UNIVERSITAT
JAUME-I

Application of Wave Function Collapse
Algorithm for Procedural Content
Generation in Video Games

Adrian Ramos Boira

Final Degree Work
Bachelor’s Degree in
Video Game Design and Development
Universitat Jaume I
May 25, 2022
Course 2021/2022

Supervised by: Miguel Chover Selles

To my mum, Tali,
who was always ready to comfort me
in my lowest moments in the degree when everything seems
imposible. Finally, I follow her advice and it seems that
I have been able to finish, we will see what provides the real world.

koksk

To my dad, Jose,
who was always trying to help me when
1 could not find the solution to a problem, despite that he have
no idea about anything related to programming
and he always tried to cheer me up during the degree. Lets see if I finally
could continue with this video games career and all the suffering was worth it.

skoksk

To my sister, Laura,
who have always been a good example of achieving her goals,
I could not get anything that I got without her. And the most important
She always reminded me to make prints to debug a code,
best coding advice ever. Lets see if I could keep following her steps
and get a job where I could explode everything that I have learned.

ACKNOWLEDGEMENTS

First of all, I would like to thank my Final Degree Work supervisor, Miguel Chover Selles
for his help during my years in the University first of all, and then for his help before the
beginning of the development of this project, which was crucial in helping me focus on this
topic which seemed unreachable when we started. As well as his advice to aim the project in
the direction that finally I followed.

I also would like to thank José Martinez Sotoca for his helping hand and his support during
the project since the early beginning, giving Miguel and me his complex and unique point of
view. He was a source of wisdom and crazy ideas which allowed us to find easy ways to
develop the algorithm that finally gave us the result that we wanted.

ABSTRACT

This document constitutes the project report of the Video Games Design and Development
Degree final project by Adrian Ramos Boira. This work is related to the procedural
generation of content using the Wave Function Collapse (WFC) algorithm. This algorithm is
used to build an environment following a set of constraints that ensures features such as good
playability, connectivity among different zones and an appealing style in the level
construction without losing the randomness of the procedural creation. Furthermore, the
environment built with the WFC algorithm will be included in a simple game, named World
Fighters Coliseum, which we have used to demonstrate the functionality of all the generated
content. On the other hand, in this project we are going to explore other functionalities of the
algorithm applying and adapting it to Al, such as building an NPC’s behaviour structure in a
procedural way.

il

CONTENTS

Contents v
1 Introduction 1
L1 Work Motivationo e e 1
L2, ObJCtIVES . . o vttt e 2
1.3. Environment and Initial State 2
2 Planning and Resources Evaluation 5
20 Planningo e 5
2.2 Resource Evaluation i 8
3 System Analysis and Design 9
3.1 Requirement Analysisco ottt e 10
3.2 System Design . ..ot e 14
3.3 System ATChitecture oot e 21
34 Interface Design oot 21
4 Work Development and Results 25
41 Modelling.ot 25
4.2. Procedural level generation 28
4.3. Procedural Al structures generationuureueenennennn... 37
4.4. Game Environment 57
4.5 ReSUILS . . o 61
5 Conclusions and Future Work 64
ST CONCIUSIONS . .ottt 64
S2Future Work . . .o 65
Bibliography 66
List of figures 68

CHAPTER

INTRODUCTION

Contents

1.1. Work Motivation oo e e e e e e e e e e e e e e e e e

L2 ODbJECHIVES . o v v vttt e e e 2
1.3. Environment and Initial State 2

This chapter shows what was the motivation of the project in the beginning and how it is
going to be developed, putting the emphasis on which are the main objectives of it and why
these objectives were chosen.

1.1. Work Motivation

The video games industry is one of the most profitable industries in the world nowadays, an
industry which moves so much money needs to evolve each day so there is a lot of money
invested in the investigation of new methods that boost the video games development to jump
to a new generation. Some fields that are being investigated are related with the procedural
generation of content for video games, an example of this procedural generation is Minecraft
where the terrain building is a key part of the experience of replaying the game infinitely.
Another example is Bad North which is an indie game where the procedural generation of
islands is a key element in the gameplay because of its mechanics. And like these examples,
there are many other video games which use algorithms to produce their content, making
each player experience different and even each play.

Therefore, we investigated until we found the Wave Function Collapse (WFC for short)
algorithm and we designed a project where this algorithm was applied to procedural
generation.

However, this final degree project was conceived not to be a project about how an algorithm
works, what we wanted is that this algorithm could be understood by the people, modify its
working pieces and watch how it changes the results. So we decided to create a game where a
key part of it would be modifying some parameters of the algorithm and trying the content to
check if it is functional for the game.

1.2. Objectives

Based on the motivations of the work, there are some goals that we are interested in achieve:
e Understand how the Wave Function Collapse algorithm works.
e Implement the Wave Function Collapse algorithm in the Unity environment.
e Use the Wave Function Collapse algorithm to create procedural levels.

e Explore the possibilities that the Wave Function Collapse algorithm could have in the
procedural generation of behaviours.

e Use the Wave Function Collapse algorithm to create behaviour structures for the
NPCs

e C(reate a demo where we can test the correct functioning of all the content created by
the WFC algorithm.

1.3. Environment and Initial State

As it was mentioned above, there are a lot of studios that are developing video games in
which some of their content was procedural generated, a good example are those games
whose terrain could be regenerated infinitely and it was different in each play. So, when we
found that there is an investigation topic that is related to the procedural generation of
content, this topic caught our attention and we decided to start investigating it. Then, we
started to look deeper and deeper and we found some information about the projects that the
people had been doing to understand how this kind of algorithm works.

Thus, we searched for some more information and examples of the Wave Function Collapse
algorithm application and the investigation started to look clearer. We found two really
important developers who have worked hard to explain and demonstrate the possibilities that
this algorithm has and they are Oskar Stilberg and Boris the Brave. As we were gathering
information about Wave Function Collapse, we came across more and more examples created
by Oskar Stilberg [5, 6, 7, 8] which show really clearly how the algorithm works from the
inside. His little projects were linked in the official github of the Wave Function Collapse
algorithm [27], created by one of the first persons that apply the algorithm to a video games

field, Maxim Gumin [28], and where many project related with the algorithm are linked to
make easier that the people can access to extra information about it. Those projects made by
Oskar Stilberg were our first contact with some content created by the WFC. When we
watched those examples and we understood how they were working, we were ready to start
figuring out the entire project.

The best project made by Oskar to understand the functioning of the WFC, it is one where
from a sixteen tiles tileset, the algorithm can build uncountable tilemaps all in a 2D world [1].
In this project, the user can slow down the execution and watch how the algorithm decides
which tiles are the ones which finally are set in the tilemap, so it is really useful to understand
the algorithm functioning. He also has some 3D projects which show the real power of the
algorithm, so when we saw these projects, we thought that could be a good first step in the
project to implement the Wave Function Collapse algorithm in a 3D environment. This initial
idea, along with the 3D projects of Oskar as example, ended up becoming a video game
where the player could watch how the algorithm works and test if the resulting content was
good enough for allowing them to play following some rules and using different mechanics,
demonstrating that the algorithm is good to create video games content.

We already had the first stones to build the foundation of the project, we had the idea of what
we wanted to do, we had a bunch of examples to understand the algorithm and we had some
articles and papers where we could search for information. So, with all these aspects we were
sure that making a project about procedural level generation was possible, but we had the
possibility to innovate if we tried to apply the WFC algorithm to another field where it had
been less used, so we thought about applying the algorithm to the Al field. So in this project
we have had the opportunity of creating a tool to make this algorithm useful for more video
games development fields than just the terrain generation. Therefore, we started to implement
the algorithm to create the level generation tool, so we needed more information about the
WFC and how it can be translated to code, and here is where the next important person
appears, Boris the Brave.

We started reading the Boris the Brave blog, it was a blog where he explain the functioning
of the WFC algorithm for dummies [2], so it was perfect to start getting the key aspects of the
algorithm and we could start thinking how we could implement such a complicated algorithm
in a scripting language that we could know and make it work properly.

Once we were sure that we had a good point to start with the algorithm, we started to design
the way that an algorithm for terrain generation could be applied to the Al field, so we
investigated a little more about Al structures and behaviours’ definition. So, we realised that
if the algorithm can generate terrain as a matrix of tiles, it also could generate a matrix of
behaviours and use this matrix to build a decision tree. Then, we realised that applying the
algorithm to the Al field meant that in the final game this content had to be tested by the
player too, so in that moment we had to rethink the game not only to let the player modify the
WEC algorithm to generate the terrain but also to generate the NPCs behaviour and then try
all this content in a entertaining game.

And this is how we ended up starting the development of the project. With clear ideas about
how we wanted to introduce the Wave Function Collapse algorithm to generate the terrain
and the enemies behaviours’ structures, and also develop some gameplay mechanics that let
the player check the correct functioning of this content in a real game. During the
development of the project we would be able to find support in the incredible community of
the Unity Asset Store, and thanks to the assets and models that they offer, we could focus our
efforts on the programming of the algorithm and the game mechanics.

CHAPTER

PLANNING AND RESOURCES EVALUATION

Contents
2.1 Planning 5
2.2.Resources Evaluation 8

This is the chapter with the most technical information. In this chapter we are going to
explain how we have planned the development of the project and the resources that we have
needed to use to accomplish the project.

2.1. Planning

Planning is a key aspect of a project development if we want to finish the project without
dying in the attempt. In this section it is detailed the tasks that form the entire project and
how it was decided to divide the work time among them. The planning is the following:

e Task 1 (20 hours): Search information about how the WFC works and which kind of
content can be generated.

e Task 2 (10 hours): Design the tiles which form the tileset and check if they are
appropriate to be used with this algorithm.

e Task 3 (20 hours): Implement the WFC algorithm in Unity3D. It involves thinking
which is the best way to express the ideas of the algorithm in C# and making it
functional inside the Unity engine.

o Task 4 (25 hours): Design how to adapt the algorithm to the tiles generation process
and use it to build procedural terrain which could be functional for a game.

e Task 5 (25 hours): Design how to adapt the algorithm to the behaviour generation
process and use it to build the decision structure that allows the NPCs to demonstrate
a functional behaviour in a game.

o Task 6 (30 hours): Design a real game where the player can modify some aspects of
the WFC algorithm and test the content procedurally generated, bearing in mind that
the gameplay experience has to be entertaining for the player.

o Task 7 (20 hours): Test if the joining together of the terrain generation, the behaviour
generation and the actual game work fine and creates a playable experience.

e Task 8 (40 hours): Solve the bugs that would be found during the development of the
project and in the testing task.

e Task 9 (70 hours): Write and correct the final report of the project and all the
documents that are needed during the project.

e Task 10 (40 hours): Create the slides and prepare the final presentation of the entire
project.

Total of hour: 300.

The summary of these tasks execution is represented by a Gantt’s chart which shows the final
order followed to work in the tasks and the final time that have been invested in each one (see
Figure 2.1):

TFGProject
 Setting of the Project
Search information about WFC algorithm
Technical Proposal Delivery
Design tiles of the tileSet
Implement WEC algorithm in Unity3D

» Game Development
Envircnment generation by WFC
Behavior generation by WFC
‘Gameplay mechanics, aesthetic, etc

GDD Document Delivery

» Game Testing and Bug Solving
Testing the game features
Bug solving

+ Document Writing
‘Write the Technical Proposal
Wiite the GDD document
‘Wiite the Final Project Report
Final Repert Tutor's Delivery
Final Report Delivery
Write the Project Presentation
Project Presentation Delivery

Assigned

Adridn Ramos Boira
Adridn Ramos Boira
Adridn Ramos Boira
Adridn Ramos Boira

Adridn Ramos Boira
Adrian Ramos Boira
Adrian Ramos Boira
Adrian Ramos Boira

Adrian Ramos Boira
Adrian Ramos Boira

Adrian Ramos Boira
Adridgn Ramos Boira
Adridgn Ramos Boira
Adridgn Ramos Boira
Adridn Ramos Boira
Adridn Ramos Boira

MAR 2022

27 6 13

20 27

Progress

97%

100%
100%

100%
100%

100%

100%
100%
100%

100%
100%
100%

9r%

100%
100%
100%

BO%

JAN 2022 FEB 2022

9 16 23 30 6 13 20 27

Adridn Ramos Boira

idn Ramos Boira

o N o (| : ; AdisRamos Bor

» Adrian Ramo:

- Adrian Ramos Boira

APR 2022 MAY 2022

17 24 1 8 15 22 29 5

Adrign Ramos Boira
Adrian Ramos Boira

mos Boira

o5 Boira

Adridn Ramos Boira
Adrign Ramos Boira

&» Adridn Ramos Boira
«» Adridn Ramos Boira
N S -
¢

Figure 2.1: DFP task planner (made with TeamGantt [3])

2.2. Resources Evaluation

This point contains a list of all the hardware and the software that have been used to
accomplish the project, not all of them are essential, similar products can be efficient too.
This is the list of tools:

e MSI GF65 Thin 9SEXR (i7 CPU, 16 GB RAM and GPU 2060 RTX 6GB): We have
used this pc as our main work platform.

e Unity 3D 2021.1.23f1: The engine used to develop the game.

e Visual Studio 2019: We used it attached with the Unity engine. It is a really useful
coding tool which integrates all the methods that are needed to handle all the actions
in the game. It uses the C# language which is a big pro because it is the language that
is more used during the degree.

e GitHub (GitHub Desktop): It is the tool through which we upload our project
versions to an online repository. It is really useful to avoid losing progress of the
project and it provides backup versions if something goes wrong.

o Kirita 4.2.9: It is a free design tool that we used to create the tile meshes and all the
GUI aspects and menus of the game.

o Adobe Premiere Pro CC 2020: We used it to edit the videos that are included in the
game.

e TeamGantt: It is a tool to make Gantt charts in an easy way and we used it to
organise our workflow and control when the delivery dates were close.

e Unity Asset Store: It is the official store site of Unity where we found the models
that we used for some aspects in the game such as the character and the environment.

e Mixamo: It is a free website which provides the users with good looking animations
that can be applied to 3D models and that are compatible with the Unity engine. The
most interesting part of this tool is that everyone can upload their model, apply any
animation and then download it for free.

e Lucidchart: It is an online free tool that provides the user with a lot of tools to design
their diagrams, we have used it to design the case use and activity diagram for this
project.

CHAPTER

SYSTEM ANALYSIS AND DESIGN

Contents
3.1. Requirement Analysist 10
3.2.8System Design 14
3.3. System Architecturettt 21
34. Interface Design 21

This chapter deals with the description of the requirement analysis, the system design and the
system architecture of the game, here we are going to explain all the main aspects related
with the game mechanics, the game flow and the possibilities of the player inside the game.
Moreover, this chapter shows how the game user interface is and the information that it
provides to the player.

Figure 3.1: Playable and Non-Playable Characters

3.1. Requirement Analysis

Making a game from the beginning can be seen as a problem to solve. To start figuring out
how the problem can be handled is really important to do a preliminary analysis of the
requirements that the final product must have.

The game we are going to design to explode the power of the WFC algorithm is an arcade
gladiator combat game. Maybe, this description is too generic, so it is difficult to deduce the
game requirements from it. A deeper description surely helps us to work out better the
functional and nonfunctional requirements for the game.

World Fighters Coliseum is, as said, an action combat game inside a gladiators’ arena.
Therefore, the player will have to face the enemies inside the arena until all the enemies are
dead or the player fails and dies (see Figure 3.1).

As soon as the game is started, the player sees the main menu (Figure 3.2) where there are 3
options: Start, Tutorial and Exit. Selecting the last option the game will be quitted. Pressing
the Tutorial button a new scene appears where the player can try the main mechanics of the
game and practise with the character’s controls. And, finally, selecting the Start button the
game starts.

Figure 3.2: Main Menu of the game

In this game, the mechanics are a key factor and they have been thought to be simple and
easy to understand. In addition, the mechanics are really important for trying the performance
of the WFC algorithm in Al generation, which is one of the main contributions of the
project.

10

Once inside the game, all the action is going to be performed in an arena where the player has
to face all the difficulties that they find. Inside this arena there will be a random number of
enemies which could be archers or swordsmen, so each type will behave differently to
confront the actions of the player. Furthermore, the arena is going to be a kind of colosseum
where there will be a moat limiting the fight zone and some features such as barrels and
crates which can be used by the player to get some cover and hide from the enemies. Before
entering the arena, the player will be in a separate room where they can select the
characteristics they want that the enemies and terrain have. These characteristics will be used
as parameters for the WFC algorithm, this allows the player to understand how the algorithm
decides when it is generating new content.

The main actions that the player is able to do with the main character are represented by the
following list, we have decided to differentiate two types of mechanics related to the player’s
actions (see Figure 3.3):

The first category is related to the actions that the player can do during the action phase of the
game. So, the basic actions are the possibility of moving over the XZ plane, using the WASD
keys, and rotating around the Y axis, using the mouse. These actions let the player move
around the game map, explore the combat zone, seek or run away from the enemies.
Moreover, the player can attack, they are able to fight with their sword, using the left mouse
click, and block with the sword the enemies’ attacks, using the right mouse click.

The second category is related to the actions that the player can do but these actions are
focused on the functioning of the WFC algorithm to build the terrain and to generate new
decision trees for the NPCs, all these actions are limited to the starting room before entering
the arena. So, in the terrain generation field, the player has the possibility to choose which
tiles are used to create the terrain. However the behaviour generation seems to be really
different from the terrain building, the way that WFC face these two processes are really
comparable, so their parameters selection is also similar. Thus, in the behaviour generation
field, the player has the possibility to choose which actions are used to build the decision tree
of the NPC. This selection, using the left mouse click, is going to be done through activating
or deactivating buttons which the player is going to interact with to minimise the complexity
of the parameter selection.

11

Figure 3.3: The main character model

On the other hand, we can say that it is a simple game but it lets us explore different
combinations of behaviours for the NPCs inside a simple and controlled zone which makes
the algorithm testing an easier task. As has been said, there are two types of enemies, archers
and swordsmen, so, in the game, there are some shared mechanics among the both types, and
some specialised mechanics for each one. To differentiate between both types of enemies,
each one has a different model and a different weapon (see Figures 3.4 and 3.5). The most
important mechanics are the following:

Figure 3.4: Face to face enemy Figure 3.5: Long distance enemy

These mechanics are all actions which the enemies can do to face the player and try to create
complex strategies. There are two types of enemies: long-distance enemies, archers, and

12

face-to-face enemies, swordsmen. The shared behaviours are a stand-still behaviour and a
patrol behaviour needed to watch some zones in the arena. In addition, both types have the
behaviour of retreat inside a more fortificated position and go to strategic locations.
Moreover, face-to-face enemies have some different behaviour than long-distance ones. The
first ones have the behaviour of getting close to the player and attack with the sword, the
second ones have the behaviour of getting away from the player, aiming and shooting them.

3.1.1 Functional Requirements

A functional requirement represents a function of the system that some agent is going to
accomplish during the play. This is the list of the functional requirements of the game:

R1: The player can quit the game by pressing the Quit button.

R2: The player can start the game by pressing the Start button.

R3: The player can enter the tutorial by pressing the Tutorial button.

R4: The player is capable of moving all around the map using WASD keys.

RS5: The player can activate buttons, using the left mouse click, inside the initial room.

R6: The player can deactivate buttons, using the left mouse click, inside the initial room.
R7: The player can attack the enemies with the sword, using the left mouse click, inside the
arena.

R8: The player can block the enemies attacks with the sword, using the right mouse click.
R9: The player can choose which tiles are used for building the tile map.

R10: The player can choose which basic behaviours constitute the decision tree of the NPCs.
R11: The enemies are able to retreat to a fortificate area.

R12: The enemies are able to hide in different strategic positions.

R13: The enemies can attack the player when they detect them.

R14: The enemies (only the swordsmen) can get close to the position of the player.

R15: The enemies (only the archers) can get away from the player position.

3.1.2. Non-functional Requirements

Non-functional requirements are requirements that impose restrictions in the game, such as
the aesthetic, the GUI, the map limitations and so on. Commonly these restrictions are related
with the world design, the interface and the possibilities inside the game.

R16: The aesthetic must be low-poly, simple and clean.

R17: The UI must be simple, easy to read and discreet, not obstructing the player's sight.
R18: The control must be practical, a bit slow but responsive.

R19: The enemies must have an individualist behaviour but coordinated with their partners.

13

3.2. System Design

This section presents the logical and operational design of the system. This design is
represented with a case of use diagram (see Figure 3.6) and the game flow inside the game is
represented with an activity diagram (see Figure 3.7). And the description of each case is
listed in the following tables:

Requirements: R1
Actor: Player
Description: At the main menu scene the player have the possibility to select

the Quit button to exit the game.

Preconditions: 1. The player is at the main menu scene.

Steps normal sequence: 1. The player selects the quit button.
2. The game is closed.

Alternative sequence: [1.1] The player selects any other button in the menu.

Table 3.1: Case of use “CUO1. Quit Game”

Requirements: R2
Actor: Player
Description: At the main menu scene the player have the possibility to select

the Play button to enter the game.

Preconditions: 1. The player is at the main menu scene.

Steps normal sequence: 1. The player selects the play button.
2. The game world is loaded.
3. Control is returned to the player.

Alternative sequence: [1.1] The player selects any other button in the menu.

Table 3.2: Case of use “CUO02. Play Game”

14

Requirements: R4

Actor: Player

Description: The player is capable of moving around the map using the
WASD key.

Preconditions: 1. The player must have started the game.

Steps normal sequence:

1. The player presses one of the movement keys.
2. The game moves the player according to the key that is
chosen.

Alternative sequence:

[1.1] The player selects any other key.
[1.2] The player is trying to move toward an obstacle.

Table 3.3: Case of use “CUO03. Move Character”

Requirements: R5

Actor: Player

Description: Inside the game and in the initial room the player can interact
with buttons to activate them, that let the player
choose which tile and behaviours will be available for the WFC
algorithm.

Preconditions: The game has started and the player is inside the initial room.

Steps normal sequence:

1. The player aims for the button.
2. The player clicks the left mouse button.
3. The player activates the button.

Alternative sequence:

[1.1] The player decides not to aim for the button.
[2.1] The player clicked any other button.

Table 3.4: Case of use “CUO04. Activate buttons”

15

Requirements: R6

Actor: Player

Description: Inside the game and in the initial room the player can interact
with buttons to deactivate buttons, that let the player
choose which tile and behaviours will not be available for the
WEFC algorithm.

Preconditions: The game has started and the player is inside the initial room.

Steps normal sequence:

1. The player aims for the button.
2. The player clicks the left mouse button.
3. The player deactivates the button.

Alternative sequence:

[1.1] The player decides not to aim for the button.
[2.1] The player clicked any other button.

Table 3.5: Case of use “CUOQS5. Deactivate buttons”

Requirements: R7

Actor: Player

Description: Inside the game and in the arena the player can attack to the
enemies.

Preconditions: The game has started and the player is inside the arena.

Steps normal sequence:

1. The player aims for an enemy.
2. The player clicks the left mouse button.
3. The player attacks the enemy.

Alternative sequence:

[1.1] The player is not aiming at the enemy.
[2.1] The player clicked any other button.

Table 3.6: Case of use “CUO06. Attack to the enemies”

16

Requirements: R8

Actor: Player

Description: Inside the game and in the arena the player can block with the
sword the enemies’ attacks.

Preconditions: The game has started, the player is in the arena and under an
enemy’s attack.

Steps normal sequence: 1. An enemy attacks the player.
2. The player clicks the right mouse button.
3. The player blocks the enemy’s attack.

Alternative sequence: [1.1] The enemy fails the attack.
[2.1] The player clicked any other button.

Table 3.7: Case of use “CUOQ7. Block the enemies’ attack”

Requirements: R3

Actor: Player

Description: Inside the main menu, the player can select the Tutorial tab.
Preconditions: The player has to be in the main menu scene.

Steps normal sequence: 1. The player selects the Tutorial button.

2. The tutorial scene is loaded.
3. The control is returned to the player.

Alternative sequence: [1.1] The player can select another tab of the menu.

Table 3.8: Case of use “CUOQS8. Select Tutorial button”

17

Requirements: R9

Actor: Player

Description: Inside the game and in the initial room, the player can select
which tiles the WFC algorithm will use to generate the terrain.

Preconditions: The game has started and the player is inside the initial room.

Steps normal sequence:

1. The player activates a certain button.
2. The related tile is considered by the algorithm.
3. The algorithm uses it to generate the terrain.

Alternative sequence:

[1.1] The player deactivates this button.
[3.1] This tile is not used during the generation.

Table 3.9: Case of use “CU09. Select a tile for the tile set”

Requirements: R10

Actor: Player

Description: Inside the game and in the initial room, the player can select
which behaviour blocks are considered in the block set which
the WFC algorithm used to generate the NPCs’ decision trees.

Preconditions: The game has started and the player is inside the initial room.

Steps normal sequence:

1. The player activates a certain button.
2. The related block is considered by the algorithm.
3. The algorithm uses it to generate a NPC’s decision tree.

Alternative sequence:

[1.1] The player deactivates this button.
[3.1] This block is not used during the generation.

Table 3.10: Case of use “CU10. Select a block for the block set”

18

19

Cuo1

Quit

Game

Selecta
block for the
block set

Cu10

Play cuo2

Game

Move
Character
Activate
Buttons

CuU05

Select a tile
for the tile set

Cu09

Ccuo3

CuU08 [Select Tutorial

cuo4

Block the
enemies’
attack

cuo7 Deactivate

Attack to the Buttons
enemies

CuU06

Figure 3.6: Case use diagram (made with https://www.lucidchart.com/pages/es)

https://www.lucidchart.com/pages/es

Figure 3.7: Activity diagram (made with https://www.lucidchart.com/pages/es)

https://www.lucidchart.com/pages/es

In the activity diagram it shows the game flow that a regular game can have. The normal
evolution of the game play is the following: Firstly, the player starts the game, and they
appear inside the initial room. Here, the tiles selection is done by the player, concurrently to
the blocks selection. Then, we have a possible alternative, if the minimum number of tiles, or
blocks, needed is not chosen then the player can not continue and they repeat the selection. If
the parameters’ number is the correct one, the player can continue with the normal execution
of the game. Secondly, the player enters the arena, once inside we have two possibilities, the
player can stay undetected, so they proceed as normal; or the player is detected and they have
to find some cover. In both cases, the following step is getting close to an enemy and
attacking them. Finally, here we have two possible paths: the player is defeated, so the game
is restarted and the player appears inside the initial room again; or the player kills the enemy
and keeps going to the next step. The last bifurcation is determined by the number of enemies
that are still alive, if there are no more enemies alive, the game is over and the player have
won, otherwise the player has to come back to the approaching phase of the game.

3.3. System Architecture

This section describes the architecture of the projected system. Which includes the hardware
and software requirement for accomplishing the entire project. The video game is made with
Unity3D engine, specifically with the 2021.1.23f1 version. For running games made with this
engine the minimal specifications are:

e (Operating system:
- Windows 7 sp+1(64-bit version)
- MacOS X 10.2
- Ubuntu 16.04
- CentOS 7
e (CPU: SSE2 instruction set support.
o GPU: Graphic card with DX9 (shader model 3.0) capabilities
e RAM: 8 GB ram memory.

This information is taken from this web [4], but the minimum requirements can vary a lot
depending on the scale of the project, so could be some systems that satisfy the minimum
requirements of Unity that could not run this project. The project has been developed and
tested on a system with the following specifications:

e Operating System: Windows 10 (64-bits)

e CPU: Intel Core i7-9750H

21

e GPU: NVIDIA GeForce 2060 RTX
e RAM: 16GB memory

It is recommended to play the game using a mouse if playing on a laptop, because the
controls are more comfortable and accurate.

3.4. Interface Design

The game user interface is designed to be simple, easy to understand and unobstructive to the
view. We want that the GUI would be appealing for the player but trying that the design does
not steal too much attention from the important artistic aspects of the game as the tiles used
for the terrain or the models.

The interface tells the player some information related to the current state of the game. The
player can know how much life they have left, this information appears on the upper left
corner of the screen. Then, the player can also know which weapon they are holding in their
hand, this information is supported with some representative sounds about what actions the
character does (see Figures 3.8, 3.9 and 3.10). This information appears in the lower right
corner of the screen. Here we can see some images that help to understand the GUI
distribution better.

Figure 3.8: GUI in the initial room

22

Figure 3.9: GUI in the middle of the arena (blocking action)

Figure 3.10: GUI in the middle of the arena (attack action)

23

24

CHAPTER

WORK DEVELOPMENT AND RESULTS

Contents
41.Modelling 25
4.2. Procedural level generation 28
4.3. Procedural Al structures generation 37
4.4.Game Environment 57
45.Results 61

After having a general idea about how the entire project has been developed, the
requirements that we need to satisfy to carry on with the project, the main mechanics of the
game and the main objectives of the project, we can start talking deeply about the most
important aspects of the project development. So, we are talking about the actions that have
been accomplished during the project development and why each decision was taken.

In this section, it will be discussed the decisions and the actions that have been taken during
the development of the game. The information used to develop the work comes from
scientific papers, blogs, experiences from other developers and Youtube videos. All these
documents have been used to get a wide perspective of the WFC algorithm and how to
implement it in a functional game. In the bibliography you would have the links to the
articles, the examples and the videos used in this project.

4.1. Modelling

Before starting with all the code and implementation part, we have to differentiate the two
ways that we are going to use the WFC algorithm, the first one is to generate procedural
terrain, which were the first step on the implementation, the second one is to generate
procedural behaviour structures for the NPCs, which implementation has been based on the
terrain generator implementation. So, one of the main parts of the project is focused in the
terrain building and the key pieces of an algorithm of terrain generation are the tiles that will

25

be the minimum unit of the tilemap. Therefore, it is needed that the designing of these tiles
would be appropriate for the generation because it directly influences the functionality of the
WEC algorithm. This algorithm works as good as the tiles we give it to work so it is a key
factor in the project (see Figure 4.1).

Figure 4.1: Image of 2D content created by WFC algorithm [1]

There are many ways to make a good tileset for getting a good efficiency from the algorithm,
among all the strategies, using Marching Cubes is a good option because it checks if the
corners are empty or solid and based on that information chooses which tiles can fit together.
We are using a similar strategy to model and design our tileset, we are checking the sides of
the tile leveraging that they have square shape because it is more visual and simple. So, we
have created a tileset (see Figure 4.2) in which the tiles can fit together if they have in the
touching sides the same material, for example, a tile with grass crossed by a straight road has
to be touching a tile with grass in two of their opposite sides and a tile with road in the other
two sides.

26

Figure 4.2: Appropriate tileset for terrain building with WFC

The terrain in this game has an important role not only because it is a key aspect for the
mechanics and the strategy of the player but also because it is generated by WFC algorithm,
which can be critical for the playability if the algorithm would not work well. In this game
the terrain is built using tiles from our tileset, which has the characteristics that we have
explained above. These tiles are set on a matrix that represents the entire arena environment,
and they are taking up the positions of the matrix cells.

The tiles have to accomplish some constraints to be used in this algorithm. First of all, we
need that the tiles have the same size as the cells of the matrix, they also must be the same
size as the other tiles because if not, when they were set up, it will produce some critical
problems and the environment will not be able to be used in a play. The most important
characteristic in the tiles is that, bearing in mind the constraints, the algorithm always finds a
combination of tiles that could be placed together to create the terrain. Despite that, the tiles
can have any form or any stuff over as long as they have one of their sides compatible with a
side of another tile in the tileset.

The rest of the art in the video game have less importance for the main objectives of the
project, because it is related to the visual aspect of the minigame features and to the GUI of
the game, so it has to be appealing but it can not interfere with the functionality of the
algorithm or the game.

The artistic style of the game is influenced by the cartoon, we want to make the environment
look simple and friendly, in addition, the colour palette is going to be a pastel palette with
similar intensities and minimising the contrast in the environment. Because we want to
achieve a children-playground atmosphere, we can make the game visually appealing and
easy to understand which fits well with the way that we want to show the functionality of the
WEFC algorithm.

27

4.2. Procedural Level Generation

Once the tiles design is appropriated for the Wave Function Collapse algorithm, we had to
start implementing the algorithm, so we based our work on the Boris The Brave [2] blog,
and we had to start translating the text into C# structures. The translation started
understanding which are the key elements in the algorithm and how they are related to each
other because that will give us the key to represent it as classes and relationships among
them. The key elements that WFC uses are: the variables which are the unknown elements
that the algorithm has to establish, the domain that is all the possible elements that can take
up the variable space and the constraints that are the rules that we want the final result to
follow.

So, how can we implement the terrain generator? In our problem we are implementing the
algorithm by creating a grid in which each cell represents a variable. Each variable has a
domain which is formed by the tiles from the tileset which still respects the constraints that
are applied to this variable, in the implementation the domain is a boolean array. Finally, we
have to define what the constraints are. In our problem, we have decided that these rules are
defined by the orientation of the roads that are represented in the tiles.

But we can not talk about the Wave Function Collapse algorithm without talking about
entropy. In the original problem, the algorithm establishes an initial tile and propagates the
restriction from this tile to the rest of variables, once the algorithm can not propagate the
restrictions through more variables, then it uses the entropy to choose the next tile that could
be established. So, in our problem the entropy has to be used in a similar way, because our
first WFC implementation is used to build terrain.

Then, the entropy, in this algorithm, is a value that represents the probability to get to a stable
situation, so taking a decision that have the lowest entropy value is more likely to end getting
to this stable situation, and, we need to achieve this stability to build correctly a playable
terrain.

Once we have more idea about what the entropy value really mean, it is time to get to the way

that it could be calculated. After all, the entropy formula is ;: p,* logp) being p; the

i=0
probability of each element in the set. So, it considers the probabilities of each element to be
elected to determine the entropy value of the set. Therefore, in our problem the probability of
each element is the weight of each tile divided by the total weight of the set, and the set is the
tiles that are still available in a variable when the entropy is calculated, that is the domain.

The way that the WFC algorithm generates the terrain is a bit complicated but it is really
visual. We establish one cell of the matrix as the starting point of the algorithm, there we set a
tile randomly and that tile gives the first restrictions. Then, the algorithm moves through the
neighbours of the current cell eliminating possibilities of them, and this process is repeated in
each cell until all would be visited or a certain condition was accomplished. When the

28

algorithm finds that in some cell there is one possibility left then set the specific tile on this
variable. This is the way that the complete arena is generated so when the algorithm finishes
we are sure that all the tiles accomplish the constraints that the player has specified, so the
arena is totally playable. We are able to generate really different scenarios using the WFC
algorithm but changing the weights and the type of the tiles (see Figure 4.3).

Figure 4.3: Different maps examples generated by the WFC algorithm

Now, that we have understand how the algorithm works and which are its key aspect for its
well-functioning, we can start seeing how the basic elements can be implemented in C#. As |
said, the minimum element in the WFC algorithm is the Variable, so this is how the Variable
class is built (see Figure 4.4).

29

variable : ScriptableObjec

[1 domain;
domainCount;
[1 visited;
GridTile tilecChosen;
entropy;
GameObject tileReference;

Setvariable(size)

domain = [size];
entropy = of;
for (i=0; 1< size; i++)

{

domain[i] = 5
¥
visited = [size];
tileChosen = 5

domainCount = size;

Figure 4.4: Variable class and its constructor.

A little note before carrying on with the explanation. In the Variable class we need an integers
array named visited, because when we are propagating the constraints it is possible that in the
previous variable’s domain there were more than one available tile, so we have to take the
count about how many of those tiles can connect with the current variable’s available tiles,
and if one of the tiles can not, that tile have to be eliminated from the domain. However, if
the previous variable’s domain has only one available tile, if one tile from the current one
domain can not connect, it automatically is out of the domain.

Now, we can talk about the other key element in the WFC algorithm, the entropy. All the
variables need a method to calculate the entropy when the main process demands it (see
Figure 4.5). The final entropy value only depends on the available tiles in the domain of the
variable, so we have to check which tiles are still active and which ones are already
eliminated.

At this point it is necessary to explain why we need weights for the tiles and why we choose a
weight and not another. The weights are needed because we want that our terrain would be
formed by all the tiles in the tileset but not all the tiles in the same proportion, because it
would produce that the final terrain would be a meaningless mixture of tiles making it
unappealing. So, the weights is a way to determine which tiles are more important than others
and the algorithm is made to use the most important tiles more than the others. On the other
hand, the weight chosen for a tile is not really important, what is important is the difference
of weights among tiles. So, we need to differentiate really well the tiles by weight, when we
want that in the final terrain some tiles would be clearly favoured. Besides, if we want that
some tiles appear more or less with the same probability, we have to put similar weights
independently which would be the number chosen.

30

CalculateEntropy(List<Tile> tileSet)

auxiliar = of;
maxWeight = ef;

for (i =0; i < tileSet.Count; i++)
{
if (domain[i])
maxWeight += tileSet[i].weight;
1
I

for(i =@; i < domain.Length; i++)
{
if (domain[i])
I
L auxiliar += (tileSet[i].weight/maxweight) * Mathf.Log((tileSet[i].weight/maxwWeight));
}
i

entropy = auxiliar * (-1);

Figure 4.5: Variable’s method to calculate its entropy.

The last method needed is SetTile, this method is used to choose which is going to be the
final tile that fills this variable, the tile is passed as an argument and the real game object is
created using the Instantiate() unity method, which lets the algorithm transform a tile
reference to a real interactable object in the game world.

Following with the algorithm we can say that it has three well-defined parts: the initialization
of the variables grid, the selection and setting of a tile in a variable and the constraint
propagation from this tile. All these three parts are gathered in a class named
TileSetGenerator. Here we are going to break down this class into four parts to make it
simple to understand, first of all, the attributes declaration (see Figure 4.6), secondly the
initialization of the generator, thirdly the tile election method and finally, the constraint
propagation method.
Tiles tor : Monol viour
[Header("Terrain building variables™)]
numCol;

numRow;
maxSteps;

ileSize;
> tileset;

n predefinedPath;

[HideIn] variable[,] grid;

originalPos;
currentPos;
gridcleared =

preDefinedPath = 7
[,] predefinedPathCoor;

Figure 4.6: TileSetGenerator attributes declaration.

31

Some clarifications about the attributes are needed. The maxSteps attribute is a kind of depth
limit to avoid that the constraint propagation would be run through all the grid making the
algorithm unaffordable in execution time. Moreover, the surface attribute is a reference to an
object that lets the algorithm create a navMesh in execution time that could adapt to the
terrain generated [9]. Then, the transform attribute named predefinedPath is a reference to an
object that includes a pre-established path that is set in some of the cells of the grid. It
represents some constraints that would change the terrain generation making that the final
terrain would be adapted to this path. Finally, the grid attribute is the base of the algorithm, it
is the object that the algorithm is going to run through deleting the tiles from the variables’
domain, setting the final tiles in the appropriate positions and propagating the constraints to
the neighbours.

Secondly, in the 7ileSetGenerator class we need an initialization method where the algorithm
could initialise the grid to neutral values, creating the appropriate initial scene for the WFC.
In addition, in this method we have added a way to adapt the initial state of the grid to the
possibility that a predefined path already exists, so the WFC has to modify the initial state of
some variables to adapt them to the constraints generated by this predefined path, making
sure that the algorithm could build a functional terrain for the game (see Figure 4.7).

Initialize()
originalPos = transform.position;
currentPos = transform.position;
grid = Variable[numRow, numCol];

for i=0; i < grid.GetLength(0); i++

for (Jj = ©; J < grid.GetLength(1); j++)

grid[i, j] = Scriptable0Object.CreateInstance<variable>();
grid[i, j].setvariable(tileSet.Count);
grid[i, j].cCalculateEntropy(tileset);

transtorm.childCount > @ && predefinedPath.gameObject.activeself

preDefinedPath = 5
predefinedPathCoor = [predefinedPath.childCount, 2];

32

i = 0; i < predefinedPath.childCount; i++)

[1 coor = { Mathf.FloorToInt(predefinedPath.GetChild(i).position.z),
Mathf.FloorToInt(predefinedPath.Getchild(i).position.x) };
predefinedPathCoor[i, @] = coor[@];
predefinedPathCoor[i, 1] = coor[1];
choosenTile = -1;

k = 8; k < tileset.Count; k++)

predefinedPath.GetChild(i).name.StartsWith(tileSet[k].tile.transform.name)
choosenTile = k;

j =8; j < grid[coor[@], coor[1]].domain.Length; j++)

j != choosenTile
grid[coor[@], coor[1]].domain[j] =

Ij CO cCoO . = = = 3
I 8] Qor V1s Pd hOOSPl‘I I ++
ri COO COoor Sdomaintoun = 3

[
[
grid[coor[@], coor[1]].tileChosen = tileSet[choosenTile].tile;
grid[coor[@], coor[1]].CalculateEntropy(tileSet);

[

grid[coor[@], coor[1]].tileReference = predefinedPath.GetChild(i).gameObject;

else

preDefinedPath =

Figure 4.7: TileSetGenerator Initialize method.

To adapt the grid to the predefined path, this method, search which positions of the grid are
taking up the tiles which form the predefined path, then in the corresponding variables it
delete all the tiles from the domain except the tile which is set on the variable’s position, then
establish this tile as the final tile of the variable and recalculates the entropy of the variable.

The next important method for the initialization of the generator is the Generate method. This
is a simple method because it is used to call the /nitialise method and if there is a predefined
path, this method carry on the first constraint propagation based on the tiles that form the
path, this way the grid is adapted to the pre-existent path and all the errors that it could trigger
are avoided, then the TileElection method is called, this method is going to be explained in
the following section. However, if there is not a predefined path, the Generate method calls
directly to the TileElection method and all the terrain building is carried out. After the
generation the navMesh is created adapting its form to the terrain created (see Figure 4.8).

33

Generate()
gridCleared

terrainGenerated =
gridCleared =
Initialize();

if (preDefinedPath)
{
for(index = @; index < predefinedPathCoor.GetLength(®); index++)

if (predefinedPathCoor[index, 1] > ©
ConstraintPropagation(predefinedPathCoor[index, @], predefinedPathCoor[index, 1] - 1,
grid[predefinedPathCoor[index, @], predefinedPathCoor[index, 1]], @);
predefinedPathCoor[index, 1] < (numCol - 1)
ConstraintPropagation(predefinedPathCoor[index, @], predefinedPathCoor[index, 1] + 1,
grid[predefinedPathCoor[index, @], predefinedPathcCoor[index, 1]], ©);
predefinedPathCoor[index, @] > @
constraintPropagation(predefinedrPathcoor[index, @] - 1, predefinedPathCoor[index, 1], 2
grid[predefinedPathCoor[index, @], predefinedPathCoor[index, 1]], ©);
predefinedPathCoor[index, @] < (numRow - 1)
ConstraintPropagation(predefinedPathCoor[index, 8] + 1, predefinedPathCoor[index, 1],
grid[predefinedPathCoor[index, @], predefinedPathCoor[index, 1]], @);

[] nextCel = SearchNextGridCel
if (nextCel[@] I= 1 && nextCel[1] I= @)
TileElection(nextCel[@], nextCel[1]);

tirstCell = SearchNextGridCell();
TileElection(firstcell[@], firstcell[1]);

if(surface I=)
surface.BuildNavMesh();

Debug.Log("You n to clear the grid to

Figure 4.8: TileSetGenerator Generate method.

The next method that is going to be discussed is the tileElection method, this method needs as
an argument the column index and the row index of the grid which represents the variable
with the lower entropy value. Inside this method the algorithm make three different actions
(see Figure 4.9): first of all, it determines the tile which is elected to take up the current
variable’s position and instantiate this tile in the game world, secondly it propagates the
constraints through the four edge-touching neighbours, finally, determines which is the next
variable in the grid which is going to be analysed by the algorithm.

34

TileElection(rowIndex, colIndex)

chosenIndex = -1;
if (prid[rowIndex, colIndex].tileChosen ==
{
if (grid[rowIndex, colIndex].domainCount == 1)
{
for (i=8; i <« grid[rowIndex, colIndex].domain.Length; i++)
i
if (grid[rowIndex, colIndex].domain[i])}
i
chosenIndex = i;

break;

¥

H
glse if (grid[rowIndex, colIndex].domainCount > 1)
{

Tile[] availableTiles = Tile[grid[rowIndex, colIndex].domainCount];
j=8;
for (i=8; i <« grid[rowIndex, colIndex].domain.Length; i++)
i
if (grid[rowIndex, colIndex].domain[i] &% j < availableTiles.Length)
i
availableTiles[j] = tileSet[i];
4+

¥

¥

chosenIndex = weightedRandom{availableTiles);

InstantiateTile{rowIndex, colIndex, chosenIndex);

if{colIndex > @)

ConstraintPropagation({rowIndex, colIndex -1, 3, grid[rowIndex, colIndex], @);:
if{colIndex < {(numCol - 1})

ConstraintPropagation{rowIndex, collndex + 1, 1, grid[rowIndex, collndex], @);
if{rowIndex > @)

ConstraintPropagation{rowIndex - 1, colIndex, 2, grid[rowIndex, collndex], @);
if{rowIndex < (numRow - 1})
ConstraintPropagation{rowIndex + 1, colIndex, @, grid[rowIndex, collndex], @);

[1 nextGridCell = SearchNextGridCell();

if{nextGridCell[@] != -1 && nextGridCell[1l] != -1}
TileFlection{nextGridCell[8], nextGridCell[1]);

Figure 4.9: TileSetGenerator TileElection method.

A little note to make the code simpler to be understood, inside the else statement where we
check that the domain count would be greater than one, we are selecting one of the tiles that
are available in the domain of this variable, because there are more than one tile that
accomplish the constraints established by the neighbour variables. To make this selection,
first of all we keep in an array the tiles that are still available and then we make a random
selection among them biassed by its weights, the resulting tile will be the one chosen to be
instantiated.

As we said before the tiles that are going to be analysed by the algorithm are chosen by its
entropy value. So, inside the SearchNextGridCell method what the algorithm is doing is
going through all the grid variables comparing its entropy value (see Figure 4.10). If it finds
one that only has one tile in its domain, this variable would be the next one processed by
WEC. But If it is not, the WFC algorithm will process the variable with the lowest entropy
value.

[1 searchNextGridcell()

finalEntropy = Mathf.Infinity;
nextCol = -1;
nextRow = -1;

for (i =80; i< grid.cetLength(@); i++)

for (j = 8; j < grid.GetLength(1); j++)
{
if (grid[i, j].tileChosen == && pgrid[i, j].domainCount == 1)
{
[] nextGridcell =
return nextGridCell;
1

I
else if (grid[i, j].domainCount > 1)

{

entropy = grid[i, j].entropy;
if (entropy < finalEntropy)
{
finalEntropy = entropy;
nextRow = 1i;
nextCol = j;

}

return [2] { nextRow, nextCol };

Figure 4.10: TileSetGenerator SearchNextGridCell method.

Finally, the last method that the algorithm needs to generate the terrain is the
ConstraintPropagation method, which has a similar structure to the 7ileElection method,
these both methods have the same parts and they are related in a similar way. However, the
last one is a little more complex because it needs to delete the tiles that do not follow the
constraints from the current variable’s domain, so the algorithm needs to do more checks to
determine this.

36

ConstraintPropagation(int rowlndex, collndex, direction, Variable lastCell, step)

if (grid[rowIndex, collndex].domainCount == 1 || step >= max > || rowIndex < @ || colIndex < @ || rowIndex >= numRow || colIndex >= numCol)

return;

steps+;
if (lastCell.domainCount == 1)
{
8; i < grid[rowIndex, colIndex].domain.length; i++)

if (grid[rowInd domain[i] && grid[rowIndex, colIndex].domainCount > 1)
i

L
[~

if ((direction tileSet[i].tile.sideIndex[2] ! ll.tile(h!]_s‘en.sidsInrjsx[directim
|l (dire & tileSet[i].tile.sideIndex[3] != lastCell.tileChosen.sideIndex[directi:
|| (direction 88 tileSet[i].tile.sideTndex[@] I= lastCell.tileChosen.sideInd rection])
|| (direction == 3 && tileSet[i].tile.sideTndex[1] I= lastCell.tileChosen.sideIndex[direction]))

grid[rowIndex, collndex].domain[i] =
grid[rowIndex, colIndex].domainCount--;

i ¢ lastCell.domain.Length; i++)

if (lastCell.domain[i])
I

L
8; j < grid[rowIndex, colIndex].domain.Lengtl

it (grid[rowIndex, collndex].domain[j])

i
L

if ({direction == @ && tileSet[j].tile.sideIndex[2] == tileSet[i].tile.sideIndex[direction])
|| (direction == 1 && tileSet[j].tile i t[i].tile.sideIndex[direction])
|| (direction == 2 && tileSet[j].tile i t[i].tile.sideIndex[direction])
|| (direction && tileSet[j].tile.sideIndex[1] == tileSet[i].tile.sideIndex[direction]))
{

grid[rowIndex, collndex].visited[j]++;

i < grid[rowIndex, colIndex].visited.Length; i++)
if (grid[rowIndex, colIndex].domain[i] && grid[rowIndex, colIndex].visited[i] < 1) {

grid[rowInd colInd domain[i] =
grid[rowInd colIndex].domainCount-

grid[rowIndex, colIndex].visited[i] =

37

if(grid[rowIndex, colIndex].domainCount == 1}
{
chosenIndex = -1;
i=8; < grid[rowIndex, colIndex].domain.Length;

ndex = ij;

InstantiateTile({rowIndex, colIndex, chosenlIndex);

grid[rowIndex, colIndex].CalculateEntropy(tileSet);

if (colIndex > @ && direction != 1)

ConstraintPropagation(rowIndex, collndex - 1, grid[rowIndex, colIndex],
if (colIndex < (numCol - 1) && direction != 3)

ConstraintPropagation(rowIndex, collndex + 1, grid[rowIndex, colIndex],
if (rowIndex > @ && direction != @)

ConstraintPropagation(rowIndex - 1, colIndex, grid[rowIndex, colIndex],
if (rowIndex < {(numRow - 1) && direction != 2)

ConstraintPropagation(rowIndex + 1, colIndex, @, grid[rowIndex, colIndex],

Figure 4.11: TileSetGenerator ConstraintPropagation method.

In this case, a little more explanation of some details in the code is necessary. First of all, (see
Figure 4.11), there is a if statement that checks some conditions, if any of them is
accomplished, the execution ends and the program starts to go up in the calls stack.
Moreover, in this method we are checking if the previous analysed variable has one element
in its domain or more than one. Depending on this, the algorithm does different actions, if
there is only one tile available, then the algorithm searches in the current variable’s domain
and compares the sides of each tile. If this tile can connect with the remaining tile of the
previous variable, this tile remains available, if not, this tile is deleted from the domain. On
the other hand, if there are more than one tile available in the previous variable’s domain, the
algorithm goes through all the tiles available and compares them with all the tiles available in
the current variable’s domain, and if they can connect, then we add one to the count of tiles
that can connect with the current tile (visited array). After going through the previous
variables’ domain, the algorithm checks which tiles from the current variable’s domain have a
count lower than one, and these tiles are deleted from the domain. Finally, the algorithm
checks if there is one tile left in the domain of the current variable and if so, it instantiates this
tile in the game world. Independently of the domain count of the current variable, the last
thing that the algorithm does is propagate the constraints generated by the tiles that remain
available in the current variable’s domain.

Well, all these classes and methods are the elements needed to create procedural terrain for
video games. But, was this actually functional? The answer was yes. Once we had finished
writing all the code and modelling all the tiles, we tried to build terrain in a Unity scene. We
tried the code with grids of different sizes and changed the depth of the constraint
propagation calls and, although the loading time changed with these parameters, the generator

38

was always able to create a tile map. Finally, the functionality of the terrain was demonstrated
and we achieved one of our goals in the project.

4.3. Procedural Al Structure Generation

The next step in the development of the project was to adapt the WFC algorithm to generate
behaviour structures that let the NPCs behave intelligently. The strategy that we decided to
use with this implementation of the algorithm was basing the classes in the classes that we
had needed in the terrain building implementation. Following this strategy, we had a route
map which was easy to follow and helped us not to lose focus during the development.

Therefore, following the same logic the first point that has to be explained is the basic key
elements of the WFC algorithm applied to Al as we have done with terrain generator
implementation. Here, we have some similar pieces of the algorithm: the variables, which are
the elements that are unknown and have to be discovered to generate the structure, the
domain, which is the set of behaviour blocks that can take up the place of the variables, and
the constraints, which are the rules that the behaviour structure have to follow.

On the other hand, there are some differences between the Al generation algorithm and the
terrain generation algorithm, for example, the basic elements used and the way how these
elements connect to each other. The basic elements in this approach are: the variables, the
behaviour blocks and the entropy. In addition, the way these elements are connected is using
a grid of variables, the cells of this grid are the variables and they have two degrees of
conexion, so they only can connect with the neighbours through the right edge and the down
edge, and the connections are one-way. So, we had used this grid because the final structure
is a kind of tree, where the root node is the top-left cell and each node has two children at
most.

We are going to start talking about the variable, the variable that we are using in this
implementation of WFC has two different arguments (see Figure 4.12): the behaviour block
that takes up its position in the grid and its children, which are the variables connected to the
current one. The algorithm needs the reference to the children because, once the WFC
generates the grid, it has to transform the blocks inside into nodes of a tree, so it needs a fast
way to go through all the structure in an ordered way. Then, we are going to expand the
information about the behaviour blocks and how this class works.

39

IAVariable : ScriptableObject

[1 domain;
domainCount;
[1 visited;
BehaviourBlock blockChoosen;
entropy;
List<IAvariable> children;

Setvariable(size)

children = List<IAVariable>();
domain = [size];
entropy = ef;

for (i=8; 1< size; i++)
domain[i] = £

visited = [size];
blockChoosen = H
domainCount = size;

Figure 4.12: Al Variable constructor.

Furthermore, inside this AlVariable class we need more methods but they are similar to the
ones used in the terrain generation. For example, we need a method to calculate the entropy
of each variable, so we have used the same CalculateEntropy method that we had used in the
terrain generation variable. The last variable method that is needed is the SetBlock method,
used when the variable’s domain has only one block remaining or one block is chosen as the
one which is going to take up the variable’s position in the grid.

That is all that is important to know about the variable in the Al generation implementation,
and, as we said, the entropy works equally as it works in the terrain generation
implementation. So, now we are going to describe the functionality of the behaviour blocks
and how they are used to represent the complex behaviours of the NPCs.

The behaviours block is the name that the instances of the program that executes behaviours
on the NPCs have received. These instances have several important methods, the most
importants are related with: establishing the connections inside the AlVariables grid where
WEFC is executed; establishing the connections with the block’s children, which is used to
create the behaviour structure for each NPC; and executing methods that call functions inside
the NPCs that let the system represent these behaviours in the game world. Now, we are
going to explain how the behaviour block’s class is built and then all the classes that inherit
from this main class, finally we are going to explain how all these behaviours are represented
in the agent’s script.

40

First of all, we are talking about the BehaviourBlock basic class, this class needs some
arguments for each activity it develops in the algorithm (see Figure 4.13). The
enterConnections and exitConnections arrays are used to keep the final connections that the
WEC algorithm established once it decides that one behaviour block takes up an AlVariable
position. So, these arrays are keeping a connection with the current behaviour block’s
neighbours, the enter ones are aiming for the left and up neighbour in the grid and the exit
ones are aiming to the right and down neighbour in the grid. Then, the List of
BehaviourBlocks named children is used to keep a kind of pointer to the BehaviourBlocks
that are taking up the exitConnections’ neighbours, these are used to construct in an easy way
the tree structure that are going to represent the decision tree that use the NPC to decide.

Behaviour| [3

tip("Enter conections used to t in this behaviour™)]
[1 enterConnections;

ooltip("Exit conections used to ut this behaviour™)]
[1 exitConnection

List<BehaviourBlock> children;

SetChildren{List< able> childrenVariables)

children List<BehaviourBlock>();

(i = ©®; i < childrenVariables.Count; i++)

{
(childrenVariables[i] !=)
children.Add{childrenVariables[i].blockChoosen);

SetConnections([]1 Connections)

enterConnections = [Connections.Length/2];
exitConnections = [Connections.Length / 2];

(i = ©; i < Connections.Length; i++)

(i < Connections.Length / 2)
enterConnections[i] = Connections[i];

exitConnections[i - Connections.Length / 2] = Connections[i];

Figure 4.13: Behaviour Block’s class constructors and arguments.

In addition, BehaviourBlock’s class needs two more methods that are used to execute the
corresponding methods in the enemy script. These methods are RunCondition and Run, these
methods are useful in the decision tree that is formed by the behaviours blocks and they are
used to control the execution flow inside the tree. The way that these methods work is the
following: when some NPC has to execute one block, first check the RunCondition, if it is
accomplished, then this node is executed by calling the Run method.

41

Now that we know the basic functioning of the BehaviourBlock’s class we are going to view
each of the specific classes that inherit from this main class. Each one of these classes
represents one of the behaviours that we want the NPCs to carry out in the game world. This
way of creating behaviours is inspired by the decision tree and behaviour tree techniques of
the Al to construct intelligent agents. The shared parts of the techniques are that the three of
them use a tree structure and the three of them use a kind of inheritance making nodes with
similar characteristics but adapted to different actions. All we know about these techniques is
extracted from the Al book that is recommended to read in the degree subject oriented to the
Al techniques [10].

The first subclass that we are going to analyse is the Patrol class (see Figure 4.14). This is the
base behaviour of every NPC in the game, so all the NPCs start doing a patrol through the
game world. That means that this behaviour block is set always as root for the decision tree of
any NPC in the game no matter what type would be the NPC.

: BehaviourBlock

1 RunCondition(Dictionary<string, float> gameData)

n gameData["playerDetected”] == @f;

ide BehaviourBlock Run(EnemyAgent enemyAgent, Dictionary<string, float> gameData)

enemyAgent .GoPatrolling();
r (int i = 8; i < children.Count; i++)
if (children[i].RunCondition(gameData))

return children[i];

Figure 4.14: RunCondition and Run method for the Patrol class.

Here we are going to do a little note about the gameData dictionary, this is present in all the
subclasses that inherit from BehaviourBlock class. This argument is a dictionary that each
enemy fulfils with the information that it gathers from the environment and this info is used
to decide if the appropriate conditions are set to accomplish the RunCondition of the
corresponding block in the tree. In this case, this RunCondition is really simple, it always
executes while the player remains undetected. Besides, inside the Run method we can see that
it calls the GoPatrolling method of the EnemyAgent class which has inside the instructions to
represent this behaviour. After each execution of the behaviour, the RunConditions of the
current behaviour block’s children are checked if one of them is accomplished, then the
execution will change to the corresponding child, causing an evolution in the NPC external
behaviour.

42

Now that we can understand how the behaviour blocks work internally, we can carry on
analysing the rest of the classes that represent a behaviour and that have a little more
complexity in their functioning. The next class that we are going to present is the Retreat
class (see Figure 4.15). This class provides that the NPC carries out a defensive movement
going back to a fortified position inside the game arena which lets the enemies coordinate
their attacks to face the player.

Retreat : BehaviourBlock

RunCondition(Dictionary<) > gameData)

gameData["pl Jetected”] == 1f && (gameData["health”] < gameData[“maxHealth™] / 3
|| gameData["al "] < AF || gameData["ammo™] < gameData["maxAmmo”] / 2);

k Run{Enem nt enemyAgent, y< > gameData)
enemyAgent .RetreatToHome();
(i); 1 < children.Count; i++)
(children[i].RunCondition(gameData))

children[i];

Figure 4.15: RunCondition and Run methods of the Retreat class.

Here we can see that the RunCondition has grown in complexity because it keeps in mind
more aspects of the environment that can trigger this behaviour. First of all, the player must
have been detected by any NPC in the game world, at the same time the NPCs have to detect
that their life is less than the half of their full life, that the number of allies is less than four or
that the amount of ammunition, which the current NPC has, is less than the half of the
maximum amount of ammunition that the NPC can have. On the other hand, inside the Run
function the RetreatloHome method of the EnemyAgent class is called which has the
instruction to make the NPCs represent this retreating behaviour.

We can continue talking about another BehaviourBlock subclass, this time it is named
StrategicPositioning class (see Figure 4.16). This class is designed to make the NPCs carry
out a defensive movement trying to get the back of the player. This movement consists in
searching some covers in the environment and hiding after the cover waiting for the player to
get close to them. This is a strategy that makes the player search for the NPC leading them to
close combats where the player has less numbers than the NPCs.

43

ategicPositioning : BehaviourBlock

ol RunCondition(Dictionary<string, float> gameData)

n gameData["pla ected"] == 1f && (gameData["distanceToPlayer™] > gameDatal "s:)is ce" " ble"] == 1.0f);

ide BehaviourBlock Run{EnemyAgent enemyAgent, Dictionary<string, float> gameData)
enemyAgent.SearchStrategicPos();

i = @; i < children.Count; i++)

if (children[i].RunCondition(gameData))
r

children[i];

}

Figure 4.16: RunCondition and Run methods of the StrategicPositioning class.

Here we can see the RunCondition method of the StrategicPositioning class, this behaviour
block uses less information than the retreat one, because we want that this behaviour will be a
more common strategy inside the game arena. In this case, the condition considers that the
player must be detected by any NPC in the arena and, at the same time, that the distance to
the player must be greater than a safe distance to hide without being seen or that the NPCs
have direct visibility with the player that means that the NPC is too exposed to be a real threat
for the player. Furthermore, this Run method calls to the SearchStrategicPos function inside
the EnemyAgent class, which is the function that contains the instructions to represent this
behaviour in the game world.

Since now, all the behaviour blocks that have been explained are used for all the NPCs
regardless of their type, but now we are going to explain two behaviour blocks that one is the
opposite to the other, however, their way of working is really similar. We need this both
classes because each one is oriented to one type of enemy, the first one, the GetClose class is
oriented to face-to-face enemies, the swordsmen, and the second one, the Getdway class is
oriented to long distance enemies, the archers (see Figures 4.17).

The GetClose class is the representation of an offensive movement that lets the NPCs make a
direct attack to the player, so the coordination of this attack with the movements of the other
NPCs can cause the appropriate distraction to let the enemies kill the player. On the other
hand, the GetAway class is the representation of an evasion movement during the attack that
lets the NPCs take some distance with the player and aim at them. This movement is a form
to protect a little the long distance NPCs to let them shoot the player from more secure zones
of the arena while the close-combat enemies make a distraction.

For the WFC these two behaviours blocks are the same, because one is a substitute of the
other one, so only one of them can appear in the block set of the NPC. These behaviour
blocks are usually the previous step to the attack behaviour during the combat, so when the
NPC is representing these behaviours the combat is almost finished for one of the sides.

44

RunCondition(Dictionary< S > gameData)

gameData["playerDetected”] == 1f && pgameData["distanceToP "] < gameData["AttackDistance"];

ck Run(Ene nt enemyAgent, Di 0 < > gameData)
enemyAgent.GetCloseToPlayer();
(i =@; i < children.Count; i++)
(children[i].RunCondition(gameData))

children[i];

RunCondition(Dictionary< » > gameData)

gameData["pla ted"] == 1f && gameData["distanceToPlayer"] < gameData["AttackDistance"];

Behaviou ¢ Run(Ene nt enemyAgent, Dictic V< > gameData)
enemyAgent .GetAwayFromPlayer();
(i =8; i < children.Count; i++)
(children[i].RunCondition(gameData))

children[i];

Figure 4.17: RunCondition and Run methods of the GetClose and GetAway classes.

As we can see both classes are really similar, their RunCondition is equal, they check that the
player has been detected by any NPC in the arena and that the distance between the current
NPC and the player would be less than a certain distance appropriate for preparing the attack
phase of the combat. Nevertheless, the major difference between both classes is the method
which each one calls of the EnemyAgent class, the GetClose class calls the GetCloseToPlayer
method which contains the instructions to let the close-combat enemies face the player,
unlike the Getdway class which calls the GetAwayFromPlayer which contains the
instructions to let the long combat enemies gain distance to the player and aim at them.

Now it is time to see the last two behaviour blocks designed for the NPCs of this game. The
last two subclasses are named Attack class and Shoot class, and like the previous ones they
are used only by one of the enemies’ types (see Figure 4.18). The first one is used by the
close-combat enemies and lets them swing their sword and protect themselves with the shield

45

trying to take advantage over the player. The second one is used by the long distance enemies
and lets them aim at the player and shoot them, between shots, the enemies need to reload
their arcs to shoot again. In this case, the WFC algorithm deals with these behaviour blocks
similarly than the last one, so both of them are considered opposites and one is a substitute
for the other.

RunCondition(Dictionary< » > gameData)

gameData["play cted"] == 1f && gameData["dis ceToPlayer™] < gameData["hitDistance™];

BehaviourBlock ent enemyAgent, Dictio y< > gameData)
enemyAgent _Attack();
(i p; 1 < children.Count; i++)
(children[i].RunCondition(gameData))

children[i];

ot : BehaviourBlock

RunCondition(Dictionary< A > gameData)

gameData["play ed"] == 1f && (gameData[“"distanceToPlayer™] > gameData["S)istance™] || gameData["playerVisible"™] == 1.0f);

Behavi Block Run(Enem t enemyAgent, Dictionary< A > gameData)
{
enemyAgent . Shoot();
(i =0; i < children.Count; i++)

(children[i].RunCondition(gameData))

children[i];

Figure 4.18: RunCondition and Run methods of the Attack and Shoot classes.

In these two subclasses we can see that there are more differences between their
RunConditions because the two actions that they represent have different needs to be carried
on. The Attack’s RunCondition only needs that the player would be detected by any NPC in
the arena and that the distance between the current NPC and the player would be less than the
range distance of the enemy arm. On the other hand, the Shoot’s RunCondition needs that the
player would be detected and that the distance between the player and the current NPC would
be greater than the distance needed for loading the bow, aiming at the player and shooting or
that the player would be directly visible for the current enemy. Besides, the both classes call a

46

really logical method inside the EnemyAgent class which are the Attack and Shoot methods
correspondingly.

Now we need to make the game Al functional and capable of being a real threat for the
player, so we have to see how to create a behaviour structure that the NPCa would be able to
use. We can start explaining how these behaviours are used to generate the decision tree and,
then, how all these behaviours are represented in the game world by the NPCs.

First of all, we want to explain how the behaviour blocks are transformed from a grid to a
decision tree. So, to explain this, we have to come back a little to the point that we have
explained above. We are talking about the Al variables’ grid, this grid where the cells were
the variable whose position is taken up by the behaviour blocks. So, once the WFC algorithm
has processed all the cells determining which behaviour blocks are going to take the final
positions up, we can go through this grid following the exit connections of the Al variables
and creating the decision tree. This is possible thanks to keeping in each variable not only
which variables are the neighbours but also whose are considered children.

nid GenerateBehaviourBlocksChildren(IAVariable currentVariable)

it (currentVariable.blockChoosen == null)

currentVariable_blockChoosen.SetChildren(currentVariable.children);
i < currentVariable.children.Count; i++)

it (currentVariable.children[i] != null)
{
GenerateBehaviourBlocksChildren(currentVariable.children[i]);

¥

Figure 4.19: Generation of the decision tree.

In this method (see Figure 4.19), we can see how the Al variable’s children are set as the
behaviour blocks’ children, connecting directly each behaviour block. So, we can visit the
behaviour blocks as nodes, starting with the root node, the Patrol behaviour block, and going
through all the hierarchy, using them to change the behaviour that each NPC is representing
in the game world.

This decision tree construction must be done after the WFC processing of the Al variable
grid, as we said, all the process is really similar to the process explained with the terrain
generation. Both of them share the same phases: the initialization of the variables, the
generation of the grid, the final blocks establishment and the constraint propagation (see
Figure 4.20).

47

Patrol

Strategic
Positioning

Strategic
Positioning

Retreat

Retreat

Attack

1

m

Retreat Retreat Retreat l GelCIDsel Retreat Get Close
Get Cl Get Cl
Get Close ‘ l Attack ‘ Get Close l Attack ’

)

Attack

Get Close

Get Close

Figure 4.20: Decision Trees generated by the WFC algorithm.

Retreat

Strategic

Positioning

Get Close

Attack

After explaining how the decision tree is built, we think that is a good point to explain how
all the behaviour blocks are represented in the game by the NPCs, so here we are going to
make a review of the main points in the EnemyAgent class to finally understand how we can
transform the behaviours from blocks to actual actions in the game world.

I E nt : Mono

hitDistance;

)1

> enemyBlockSet;

e e
shootForce;
Fform tileMap;
agent;
ootPos;
arrow;
word;

e effectSound;
emyHurt ;

enemyAttack;

enemyBlock;

Figure 4.21: Attributes

slinum;

> gameData;

playerDetected;
ammo ;
health;
] allies;

t player;

isAttacking;

waypointIndex;

strategicallyHide
shootCoolDown =
reloading =
gettingAway =
headingPlayer =

gameDataUpdateTimer =
gameDataUpdateTime =

en ion treeGenerator;
rootBlock;
currentBlock;

redefinedPath;
ct[,] gameObjectGrid;

damaged = 7
damagedCoolDown
damagedTime = @f;

of the EnemyAgent class.

48

As we can see (see Figure 4.21), the EnemyAgent class needs a lot of attributes to control the
functioning of all the features related with the NPCs, in this list not all the attributes has
something to do with the decision tree or the behaviours, a lot of them are simple functional
stuff related with the sound or some mechanical aspects. What is key for the functioning of
the behaviour translation from nodes to actual actions are the constructor of the NPC, because
inside the constructor is where the decision tree is assembled and initialised.

Inside this constructor we are establishing the block set that is going to be used for the
decision tree and it is determined by the election that the player can do using the buttons in
the initial room inside the game world. Besides, we are generating the entire decision tree and
using a variable to keep the reference to the root node, which is the entrance door to access to
the rest of the behaviours blocks. Finally we determine that the first block being executed has
to be the root node, that is the patrol behaviour (see Figure 4.22).

0O

treeGenerator = new BehaviourBloc
treeGenerator.blockSet = enemyBl
(rootBlock !=)]

ClearBlockTree(rootBlock);
treeGenerator.ClearTree();

(rootBlock ==)

rootBlock = treeGenerator.Generate();

(rootBlock ==]
treeGenerator.ClearTree();
}
currentBlock = rootBlock;

DebugArbol();

Figure 4.22: EnemyAgent constructor.

In addition to the constructor, we have another method to initialise some important aspects
for the correct working of the agent (see Figure 4.23). This method is the OnEnable method
provided by Unity which lets us execute some actions each time the NPCs are activated in
this initial room, just before the player enters the fighting arena. Inside this method, all the
functional attributes are initialised such as the life, the ammo and so on. Moreover, each NPC
searches which other NPCs have been activated and where it can find some covers inside the
arena which are information needed to trigger some specific behaviours.

49

Onknable()

playerDetected =

ammo = maxAmmo;

health = maxHealth;

allies = FindObjectsOfType<Ene

homeWaypoint = GameObject.Find("ho aypoint").transform;
player = GameObject.Find("

detector = transform.Find(" ") .gameObject;

for i =@; i < tileMap.childCount; i++

if(tileMap.Getchild(i).name.Contains("Predefined"”) && tileMap.GetChild(i).gameobject.activeSelf)
predefinedPath = tileMap.Getchild(i);

gameObjectGrid = Ga yject|[[tileMap.GetComponent<Tiles nerator>().numRow,
kileMap.GetCOmponent<Til Generator> () .numCol|]};

gameData = Dictionary< 5 >()s
gameDataUpdateTime = gameDataUpdateTimer;

if (leM.isInTutorial
GetGameObjectGrid();

GetStrategicalPositions();

stepSound.clip = stepsSoundEffect|GM.tileSetChoosen];

Figure 4.23: EnemyAgent OnEnable method.

After the construction and initialization of the EnemyAgents we are going to start
overviewing each one of the methods related with the behaviours of the NPC. We are going
to start with the basic behaviour, that is the patrol behaviour that each enemy agent has to do
while the player stays undetected inside the arena. All the movement is carried out by the
NavMeshAgent class, so we only need to determine which are the waypoints of the patrol.
Besides, we have determined that this behaviour alternates between two actions, patrolling
and staying still (see Figure 4.24), which allows the NPCs to check some zones of the arena
and gives the player the chance to get rid of some enemies without being seen.

As we said before, this is the base method of the enemy agents so it is the root node in every
decision tree. This method can be connected following the restrictions with three more
behaviour blocks which are going to be explained in the next paragraphs. The behaviour
blocks that can be the patrol children are the retreat block, the strategic positioning block and
the get away/get close block. That means that these three blocks can be connected among
them, making the decision tree more complex and varied.

50

agent. SetDestination(currentWaypoint.position);

(lagent.isStopped : -3.Distance(currentWaypoint.position, transform.position) < agent.stoppingDistance)
(UnityEngine.R: m.value > 8.2f)
waypointIndex++;
(waypointIndex aypoints.Length)

waypointIndex

currentWaypoint = waypoints[waypointIndex];
anim.SetBool("I M5) H

(!stepSound.isPlaying)
stepSound.Play();

agent.isStopped
anim.SetBool("I

(stepSound.isPlaying)

step
stepSound.Stop();
(agent.isStopped)
(waitTimer == 5.@f)
r3 pos = transform.position + transform.forward * 28;

RotateEnemy(pos);

3

waitTimer -= .deltaTime;

(waitTimer <= @f)
{

waitTimer = 5.8f;

agent.isStopp

anim.SetBool("I

epSound.isPlaying)
pSound.Play();

Figure 4.24: GoPatrolling method of EnemyAgent class.

The next enemy agent behaviour that we need to show is the retreat behaviour. This is a
simple behaviour but this is separated in different phases. First of all, when this action is
started, the agent simply heads into the waypoint that we have named home, which is in the
centre of a fortificated position. Once the NPCs have got to this point, they start searching for
a strategic position inside this fortificated area, at this moment, depending on the type of the
NPC a certain position is favoured for the election, so the close-combat enemies would take
up the front positions and the long distance ones the back positions. Then, when the agents
have taken up their corresponding positions, starts the last phase of the behaviour where the
agents wait for the player (see Figure 4.25). This whole behaviour is trying to take advantage
of the numbers of the agents that is why the agents get to a position where the player would
have to face different enemies at the same time.

The idea in this behaviour is that different NPCs decide to carry on these actions at the same
time or separated by a little time space so they arrive at the same time to the fortified
position. This is the way that the both sides in the face off are balanced, designing situations
where the player must fight against a bigger number of enemies.

51

RetreatToHome()

(currentWaypoint != homeWaypoint &% !retreating)

{
(agent.isStopped)
agent.isStopped =
currenthWaypoint = homeWaypoint;
anim.SetBool("IsMoving”,);

retreating = 2

(!stepSound.isPlaying)
stepSound.Play();

('homePositions.Contains (currentWaypoint)
&% Vector3.Distance(transform.position, homeWaypoint.position) < agent.stoppingDistance)

(type == EnemyType.Archer)

furthestPosition = -Mathf.Infinity;
(i = @; i < homePositions.Count; i++)

selected = 2
(En Agent ally allies)

(homePositions[i] == ally.currentWaypoint)

selected

3

(!selected)

distance = Vector3.Distance(homePositions[i].position, player.transform.position);
(distance > furthestPosition)

currentlaypoint = homePositions[i];
furthestPosition = distance;

closestPosition = Mathf.Infinity;
(i =@; i < homePositions.Count; i++)

selected = 2
(E Agent ally allies)

(homePositions[i] == ally.currentWaypoint)

selected

:

(!selected)

distance tor3.Distance(homePositions[i].position, player.transform.position);
(distance < closestPosition)

currentWaypoint = homePositions[i];
closestPosition distance;

anim.SetBool("IsMoving”, 'H
(!stepSound.isPlaying)
stepSound.Play();

agent.SetDestination(currentWaypoint.position);

(currenthWaypoint != homeWaypoint
&% W 3.Distance(transform.position, currentWaypoint.position) < agent.stoppingDistance)

agent.isStopped
anim.SetBool("IsMov
(stepSound.isPlaying)
stepSound.Stop();
RotateEnemy(player.transform.position);

Figure 4.25: Retreat method of enemyAgent class.

As we have exposed aboved, there is one more global behaviour represented by the agents,
we are talking about the strategic positioning behaviour that is carried out by all the NPCs
independently of its type. This behaviour needs a previous method that has been already seen
but we have omitted to talk about it until this point. In the OnEnable method, we call two
functions that are related with this behaviour and are needed for the well functioning of it.
These two methods are used to find all the possible covers generated when the NPCs are
activated just after the terrain building by the WFC algorithm. The first one is the
GetGameObjectGrid method, this method is really simple, it keeps the reference of all the
tiles that form the terrain in a GameObjects grid, so it could be accessed from the agent at any
moment. The second one is the GetStrategicPositions method and this is a little more
complex than the last one (see Figure 4.26). Inside this method, we are going through all the
gameObjects in the grid and we check which tiles have a cover onto them, then we keep
inside an array which positions can be used to protect the NPC with this cover, that is the
neighbours with no cover on it.

.tileSize.x / 2,

().tileSize.z / 2);

().tileSize.x + tileMap.GetComponent<Ti ().tileSize.x / 2,
tileMap.Ge ra ile y /2
(i + 1) * tileMap.GetComponent ra .tileSize.z + tileMap.GetComponent<Ti ().tileSize.z / 2);
if (IstrategicalPosition.Contain
strategicalPosition.Add(pos);

if ((j - 1) > @ & !gameObjectGrid[i, j - 1].name.Contains

pos =) tileMap.G < .tileSize.x + tileMap.GetComponent<T. .tileSize.x / 2,
tileMap.GetComponent<Ti G
i * tils GetCompone (SetC r>().-tileSize.z / 2);

if (!strategicalPosition.C

pos = j ile eMap . GetComponent<Tile ator>().tileSize.x / 2,
tileMap.GetC
i* ti

Figure 4.26: Get Strategic Position method of EnemyAgent class.

53

Now that we know about the supportive methods of the StrategicPositioning behaviour, we
can dive into this method to understand how the agent carries out the corresponding actions.
The StrategicPositioning method is divided into two phases, the first one where the agents
search among all the strategic positions that are available in the arena and go to the resulting
position. The final position is chosen using a really simple heuristic: all the positions are
analysed and a first selection is made, which gathers all the strategic positions that are further
than a certain safe distance from the player, among them it is chosen the position which
would be closest to the player. The second phase starts once the NPCs have arrived at the
strategic position, then they have to wait for the player to come closer than a certain distance
to start the combat (see Figure 4.27). This behaviour is motivated by the idea of hiding from
the player forcing them to search all the enemies around the arena. This situation is good for
the NPCs because they can make a surprise attack having the initiative in the combat, and
starting it causing damage to the player.

nextPos = currentWaypoint.position;
(!strategicalPosition.Contains(agent.destination))

bestDistance = Mathf.Infinity;
(i a; strategicalPosition.Count; i++)

(strategicalPosition[i] == ally.currentWaypoint.position)

selected = =

]

(!selected)

distance = r3.Dis (strategicalPosition[i], player.transform.position);
(distance > safeDistance && distance < bestDistance)
{
nextPos = strategicalPosition[i];
bestDistance = distance;

}

anim.SetBool("
(! stepSound
stepSound.Play();

1
¥

agent.SetDestination(nextPos);

3.Distance{transform.position, nextPos) < 1f)

anim.SetBoal(”
agent.isStopped
strategicallyHide =

(stepSound.isPlaying)
stepSound.Stop();

Figure 4.27: StrategicPositioning method of the EnemyAgent class.

As we said above, apart from the global behaviours there are four behaviour blocks that can
only be held in the decision tree of a certain type of enemy. Firstly we are going to explain

54

the functioning of the get close and get away behaviour. As we have said in the behaviour
blocks review, the get close behaviour is carried out by close-combat enemies and the get
away behaviour is carried out by long distance enemies (see Figure 4.28). Internally these
two methods work similarly to some steering behaviours, concretely to the pursuit and flee
behaviours.

Starting with the get close behaviour, we can say that it is really similar to the pursuit steering
behaviour [10], this behaviour is specialised in making the agent chase a moving target, first
of all, the agent must calculate the time that it can take to get to the target. Then, the agent
calculates which is going to be the future position of the target at this time. Finally, the agent
chases this future position and when it is closer to the player than to the future positions, it
changes its target to the current position of the player.

As we said before, the get away behaviour, which we have used, is really similar to the flee
steering behaviour [10], this behaviour is specialised in making the agent run away from the
current position of a target. We have chosen this behaviour because it is faster to calculate
and reduce the possibilities of failure. Besides, We have tried using the evade behaviour but
the result was that the agent selected too far positions for the current arena size. Inside this
method, the agent calculates the direction to get closer to the player position and then invert
the direction of the movement, the target position is limited to the arena borders trying to
avoid crashing into a wall or falling from the game world. Finally, the agent waits in this final
position and aims at the player.

GetCloseToPlayer()

(!headingPlayer)

Vector3 futurePlayer layer.transform.position +
player.GetComponen >().movement * player.GetComponen >().movementSpeed * time;

(!anim.GetBos

anim.SetBoo

Sound . isPlaying)
ound. Play();

agent.SetDestination(futurePlayerPosition);

3.Distance(transform.position, futurePlayerPosition) >= gameData[“distanceToP

gent.SetDestination(player]. transform.position);
headingPlayer = 2

(!anim.GetBos
anim.SetBoo

agent.SetDestination(player. transform.position);
RotateEnemy (player. transform.position);

55

GetAwayFromPlayer()
(gettingAway)

{anim.GetBoo!

)5

direction = (player.transform.position - transform.position).normalized;
targetPos = -direction * ShootDistance;

targetPos. hf.Clamp(targetPos.x, 1f, gameObjectGrid.GetlLength(1)
hf.Clamp(targetPos.z, 1f, gameObjectGrid.GetLength(@)

agent.SetDestination(targetPos);

3.Distance(transform.position, targetPos) < agent.stoppingDistance)

gettingAway = z
agent.isStopped =

(anim.GetBool ("I
anim.SetBool("I
(stepSound.isPlaying)
stepSound.Stop();

Figure 4.28: GetClose and GetAway methods of EnemyAgent class.

There are two more behaviours that can only be performed by a certain type of agent, these
are the attack and shoot behaviours, as we said the attack behaviour corresponds to a
close-combat enemy and the shoot behaviour corresponds to a long distance one (see Figure
4.29).

Firstly we are going to explain the attack behaviour, this method has two well different
phases, the first phase involves getting close to the player position always because between
the fighting actions the player could have moved back making impossible for the agent to
impact the player. Once the agent is at an appropriate distance to the player, a random value is
generated, this value is used to select which fighting action is going to do the agent, it could
perform an attack with the sword, it could block with the shield or it could do nothing. This
probability makes the combat unpredictable and creates different opportunities for the player
and the agent.

On the other hand, we are going to explain the shoot behaviour, this method has two different
phases too, the first phase involves calculating the player position and the direction that the
agent needs to look at to shoot the player. The second phase involves checking if the bow is
loaded with an arrow and if the agent has direct visibility to the player making it possible to
shoot the arrow. Once an arrow is shooted the second phase is changed by reloading the
arrow, so after each shot the player has the reload time to finish with the archer.

56

Attack()
(gameData["distanceToP

(agent.isstopped)
agent.isStopped = &

currentWaypoint = player.transform;
.SetBool(oving"”, ¥;
(epSound.isPlaying)
stepSound.Play();

agent .5SetDestination(currentWaypoint.position);
(!isAttacking && !isBlocking)

(!agent.is5topped)
agent.isStopped =

anim.SetBool ("I
(stepSound. i
stepSound.Stop();

randonValue = UnityEngine.R
(randomValue > 8.7)
i

StartCoroutine("att
(randomValue <

StartCoroutine("b imation™});
pos = r3(player.transform.position.x, player.transform.position.y + .5f, player.transform.position.
RotateEnemy(p

Shoot ()

(anim.GetBool("Is
anim.SetBool(

(stepSound.isPl
stepSound.Stop();

(!anim.GetBoo
anim.SetBool(

pos = layer.transform.position.x, player.transform.position.y + .5f, player.transform.position.z);
RotateEnemy (po!

Vector3 playerDirection = player.transform.position - transform.positien;
playerDirection.y += .5f;
playerDirection = playerDirection.normalized;

Hit hit;
(!reloading %& ammo > @ && s.Raycast(shootPos.position, playerDirection, hit, ShootDistance) && hit.transform.tag == "P

StartCoroutine(shootAnimation(playerDirection));
{reloading)

shootCoolDown = .deltaTime;
(shootCoolDow)

{
reloading = g8
shootCoelDown = 8.8f;

Figure 4.29: Attack and Shoot method of the EnemyAgent class.

The last thing that we are going to talk about the EnemyAgent class is how the agents can
interactuate and gather information about the environment. In this game we have decided that
the NPCs have the capability of “seeing” their environment and “listening” to the alarm.
Therefore, each NPC has a range of vision and if the player gets inside this range, the agent
makes a ray casting, if the ray impacts with the player, then automatically the NPC changes

57

its state to the alarm state. Every NPC that has entered the alarmed phase spreads the alarm
state inside a certain range, all the agents inside this range change their state to the alarm state
too and this process is repeated since every agent in the arena is in the alarm state.

4.4. Game Environment

After developing all the functional parts of the game which was the main effort in the project,
we decided to finish the environment of the game, creating the initial room and the arena,
needed to make the game interactable. To develop all this designing part we had to use some
tools and assets that let us make all this visual aspect easier because it is not our strong point
in games development. First of all, we design the tutorial space and the initial room as
futuristic spaces because these are the places where the player is going to be able to
manipulate the functioning of the WFC algorithm (see Figure 4.30). To create this space we
have used an asset which provides structures and objects that let us create a futuristic
industrial-style space which fits really well with the purpose of these both rooms [15].

Figure 4.30: Tutorial and initial room style.

On the other hand, we had to design all the arena which we had decided to create it as a kind
of Roman Coliseum, we had searched in the asset store some arenas that can fit in the idea
that we had about a Coliseum and that could be functional for the correct use of the WFC
generation, because the arena needs to be adapted to the size and the shape of the terrain
generated. After all, we had not found any arena that solves all our problems, so we decided
to design it by hand. We had searched for some tools and tutorials that could make all this
creation process easier, and we had found two tools that are really useful and easy-to-use, so
we chose them to create the Coliseum. These two tools are created by Unity and work really
well with the current version of the engine, these are the ProBuilder tool and the PolyBrush
tool, [22, 24]. Firstly, we had no idea about how to use these tools, so we had searched some
help on tutorials which it is always a good idea and we found two tutorial really
understandable and that cover all the basic features of the tools so they gave us all the info
that we need to design the arena [23, 25]. Finally, when the arena was finished we needed
some textures to dress the polygons that form the structure, these textures are the ones used
by the PolyBrush (see Figure 4.31). All the textures are downloaded from Share Textures a
website specialised in copyright free textures, the textures that we needed were a stone bricks
texture for the arena walls [18], a wood texture for the wood details as fences and beams [21]
and some fabric textures for the sunshades that cover the arena grandstand [19, 20].

58

Figure 4.31: Arena structure and textures style.

In addition, we need some objects that give the arena some realism and that all these space
could not look so artificial and empty, so to populate the arena we decided to use some assets
from the asset store, that keep the low poly aspect that we used in the terrain but that could be
design with more skill than we have. Firstly, we have used some asset packages to create the
covers inside the arena, where we have used crates and barrels, these were chosen by their
textures that respect the low poly aspect but have detail in them and most importantly, they
use LOD [11, 12]. Secondly, we used some assets to make the grandstand space more
accurate for a imaginable Coliseum not to get too much attention for the player and let them
concentrate on the game action, this space have been populated with some stuff provided by a
mediaeval fortress asset and all the object fit really well with the general style of the structure
[13]. Finally, we have used an asset to provide the game with appealing characters not only
inside the arena, as the main character or the enemies, but also as part of the crowd that is
spectating all the combat inside the arena (see Figure 4.32). All the characters in the game are
part of the same package which has a really high visual quality bearing in mind that they keep
the low poly style of the entire game [14].

Figure 4.32: Arena objects style.

59

4.1.1. Problems

In this section we would like to mention some problems that appeared during the
development of the project.

The main problem in the project was the optimization of the WFC algorithm working in the
grid. The problem was produced because we have used several loops to implement the
constraint propagation in the grid and the tile election. However, the problem was notable
when we realised that all the loops were going to be needed to make the algorithm work the
way that we wanted. So, when we started making the grid bigger from a 5x5 grid to a 10x10
grid and even to a 15x15, it was obvious that the optimization was a problem, the system took
several minutes to establish all the tiles. But, that was not all, when we started to change the
number of tiles in the tile set, which is a main mechanic in the game, we realised that this
affected the processing time of the algorithm. Here, we started to think that it was going to be
impossible to generate a terrain with the enough size in execution time, because it was taking
too much time for the terrain generation, and to this time we had to add the time of all the
NPCs’ decision tree generation which was going to use WFC too. Finally, we found a
solution, implementing correctly the entropy formula to select the new cells where the
algorithm is going to work, limiting the number of steps that the algorithm can do during the
propagation and limiting the minimum tiles and blocks from the tile set for the terrain and the
block set for the decision tree, were some of the solutions that better results give us in terms
of optimization of the algorithm.

I had some problems that are related with the experimentation base of the project, because
sometimes, the terrain generation and the decision tree generation end with final results that
are appealing for understanding the power of the algorithm but they are unappealing for the
normal development of a game. This problem is easily fixable, adding to the algorithm a
checking method that lets us clear the terrain and rebuild it if we find some strange
combination of tiles or blocks. This could be a good point to investigate in future projects.

Another problem that we found, now related with the main camera, was that the camera that
represents the main character view has problems with viewing through some objects as walls,
decorating stuff or the enemies the player is fighting against. We tried to solve this problem
changing the position of the camera and limiting the movement but we found that moving the
camera the only that we achieved was looking the inside of the main character head what
difficult a lot the playability. So, what we decided was to move this camera to a midpoint,
however there are some objects and some combat situations where this problem remains.

The last problem we found is related with the RunConditions of some behaviour blocks, there
some specific situations where one behaviour is not activated because one of their conditions
is not accomplished, what cause that the agent do random actions, however this condition is
necessary for the well-functioning on the majority of the situations in the game. So, the only

60

solution that we found was making a fine tune of these conditions and trying to adapt it to
most of the situations that could be found during the game.

4.2 Results

Based on the objectives that have been exposed in section 2.1, we can ensure that all the
objectives have been completed.

Thanks to this project we have understood how the WFC algorithm works and what are the
main ideas behind this kind of algorithm. We have understood the importance and the power
in the procedural generation methods and how these algorithms could be the future of the
video games industry. A part of this, we have learnt how to implement a complex algorithm
since the beginning. Besides, we have demonstrated that we are capable of adapting an entire
algorithm design for terrain generation to a totally different work such as the Al structures
generation, which was the actual big challenge of the project, so it is the biggest victory of
the project. Finally, we have developed a demo where the player can prove the functioning of
the algorithm and it is easy to understand how the algorithm works and how powerful it is.

We are really proud of this demo because it is good entertainment and it lets us put the people
who want to know more about algorithms of procedural content generation closer to a really
good example of a tool that they can use for their projects. The demo is available for
Windows in the following link:

https://drive.eoogle.com/file/d/14uV2s29zdhmh7qd1sBKdrtiTK A&82dM Xj/view?usp=sharing

You can also access to the gitHub repository where all the project code is available in the next
link:

https://github.com/AdrianRamosBoira/ WFC.git

As we said before and during the whole report, adapting the WFC algorithm from the terrain
generation to the Al structure generation is the biggest objective that we have got in this
project. First of all, it sounded crazy to start thinking about adapting an algorithm to a field
not even explored when we knew nothing about the application of the algorithm. To close this
chapter, we are going to add some images of the final game and of all the ways that the player
can interact with the algorithm to let you understand better how is the final result of the
project that you have read and we encourage you to give a chance to the demo if you are
interested in the generation of content for video games.

61

https://drive.google.com/file/d/14uV2sg9zdhmh7qd1sBKdrtjTKA82dMXj/view?usp=sharing
https://github.com/AdrianRamosBoira/WFC.git

Figure 4.33: Choosing the tile set for the terrain generation.

Figure 4.34: Choosing the block set for the behaviour generation.

W

T

Figure 4.35: Entering the arena through the portal.

62

Figure 4.36: Player inside the arena.

Figure 4.37: Fighting the face to face enemy.

Figure 4.38: Fighting the long distance enemy.

63

HAPTER

4
"

C

CONCLUSIONS AND FUTURE WORK

Contents
5.1.CoNCIUSIONS . . v v oot 64
S5.2.Future work 65

In this chapter the conclusions of the project are shown, as well as future works that can
extend the contents of this one.

5.1. Conclusions

We think that the DFP is a great opportunity to do whatever you really want and take your
capabilities to its maximum, always helped by tutors that can help you with their experience
and their point of view. This project is a good chance to experience how it is a real project
development and how difficult it could be to carry out a game from the blank and without any
expecification what is unique in the degree.

During this project development we have understood how important procedural content
generation is in video games and how it could represent a turning point in the industry. There
are a lot of games that use techniques for content generation and a lot of enterprises are
investing tons of money to investigate new techniques or techniques application which can
accelerate the games development. So, this project is a first step into a really huge field that
can be used as a simple example for the power of this technology and the possibilities that
these kinds of technologies have in fields such as modelling, terrain generation, Al, narrative
and so on. For now, there are game examples where the environment or some visual aspects
are procedural generated but, as we have done in this project, methods as WFC can be
applied to a lot of fields that can add variety to a game and that are practically virgin in the
industry. So, that means that this is a huge opportunity to innovate in the games industry.

64

5.2. Future work

There is a lot to do in terms of developing a tool that can use the WFC algorithm for any kind
of games and making the content totally functional for gameplay. In this project we have
developed a tool to generate procedural content in Al fields and terrain, but this tool is
thought to prove the possibilities of the algorithm. The next step would be creating a kind of
test that lets us ensure that the final result is appropriate for a game. When this kind of tools
are used for actual games in the industry they always check the functionality before letting
the player use the content generated, so the next step will be to create this checking technique
for the Al structure generation. After developing the tool for creating the Al structure in any
kind of game, another good point would be to apply the WFC to another field in the games
development, opening new fields for the content generation. For example, the WFC
algorithm could be used for the creation of procedural narratives, in a similar way that we
have applied the algorithm to the Al structures generation.

On the other hand, there is a lot of work to do with the demo that we have created for testing
the algorithm. It could be transformed into an actual game that could be used not only to
show the possibilities of the WFC algorithm but also to be an entertaining experience for
itself. We can add a kind of levels, a narrative that could lead the game flow through different
phases and a kind of points or objective that could be used to develop features for the main
character making the gameplay more deep and interesting. We are thinking about trying to
finish the game with the help of some friends and trying to give the game more personality,
even making it a complete game, fixing some bugs and polishing these gameplay aspects.

65

10.
I1.

12.

13.

14.

15.

16.

BIBLIOGRAPHY

Stalberg, Oskar. Wave by Oskar Stalberg.
https://oskarstalberg.com/game/wave/wave. html

Boris The Brave (13th April 2020). Wave Function Collapse Explained.
https://www.boristhebrave.com/2020/04/13/wave-function-collapse-explained/

. Alexandre Thomas & Dimitry Barashev. TeamGantt: Online Gantt Chart Maker

Software - Free Forever. (2022). https:/www.teamgantt.com/

MediaWiki (13th May 2020). UNITY Requisitos previos - MediaWiki.
https://wiki.cifprodolfoucha.es/index.php?title=UNITY_Requisitos previos
Stalberg, Oskar (8th October 2016). World generation. Twitter.
https://twitter.com/OskSta/status/784847588893814785

Stalberg, Oskar (1st November 2016). Building generation. Twitter.
https://twitter.com/OskSta/status/793545297376972801

Stalberg, Oskar (26th November 2016). Building generation 2.0. Twitter.

https://twitter.com/OskSta/status/793545297376972801
Stalberg, Oskar (12th May 2017). Island generation. Twitter.

https://twitter.com/OskSta/status/863019585162932224

Brackeys (14th March 2018). GitHub - Brackeys/NavMesh-Tutorial: Tutorial project
files on using NavMesh in Unity. Github.
https://github.com/Brackeys/NavMesh-Tutorial

J. Millington, I. & Funge. Artificial Intelligence for Games. Taylor & Francis, 2009.
Ferocious Industries. (2018, October 23). FREE Medieval Props Asset Pack. Unity
Asset Store.

https://assetstore.unity.com/packages/3d/props/free-medieval-props-asset-pack-1314
20

JN 3D. (2019, January 25). Medieval barrels and boxes. Unity Asset Store
https://assetstore.unity.com/packages/3d/props/exterior/medieval-barrels-and-boxes-1
37474

Lylek Games. (2019, May 14). Medieval Stone Keep. Unity Asset Store.
https://assetstore.unity.com/packages/3d/environments/medieval-stone-keep-56596
Synty Studios. (2019. July 17). POLYGON MINI - Fantasy Character Pack. Unity
Asset Store.

https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/polygon-mini-

fantasy-character-pack-122084
Asset Store Originals. (2020, June 10). Snaps Prototype | Sci-Fi / Industrial. Unity

Asset Store.
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-in
dustrial-136759

Secession Studios. Dark Synthwave Music - Devour. Youtube.
https://www.youtube.com/watch?v=nUtAWeSK28g

66

https://oskarstalberg.com/game/wave/wave.html
https://www.boristhebrave.com/2020/04/13/wave-function-collapse-explained/
https://www.teamgantt.com/
https://wiki.cifprodolfoucha.es/index.php?title=UNITY_Requisitos_previos
https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/OskSta/status/793545297376972801
https://twitter.com/OskSta/status/793545297376972801
https://twitter.com/OskSta/status/863019585162932224
https://github.com/Brackeys/NavMesh-Tutorial
https://assetstore.unity.com/packages/3d/props/free-medieval-props-asset-pack-131420
https://assetstore.unity.com/packages/3d/props/free-medieval-props-asset-pack-131420
https://assetstore.unity.com/packages/3d/props/exterior/medieval-barrels-and-boxes-137474
https://assetstore.unity.com/packages/3d/props/exterior/medieval-barrels-and-boxes-137474
https://assetstore.unity.com/packages/3d/environments/medieval-stone-keep-56596
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/polygon-mini-fantasy-character-pack-122084
https://assetstore.unity.com/packages/3d/characters/humanoids/fantasy/polygon-mini-fantasy-character-pack-122084
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-industrial-136759
https://assetstore.unity.com/packages/3d/environments/sci-fi/snaps-prototype-sci-fi-industrial-136759
https://www.youtube.com/watch?v=nUtAWeSK28g

67

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

Efectos de Sonido Sin Copyright. Musica Epica - Sin Copyright . Youtube.
https://www.youtube.com/watch?v=ud23ual0ZEI

Sharetextures. (2018, November 2). Natural cut stone wall. Share Textures.
https: haretextur m/textur all/natural-cut-stone-wall
Sharetextures. (2020, March, 3). Blue leather 18. Share Textures.
https://www.sharetextures.com/textures/fabric/blue-leather-18/

Share Textures. (2021, June, 8). Red Leather. Share Textures.
https://www.sharetextures.com/textures/fabric/red leather/

Sharetextures. (2019, March 19). Wood fine 16. Share Textures.
https://www.sharetextures.com/textures/wood/wood-fine-16/

Unity. ProBuilder. https://unity.com/es/features/probuilder

Brackeys. (2020). MAKING YOUR FIRST LEVEL in Unity with ProBuilder!.

Youtube. https://www.youtube.com/watch?v=YtzZIXCKr8Wo

Unity. PolyBrush. https://unity.com/es/features/polybrush
Brackeys. (2018). SCULPT, PAINT & TEXTURE in Unity. Youtube.

https://www.youtube.com/watch?v=JWAnQiN9Zkw
CO.AG Music. (2018). Futuristic Sci-fi Background Music Copyright and Royalty
Free - Orion. Youtube. https://www.youtube.com/watch?v=wrJ0itsyVR8

Mxgmn. (2021, December). WaveFunctionCollapse. Github.

https://gith m/mxgmn FunctionColl

Hamid R. Arabnia, Ken Ferens, David de la Fuente, Elena B. Kozerenko, José Angel
Olivas Varela, Fernando G. Tinetti. Advances in artificial intelligence and applied
cognitive computing. 2021.

axim+Gumin&source=bl&ots=YOZnzL vmwq&sig=ACfU3U01ySrejSQhXUFyjs6bZ
v7Vse0osQ&hl=es&sa=X&ved=2ahUKEwil3K-Iwu33AhXNzYUKHOQrDDIKQ6AF6

BAgZEAM#v=onepage&g=Maxim%20Gumin&f=false

https://www.youtube.com/watch?v=ud23ua10ZEI
https://www.sharetextures.com/textures/wall/natural-cut-stone-wall/
https://www.sharetextures.com/textures/fabric/blue-leather-18/
https://www.sharetextures.com/textures/fabric/red_leather/
https://www.sharetextures.com/textures/wood/wood-fine-16/
https://unity.com/es/features/probuilder
https://www.youtube.com/watch?v=YtzIXCKr8Wo
https://unity.com/es/features/polybrush
https://www.youtube.com/watch?v=JWAnQiN9Zkw
https://www.youtube.com/watch?v=wrJ0itsyVR8
https://github.com/mxgmn/WaveFunctionCollapse
https://books.google.es/books?id=h3JIEAAAQBAJ&pg=PA526&lpg=PA526&dq=Maxim+Gumin&source=bl&ots=YOZnzLvmwq&sig=ACfU3U01ySrej5QhXUFyjs6bZy7Vse0osQ&hl=es&sa=X&ved=2ahUKEwil3K-Iwu33AhXNzYUKHQrDDlkQ6AF6BAgZEAM#v=onepage&q=Maxim%20Gumin&f=false
https://books.google.es/books?id=h3JIEAAAQBAJ&pg=PA526&lpg=PA526&dq=Maxim+Gumin&source=bl&ots=YOZnzLvmwq&sig=ACfU3U01ySrej5QhXUFyjs6bZy7Vse0osQ&hl=es&sa=X&ved=2ahUKEwil3K-Iwu33AhXNzYUKHQrDDlkQ6AF6BAgZEAM#v=onepage&q=Maxim%20Gumin&f=false
https://books.google.es/books?id=h3JIEAAAQBAJ&pg=PA526&lpg=PA526&dq=Maxim+Gumin&source=bl&ots=YOZnzLvmwq&sig=ACfU3U01ySrej5QhXUFyjs6bZy7Vse0osQ&hl=es&sa=X&ved=2ahUKEwil3K-Iwu33AhXNzYUKHQrDDlkQ6AF6BAgZEAM#v=onepage&q=Maxim%20Gumin&f=false
https://books.google.es/books?id=h3JIEAAAQBAJ&pg=PA526&lpg=PA526&dq=Maxim+Gumin&source=bl&ots=YOZnzLvmwq&sig=ACfU3U01ySrej5QhXUFyjs6bZy7Vse0osQ&hl=es&sa=X&ved=2ahUKEwil3K-Iwu33AhXNzYUKHQrDDlkQ6AF6BAgZEAM#v=onepage&q=Maxim%20Gumin&f=false

LIST OF FIGURES

2.1. DFP task planner (made with TeamGantt [3]) 7
3.1. Playable and Non-Playable Characterscovviurn... 9
32. MainMenuofthegame........ 10
33. Themaincharactermodel.......... i, 11
34, Facetoface ememY . .o vi ittt e 12
3.5. LongdiStance enemMY . . .o vt vttt ittt 12
3.6. Caseuse diagram . ..o vi ittt e 19
3.7, Activity dia@ramt e 20
3.8. GUIinthe initial FOOMot v ettt e ettt et eeann 22
3.9. GUI in the middle of the arena (blocking action) 22
3.10. GUI in the middle of the arena (attack action) 23
4.1. Image of 2D content created by WFC algorithm [1]................... 26
4.2. Appropriate tileset for terrain building with WEC 27
4.3. Different maps examples generated by the WFC algorithm 29
4.4. Variable class and itS cONStIUCIOr . . . oot oot v i e 30
4.5. Variable’s method to calculate its entropycooii .. 31
4.6. _ TileSetGenerator attributes declaration 31
4 Til nerator Initializemethod 32
4.8. TileSetGenerator Generate method 33
4.9. TileSetGenerator TileElectionmethod 34
4.10. TileSetGenerator SearchNextGridCellmethod 35
4.11. TileSetGenerator ConstraintPropagationmethod 36
4.12. Al Variable COnStructorot i i et e e e 38
4.13. Behaviour Block’s class constructors and arguments 40
4.14. RunCondition and Run method for the Patrol class 41
4.1 RunCondition and Run meth f the Retr: lass . ..o 42
4.16. RunCondition and Run methods of the StrategicPositioning class 43
4.17. RunCondition and Run methods of the GetClose and GetAway classes 44
4.18. RunCondition and Run methods of the Attack and Shoot classes 45
4.19. Generation of thedecision tree vii i 46
4.20. Decision Trees generated by the WFC algorithm 47
4.21. Attributes ofthe EnemyAgentclass..............ooiiiniinennan... 47
4.22. EnemyAgent CONStIUCIOr . . .ot v i ettt et et e 48
4.23. EnemyAgent OnEnablemethod 49
4.24. GoPatrolling method of EnemyAgentclass 50
4.25. Retreat method of enemyAgentelass............. .o i, 51
4.26. Get Strategic Position method of EnemyAgentclass................... 52
4.27. StrategicPositioning method of the EnemyAgentclass.................. 53

4.28. GetClose and GetAway methods of EnemyAgentclass 55

4.29. Attack and Shoot method of the EnemyAgent class

4.30. Tutorial and initial roomstyle

4.31. Arenastructure and textures style
4.32. Arenaobjectsstyle..............,

4.33. Choosing the tile set for the terrain generationcovvvne....
4.34. Choosing the block set for the behaviour generation

4.35. Entering the arena through the portal

4.36. Playerinsidethearena.......................

4.37. Fighting the face to faceenemy

4.38. Fighting the long distanceenemy

56
57
58
58
62
62
62
63
63
63

