and rotation, even if the object
does not rotate in any direction

Minimal errors have been detected when rendering lights with lumen technology.
This was due to the fact that, when setting up the environment, some objects had a
separation of a few thousandths that was only perceptible from a certain angle and
created errors with strange lights in the interior. This was solved with a little patience

2Module that implements If...Else, a conditional.

38 Work Development and Results

by examining and studying the origin of these strange illuminations and moving the
objects that produced the error.

Planning Errors

In addition to the results I would like to emphasise the drastic change in project planning.
The modelling part has taken me much more time than planned, going from the 70 hours
initially planned to, approximately, almost twice as many hours. This forced me to work
simultaneously starting to develop parts of the project code before finishing the modelling
of the whole environment. Below (Figure 4.54) I attach an image of the time that each
of the sections of the project actually took me. It has been done as a Gantt chart to
compare with the initial diagram (Figure 2.1).

Graphic Results

For the final lighting an Unreal 5 actor has been added which is called Post Process
Volume. This actor consists of an invisible cube that alters the way the light works.
This allows us to add typical camera parameters to add more realism to the scene such
as Depth Of Field, Lens Flare, Bloom, Anti-Alising, etc. After testing several ranges of
parameters, we arrived at a satisfactory result which will be seen below.

In this section I will attach several figures to show the final results within the Unreal
Engine editor

Figure 4.55: Final Render 1.

4.2. Results 39

Figure 4.56: Final Render 2.

Figure 4.57: Final Render 3.

Figure 4.58: Final Render 4.

40 Work Development and Results

Figure 4.59: Final Render 5.

Figure 4.60: Final Render 6.

Figure 4.61: Final Render 7.

4.2. Results 41

Figure 4.62: Final Render 8.

Figure 4.63: Final Render 9.

Figure 4.64: Final Render 10.

42 Work Development and Results

Figure 4.54: Actual time spent over the months to complete the project.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 43
5.2 Future work . 44

5.1 Conclusions

This project has served to learn about the development of video games with high realistic
graphics. On the one hand, the curiosity to create a game with such graphic quality was
present, since throughout the degree, it is true that we have carried out several video
game projects, but not one focused as such on graphic quality. It’s true that in some
subjects it’s rewarded to get a nice aesthetic but it doesn’t give way to a much deeper
development.

First of all, modelling skills have been developed a lot, as we have had to investigate
several different modelling techniques on some occasions. For example, the most remark-
able of all would be the work on textile modelling. The carpet that has been placed as
decoration in the centre of the room was intended to give a natural look and not just
a stretched plane. To achieve this, it was necessary to find ways to create wrinkles in
order to create a more natural effect on the carpet. The tablecloths, which also followed
a similar philosophy, used the same Blender modifier as the carpet. This modifier is
the Cloth modifier, which in conjunction with weight and gravity variables allows us to
simulate how a real cloth would act.

Secondly, the part in which most knowledge has been acquired and that I am most
happy to have researched and learned is the Unreal Engine environment. This game

43

44 Conclusions and Future Work

engine is an engine that is not taught in the degree course, as Unity is taught in the
degree course, an engine that has a much simpler learning curve than Unreal. Once you
have some knowledge of how a game engine works internally and the methodology of
work when developing a video game, which in my personal opinion, I am very grateful
to the subject of engines of the degree, you can start to take the step towards Unreal.
Thanks to all this, I have acquired a lot of knowledge in the development of video games
in an engine that is currently in great demand in the industry.

To conclude, I believe that the final degree project itself, in addition to having
acquired many skills in different fields, is also a project that I can show to the world to
demonstrate these skills. Throughout the degree, several small video games are created
with a goal in mind and almost always in a group. This project is something more
personal, with a theme that I have chosen myself and I am very happy with the result,
being proud to have this project to show to the public.

5.2 Future work
As future work in the future, certain aspects of the project are to be refined. First of
all and I think the first step in the future is to create a short cinematic of the video
game with the tools of Unreal Engine because, together with these tools, you can create
a much more realistic image post-processing. On the other hand I would like to expand
the concept from the living room to a whole house and distribute more puzzles around
it, and as you progress, unlocking rooms inside the house.

I would like to study the steps and requirements of the platforms to be able to
publish this project on them. First of all, look at the Steam publishing conditions and
then publish it. This could be interesting in the future to be able to know in advance
the requirements of a videogame before its release.

Bibliography

[1] Blender. Blender Sowftware Official Web Page. https://www.blender.org/.

[2] Escape Room by Wikipedia. Escape Room definition by Wikipedia. https://es.

wikipedia.org/wiki/Escape_room.

[3] Unity Engine. Unity engine Official Web Page. https://unity.com/es.

[4] Unreal Engine. Unreal Engine Software Official Web Page. https://www.

unrealengine.com/en-US/.

[5] Unreal Games Example. List of games developed with different Unreal Engine
versions. https://es.wikipedia.org/wiki/Anexo:Videojuegos_que_usan_Unreal_

Engine.

[6] Adobe Illustrator. Adobe Illustrator Official Web Page. https://www.adobe.com/

illustrator.

[7] Autodesk 3DS Max. Autodesk 3DS Max Software Official Web Page. https://www.
autodesk.es/products/3ds-max/overview?term=1-YEAR&tab=subscription.

[8] Adobe Photoshop. Adobe Photoshop Official Web Page. https://www.adobe.com/

photoshop.

[9] Fire ProofGames. The Room. https://www.fireproofgames.com/games/the-room.

[10] QuoteFancy. Winston Churchill Quote. https://quotefancy.com/quote/940233/

Winston-Churchill-Those-who-plan-do-better-than-those-who-do-not-plan-even-should-they,
2008. [Online; accessed 19-July-2008].

[11] Stevi. Decor owl ball N021118 - 3D model. https://archibaseplanet.com/download/
5c2cd5e8.html.

[12] NiagaraParticle System. Unreal engine Niagara Parti-
cle System. https : / / docs . unrealengine . com / 5 . 0 / en-US /

creating-visual-effects-in-niagara-for-unreal-engine/.

[13] Inc. Thekla. The Witness. https://es.wikipedia.org/wiki/The_Witness_

(videojuego).

45

https://www.blender.org/
https://es.wikipedia.org/wiki/Escape_room
https://es.wikipedia.org/wiki/Escape_room
https://unity.com/es
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://es.wikipedia.org/wiki/Anexo:Videojuegos_que_usan_Unreal_Engine
https://es.wikipedia.org/wiki/Anexo:Videojuegos_que_usan_Unreal_Engine
https://www.adobe.com/illustrator
https://www.adobe.com/illustrator
https://www.autodesk.es/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.autodesk.es/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.adobe.com/photoshop
https://www.adobe.com/photoshop
https://www.fireproofgames.com/games/the-room
https://quotefancy.com/quote/940233/Winston-Churchill -Those-who-plan-do-better-than-those-who-do-not-plan-ev en-should-they
https://quotefancy.com/quote/940233/Winston-Churchill -Those-who-plan-do-better-than-those-who-do-not-plan-ev en-should-they
https://archibaseplanet.com/download/5c2cd5e8.html
https://archibaseplanet.com/download/5c2cd5e8.html
https://docs.unrealengine.com/5.0/en-US/creating-visual-effects-in-niagara-for-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/creating-visual-effects-in-niagara-for-unreal-engine/
https://es.wikipedia.org/wiki/The_Witness_(videojuego)
https://es.wikipedia.org/wiki/The_Witness_(videojuego)

46 Bibliography

[14] ZBrush. ZBrish Official Web Page. https://pixologic.com/.

https://pixologic.com/

Bibliography 47

	Contents
	List of Figures
	Introduction
	Work Motivation
	Objectives
	Related Subject
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Study Video Game Engine
	Model Environment And VFX
	Coding And Solving Errors
	Work Report

	Resource Evaluation

	System Analysis and Design
	Game Design
	Game Concept
	Game Art
	Game Controls

	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Study Game Engines
	3D Modeling Process
	Programming
	Player Movement

	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

