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Abstract

This document presents the report of a Final Degree Work consisting of a project that
includes several components related to multi-action adversarial game solving. It involves
the development of a multi-action adversarial card game that is capable of delivering
relevant results on the performance of different algorithms. It also encompasses the
development and testing of bots that play the game using several different algorithms,
one of which entails a novel approach to solving these kind of games. Finally, as the
main research action of the project, an experiment on the performance of the algorithms
within the game was performed.

Within each of the chapters of this report attention will be put into going trough
all these components of the project. The framework architecture for A Simple Multi-
Action Card Game (ASMACAG) will be firstly presented. It is the simple but complete
card game proposed as a tool to test, develop and debug bots that implement artificial
intelligence algorithms in the context of adversarial multi-action games. Then the focus
will be on the development process and the specifics of each of the algorithms included
in the project, as well as the decisions taken on what parameters to use for them. Finally
the experiment carried out within the game will be discussed, to further comprehend
what conclusions can be drawn about the implemented bots and the game itself.
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Introduction

Contents
1.1 Work Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Environment and Initial State . . . . . . . . . . . . . . . . . . . . . . 2

This chapter present the project carried on. It goes trough the different components
it includes, stating the objectives to meed and the way the idea was conceived.

1.1 Work Motivation
This project stems from the analysis of the latest developments within the academic
discipline of artificial intelligence and the possible applications on video games it can
have [16]. Even though artificial intelligence techniques are established in academia,
they are not systematically applied industry-wide yet. But it is clear that there is a
push to use some of them for game AI, specially machine learning techniques, and they
have already been successfully applied in several other industries. It is in this context
that the need for a project that specialises in the emergent field of artificial intelligence
applied to video games is born. The scope of this work is specifically constrained to
multi-action adversarial games, since they present a problem complex enough to yield
useful results and can resemble several existing games within the current video game
industry.

The development of a specific game to test the different algorithms is a need within a
field populated by increasingly complex tools for playing games that either do not meet
the requirements for testing all kinds of algorithms or aren’t designed to meet a good
enough usability standard. This need is the origin of A Simple Multi-Action Card Game
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2 Introduction

(ASMACAG). It is required that it provides a simple enough context in which the bots
can be tested and understood and that it allows for easy step by step debugging, while
being complex enough that the results it yields are statistically relevant.

The other motivation behind this whole project is to allow a deeper understanding of
some algorithms and their behavior. There is a drive to test how they perform and what
actions they decide on, both when paired with each other and when paired with a user
interface that allows a human player to interact with the bots. For these reasons, the
algorithms to be tested have been selected based on several different motivations. Some
of them are the most researched and currently relevant algorithms that can be applied
to multi-action adversarial video game solving. These are the Monte Carlo Tree Search
Algorithm [1] and the Online Evolution Algorithm [6]. One of them, the N-Tuple Bandit
Evolutionary Algorithm [9], has been selected with the aim of innovating within the field,
by using an evolutionary algorithm originally designed for parameter optimization that
to the best of this researcher’s knowledge has not been applied yet to live game solving.
The other algorithms, which are Random and Greedy One-Step Lookahead, were picked
to act as a baseline benchmark for performance.

1.2 Objectives

There are three main objectives within the project. The fist one is the implementation
of the final version of ASMACAG, for which the original idea and first concept was
presented in [13]. Within this tool’s design and development the main goals to accomplish
a satisfactory result are simplicity, efficacy, cleanliness and efficiency. Focusing on these
goals should yield a tool that is extremely useful for researching, studying and teaching
artificial intelligence algorithms.

The second target of the project is to implementing bots that play using different
algorithms. These must be picked according to the criteria described in Section 1.1 and
tested to make sure their behaviour and performance is adequate.

The last objective of this work is to analyse the performance of the different al-
gorithms against each other in the game. It is of special interest to study the results
yiended by the N-Tuple Bandit Evolutionary Algorithm, since this is the most innovative
approach of the ones presented. As part of this process there is also an intention to eval-
uate ASMACAG itself as a tool, so that the level of completion of the aforementioned
goals can be assesed.

1.3 Environment and Initial State

This work started to be shaped within the context of my scholarships for collaboration
with the Research Group on Machine Learning for Smart Environments (GIANT-UJI).
It was there where my interest for learning about AI algorithms sparked. Then I started
to research about how AI, and more specifically machine learning, is applied to solving
video games.
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I started to experiment with multi-action adversarial games by using Hero Academy,
which is presented in [6] along the Online Evolution Algorithm. At the same time I also
learned about the most commonplace algorithms and techniques for this by researching
and reading papers. Within this process I was presented with the concept of the N-Tuple
Bandit Evolutionary Algorithm, as defined in [9], and with the idea of using it to optimise
a set of game actions instead of a set of parameters, in the same way that the Online
Evolution Algorithm or the Rolling Horizon Algorithm [12] do. It is in this context and
given that combination of specific needs that the seed and the idea for ASMACAG and
for this work itself was developed.
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Planning and resources evaluation

Contents
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resource Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

This chapter deals with the technical planing of the project, addressing the timeline
and the material and human resources needed. It also includes an estimation of the
economic cost of those resources.

2.1 Planning
In this section, the detailed time planning of the work is presented as a list of tasks.
The time devoted to each of the tasks is detailed, as well as the task’s description and
whether it has changed from the moment it was originally planed. Using an estimated
dedication of 14 hours per week the timeline of the project is clarified, with the task
dependencies being showcased in a Gantt chart at the end of the section. The tasks
needed for this work’s completion are as follows.

1. Planning and initial proposal (15 hours): This task consists of envisioning
the basics of the project concept and developing the first version of the planning
presented in here.

2. Research, analysis and design (40 hours): This task includes the research
time needed to understand the algorithms that will be used during the project as
well as to envision and give shape to the architecture of ASMACAG as a tool. It
also includes the development of an analysis and design document that summarises
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6 Planning and resources evaluation

all aspects of the project design and architecture. That document is further de-
veloped during the documentation task, into what has become Chapter 3 of this
report.

3. Game implementation (70 hours): The implementation of ASMACAG itself
is included in this task. This encompasses the programming work for creating it
as well as the process of debugging it, while following the guidelines established
when designing the game framework. It also includes generating documentation
for the code that allows other programmers to use it as a tool for various kinds of
projects, as per the process also envisioned during the previous task.

4. Basic algorithms implementation (12 hours): This task consists of develop-
ing some basic algorithms as bots for the game, specifically Random Algorithm
and One Step Lookahead Algorithm. This serves as a baseline for performance
testing and debugging of other bots and can help identify any error within the
game framework early.

5. Human Player implementation (13 hours): This task is composed of the
development of bot that allows a human player to play ASMACAG using the
command line as a simple user interface for interaction. This, once again, is useful
for debugging other bots and can help identify any error within the game framework
early. Originally this task was envisioned to be longer and include a GUI for the
human player, but this idea was discarded during the design process as explained
and justified in Subsection 3.5.2.

6. MCTS algorithm implementation (20 hours): This task encompasses the
implementation of the Monte Carlo Tree Search Algorithm into a bot that can
play ASMACAG. It also includes the debugging process, which is assisted by the
algorithms implemented previously and the tools provided by the framework itself.

7. OE algorithm implementation (30 hours): The implementation of the Online
Evolution Algorithm into a bot that can play ASMACAG is the main part of this
task. It includes the debugging process too, which is, once again, assisted by the
algorithms implemented previously and the tools provided by the framework itself.

8. NTBEA implementation (40 hours): This task consists of the development of
a bot that plays ASMACAG by applying the N-Tuple Bandit Evolutionary Algo-
rithm. As the previous tasks it also includes the debugging process, assisted by the
basic algorithms already implemented and the tools provided by the ASMACAG
framework.

9. Experiments and analysis (45 hours): For this task several experiments are
performed. Firstly, for each of the algorithms that take parameters to define their
behaviour one experiment to decide on what parameters to use is included. Finally,
a complete experiment to assess the performance of all the developed algorithms
against each other is needed to complete the project.
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10. Report and documentation (45 hours): This last task consists of elaborating
this report document and all the additional materials included within it.

To conclude and clarify the development plan, a summary of this planning informa-
tion, including the time frame and dependencies for each of the tasks, is conveyed in the
Gantt chart at Figure 2.1, shown bellow.

Figure 2.1: Estimated development timeline and dependencies between tasks as a Gantt chart.

Finally, the real development time for each of the tasks is provided, so that it can be
compared with the original estimation. The justification for any discrepancies with the
estimation is also laid out. This information is summarised at the Gantt chart shown in
Figure 2.2. In total the project took about 20 hours over the initial estimation, which
is within a reasonable margin of error.

1. Planning and initial proposal: 15 hours. In line with estimation.

2. Research, analysis and design: 40 hours. In line with estimation.

3. Game implementation: 60 hours. Development time was a moderately faster
than estimated (10 hours less), given that the architecture was already thoroughly
thought of during the previous step.
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4. Basic algorithms implementation: 12 hours. In line with estimation.

5. Human Player implementation: 13 hours. In line with estimation.

6. MCTS algorithm implementation: 20 hours. In line with estimation.

7. OE algorithm implementation: 40 hours. 10 hours over the original estimated
plan, given that some extra debugging was needed to polish bot behaviour.

8. NTBEA implementation: 55 hours. 15 hours over the original estimated plan.
There were several bugs making the bot perform poorly that needed to be inves-
tigated and separately addressed, causing a delay during development.

9. Experiments and analysis: 45 hours. In line with estimation.

10. Report and documentation: 50 hours. Moderately over the estimation (5 extra
hours).

Figure 2.2: Real development timeline and dependencies between tasks as a Gantt chart.
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2.2 Resource Evaluation
The costs of the work undertaken must be estimated in advance, therefore this section
includes that estimation, focusing on both the human and the technical resources needed.

The human resources for this work consist of a total of 330 hours of project develop-
ment as described in Section 2.1. The economic cost of hiring a junior software engineer
for this amount of time would be of 3 500€. This has been calculated taking into account
that the average hourly salary for a junior programmer in Spain is of 10.41€, as stated
in [5].

Regarding hardware technical resources, the specs of the computer where the code
was run during development and experimentation are the following. Note that the GPU
is not included, given that ASMACAG does not make use of its resources.

• Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. Market value of 150€.

• RAM: 16 GB DDR3. Market value of 60€.

• Storage: 500 GB SSD. Market value of 90€.

Also regarding technical resources, several software utilities are used within this
project. This is a comprehensive list of all of them, the use they have within the project
and their cost, if any.

• Ubuntu 20.04.4 LTS: Operating system for the computer described above.

• Python 3.9.7: The programming language used for the whole development pro-
cess.

• PyCharm: IDE for Python with an extensive tool set for debugging the project.
Cost of 25€ per month, adding up to 150€.

• Github Copilot: Tool for AI assisted programming that enables a quicker coding
process, use described in more detail in Subsection 4.1.1.

• Git: Version control system used during the project for the source code.

• Fork: GUI for using Git that makes version control quicker and easier. Cost of
50€.

• Github: Git repository hosting service used to host the source code.

• Github Pages: Static website hosting service for associated Github repositories,
used to host a live documentation for the source code.

• pdoc3: Python package and tool used for generating a complete documentation
for ASMACAG and the bots by extracting it from the docstrings and type hints
in the code.
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• Overleaf: Online tool for LaTeX document editing, used for generating this re-
port.

• Canva: Online tool for image and document editing, used for generating some of
the figures used within the report.

• Lucidchart: Online tool for diagram design, used for generating some of the
figures used within the report.

• Google Sheets: Online tool for spreadsheet editing, used for quickly processing
some of the output data from the game and to generate the charts available as
figures in this report.

Taking all the above technical resources and the human resources into account the
total economic cost of the project execution is 4 000€.



C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Game Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 System Architecture and Code Structure . . . . . . . . . . . . . . . . 21
3.5 UI and UX Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Algorithms implemented . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This document section constitutes the technical foundations of the project. It dis-
plays the design of A Simple Multi-Action Card Game (ASMACAG) as a framework
from a software engineering standpoint and the considerations and practises to follow
during the development process.

ASMACAG’s framework architecture will be firstly presented. It is a simple card
game proposed as a tool to test, develop and debug bots that implement artificial in-
telligence algorithms in the context of multi-action games. This report goes through its
rules first to then deduce the architecture that stems from them, taking into considera-
tion some software engineering best practices. Some attention will be also given to user
interface and user experience. Finally, the design of the experiments to be carried out
within the game will be described, as well as the experimental process that comes along
it.
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12 System Analysis and Design

3.1 Game Rules

The rules for ASMACAG are simple by design, since the game is thought of as a tool
whose aim is to be as straightforward as possible. This design philosophy allows to easily
step-by-step debug the bots and understand their decisions while also staying complex
enough for the results to be relevant and representative of their performance. The rules
in the base version are as follows. Note that each player of the game is a bot following
an specific algorithm for decision-making.

• It is an adversarial game with 2 players, each of them is dealt 9 cards.

• There is a board with 20 cards dealt on it, which must contain only numbers.

• The cards include numbers from 1 to 6 and the special values x2 and %2. The
deck where the card are dealt from contains 8 cards of each of the numbers from
2 to 5, 5 instances of 1 and 6 cards and 6 of each one of the special cards.

• Each player must play 3 cards per turn with no possibility to skip. Playing a card
consists of taking it from your hand and placing it on any card available on the
board, if it is numbered, or just using it directly if it has an special value. After
playing a card both the played card and the used card from the board, if applicable,
will be discarded. Turns alternate until there are no cards left on either player’s
hand.

• Each time a numbered card is played (P − B) ∗ F points are awarded to the player
that used it, where P is the value of the card played, B is the value of the card
on the board and F is a factor that defaults to 1. Special cards modify the value
of F when computing the score of the next numbered card played by any of the
players. The x2 special card will duplicate F while the %2 card will halve it.

An aspect taken into account in the design of the ASMACAG software is the need
for flexibility in the test environment, specially regarding the rules. All these rules need
to be programmed to be easily modified as needed during the testing process, by just
coding a class that implements a forward model compatible with the game. Also, the
parameters of the rules need to be easily accessible and changeable. This parameters
include things, such as the number of cards dealt at each time, the amount of existing
cards of each type, the range of numbers in the numbered cards, the number of actions
to play per turn, etc.

This approach should allow not only for flexibility within this project during its
development but also for ASMACAG to be useful as a tool for activities ranging from
research to education, given that it allows for the implementation of almost any multi-
action adversarial card game that uses a similar set of cards. Essentially the aim is to
decouple the game from its rules and parameters up to a point where a new game can
be implemented by just developing a forward model and a set of parameters.
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3.2 Requirement Analysis
This section describes both the functional and the non-functional requirements that stem
from the game rules for ASMACAG that have been presented above. Its objective is
allowing to clarify the actual requirements of the developed framework, so that they are
adequately fulfilled when designing the architecture and developing the tool.

3.2.1 Functional Requirements

• R01: The user can start a game between the bots.

• R02: The bots can get the current status of the game.

• R03: The bots can play special value cards.

• R04: The bots can play numbered cards.

3.2.2 Non-functional Requirements

• R05: The board has 20 cards.

• R06: The numbered cards values go from from 1 to 6.

• R07: The special value cards are x2 and %2.

• R08: There are 8 cards with each of the numbers from 2 to 5 in the deck, 5 cards
with numbers 1 and 6 and 6 cards with each of the special values.

• R09: The numbered cards played on the board are worth (P − B) ∗ F points.

• R10: Each turn 3 cards must be played.

3.3 System Design
This section presents the architectural design of the ASMACAG framework trough the
use descriptive information, use case tables and some UML diagrams. It provides a
deeper understanding of the approach taken for developing and the design philosophy
used.

3.3.1 Use cases

The different use cases for the game that stem from the requirements in Section 3.2 are
presented below, in Table 3.1, Table 3.2, Table 3.3 and Table 3.4.
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Table 3.1
Use case «UC1: Start game»

Use case UC1: Start game

Requirement The user can start a game between the bots.

Actors User and both bots.

Description A game can be started by the user by running the correspond-
ing file with the needed settings.

Preconditions:
1. The bots to play must be indicated in the file.

Basic path:
1. User runs the file.

2. Game is played.

3. Results are yielded as a text file or as console output.

Alternative paths:

[2.1] An error happens running the game.

[2.2] The operation is aborted yielding an error message as
console output.
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Table 3.2
Use case «UC2: Get game status»

Use case UC2: Get game status

Requirement R02: The bots can get the current status of the game.

Actors Bot making the request.

Description A bot can get the game status on its turn and get back all
the information available to it as a player (board cards, hand
cards and an unordered collection of the rest of cards left).

Preconditions:
1. The bot must be on its turn.

Basic path:
1. Bot requests the information.

2. The system creates a copy of the current game state.

3. The framework obfuscates the information that
shouldn’t be available to the requesting bot on the copy.

4. The framework returns the copy to the bot.

Alternative paths: None.
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Table 3.3
Use case «UC3: Play special card»

Use case UC3: Play special card

Requirement R03: The bots can play special value cards.

Actors Bot playing the card.

Description A bot can play a special value card, modifying the value of F .

Preconditions:
1. The bot must be on its turn.

Basic path:
1. Bot plays the card.

2. The framework modifies the stored value of F .

3. The framework removes the played card from the bot’s
hand.

Alternative paths:

[1.1] The bot has made an invalid movement, like playing a
card not in its hand.

[1.2] The framework gives the bot a big amount of negative
points to discourage this action.

[3a.1] The bot has played its third card.

[3a.2] The framework passes the turn to the next player.

[3b.1] There are no cards anymore on either player’s hand or
there are no cards anymore on the table.

[3b.2] The game ends yielding the corresponding result.
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Table 3.4
Use case «UC4: Play numbered card»

Use case UC4: Play numbered card

Requirement R04: The bots can play numbered cards.

Actors Bot playing the card.

Description A bot can play a numbered card from its hand on a numbered
card on the board and get points from it.

Preconditions:
1. The bot must be on its turn.

Basic path:
1. Bot plays the card over a card on the board.

2. The framework adds (P − B) ∗ F points to the score of
that bot.

3. The framework removes the played card from the bot’s
hand and the used card from the board.

4. The framework resets F to 1.

Alternative paths:

[1.1] The bot has made an invalid movement, like playing a
card not in its hand or playing it over a card that is not
on the board.

[1.2] The framework gives the bot a big amount of negative
points to discourage this action.

[3a.1] The bot has played its third card.

[3a.2] The framework passes the turn to the next player.

[3b.1] There are no cards anymore on either player’s hand or
there are no cards anymore on the table.

[3b.2] The game ends yielding the corresponding result.
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3.3.2 Use case diagram

The UML use case diagram in Figure 3.1 describes how the use cases presented before
interact between them and with the actors of the system.

Figure 3.1: UML use case diagram for ASMACAG.
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3.3.3 Software architecture

The code is architected to be easily understood and modified, with highly decoupled
classes. Firstly, there are some classes that describe the conceptual elements within the
game. They are defined as follows.

• Card: The Card class conceptualises the cards used in ASMACAG by using an
Enum with the different special cards called CardType. If it is a numbered card it
also holds a numeric value.

• Action: The Action class conceptualises a card being played. If the Card played
is an special card it only needs to hold that card, otherwise it holds two Card
instances. One of them is the one from the hand of the player and the other one
is the Card on the board.

• CardCollection: The CardCollection class keeps an ordered list of Card instances
and provides several methods to easily handle them. Is is flexible enough so that
there is no need for a different class describing a hand or deck.

Making use of the above described objects there are two different classes that can
keep track of the current game status. The first one is GameState. This class is the one
used by the Game which runs the actual matches. The other one is Observation which
is used to provide the bots only with the information they should be allowed to consult,
randomising the rest of values. This class also provides a set of methods that will make
bot programming easier. Examples of this are a method to randomise its hidden parts
again, getting another possible state of the game, or a method to get a random Action
that is currently valid to play.

The rules for the game are kept entirely decoupled from it by the using the For-
wardModel interface, which has the methods needed to decide how a GameState (or
Observation, so that the bots can also make use of it) will advance forward with the
game. Similarly there is also the Player interface which is used to define a bot. It also
needs to implement a single method that given an Observation decides what Action to
play. Note that although ForwardModel and Player are conceptually defined as inter-
faces they need to be implemented as abstract base classes in Python. These have all
the functionality needed from interfaces in this context.

Then there is the Game class itself, which essentially just acts as the mediator be-
tween the rest of the classes to make a match come together. It keeps the current
GameState, it requests what Action to play from a Player (enforcing compliance with
the budget of time) and it requests the ForwardModel to update the GameState using
the given Action. Also, parameters for the game such as the number of cards per player
hand or the numbers included in the numbered cards are kept decoupled from both the
Game and the ForwardModel in a class called GameParameters. An instance of these
parameters is passed to the Game when starting the match so that they are taken into
account.

Finally, there is another interface provided along with ASMACAG but separated
from the framework itself. This interface is Heuristic and it defines a set of methods
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useful to evaluate how good is for the current Player a given GameState. This aims to
make it easy to implement bots decoupled from the methods that assess performance,
by allowing them to just use the interface to request evaluations of the status of the
game a possible turn would lead to.

3.3.4 Class diagram

The UML class diagram displayed in Figure 3.2 describes the structure of the framework
architecture. It also includes the test bots needed for the experiments, which are further
described later in this document. The architecture has been designed with a focus on
simplicity of use and extensibility, as explained above.

Figure 3.2: UML class diagram for ASMACAG.
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3.4 System Architecture and Code Structure

ASMACAG, being a framework to run tests, is not tied to a specific system. The default
values are adjusted to perform well with the computer described in Section 2.2, but these
can be easily changed given the modular nature of ASMACAG.

Regarding code structure there are several best practices that ASMACAG takes
heavily into account. The aim of these is to have a code that is easily readable, un-
derstandable and that allows the user of ASMACAG to quickly grasp anything they
could need to. These practices are described bellow, together with the specific reasoning
behind following them.

• SOLID principles: The SOLID programming principles are the Single responsi-
bility Principle, the Open closed Principle, the Liskov Substitution Principle, the
Interface Segregation Principle and the Dependency Inversion Principle. Following
them leads to a code that is as decoupled as possible, as well as easily expand-
able. These principles are extremely well aligned with the design philosophy of
ASMACAG as a programming tool and therefore are the foundations on which the
codebase is laid out. They have been taken into account both when coding and
when designing the software architecture previously described in Subsection 3.3.3.

• PEP8: The Python Enhancement Proposal 8 is a document that gives coding con-
ventions for the Python code comprising the standard library in the main Python
distribution [15]. It is community maintained and the most widely accepted guide
on best practices on how Python code should be standardised so that it is read-
able and functional. In this regard, given the objective of ASMACAG of being
easily understandable and simple for any programmer, adhering to it seems like a
necessity.

• Type hinting: As Python is a dynamically typed language, understanding what
kind of values are required for each method when modifying ASMACAG or pro-
gramming a bot could be quite bothersome. For this reason, as well as for improv-
ing the documentation as explained below, the code for both ASMACAG and any
bots implemented within the project uses type hinting for both the parameters
and the return values of every single method. This way the user, specially when
using a powerful IDE, can get coding faster and more easily.

• Documentation: When developing a package that should be easily used, having
an extensive, but easily accessible and understandable, documentation is really
important. For this reason every sub package, class and method is documented in
ASMACAG. This is done with the use of docstrings. These docstrings provide all
the needed information but do not fulfill the requirement of being accessible and
usable. For this reason a proper documentation is generated from them following
the process that will be described in Subsection 4.1.4.
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3.5 UI and UX Design

There are two separate aspects to look into when talking about the user experience and
the user interface of this project. The first one is how a programmer that uses ASMACAG
as a tool interacts with the framework and the second one is the Human Player bot, which
is a bot implementation that aims to allow a user to play ASMACAG, either against
other user or against any bot. Therefore, this bot must take into consideration user
experience and user interface aspects.

3.5.1 Use of the ASMACAG framework

ASMACAG, being a code framework doesn’t have a proper interface itself, because it is
ultimately just a code package. Even with this into consideration, there are some actions
that have been taken with the intention of making the user experience of any developer
that uses ASMACAG as smooth as possible. Most of them are as described in Section
3.4, such as providing a detailed documentation for everything in the framework or ex-
tensively using type hinting. In this regard a live web page version of the documentation
is available online, as well as PDF version for offline use (see Appendix B).

Other measure taken for a better user experience with the framework is the generation
of output files for the games to allow for easy storage of results. In this files there is also
one of the most important and quality of life improving features for programmers using
non deterministic algorithms on their bots. The file includes a seed that can be input
to exactly reproduce that game, including bot decisions, allowing for easy step by step
debugging of any previous game where anything might have gone wrong.

3.5.2 Use of Human Player

The Human Player bot is an implementation of the Player interface that allows the
game to be played by a human. The user here acts as the player of the game and this
allows the possibility of getting a deeper understanding of the way games take place
and the actions that are undertaken by the bots. Given this approach, there are several
considerations that have to be taken for the design of both the user experience and
the user interface. It need to be a lightweight system, since its aim is to provide the
relevant information as easily as possible, in an understandable and user-friendly way.
It also need to accommodate the flexibility that ASMACAG allows to a certain extent,
so that it doesn’t limit the capabilities of the framework, and most importantly it has
to accurately display the actions taken, so that they can be analysed in detail.

A graphical user interface is a possible approach to this. If used, all information can
be displayed in a 2D graphical environment with simple graphics. It would display the
cards on the table as well as the cards on each player hand. The players’ name and
score could be displayed close to its hand and highlighted during its turn. When a card
is played it can be highlighted and complemented with some basic movement to show
how it has been used. The graphical user interface could also show changes in each bot’s
score and display the value of F . In Figure 3.3 a basic mockup of how the GUI could



3.5. UI and UX Design 23

be laid out is shown with the location of the cards, names, scores and the F value. Note
how the current player is highlighted using red, to show whose turn it is.

Figure 3.3: Proposed GUI design for ASMACAG.

Another way to accomplish the delivery of the information to the user, as well as
allowing user input into the game could be trough a command line based interface. This
can allow to show a more detailed information with all the needed data from the game. It
also allows for a far greater flexibility in game parameters and game rules without major
changes, while the graphical interface could need a big redesign for each game variation
needed or even need to be modified after certain parameter changes. The proposed
command line based user interface displays a list of possible actions that the user can
execute, given the current observation, and lets the user input the index of the action
they want to choose, a example of this is shown in Figure 3.5. This can be combined
with executing the game with a verbose parameter, which can display the current game
state per each turn as seen on Figure 3.4.

Figure 3.4: Game state display for ASMACAG when using the verbose parameter.

With this analysis of the possible ways human interaction could be implemented into
a bot, the decision to go forward with the command line version has been taken, which
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Figure 3.5: Proposed command based UI design for ASMACAG.

yields an overall better user experience for the specific tasks it has to accomplish within
this project. Even though the GUI might be a better user interface in some aspects,
adopting it would sacrifice some of the core aspects of this project’s philosophy, which
places the user experience above user interface design when they present a conflict. The
command line interface allows for far greater flexibility, which in this context is extremely
valuable.

It is also acknowledged that the GUI could be included additionally to the command
line interface. This would not have any additional drawbacks for the framework, because
it could be provided as an additional package. The problem with this addition is that it
would impact the time needed for the development of this step of the project significantly,
probably doubling it, or even more. Given this impact, the graphical approach to the
interface is deemed not suitable for the context of the project. Sticking to the time
limitations established in the plan is important so that most of the time can be devoted
to bot development and experiments, which are the core components of the project.

3.6 Algorithms implemented

This section describes the different algorithms to be implemented as bots and tested
using ASMACAG during the project. It also goes through the reasoning behind their
selection as part of the experiments that will follow their implementation.
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3.6.1 Random

This algorithm will just choose randomly one of the available valid actions when required
to decide, without looking into the next action to play at all. It will be implemented into
the Random Player bot. It is included to be used as a minimal baseline, to check that
each of the other algorithms are able to beat it in an statistically relevant and consistent
way.

3.6.2 Greedy One-Step Lookahead

This algorithm will just perform a greedy search on the available valid actions at one
moment of the turn, playing the one that returns the best value. Once again, it will not
go through the next actions that could be played during that turn. This algorithm will
be used by the OSLA Player bot. It is useful as a baseline heuristic algorithm, testing
the capability of each of the other algorithms to win against it, when applying the same
heuristic.

3.6.3 Monte Carlo Tree Search Algorithm

This algorithm is probably the most researched of the ones tested and it has been selected
for its relevance in the AI field during the last decades. First coined in 2006 [4], it has
been proposed almost since its conception as a useful algorithm for game AI [2]. It
iteratively builds a tree that estimates the long term value of each action until the time
budget is hit. Then it returns the estimated best performing action at that point. The
nodes represent the state space of the game, while the edges represent the actions. Per
iteration it applies the following 4 steps [1]:

1. Selection: From the root node, a child selection policy is applied to descend
recursively through the tree to find the most urgent expandable node, given that a
node is expandable if it represents a non-terminal state and has unvisited children.
This policy is usually the calculation of a UCB value, which is what will be used
to implement this bot.

2. Expansion: Child nodes are added, expanding the tree. In ASMACAG this
implies getting the possible actions from that node and creating a new child node
per action.

3. Simulation (or rollout): A simulation is run from the new nodes according to
the default policy to produce an outcome. In ASMACAG the outcome would be
the turn score and the simulation would be to select random actions from that
point in the turn until the turn ends.

4. Backpropagation: The outcome is propagated through the transversed nodes,
updating the nodes’ statistics.



26 System Analysis and Design

A basic summary of how this iterative process takes place can be seen on Figure 3.6.
It represents one iteration of the process that would continue until the budget limit is hit
(is the case that concerns us, when the time reaches the limit set for the turn calculation
in the experiment). This algorithm will be implemented into the MCTS Player bot.

Figure 3.6: One iteration of the general MCTS approach. From [1].

3.6.4 Online Evolution Algorithm

This algorithm has been selected for it’s relevance for the problem of multi-action ad-
versarial games. First proposed in 2016 [6], it aims to solve this specific problem. The
Online Evolutionary Planning algorithm is based on the concept of applying genetic
algorithms by evolving actions during a game (online) instead of using evolution to
train an agent that will play the game later (offline). This concept was first introduced,
though applied to a different type of games, by the Rolling Horizon Evolution algorithm
proposed at [12].

The Online Evolution algorithm tries to apply the aforementioned idea by using an
evolutionary algorithm on a set of actions composing a turn. As it is stated by Niels
Justesen in [6], "it can be seen as a single iteration of Rolling Horizon Evolution with
a very short horizon (one turn)". The algorithm tries to find the best combination of
actions for a turn by evolving an ordered set of actions, going through the following
steps in a loop.

1. Selection: Evaluates each of the possible turns in the current population and kills
the worst ones.

2. Crossover: Generates new possible turns to replace the killed ones by combining
pairs of the ones that are still alive.

3. Mutation: In this step there is a certain probability that an action within some
of the possible turns that were generated during the crossover process is replaced
with a random one.

This algorithm focuses on the idea of solving the problem that is the most specific to
multi-action games, which is finding the right combination of actions to compose a turn,
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and therefore should be quite efficient when trying to win at ASMACAG. It will be
implemented into the OE Player bot.

3.6.5 N-Tuple Bandit Evolutionary Algorithm

As a novel approach to solving multi-action adversarial games, the N-Tuple Bandit
Evolutionary Algorithm is also proposed. This algorithm was first designed for its use in
offline optimization of an heuristic function [8] and of the hyperparameters of an agent
for solving a set of games [10]. The idea suggested is attempting to apply it to evolving
in-game actions during the turn calculation, using a similar approach to the one Online
Evolution uses to adapt traditional evolutionary algorithms.

The N-Tuple system in the algorithm directly models the statistics, while approxi-
mating the fitness and number of evaluations of each modelled combination of parameters
[9]. This way, the algorithm places the focus on the combinations of the set of parame-
ters being optimised. Applying it to multi-action decision making, the aim is to further
focus on finding the right combinations of actions. Since this is the main problem of
multi-action games, as discussed before, this approach could give interesting results for
this specific kind of game.

The advantage it can have over other approaches, and specifically against other
evolutionary algorithms, is that the N-Tuple based model in the algorithm is faster to
access than the game itself. The algorithm tests several turns against that model, which
approximates the reward based on the data received up to that point, per each time
it tests a turn with the actual game. This allows the N-Tuple Bandit Evolutionary
Algorithm to test a lot more possible turns in the same amount of time. This algorithm
will be used by the bot named NTBEA Player.

3.7 Experiment Design

The experiments using the developed bots are an essential part of this work. They aim to
enable justified conclusions to be taken from them and provide useful results and insights
about each algorithms’ behaviour. They should also prove ASMACAG’s usefulness as a
bot testing framework. The experimental methodology for the experiments performed
at the end of this project is as follows.

The main experiment that articulates this project is performed by using 5 different
bots to play ASMACAG. The five bots used are the ones presented above in Section 3.6.
All of the bots will play 1000 games against each other. Each bot will be the first player
for half of the games played against any other bot and the second player for the other
half of them. This will allow to reduce the bias introduced by the fact that the game
is easier to win as the first player. All bots will have a budget to make decisions which
will be defined as time limit per turn, these time will be of 1 second.

Regarding the evaluation of the game states where an heuristic is needed all bots will
make use of the same one, it being the score difference between the players. Finally, to
evaluate the performance of each bot the number of wins will be used. The performance
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results will need to be assessed on their statistical relevance to draw conclusions on how
well each bot works.

Before the main experiment, there will be another experiment for adjusting the
parameters of each bot that needs it. These bots are MCTS Player, OE Player and
NTBEA Player. For each one of them a set of possible values per parameter will be
chosen. Then 1000 games will be played against OSLA Player per each possible value
for the parameter, keeping the rest of the parameters constant. This will allow to decide
on the best parameter set for each bot, which will be then used on the main experiment
explained above.
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This chapter of the report describes the process of developing the project and the
results obtained.

4.1 Work Development
This section goes through each of the core aspects of the development process, as well
as the way the experiments have been performed. It will follow a chronological order,
going through each of the steps that include relevant information for the report.

4.1.1 Development Environment

The first step of the development process is to set up a proper development environment
that allows for a quick and easy programming pipeline. There are several tools that were
set up for the development of ASMACAG. The first thing to be set up was a local Git
repository, with a remote hosted on Github. For managing this repository the tool Fork
was set up. Its use has allowed to streamline the process of managing the repository, by
providing features such as easy control of the different branches and stashes or simple
ways to rebase comments interactively.

Next, the IDE was set up. The tool chosen was JetBrain’s Pycharm, due to its ample
feature set. Tools such as its powerful debugger proved to be very useful further down
the development process. Another feature provided by this editor and extensively used

29
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during the coding of ASMACAG is the possibility to get warnings for any breach of
the PEP8 guidelines. This way, a readable and guideline-compliant code can be written
without systematically having to refer to the corresponding Python Enhancement Pro-
posal every single time. Finally, Pycharm also facilitates type hinting, which has been
deemed pretty important for the development of this framework as explained in Section
3.4.

Another tool that was set up, in this case as a Pycharm plugin, is Github Copilot.
This is a code auto completion tool that works using machine learning. Specifically, it
is based on Codex, a GPT language model fine-tuned on publicly available code from
GitHub [3]. This tool suggests code completions based on the rest of your code. It is
specially useful to streamline repetitive tasks or to help auto complete docstrings for
better documentation. Using this features the programmer can work quicker and be
more focused on the important structural aspects of the code, while being somewhat
less error prone.

4.1.2 Programming ASMACAG

Programming the main ASMACAG framework was a task that mainly encompassed
following with precision the architecture, best practises and processes laid out in Chapter
3. It also involved making good use of the tools available in the development environment
that was set up, as it has been just described in Subsection 4.1.1.

Once a first version of the framework was finished and it passed some basic unit
tests the development process already moved on into the bot development. But after
developing the first three bots described in Subsection 4.1.3, those bots were used to
perform in depth debugging on the framework. After this debugging process, that yielded
fixes for any errors produced during the development process, the project was ready to
go on and continue again with the bot programming, so that the experiments could soon
be run.

4.1.3 Programming the Bots

The bots were programmed in order from simpler to most complex, as seen below. A
summary of any relevant elements of each of the bot’s development process is provided
here. All of these bots have been programmed by overriding the abstract base class
Player.

1. Random Player: For this bot the only thing needed was to return a random
Action from the Observation received.

2. OSLA Player: This bot just requests all the actions from the Observation and
compares the effect of applying each of the using an Heuristic. It will not go
through the turn, as it would run out of time, but just return the action that gives
a bigger immediate reward.



4.1. Work Development 31

3. Human Player: For this bot a command line interface as described on Subsection
3.5.2 was developed. There were no major difficulties other than polishing the print
statements so that they are easily readable, to make interaction simpler.

4. MCTS Player: The development of the MCTS-based bot started by creating the
MCTSNode class. This class represents a node in the MCTS tree and contains
the methods needed to manage its children. It also contains methods to perform
each of the operations used for the algorithm, these are expansion, simulation
and backpropagation. Then, the actual MCTSPlayer class just needs to hold the
root node and follow the algorithm, going through the tree and performing the
aforementioned operations accordingly.

5. OE Player: For this bot, firstly, a TurnGenome class was developed. This class
holds a turn and act as a genome for the genetic algorithm. I holds methods for
performing the actions such as crossovers or mutations. One problem that needed
to be fixed during development was the fact that a turn can be no longer valid
when performing any of this actions. For this reasons the methods need to use the
forward model to actually test for validity on the new turn and replace any invalid
actions. The algorithm itself was implemented in the OEPlayer class, making use
of the TurnGenome class.

6. NTBEA Player: The development of this bot started with the development
of the Bandit1D and Bandit2D classes. These were based on the ones available
in the NTBEA implementation at [11]. This classes are used to compose the
statistical model that the algorithm uses. They hold methods for adding new stats
or requesting them. Then the FitnessEvaluator was programmed. This class is
used to calculate the fitness of a turn decided by NTBEA. It needs to translate
between an Action list and the integer list the Bandit1D and Bandit2D use, and
the other way round. The N-Tuple Bandit Evolutionary Algorithm itself was
implemented in the NTBEAPlayer class, making use of the aforemetioned classes
and some helper methods for better organisation and readability.

Also note that all the bots with algorithms that are performed until the time runs
out are implemented so that they calculate the whole turn using all of the budget when
they are requested the first action. Then they just keep the next actions in a list and
pop them when requested.

4.1.4 Creating the Documentation

During the whole development process the documentation started to be shaped, by
adding docstrings and type hints to all methods, classes and package files. Then a
revision of the whole code base was needed to fine tune it.

The next step was to generate the actual documentation files so that it can be
navigated through easily and it provides value to the end user. For this the package and
tool pdoc3 was used. Since it takes the documentation from the previously written type



32 Work Development and Results

hints and docstrings not much extra work should be needed, though there were a couple
problems to account for.

Firstly, there was the need to use forward typing in some cases, to prevent pdoc3
from not identifying the class in a type hint when it had not parsed it yet. This is a
feature from python that allows to reference a not yet defined name in type hints by
using an string literal, as defined on [14].

The other thing to account for was the fact that pdoc3 requires references to other
parts of the documentation to be between backticks and fully qualified from the root
of the project. This means that to reference a class, such as Action, from any part of
the documentation you would need to write ‘ASMACAG.Game.Action.Action‘ where
ASMACAG is the root package, Game is a sub package and Action first refers to the
file name and then to the class name. This required some rewriting of parts of the
documentation.

Finally, the documentation could be generated both in a PDF version and an HTML
version. The PDF version is provided in Appendix B. The HTML version was uploaded
to the code repository in AppendixA to separate branch. Then that branch was set as
the Github Pages source for the repository. This way the whole documentation is easily
accessible and navigable as a live web page at https://dvs99.github.io/ASMACAG/.

4.1.5 Runnning Experiments

For running the experiments, the file play_n_games.py was created. It contains a main
program that plays a set number of games between each pair of players given, in this
case 1000 games. Then, the variables to adjust in each algorithm had to be identified
and adjusted by testing their performance against the One Step Lookahead Algorithm.
The whole set of experiments described bellow, including the final one, are available on
the file reproduce_experiments.py so that they can be easily analysed and reproduced
by anyone.

For the Monte Carlo Tree Search Algorithm the value of C in the UCB function had
to be fine tuned. This is needed because the most common value of

√
2, which ensures

asymptotic optimallity, only does so when rewards are in the [0,1] range [7]. The set of
possible values to test was decided to be C = {0.5, 1.414, 3, 8, 14, 20, 30, 45}.

For the Online Evolution Algorithm three values needed to be adjusted. The first
is the size of the population, this is the amount of TurnGenome per generation of the
algorithm. For testing this parameter the other two values where kept constant at
survival rate = 0.15 and mutation rate = 0.35 while it was tested for the set of values
population size = {25, 75, 125, 175}. Then the mutation rate was adjusted. This
parameter controls the probability of mutating each Action of a TurnGenome after
generating it from its parents crossover process. For this, the other values were kept
constant at population size = 75 and survival rate = 0.35 while the bot was tested for
the set of values mutation rate = {0.05, 0.15, 0.25, 0.35}. Finally, the survival rate
had to be adjusted. This is the percentage of TurnGenome that will survive after a
generation and will be used to generate the new ones. During the process, the other

https://dvs99.github.io/ASMACAG/
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values were kept constant at population size = 75 and mutation rate = 0.15 while the
test was performed for the set of values survival rate = {0.05, 0.15, 0.35, 0.55, 0.75}.

The next bot to be adjusted was the one using the N-Tuple Bandit Evolutionary
Algorithm. Firstly, it was decided that the value for C in the UCB function was going
to be taken from the adjustment of MCTS Player. That value would only need further
adjustments if the scores returned by the game were in a different value range, which is
not the case. Then, the amount of neighbours per iteration needed to be adjusted. This
value controls the amount of neighbours of the current turn that are compared against
the NTBEA model to then choose the best one as the new current. In this context a
neighbour is a turn with one Action different from the current one. Note that other
actions may be different too, depending on the next parameter. For the experiment the
other values were kept constant at mutation rate = 0.3 and initialization amount =
500. The set of values tested was neighbour amount = {5, 10, 20, 50, 120}. Next, the
mutation rate was adjusted, being the probability of any extra Action changing when
generating the current turn’s neighbours. During the process, the rest of the parameters
stayed constant at neighbour amount = 20 and initialization amount = 500. The bot
was tested for the set of values mutation rate = {0.05, 0.15, 0.3, 0.55, 0.8}. Lastly, the
adjustment of the initialization amount was made. This parameter sets how many turns
will be initially evaluated using the ForwardModel, to then select the best of them as the
current initial turn for NTBEA. For testing this parameter the other ones where kept
constant at neighbour amount = 20 and mutation rate = 0.3, while the bot was tested
for the set of values initialization amount = {50, 100, 500, 1000, 3000}.

When all the parameters had been appropriately adjusted to their optimal values
from the given sets, the final experiment was run. This involved testing each of the bots,
with the decided parameters, against all other bots.

4.2 Results

This section discusses the results of the project and whether they are in line with the
objectives laid out at the start of its development. To do this it goes through the main
aspects of the project.

4.2.1 ASMACAG

The first of the outcomes from this project’s development is the ASMACAG framework.
It has ended up accomplishing the objectives it was aiming to. It is a well documented
framework, that keeps thing simple. But, as it can be seen from the experimental results
presented later in Subsection 4.2.2, it can reliably produce significant results about the
performances of the different bots.

The flexibility and modularity objectives have also been accomplished, as it is evi-
denced by the easiness that the tool provides when anything needs to be modified. This
allows ASMACAG to be a really useful framework for both research and education,
specially when combined with the good documentation and simplicity mentioned above.
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4.2.2 Experimental results

The first experiment to be performed was the value adjusting for MCTS Player. The
results are displayed in Table 4.1 and Figure 4.1. Please, note that the axes in the chart
are truncated to better display the changes between different values of C. As it can be
seen in the data, the performance of MCTS Player when playing against OSLA Player
peaks in a value of C = 8, which was used for the final experiment.

Table 4.1
Results table from the experiment for adjusting MCTS Player’s parameters

C value MCTS wins OSLA wins Ties

0.5 502 485 13
0.141 509 473 18
3 523 458 19
8 545 436 19
14 520 470 10
20 507 478 15
30 477 507 16
45 458 530 12

Figure 4.1: Results chart from the experiment for adjusting MCTS Player’s parameters.

The next experiment to be run was aimed to adjusting the parameter values for
OE Player. The results are displayed in Table 4.2. To show the results clearly, charts
separated per the parameter being adjusted are provided in Figure 4.2, Figure 4.3 and
Figure 4.4. Please, note that the axes in the charts are truncated to better display the
changes between different values of each parameter, and the axis values are different
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from the previous experiments. Also take into account that the first row of the table is
used in all three charts, as the information it holds is relevant for all three parameters’
adjustment. As it can be seen in the data, the performance of OE Player against OSLA
Player peaks in the following values: population size = 125, mutation rate = 0.15 and
survival rate = 0.15. The combination of those parameters results in the bot used for
the final experiment.

Table 4.2
Results table from the experiment for adjusting OE Player’s parameters

Population size Mutation rate Survival rate OE wins OSLA wins Ties

75 0.15 0.35 695 292 13
25 0.15 0.35 669 314 17
125 0.15 0.35 704 286 10
175 0.15 0.35 692 292 16
75 0.05 0.35 680 302 18
75 0.25 0.35 678 303 19
75 0.35 0.35 675 308 17
75 0.15 0.05 688 302 10
75 0.15 0.15 700 283 17
75 0.15 0.55 671 306 23
75 0.15 0.75 675 311 14

Figure 4.2: Results chart from the experiment for adjusting OE Player’s population size.
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Figure 4.3: Results chart from the experiment for adjusting OE Player’s mutation rate.

Figure 4.4: Results chart from the experiment for adjusting OE Player’s survival rate.

The last of the parameter-adjusting experiments was aimed at deciding the values
to be used for NTBEA Player. The results are displayed in Table 4.3. To show the
results clearly, charts separated per parameter being adjusted are provided in Figure 4.5,
Figure 4.6 and Figure 4.7. Once again, note that the axes in the charts are truncated
to better display the changes between different values of each parameter and take also
into account that the first row of the table is used in all three charts, as the information
it holds is relevant for all parameters’ adjustment. The performance of NTBEA Player
when playing against OSLA Player peaks in the following values: neighbour amount = 5,
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mutation rate = 0.55 and initialization amount = 1000. The neighbour amount shows a
clear trend towards the selected value, or an slightly lower one, being optimal. The other
two parameters seem to show a more unclear trend, but nevertheless the combination of
those peak values is used for the NTBEA Player in the final experiment.

Table 4.3
Results table from the experiment for adjusting NTBEA Player’s parameters

Neighbours Mutation rate Initializations NTBEA wins OSLA wins Ties

20 0.3 500 721 268 11
5 0.3 500 733 250 17
10 0.3 500 733 254 13
50 0.3 500 668 309 23
120 0.3 500 569 410 21
20 0.05 500 730 248 22
20 0.15 500 731 257 12
20 0.55 500 772 216 12
20 0.8 500 727 254 19
20 0.3 50 736 245 19
20 0.3 100 733 249 18
20 0.3 1 000 744 244 12
20 0.3 3 000 720 266 14

Figure 4.5: Results chart from the experiment for adjusting NTBEA Player’s neighbour
amount.
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Figure 4.6: Results chart from the experiment for adjusting NTBEA Player’s mutation rate.

Figure 4.7: Results chart from the experiment for adjusting NTBEA Player’s initializations.

After finishing the experiments for parameter adjusting, the final experiment could
be performed. The parameters used were the best found for each of the bots. The results
are shown using Table 4.4 and Figure 4.8. Random Player loses almost every game, as
it was expected. Given that its only use was to prove that the other algorithms were
actually working, a version of the results disregarding the games against Random Player
is provided in Table 4.5 and Figure 4.9. There, the results are shown more clearly and
without including ties, which also have a negligible effect in the overall results.
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Table 4.4
Results table from final experiment

Player Wins

Random 99
OSLA 1 896
MCTS 2 111
OE 2 726
NTBEA 3 035
Tie 133

Figure 4.8: Results chart from final experiment.

Table 4.5
Results table from final experiment (except games with Random and ties)

Player Wins

OSLA 940
MCTS 1 169
OE 1 738
NTBEA 2 047
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Figure 4.9: Results chart from final experiment (except games with Random and ties).

It can be seen that OSLA Player is the least performant bot, which is the expected
result given that it doesn’t make any attempt on finding a good combination of actions
for the whole turn. Then MCTS Player follows relatively closely, showing that it can
find combinations of actions but it is not as efficient as the evolutionary algorithms in
doing so. Then both OE Player and NTBEA Player are quite ahead, because they use
their evolutionary aspect to very efficiently find good combinations of Actions. Within
them, NTBEA seems to have a not extremely big but clearly significant advantage. This
proves that this novel approach to multi-action game solving, proposed on this project,
can yield better results than the current state-of-the-art algorithms.

4.2.3 Project-wide results

This project has yielded some overall results, other than the ones already mentioned.
One of them is this report describing the whole project vision and its development
process.

Also, an academic communication that complements this report has been produced,
in collaboration with Raúl Montoliu. It is titled NTBOE: A new algorithm for efficiently
playing multi-action adversarial games. This communication has been sent to the I
Spanish Video Game Conference organised by SECiVi and is currently under peer review
process.
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This is an opinion chapter aimed at giving closure to the project. It presents the
personal conclusions from the student and it outlines what are the future prospects for
ASMACAG and for the research process that the project has started.

5.1 Conclusions

The completion of this project has been a really successful endeavour. It has allowed
me to personally research artificial intelligence applied to video games in great depth. It
has also shown me that artificial intelligence has a really interesting future ahead when
applied to video games.

The results that the project has yielded are quite interesting. They show the real
possibilities of ASMACAG and, specially, the potential of applying a modified version
of the N-Tuple Bandit Evolutionary Algorithm to efficiently playing multi-action adver-
sarial games. This topic has been further researched to produce the paper mentioned
in Subsection 4.2.3 but it still has a lot of potential for in depth research, as explained
in Subsection 5.2. I am very motivated to continue researching this and other similar
topics.

Finally, I think that going though this work has allowed me to get experience on
developing a software product in a quite professional manner. I have gone trough all
the steps needed and carefully engineered ASMACAG and every bot to the best of my
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ability, within the given time constraint. This has been a new experience and I think
it has value both personally and professionally. On the other hand it has also allowed
me to further experience research and academics. This has motivated me a lot to have
professionally researching video game related topics and participating in academia in
general as a personal goal.

5.2 Future work
Regarding ASMACAG as a framework and tool there is much more work that could
be done, such as developing a graphical user interface as discussed in Subsection 3.5.2.
But the work to do is not limited to this project’s goals or to me as a researcher with
specific interests. Its design has aimed to provide a tool that can be extended and used
for educational or research purposes by anyone and that is the future envisioned for
ASMACAG. The hope is that its open source code can be extended and used by anyone
that needs it.

There is also the obvious possibility to develop more bots for further researching
artificial intelligence applied to multi-action adversarial games. Likewise, developing
new sets of rules for the experiments would also be really interesting. I will probably
work on both of those things in the future.

Finally, the main branch of research and possible future work that is available after
this project is further investigating the potential of applying to multi-action game solving
the variation of the N-Tuple Bandit Evolutionary Algorithm used in NTBEA Player,
either in the same way that has been done during this work or in a similar one. This is a
broad topic that includes testing the consistency of the results with different parameters
and rules, as well as implementing this same algorithm in several other multi-action
games. If it is successfully executed this can be a really amazing path to explore and
further research and it can lead to results that help move forward the field of artificial
intelligence applied to multi-action adversarial games.
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ix A
Source code

The whole source code for the project is available on a Git repository hosted at https:

//github.com/dvs99/ASMACAG, including the experiments’ results too. Since it is already
available there with fully public access no code snippets are provided in this document.
Please refer to the repository where you can check any part of the code as needed. Also,
if you just want to navigate the structure or check an specific method you can do it using
the documentation provided in Appendix B.
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ix B
Documentation

The project documentation is available in two formats. The recommended way of access-
ing it is using the live HTML web page containing all the information. This page provides
a well organised interface with links between any related parts for easy navigation. It can
be visited at https://dvs99.github.io/ASMACAG/index.html. The other available format
is a PDF document. It is not as feature-rich as the web version, but it still provides all
the information in a format that is easy to store offline if needed. It can be downloaded
at https://raw.githubusercontent.com/dvs99/ASMACAG/master/docs/docs.pdf.
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