
AerosTracker.gg,
a League of Legends Full-Stack Web

Application

Javier Selma Rubio

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

May 25, 2022

Supervised by: Raúl Montoliu Colás

http://creativecommons.org/licenses/by-nc-sa/3.0/

To Javier and Ana

Acknowledgments

First of all, I would like to thank to every member of my family who have helped me
throughout the years of my Bachelor’s Degree. My Father Javier and my Mother Ana,
the best parents a person could wish for, who have helped me through the difficulties
life has tried to put in our paths. My Grandmothers, Georgina and Consuelo, whose
loving hands have taken care of me in difficult moments. My Godfather, Jesús, and my
Godmother, Estefanía, for always keeping a space in their hearts for me. Finally, my
beloved cousins, Daniel, Bárbara, Abril and Júlia, who, even as an only child, have made
me feel what it is like to have a sibling.

Secondly, I would like to mention all those people who have accompanied me through-
out my time as a university student. My friends from Alcoy and Castellón have made
this journey easier for me in every single way they could. They have been for me in the
dark and in the bright times, making me a better person. Thanks, Sam and George, you
have made me realise what it is like to meet your soulmates.

Thirdly, I would like to thank my supervisor Raul Montoliu Colás, for accepting my
project, even when it falls outside of his field of expertise.

Finally, I also would like to thank all the professors that I have met along my aca-
demical life. Some of them awoke in me the skeptical and scientific spirit that I possess.
Thanks to Sergio Barrachina Mir and José Vte. Martí Avilés for their inspiring LaTeX
template for writing the Final Degree Work report, which I have used as a starting point
in writing this report.

i

http://lorca.act.uji.es/curso/latex/
http://lorca.act.uji.es/curso/latex/

Abstract

This document is a reflection of the research done to understand the operation of a
web application consisting of a BackEnd and a FrontEnd, and reflecting this research
work developing an application for a Final Degree Project whose purpose is retrieving
information from an API and showcasing it in a web.

To sum up, the work has consisted of investigating how to make both parties com-
municate with each other, as well as knowing the ins and outs and delving into the
information offered by the official API of the League of Legends game (provided by Riot
Games). Finally, it has also been necessary to investigate how to show the information
obtained to the end user, in an attractive, practical and concise way.

The project consisted of several different stages: first, it was necessary to investigate
how web applications work. Later, after learning about the existence of the server
side and the FrontEnd, it was necessary to learn first hand what information the Riot
API provides, how it provides it, how to handle it and decide what information to
use and what information not to use. For this, it has also been necessary to develop a
database with PostgreSQL, making use of the knowledge acquired in the course to design
a relational database with several entities. Once the server had been developed, it was
necessary to develop a FrontEnd that would communicate with the server, obtain the
data provided by the API created in the server, and display them to the user according
to the information requested by the user.

The report will explain how every part of the project has been researched, designed,
developed and deployed, starting from the logic of the server, going through the entities
of the database and ending with the logic of the frontal part.

ii

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2

1.2.1 BackEnd . 2
1.2.2 FrontEnd . 2

1.3 Environment and Initial State . 3
1.4 Expected Results . 3

2 Planning and resources evaluation 4
2.1 Project Planning and Time Estimation . 4
2.2 Resource Evaluation . 7
2.3 Project Actual Time Cost . 8
2.4 Tools . 11

3 System Analysis and Design 13
3.1 OP.GG . 13
3.2 FullStack Development . 16

3.2.1 BackEnd . 18
3.2.1.1 Jax . 19
3.2.1.2 Database . 20

3.2.2 FrontEnd . 21
3.2.2.1 Landing Page . 23
3.2.2.2 Summoner Page . 24

4 Work Development 31
4.1 Work Development . 31

4.1.1 BackEnd . 32
4.1.2 FrontEnd . 37

iii

Contents iv

4.2 Project Technical Report Writing and Project Defense 39

5 Results 40
5.1 Results . 40
5.2 Objectives Accomplished . 43
5.3 Access to the Project . 44

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future work . 45

Bibliography 47

A Riot API 50
A.1 Endpoints . 50

B JSON Parsing 53

C Data Dragon 57

List of Figures

2.1 Gantt chart of the Project (made with GanttProject) 9

3.1 Simple match shown in League of Legends client 14
3.2 Main screen of the web app OP.GG . 15
3.3 Main screen when searching a Summoner in OP.GG 15
3.4 Data shown when clicking a match in OP.GG 16
3.5 Diagram showing the project’s communication routes 17
3.6 Diagram showing the BackEnd workflow . 18
3.7 Image showing the proper petition made in the Riot Games Developer Portal 19
3.8 Splash art of Jax Godfist . 20
3.9 Scheme showing the real abstraction of the BackEnd 20
3.10 Relational scheme of the database used by the BackEnd 21
3.11 Diagram of SPA operation . 22
3.12 Main screen of the web app OP.GG . 23
3.13 Main screen of the web app U.GG . 23
3.14 Main screen of the web app League of Graphs 24
3.15 Technical mock-up of AerosTracker.gg landing page 24
3.16 Matches screen of the web app OP.GG . 25
3.17 Matches screen of the web app U.GG . 25
3.18 Matches screen of the web app League of Graphs 26
3.19 Technical mock-up of AerosTracker.gg matches screen 26
3.20 Detailed match screen of the web app OP.GG 27
3.21 Detailed match screen of the web app U.GG 28
3.22 Detailed match screen of the web app League of Graphs 29
3.23 Technical mock-up of AerosTracker.gg detailed match screen 30

4.1 Console logs . 33
4.2 Time diagram of non-pipelined vs. pipelined connection. 33
4.3 Several VMs working at the same time. 34
4.4 Docker standard environment. 35
4.5 Simple Wiki app developed in VJ1229 [1] . 36
4.6 PgAdmin4 [2] dashboard image . 37
4.7 AerosTracker.gg Logo . 38

v

https://www.ganttproject.biz/
https://euw.op.gg/
https://euw.op.gg/summoners/euw/Aer%C3%B8s
https://euw.op.gg/summoners/euw/Aer%C3%B8s
https://developer.riotgames.com/
https://euw.op.gg/
https://u.gg/
https://www.leagueofgraphs.com/es/
https://euw.op.gg/
https://u.gg/
https://www.leagueofgraphs.com/es/
https://euw.op.gg/
https://u.gg/
https://www.leagueofgraphs.com/es/

List of Figures vi

5.1 AerosTracker.gg main screen . 42
5.2 AerosTracker.gg summoner overview . 42
5.3 AerosTracker.gg detailed match view . 43

A.1 Object returned by the Riot API when requesting a Summoner puuid 51

List of Tables

2.1 Documentation Phase’s Estimation . 5
2.2 Research Phase’s Estimation . 6
2.3 Development Phase’s Estimation . 6
2.4 Estimated duration of project’s tasks summary 7
2.5 Economic costs of developing the project in an actual business environment . 8
2.6 Documentation phase’s actual duration . 10
2.7 Research Phase’s actual duration . 10
2.8 Development Phase’s actual duration . 11
2.9 Real duration of project’s phases summary 11

vii

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2

1.2.1 BackEnd . 2
1.2.2 FrontEnd . 2

1.3 Environment and Initial State . 3
1.4 Expected Results . 3

This chapter will explain the different reasons why, in a career focused on Video
Game Design and Development, I have chosen a web application as my final project,
as well as explaining the objectives I aspire to when developing it and what minimum
result I expect to obtain.

1.1 Work Motivation
After having had several subjects based on the development of a video game, either
within engines such as Unity, or making use of libraries such as the one used in Web
Development, and realizing that the development of applications makes use of skills that
I have been acquiring throughout the degree, I thought off about the final project as
a good opportunity to learn new languages, new skills and make use of skills already
acquired that, put together, could serve a common purpose.

On the one hand, this project makes use of skills acquired in subjects such as Web

1

1.2. Objectives 2

Development, Databases, Mobile Applications, and even the programming knowledge
acquired in the basic subjects of the degree. These skills have made me know how to
treat data, how to approach and face the development of a web application, and how
to make use of such important elements in Information Technology (IT for now on) as
APIs[3].

On the other hand, after having done extensive research on how to develop a complex
web application that makes treatment of data from an API, in addition to having to make
an extensive study of new frameworks and technologies that had not been used in the
race, the project has also served as a gateway to a new world, the world of application
development (specifically web applications).

That is why the main reason contemplated to do this kind of project was to continue
learning in a field as vast as development and programming, specifically applications in
this case. I’m not so much looking for perfection in the final application, but to learn
along the way how a complex and complicated multi-part application works.

1.2 Objectives
The project, as previously stated, has two main parts, the server or BackEnd, and the
user part or FrontEnd. The objectives to be achieved in each of them will be listed
below.

1.2.1 BackEnd

The main objectives of the server-side or BackEnd are essentially the following:

• Retrieve information from the Riot API.

• Receive the information, select the desired items and discard the rest.

• Store the desired items in a relational database (PostgreSQL).

• Publish the items when required in an internal API to be consulted by the Fron-
tEnd.

1.2.2 FrontEnd

The main objectives of the client-side or FrontEnd are essentially the following:

• Allow users to retrieve information on demand (introducing their League of Leg-
ends username).

• Retrieve the desired information from the BackEnd API.

1.3. Environment and Initial State 3

• Receive the information and display it.

• Display the information in an effective and visual-appealing way.

1.3 Environment and Initial State
To put the reader in context, the project starts with a clear idea of what to do, but
not how to do it, since this kind of application is well known in the League of Legends
game universe. Any user who has played the game has used this kind of application or
website at some point in their journey inside the game. Therefore, the interest of the
project is to develop something widely known and find the way to do it efficiently and
elegantly. In addition, it is vital to maintain the relationship between the project and
the degree, thus being ideal the idea of doing the project on an API related to video
games, which also I have worked on previously in other projects of the degree, so I know
the information I can get from it.

1.4 Expected Results
As it has been mentioned before, the expected results are based on making a functional
application that at least meets the minimum expectations of a user, which is to consult
his games and their information on the web.

It is also of great interest to find a way to display the information making use
of graphs, tables and visually appealing ways to allow full user interaction with the
application.

This is why the problem faced when carrying out the project is to achieve a functional
application both on the back and front end, in addition to design a user interface that
allows, at a glance, to obtain the basic information present in a game.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Project Planning and Time Estimation 4
2.2 Resource Evaluation . 7
2.3 Project Actual Time Cost . 8
2.4 Tools . 11

This chapter will explain the time and resource planning part of the project. De-
velopment work must at least follow a well-defined pattern by stages that allows the
developer to advance step by step in the different functionalities that are desired in the
application.

For this reason, first, a division into tasks will be made to develop the project cor-
rectly, and then an estimate of hours will be made for each of them to have an idea of
the final theoretical time dedication of the project. Then, the real dedication of hours
to each of the tasks will be compared to know if the planning, estimation, and division
were done correctly

2.1 Project Planning and Time Estimation
For the planning of the project, it has been decided to separate it into three distinct
stages. The first stage is the writing and preparation of the documentation (including the
report and its defense). The second, the research of the various technologies necessary
for the development of the application, and the third and last, the development itself.

4

2.1. Project Planning and Time Estimation 5

The hours assigned are an arbitrary estimation taking into account the ideal target of
hours per ECTS of the subject, therefore 300 hours will be the ideal total estimate of
the project.

Firstly, the documentation stage (Table 2.1) includes the necessary hours for the
drafting of the various documents required for the project, in addition to the preparation
of the defense of the report.

Table 2.1: Documentation Phase’s Estimation

Documentation Phase

Tasks Estimated Duration (in hours)

Technical Proposal 5

System Analysis and Design 5

Technical Report 40

Project Defense 10

Total 60

Secondly, in the stage of researching the necessary technologies (Table 2.2), it has
been taken into account the need to learn about two new technologies: the one used for
the server –Adonis framework [4]– and the one used for the client –Vue.JS framework [5]–
in addition to having to dig into the depth of the information provided by the Riot
API [6]. This stage is mainly focused on searching for information and acquiring the
necessary knowledge to proceed with the complete development of the application.

2.1. Project Planning and Time Estimation 6

Table 2.2: Research Phase’s Estimation

Research Phase

Tasks Estimated Duration (in hours)

Learn about Adonis.JS 10

Learn about Vue.JS 10

Dive into Riot API 5

Research and Comprehend how real OP.GG
works

5

Research optional JavaScript libraries to use 10

Total 40

Thirdly, Table 2.3 shows the tasks related to the development of the application,
the design of the database and the user interface, and the development of the various
services required.

Table 2.3: Development Phase’s Estimation

Development Phase

Tasks Estimated Duration (in hours)

Design BackEnd 20

Design Database 15

Develop BackEnd 60

Design FrontEnd 20

Design UI 15

Develop FrontEnd 60

Test and Deploy 10

Total 200

Finally, this Table 2.4 serves as a summary to show the total estimate of the project

2.2. Resource Evaluation 7

divided into its three stages.

Table 2.4: Estimated duration of project’s tasks summary

Development Phase

Tasks Estimated Duration (in hours)

Documentation 60

Research 40

Development 200

Total 300

2.2 Resource Evaluation
When evaluating the resources required for the theoretical development of the project, it
is necessary to take into account both the cost of the equipment –hardware and software–
and the cost of the labor required to carry out both the design and the development.

By using free libraries and frameworks, a private but free API and free tools to design
both the database and the front end, only the cost of maintaining the application on a
server 24 hours a day and the cost of an average programmer’s salary plus the computer
he/she will use will have to be taken into account. Estimated costs are exposed in
Table 2.5

2.3. Project Actual Time Cost 8

Table 2.5: Economic costs of developing the project in an actual business environment

Cost Evaluation Summary

Resource Cost (in €) Time spent (in
hours)

Total cost (in €)

Hardware costs

Computer 2000.00 2000.00

Internet Access 40.00 40.00

Server costs

BackEnd hosting 500.00 / year 8760 (1 year) 500.00

FrontEnd hosting 200.00 / year 8760 (1 year) 200.00

Software license
costs

Windows 10 Pro 129.90 129.90

GitHub Enterprise 12.00 / month 8760 (12 months) 144

Human costs

Full-Stack Developer 30.00 / hour 300 9000.00

Total 12013.90

2.3 Project Actual Time Cost
The objective of this section is to compare the times that were estimated at the beginning
of the preparation of the technical report with the actual times that have been used in
each of the stages and parts of each of them.

It can be seen how the times have varied slightly, since throughout the development
of the project various unforeseen events have arisen that have made it necessary to invest
more hours than planned.

On the one hand, one of the main problems was having to use two frameworks that
were unknown at the beginning of the development. Having to learn from scratch two
technologies that have not been used in the race has been a real challenge.

On the other hand, when it came to preparing the technical documentation for the
project, there were several obstacles related to the complexity of using LATEX and the
Overleaf editor.

2.3. Project Actual Time Cost 9

The Figure 2.1 shows the actual timeline of the project, using a Gantt chart.

Figure 2.1: Gantt chart of the Project (made with GanttProject)

Tables 2.6 , 2.7 and 2.8 show the actual project duration in hours. There have been
several modifications in the times dedicated to each of the sub-stages to ensure the final
quality of the project.

https://www.ganttproject.biz/

2.3. Project Actual Time Cost 10

Table 2.6: Documentation phase’s actual duration

Documentation Phase

Tasks Estimated Duration (in
hours)

Real Duration (in
hours)

Technical Proposal 5 5

System Analysis and De-
sign

5 2

Technical Report 40 70

Project Defense 10 6

Total 60 83

Table 2.7: Research Phase’s actual duration

Research Phase

Tasks Estimated Duration (in
hours)

Real Duration (in
hours)

Learn about Adonis.JS 10 15

Learn about Vue.JS 10 15

Dive into Riot API 5 2

Research and Comprehend
how real OP.GG works

5 5

Research optional
JavaScript libraries to
use

10 8

Total 40 45

https://euw.op.gg/summoners/euw/ttneid

2.4. Tools 11

Table 2.8: Development Phase’s actual duration

Development Phase

Tasks Estimated Duration (in
hours)

Real Duration (in
hours)

Design BackEnd 20 15

Design Database 15 10

Develop BackEnd 60 90

Design FrontEnd 20 15

Design UI 15 10

Develop FrontEnd 60 80

Test and Deploy 10 15

Total 200 235

Finally, to expose clearly the difference between the estimated hours and the actual
ones, the different phases are showcased in Table 2.9.

Table 2.9: Real duration of project’s phases summary

Development Phase

Tasks Estimated Duration (in hours) Real Duration (in hours)

Documentation 60 83

Research 40 45

Development 200 235

Total 300 363

2.4 Tools
This section will list the necessary tools that will be used throughout the development
of the project.

2.4. Tools 12

• Documents

– Overleaf: tool used to elaborate scientific papers in LATEX.
– LaTeX Table Generaton: tool used to generate LATEX tables.
– GanttProject: free open app to create Gantt charts.
– Grammarly: free online app that corrects grammatical errors.
– DeepL: free online translator.

• Programming

– Visual Studio Code: Free, Open-Source IDE
– Adonis.JS: Node.JS based framework, working with TypeScript, used to pub-

lish APIs
– Vue.JS: JavaScript reactive framework

• Version Control

– GitHub: a Git repository hosting service.

https://es.overleaf.com/
https://www.tablesgenerator.com/latex_tables
https://www.ganttproject.biz/
https://www.grammarly.com/
https://www.deepl.com/translator
https://code.visualstudio.com/
https://adonisjs.com/
https://vuejs.org/
https://github.com/

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 OP.GG . 13
3.2 FullStack Development . 16

3.2.1 BackEnd . 18
3.2.1.1 Jax . 19
3.2.1.2 Database . 20

3.2.2 FrontEnd . 21
3.2.2.1 Landing Page . 23
3.2.2.2 Summoner Page . 24

In the previous chapters, it was stated that documentation, research and preparation
would be necessary before embarking on the development of the project.

This chapter is going to explain what exactly an OP.GG [7] page is and why it is so
widely used by all League of Legends [8] players.

In addition, it will also explain the decision of each of the frameworks for each of the
parts of the application, their basic functioning, how they communicate with each other
and the different design choices made for the project.

3.1 OP.GG
League of Legends is a game within the MOBA [9] genre. Each game pits 10 players,
divided in two teams of 5 people, who fight against each other, and lasts between 30

13

3.1. OP.GG 14

and 45 minutes on average. In this kind of genre, basic statistics such as kills, assists or
deaths are extremely important.

In addition, it is very important to note that each champion or character in the game
has 4 skills, and can buy up to a maximum of 6 different items to choose from hundreds.

After knowing this, it is easy to assume that after each game, each player in the
game will want to consult what kind of items he, his teammates and his enemies have
bought, the basic statistics related to damage, gold or other aspects and the final scores
of each of the players involved.

With this in mind, any user might think that the developer itself, Riot Games [10],
would provide an option in the game client itself to be able to consult this kind of
statistics, and the answer is ambiguous: yes and no.

Yes, because some statistics of the game are indeed shown, as well as a timeline of
the game that tries to represent important events in the game such as the obtaining of
multiple casualties, the purchase of key items or the death of neutral targets.

No, because this, as you might guess, is not enough for players who want to improve
and better understand every existing aspect of the game. Riot Games’ API [6] gives
very extensive information about each of the matches, and the developer decided, when
League of Legends became the most played game in the world [11], that they were going
to give little information on the match history of each of the players in order to save on
server maintenance costs, which are extremely high. Figure 3.1 gives an example of how
little information the match history gives to a normal user.

Figure 3.1: Simple match shown in League of Legends client

This, combined with the large community that the game has, made people with
sufficient knowledge and technical skills to get to work with the development of web
applications that would allow consulting this information provided by the Riot Games
API. This is where the first, the most popular and the most powerful game query page
arose: OP.GG [7].

When delving into what kind of statistics can be obtained from this web application,
it must be first known firsthand what a user needs to request information from the web
server. And the answer is simple and concise, you only need to know your username and
the server you play on, as shown in Figure 3.2.

https://euw.op.gg/

3.1. OP.GG 15

Figure 3.2: Main screen of the web app OP.GG

Once the request has been passed to the server, the BackEnd gets all the information
that the page wants to show to the user, and gives it to the user showing all the public
games that the user has played, as well as indicating other data such as his rank in the
ranked queues, his statistics with various characters in the game, the winning and losing
streak in his last games, and many other sections. The overall information obtained
after searching your summoner name can be seen in Figure 3.3.

Figure 3.3: Main screen when searching a Summoner in OP.GG

This looks a bit like the interface provided by the developer itself in the official client

https://euw.op.gg/
https://euw.op.gg/summoners/euw/Aer%C3%B8s

3.2. FullStack Development 16

of the game, but the interesting part comes when the user wants to know the specific
data of one of the games shown in the list of games. Once the user clicks on one of these
games, an interface is displayed showing interesting data about each of the participants
in the game. Items, levels, statistics —KDA [12]— and neutral and general objectives
such as turrets. The match history shown in Figure 3.3 has several matches. Once the
first one gets clicked, it shows the aforementioned data, as shown in Figure 3.4.

Figure 3.4: Data shown when clicking a match in OP.GG

3.2 FullStack Development
Web applications can have different complexities, depending on the purposes and func-
tionalities that they must fulfill. It is the job of a developer to know what kind of
application he wants to develop, what he needs to do it, and to know what parts to
develop and how to make them interact with each other.

When deciding what kind of application and complexity the one developed in the
project should have, it was necessary to investigate how the application used as an exam-

https://euw.op.gg/summoners/euw/Aer%C3%B8s

3.2. FullStack Development 17

ple worked in order to develop our own: OP.GG. After finding out that the application
made use of a FullStack [13] development, it was necessary to know what function and
how each of the parts that make up this kind of development did. The back end, or
server, and the front end, or client, are clearly delimited and fulfill a very specific function
when interacting with the various external parts, such as the user or the Riot API[6].

In OP.GG, the BackEnd performs the function of checking if it has the user’s data
in the database, and if these do not exist or are not up to date, it also takes care of
requesting them from the Riot Games API [6]. Once it has obtained this data, and after
having saved it in the database if necessary, it is passed in the form of a JSON [14] file
to the FrontEnd. This data is chosen and displayed in various sections on the FrontEnd,
after decoding the file obtained from the server.

The same operating structure will be followed in the application developed in this
project. The Adonis.JS [4] framework, a Node.JS-based framework, has been chosen
for the BackEnd, in addition to communicating with a PostgreSQL-based database [15],
while the Vue.JS [5] framework, which allows developing single-page applications [16],
has been chosen for the front-end, in conjunction with the basic languages used to develop
a web page, HTML5 [17], JavaScript [18] and CSS [19]. The following Figure 3.5 shows
a diagram that explains the ways in which the parts of the project interact with.

Figure 3.5: Diagram showing the project’s communication routes

https://euw.op.gg/
https://euw.op.gg/

3.2. FullStack Development 18

3.2.1 BackEnd

When talking about the BackEnd or server, it is first necessary to know what an API [3]
is in order to know how the data will be obtained from Riot Games [10], and how the
data will be exposed to the FrontEnd or client so that the user can enjoy the information
they demand.

An API [3] or application programming interface is a set of definitions and protocols
used to design a port for integrating application software together. It can be described
as a listener that is asleep, waiting for a client that wants to demand information from
it to access one of its endpoints [20] or routes.

For this reason, besides having to design the database that will store the data ob-
tained from the Riot API [6], it is also necessary to define the routes that can be accessed
by the FrontEnd. The following diagram, shown in Figure 3.6 , will show how the Back-
End will act when requesting, storing and displaying the information used by the project
application.

Figure 3.6: Diagram showing the BackEnd workflow

After looking at Figure 3.6 , it is easily conceived why to split the application into
two parts, when the front end could communicate directly with the Riot API [6], since
it shares the same endpoints and the same listener structure as the server. The problem
is that, by making use of a proprietary API, the application is limited by the developer
itself to be able to make a limit of requests per minute to the API, in addition to having
its limitations in each of the endpoints that can be even more restrictive than the general
ones.

Before starting to develop the project, it has been necessary to make an application
request to Riot Games [10] on their developer portal in order to have a more lax limit.
Thanks to having made use of the API in previous projects of other subjects of the

3.2. FullStack Development 19

degree, the process was quick and the response was positive from the developer. The
Figure 3.7 shows the request made on the development website.

Figure 3.7: Image showing the proper petition made in the Riot Games Developer Portal

When the request is approved, an API Key is granted, which has been hidden for
obvious reasons in Figure 3.7 , as it is the cornerstone that allows access to the developer’s
server. Here it is also possible to see how a rate limit is granted to each approved
application in the development portal. When making requests to the API, the limit
indicated here cannot be exceeded at any time, nor the limit indicated in each of the
endpoints to be accessed.

When making requests to the Riot API [6], a higher level of abstraction will be
used than the one indicated in the diagram in the Figure 3.6. This diagram shows the
schematic operation of the application and its communication with the Riot API [6],
but in practice, there will be an intermediary in charge of centralizing the requests at
a single point, and later differentiating which endpoint and exactly what information is
to be obtained.

3.2.1.1 Jax

In honor of the favorite character of the author of this project, the intermediary that
will act between the BackEnd and Riot’s API [6] will be named Jax [21], one of the most
famous characters in the League of Legends [8] universe. Figure 3.8 shows a splash art
of the character whose name gets referenced in the intermediary.

https://developer.riotgames.com/

3.2. FullStack Development 20

Figure 3.8: Splash art of Jax Godfist

Source: https : / / aminoapps . com / c / league-of-legends-en-espanol / page / blog /

teamodls-guia-sobre-jax/xpE5_qV4h2uwkRBKa4JVwE2ba7jXReZDqD4

The following schematic, shown in the Figure 3.9, shows the design chosen for the
abstraction between the API and the BackEnd.

Figure 3.9: Scheme showing the real abstraction of the BackEnd

3.2.1.2 Database

When designing the database to be used for the server, it has been taken into account
the endpoints previously mentioned in Figure 3.6. From them, and taking into account

https://aminoapps.com/c/league-of-legends-en-espanol/page/blog/teamodls-guia-sobre-jax/xpE5_qV4h2uwkRBKa4JVwE2ba7jXReZDqD4
https://aminoapps.com/c/league-of-legends-en-espanol/page/blog/teamodls-guia-sobre-jax/xpE5_qV4h2uwkRBKa4JVwE2ba7jXReZDqD4

3.2. FullStack Development 21

what kind of information is going to be needed in the FrontEnd, a relational model in
PostgreSQL [15] has been used, shown in Figure 3.10,designing the following models to
host the information.

Figure 3.10: Relational scheme of the database used by the BackEnd

Source: Used Vertabelo Data Modeler, https://vertabelo.com/, to make the schematic

3.2.2 FrontEnd

The client or FrontEnd is an essential part of the application. Both when communi-
cating with the BackEnd and displaying the information obtained from it, it plays a
fundamental role in the basic operation of any request from the user.

As it has been observed in the screenshots made to the OP.GG [7] page, this kind of
applications have two basic parts, the main screen where the server and the user name
are introduced, and the display screen where all the information related to the user of
the game is shown.

https://vertabelo.com/
https://vertabelo.com/

3.2. FullStack Development 22

In modern front-end applications, a specific kind of frameworks are used that allow
the page to function in Single-Page Application [16] mode. This means that, when
clicking on a page element, a new web page will not be loaded, with all that this implies
in terms of server load, waiting time and updating and use of the various data by the
page. This is shown in Figure 3.11

Figure 3.11: Diagram of SPA operation

Source: What is a SPA?

Seeing how this kind of applications work, it is easy to imagine which parts of the
developed project will depend on a template structure. The main page where the user
will enter his summoner name and his server will be an independent page, which once it
sends the request to the server, will change to the user’s profile page, where everything
will be handled by components [22], the basic unit of the Vue.JS [5] framework.

Just as the operation of the server part of the application has been described by
means of several schemes and diagrams, it is also pertinent to look for several references
in webs of the same style, in order to be able to work a mock-up that has the maximum
resemblance to the final product that is desired to obtain.

For this reason, both pages that are going to form the client are going to be refer-
enced making use of several images and diagrams of other pages that perform the same
functions. It is not necessary to reinvent the wheel to make a new application that can
work better than the previous ones, simply by putting together ideas that are good but
that together would work better, you can get an excellent final result.

https://www.excellentwebworld.com/what-is-a-single-page-application/

3.2. FullStack Development 23

In order to have enough references, and to compare the performance of different pages
with each other, thus being able to choose the desired elements of each one of them, three
applications with wide support that are well known by the community and that perform
thousands of searches per day will be used: OP.GG [7], League of Graphs [23] and
U.GG [24].

3.2.2.1 Landing Page

This part of the application is the simplest to prototype, since it simply has to fulfill
one function, that of allowing the user to enter his player name and the server where
he plays, thus allowing the application to request the necessary information from Riot’s
API [6].

In the following Figures —Figure 3.12, Figure 3.13 and Figure 3.14— , it is possible
to see how, except for small visual details that allow you to see more or less information
about the current situation of the game, news that may have arisen during the week
about game updates or the release of new champions, players only have to enter their
user in a search bar that will allow them to move to the next screen.

Figure 3.12: Main screen of the web app OP.GG

Figure 3.13: Main screen of the web app U.GG

https://euw.op.gg/summoners/euw/Aer%C3%B8s
https://www.leagueofgraphs.com/es/summoner/euw/Aer%C3%B8s
https://u.gg/lol/profile/euw1/aer%C3%B8s/overview
https://euw.op.gg/
https://u.gg/

3.2. FullStack Development 24

Figure 3.14: Main screen of the web app League of Graphs

After observing that practically all applications with this kind of purpose share the
same type of home page, it is easy to imagine and design how the client’s home page
of the project is going to look like. The Figure 3.15 shows a mock-up of the technical
design of the page.

Figure 3.15: Technical mock-up of AerosTracker.gg landing page

3.2.2.2 Summoner Page

Once again, taking into account the features present in the previous web applications,
the second and most important page will be designed from the elements that can be
found in them.

It is common to have a brief description of the user’s basic statistics, such as his own
Summoner name, the level he has, his icon, statistics related to ranked games such as
his own rank, the use of certain champions and the games played with friends or with
other users repeatedly.

Finally, the most important part includes a list of the last 20 games played by the
player, being able to see more on demand, thus saving resources and requests to the Riot
server. Once the user clicks on any of these games, he will see detailed information about
that game in question, seeing the information arranged in different ways depending on
what the web developer considers most important. The interface of the webs can be
seen in Figure 3.16, Figure 3.17 and Figure 3.18.

https://www.leagueofgraphs.com/es/

3.2. FullStack Development 25

Figure 3.16: Matches screen of the web app OP.GG

Figure 3.17: Matches screen of the web app U.GG

https://euw.op.gg/
https://u.gg/

3.2. FullStack Development 26

Figure 3.18: Matches screen of the web app League of Graphs

As it happened in the landing page, the designs are practically the same, therefore,
at the time of making the technical mock-up of the client’s project, it will follow a similar
form to the one seen in the images. It will make use of various components to be able to
fragment the code into smaller pieces, and thus be able to reuse and integrate efficiently
the various parts of the FrontEnd. This can be seen in Figure 3.19.

Figure 3.19: Technical mock-up of AerosTracker.gg matches screen

https://www.leagueofgraphs.com/es/

3.2. FullStack Development 27

Finally, an important part of the application is to be able to obtain the details of
each of the games. As shown in Figure 3.19 , clicking on a game displays an extended
view of the various details present in the game. Therefore, as in the other cases, the
webs will be taken into account in order to obtain a satisfactory final design that is in
tune with the data that will be stored in the database. Detailed match views can be
seen in Figure 3.20, Figure 3.21 and Figure 3.22.

Figure 3.20: Detailed match screen of the web app OP.GG

https://euw.op.gg/

3.2. FullStack Development 28

Figure 3.21: Detailed match screen of the web app U.GG

https://u.gg/

3.2. FullStack Development 29

Figure 3.22: Detailed match screen of the web app League of Graphs

Taking into account the user interfaces shown in the previous figures, the most de-
tailed and the one that provides the most information is the one on the League of Graphs
website. Therefore, the technical mock-up elaborated for the detailed part of the games
will be closely related to the aforementioned website. This can be seen in Figure 3.23.

https://www.leagueofgraphs.com/es/
https://www.leagueofgraphs.com/es/

3.2. FullStack Development 30

Figure 3.23: Technical mock-up of AerosTracker.gg detailed match screen

C
h

a
p

t
e

r

4
Work Development

Contents
4.1 Work Development . 31

4.1.1 BackEnd . 32
4.1.2 FrontEnd . 37

4.2 Project Technical Report Writing and Project Defense 39

In this chapter the obstacles encountered during the development of the project will
be discussed, as well as the possible doubts that arose throughout the development,
the solution found to them, and several important technical aspects that, although not
explained in this chapter but in the appendices attached to the report, deserve to be
mentioned since they were an obstacle when creating a functional final product.

4.1 Work Development
To be consistent with the chronology followed with the project, it is possible to consult
the Gantt Chart Figure 2.1, since the development of the project has followed the steps
one after the other for a simple reason.

The FrontEnd is dependent on the BackEnd, and at the same time, the BackEnd is
dependent on the database and the Riot API queries. Once the essential parts of the
project were developed, parts like the FrontEnd simply required a simple development
that made use of all the previously developed elements.

31

4.1. Work Development 32

4.1.1 BackEnd

While developing the BackEnd, it was necessary to face several problems to ensure the
correct functioning of an interface that would allow quick querying of data to the Riot
API.

One of the first problems that appeared during the development of the project was
to fix the long API call times. Whenever it was necessary to get games from the API,
often the response time was too long because of the initial approach in the logic of the
calls to the Riot interface, due to the existence of data of 10 different players, each with
his champion, stats, rank, and a long etcetera of data.

One of the solutions was to find a helper to maximize the optimization of each API
call and its subsequent storage in the application’s existing database.

This solution was found by making use of an open-source technology –Redis [25]– in
charge of optimizing to the maximum the existing calls to both APIs and databases.

At the same time as having developed a database based on PostgreSQL [15], making
use of knowledge already acquired in the degree, it is also put in common with the use of
Redis, an application that allows the storage in memory of certain information until it
is needed, thus avoiding unnecessary queries to the database and the Riot Games API.

By using this technology, it is possible to improve the performance of the applica-
tion [26] when querying certain data. In a scenario in which a new Summoner is searched,
it could be possible that, in one of its matches, an already existing Summoner that has
already been previously searched appears. The application will instantly detect, thanks
to having stored the game momentarily in memory, that it is not necessary to make this
call neither to the API nor to the database.

The application, once it obtains for the first time the data of a Summoner, a match,
or another element that can be repeated between calls, will make sure not to repeat
information stored in the database, thus allowing a quick search in the database using
Redis, optimizing the application by several orders of magnitude.

Finally, to know if there has been any problem when obtaining any of the data present
in the relational model, a series of console logs have been implemented throughout the
process of API calls, to be able to identify the time it took to obtain the data. This is
why if there has been an error getting a single item, such as the players’ rank, or the
image of one of the specific items of one of the players, you can quickly find out which
part has failed, why, and what to do to fix it.

4.1. Work Development 33

Figure 4.1: Console logs It is observable in Figure 4.1 how a basic call to
retrieve Summoner information is made, including
several calls inside it as champions used by the
Summoner, its rank, and so on. Later, the match
list of the Summoner is retrieved from the API, as
well as the details of 4 of the matches present in
the list.

Another use of Redis within the project is to
allow pipelining [27]. This allows several calls that
are different from each other to be executed at the
same time. A visual example of how pipelining
works can be seen in Figure 4.2. It can be seen
how, in an HTTP communication between a client
and a server, it is possible to optimize the response
and data retrieval time by making simultaneous
calls.

Figure 4.2: Time diagram of non-pipelined vs. pipelined connection.

Source: https://en.wikipedia.org/wiki/HTTP_pipelining

Within the same game, it is possible to make simultaneous calls to obtain items,
statistics, Summoner ranks, Summoner names, and so on. Making these calls simulta-

https://en.wikipedia.org/wiki/HTTP_pipelining

4.1. Work Development 34

neously will not cause any problems between them, therefore making use of the logic
present within Redis saves extraordinary time that could not have been saved without
the application.

In the following code snippet, in each of the calls to the API or to the database,
the Redis [25] application is used, making use of a function called "task queue" [28]. A
task will be added to the pipelining present in the application logic, to be able to make
different calls in the logical form of "try-catch" [29] to obtain errors from each one of
them.

1 try {

2 const response = await got(url)

3
4 await Redis.set(url, response.body, ’EX’, this.cacheTime)

5 return JSON.parse(response.body)

6 }

One of the curiosities of Redis[25] is that, in order to allow its great optimization,
it is not developed for Windows environments. Therefore, it is necessary to make use
of another tool called Docker [30]. This tool allows running images of programs such
as Redis in optimal environments for its execution. This is similar to what was seen in
subjects such as VJ1225 - Operating Systems [31], in which a Virtual Machine [32]
was used to carry out the development in other systems such as Unix [33], Linux [34] or
Ubuntu [35]. It is observable in Figure 4.3

Figure 4.3: Several VMs working at the same time.

Source: https://howpedia.net/es/beginner-geek-how-to-create-and-use-virtual-machines
-como-crear-y-usar-maquinas-virtuales

https://howpedia.net/es/beginner-geek-how-to-create-and-use-virtual-machines
-como-crear-y-usar-maquinas-virtuales

4.1. Work Development 35

Once a Docker [30] environment has been set up, it simply uses an official Redis [25]
image to launch a local server that allows the application to make queries through
Redis [25]. A simple process thanks to Docker that allows to avoid emulating a complete
Linux-based [34] operating system by simply running an image in real-time in a secure
environment for its execution. It is observable in Figure 4.4 how a Docker environment
looks like.

Figure 4.4: Docker standard environment.

Following the Gantt chart, the next thing to do within the project development was
to dive in and learn the existence of the various endpoints within the Riot API. As was
also mentioned in other chapters of the technical report, the API has been used by me
in other projects in the degree, so I was well aware of its virtues and limitations.

Previously, in the subject VJ1229 - Mobile App Development [1], a final project
app was developed using the API. The project consisted in creating a small wiki contain-
ing information about all the existing characters in the League of Legends universe. The
project obtained a final grade of 10, therefore the correct use of Riot’s API was demon-
strated. It is possible to observe in Figure 4.5 that a simple app, using a JSON parser
like this project, displays a list of champions in a similar way that the web application
will display the several matches a summoner has played.

4.1. Work Development 36

Figure 4.5: Simple Wiki app developed in VJ1229 [1]

Even so, the Riot API hasn’t been used in a project of such a great magnitude as the
present one, therefore it was necessary an extra study that has given elegant solutions
as the one explained in the Appendix A to handle all the requests on the part of the
server.

Furthermore, even having had to develop several parsers in these other projects, each
project is a world of its own and requires specific information to be collected for the final
purpose of the applications. Therefore, for a project that required to obtain information
from so many endpoints, and to show everything related to the summoners, their games,
their ranks and other data, it has been necessary to make new parsers. This solution is
also explained in the Appendix B.

Another of the pitfalls encountered in the development of the project was, at the
same time as the development and design of the parsers, to design and develop the
database in PostgreSQL [15]. Although it is the language used in the degree’s subject
VJ1220 - Databases [36], it was taken in the second year of the degree, and it has
been necessary to refresh the knowledge about relational models, in order to make a
functional design that would allow storing the information obtained from the JSON [14]
of the API, as shown in the Figure 3.10.

Thanks to the existence of a program that was previously studied in the subject
VJ1220 - Databases [36], whose name is pgAdmin4 [2], it has also been possible to
create a local PostgreSQL [15] server, and at the same time to monitor the database and
the schema created to run the application. The relational schema seen in the Figure 3.10
has been created on the server thanks to the so-called migrations present in Adonis.JS [4].
With TypeScript [37] code, it has not been necessary to redo the work twice, creating
consequently the tables in the database schema. The tables previously mentioned can

4.1. Work Development 37

be observed in Figure 4.6.

Figure 4.6: PgAdmin4 [2] dashboard image

4.1.2 FrontEnd

Learning about Single-Page Applications [16] or APIS was not difficult, thanks to knowl-
edge acquired in previous projects during the degree. The documentation of Adonis.JS [4]
and Vue.JS [5] is clear and concise, and there are thousands of examples on the web
that allow a great reusability and a quick implementation of fast methods such as the
POST [38] of information on the BackEnd side, or the design of components [22] on the
FrontEnd side.

It is also important to mention the internship at the company CloudAppi.SL [39],
which has greatly streamlined the learning process both in the development of the Back-
End, and especially the development of the FrontEnd, since the internship consisted of
the complete refactoring of a web application based on Vue.JS.

Talking about one of the first obstacles encountered in the development of the Fron-
tEnd, was to obtain the necessary images for each of the elements that exist in the
game. Riot Games found an elegant solution to locate all these unique elements in a
concentrated and accessible place that would allow all developers, both in-house and
independent, to access the existing assets in each of the different patches of the game.

4.1. Work Development 38

The solution that Riot Games considered is creating Data Dragon.

Data Dragon is Riot Game’s way of centralizing League of Legends game data and
assets, including champions, items, runes, summoner spells, and profile icons. All of
which can be used by third-party developers. It is possible to download a compressed
tarball(.tgz) [40] for each patch which will contain all assets for that patch. The precise
operation of this technology will be explained in a third Appendix C.

Once all the necessary assets have been obtained, the information has been requested
to the BackEnd and it has been successfully obtained, it only remains to display it in
the places designed for each of the types of data the database returns.

The information will be divided into a basic section where the Summoner’s data
will be shown, a list containing each of the Summoner’s games, and an area where the
statistics of the last champions and roles used can be observed.

When the design of each of the parts was approached, it was believed that the
design of the user interface was going to be a problem, since there was no knowledge of
interface design. But surprisingly, thanks to the great similarity of all the applications,
the interface could be designed without hindrance, as demonstrated in the technical
mock-ups shown in Figure 3.15, Figure 3.19 and Figure 3.23.

Finally, to finish designing the FrontEnd, it was necessary to design a logo that would
serve as an identifier on the front page. The logo was designed using Illustrator [41],
a vectorial design program that allows creating professional logos. It can be seen in
Figure 4.7.

Figure 4.7: AerosTracker.gg Logo

4.2. Project Technical Report Writing and Project Defense 39

4.2 Project Technical Report Writing and Project
Defense

A very important part of the project has been the writing of the technical report. It is
therefore important to underline the time spent in learning a new language for writing
scientific papers: LATEX.

In addition, in order to achieve a correct and formal English, besides making use of
my own knowledge, which I consider to have been sufficient to defend myself when it
came to writing the report, I have made use of DeepL [42] to ensure that my translations
and my writing were as formal as possible.

In addition, in order to ensure this grammatical correctness, Grammarly [43] has
been used to ensure the cohesion and coherence of the translations.

Finally, it was also necessary to transform the information shown in the technical
report into a more visual and concise form in order to be able to defend the project in
the final presentation of the final degree project.

C
h

a
p

t
e

r

5
Results

Contents
5.1 Results . 40
5.2 Objectives Accomplished . 43
5.3 Access to the Project . 44

5.1 Results
As a final part of the development of the project, it is necessary to analyze the results
that have been obtained, taking into account what has been learned throughout the
development, as well as the knowledge acquired when solving the various complications
that have arisen along the way.

So, the question to answer is, what have I achieved with this project?

• I have learned how a Full-Stack web application is developed, including the Back-
End and FrontEnd.

• I have been able to design a full web application, taking into account every impor-
tant aspect that has allowed the correct operation

• I have learned to contact a big developer such as Riot Games, designing a mock-up
project to get access to their private API and get granted a private API Key that
allowed me to access several endpoints.

40

5.1. Results 41

• I have learned to compare several working products to elaborate a final product
that exceeded my own expectations

• I have been able to refresh the knowledge I have acquired throughout the degree,
such as database design, web development, and JSON parsing.

• I have learned to use a Node.JS framework, Adonis.JS, and its workflow.

• I have learned to use a JavaScript FrontEnd framework, Vue.JS, and its workflow.

• I have parsed JSON files and I have successfully extracted the desired data from
them

Continuing with the results of the project, it is difficult to show visually the final
result of the BackEnd. Therefore, a summary of the various figures showing the interior
and technical design of the BackEnd will be made, since the diagrams, guidelines, and
technologies described in each of the chapters dedicated to the design of the application
server have been followed one by one.

• Technical Design:

– Communication toutes in Figure 3.5
– BackEnd workflow in Figure 3.6
– Jax intermediary in Section 3.2.1.1
– Abstraction of the BackEnd in Figure 3.9
– Database relational scheme in Figure 3.10

• Tools Developed:

– Console logs in Figure 4.1
– Pipelined HTTP petitions in Figure 4.2
– Redis petition code
– Docker standard environment in Figure 4.4
– Tables created in application’s database in Figure 4.6

• Technologies Developed:

– Riot API information retrieving in Appendix A
– JSON Parsing in Appendix B

5.1. Results 42

When talking about the FrontEnd, it is easy to observe the final result of the whole
development. Following the structure of the different pages described in chapter 3 –
OP.gg [7], U.gg [24] and League of Graphs [23] –, where the main pages, the general
page of a specific Summoner, and the detailed items were exposed, an specific order will
be followed in which the Figures 5.1, 5.2 and 5.3 will show the final result of the project
in each of these aspects.

Figure 5.1: AerosTracker.gg main screen

Figure 5.2: AerosTracker.gg summoner overview

5.2. Objectives Accomplished 43

Figure 5.3: AerosTracker.gg detailed match view

5.2 Objectives Accomplished
When beginning the redaction of this technical report, the main objectives of the project
were the following:

• BackEnd: the main objectives of the server-side or BackEnd were essentially the
following:

– Retrieve information from the Riot API. ✓
– Receive the information, select the desired items and discard the rest. ✓

– Store the desired items in a relational database (PostgreSQL). ✓
– Publish the items when required in an internal API to be consulted by the

FrontEnd. ✓

5.3. Access to the Project 44

• FrontEnd: the main objectives of the client-side or FrontEnd were essentially the
following:

– Allow users to retrieve information on demand (introducing their League of
Legends username). ✓

– Retrieve the desired information from the BackEnd API. ✓
– Receive the information and display it. ✓

– Display the information in an effective and visual-appealing way. ✓

All the objectives that were proposed in the beginning, have been achieved, so it can
be said that the project has been a success.

5.3 Access to the Project
The source code of the project can be found in a public repository on GitHub, where
both parts of the project can be found and used.

https://github.com/JavierSelma/AerosTracker.gg

https://github.com/JavierSelma/AerosTracker.gg

C
h

a
p

t
e

r

6
Conclusions and Future Work

Contents
6.1 Conclusions . 45
6.2 Future work . 45

In this chapter, the conclusions of the work, as well as its future extensions are shown.

6.1 Conclusions
Overall, the experience in developing the project has been very satisfactory. At the
beginning, when I had to choose the theme of the project, I was very hesitant, and I did
not know if finally the development of a website was going to be to my liking. Even so,
having made use of tools and languages that I knew thanks to subjects of the degree,
has allowed me to enjoy the challenge of learning new frameworks.

I think it is also essential that a developer, whether of general software or video
games, experience developing a project of such magnitude as a final project, since it is
necessary a commitment, an anticipation and a willingness to meet self-imposed goals,
proposing a challenge that surely before I would not have faced satisfactorily.

6.2 Future work
Talking about the future of the project and the application developed in it, I believe
that after finishing the final degree work the application support will be finished.

45

6.2. Future work 46

Although it has been a satisfactory path, hundreds of applications with the same
purpose exist in the market, and companies with a lot of computing power and data
storage can beat any independent developer who wants to compete.

I think it has been a satisfactory experience for my development as a programmer,
and more than the product itself, I keep the path I have followed when doing the project,
which has made me improve as a programmer and as a professional.

Bibliography

[1] UJI, “Vj1229.” https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/

asignatura/VJ1229.

[2] PgAdmin4, “Pgadmin homepage.” https://www.pgadmin.org/.

[3] Redhat, “What is an api?.” https : / / www . redhat . com / es / topics / api /

what-are-application-programming-interfaces# : ~ : text = Una % 20API % 20o %

20interfaz%20de,el%20software%20de%20las%20aplicaciones.

[4] H. Virk, “Typescript backend framework adonis.js.” https://docs.adonisjs.com/

guides/introduction.

[5] E. You, “Javascript frontend framework vue.js.” https://vuejs.org/guide/

introduction.html.

[6] Riot Games, “League of legends api.” https://developer.riotgames.com/.

[7] OP.GG, “Op.gg.” https://euw.op.gg/.

[8] Riot Games, “League of legends game.” https://www.leagueoflegends.com/es-es/.

[9] Wikipedia, “Moba genre.” https : / / es . wikipedia . org / wiki / Videojuego _

multijugador_de_arena_de_batalla_en_l%C3%ADnea.

[10] Riot Games, “Riot games developer.” https://www.riotgames.com/es.

[11] Vandal, “League of legends, most popular game in the
world.” https : / / vandal . elespanol . com / noticia / 1350727096 /

league-of-legends-es-el-juego-mas-popular-con-mas-de-8-millones-de-jugadores-diarios/.

[12] League of Legends Wiki, “Kill/death/assist ratio.” https://leagueoflegends.

fandom.com/wiki/Kill_to_Death_Ratio.

[13] Geeks for Geeks, “Fullstack development.” https://www.geeksforgeeks.org/

what-is-full-stack-development/.

[14] Wikipedia, “Json.” https://es.wikipedia.org/wiki/JSON.

47

https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1229
https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1229
https://www.pgadmin.org/
https://www.redhat.com/es/topics/api/what-are-application-programming-interfaces#:~:text=Una%20API%20o%20interfaz%20de,el%20software%20de%20las%20aplicaciones.
https://www.redhat.com/es/topics/api/what-are-application-programming-interfaces#:~:text=Una%20API%20o%20interfaz%20de,el%20software%20de%20las%20aplicaciones.
https://www.redhat.com/es/topics/api/what-are-application-programming-interfaces#:~:text=Una%20API%20o%20interfaz%20de,el%20software%20de%20las%20aplicaciones.
https://docs.adonisjs.com/guides/introduction
https://docs.adonisjs.com/guides/introduction
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://developer.riotgames.com/
https://euw.op.gg/
https://www.leagueoflegends.com/es-es/
https://es.wikipedia.org/wiki/Videojuego_multijugador_de_arena_de_batalla_en_l%C3%ADnea
https://es.wikipedia.org/wiki/Videojuego_multijugador_de_arena_de_batalla_en_l%C3%ADnea
https://www.riotgames.com/es
https://vandal.elespanol.com/noticia/1350727096/league-of-legends-es-el-juego-mas-popular-con-mas-de-8-millones-de-jugadores-diarios/
https://vandal.elespanol.com/noticia/1350727096/league-of-legends-es-el-juego-mas-popular-con-mas-de-8-millones-de-jugadores-diarios/
https://leagueoflegends.fandom.com/wiki/Kill_to_Death_Ratio
https://leagueoflegends.fandom.com/wiki/Kill_to_Death_Ratio
https://www.geeksforgeeks.org/what-is-full-stack-development/
https://www.geeksforgeeks.org/what-is-full-stack-development/
https://es.wikipedia.org/wiki/JSON

Bibliography 48

[15] PostgreSQL, “Postgresql.” https://www.postgresql.org/.

[16] Wikipedia, “Single-page application.” https : / / es . wikipedia . org / wiki /

Single-page_application.

[17] Wikipedia, “Html5.” https://es.wikipedia.org/wiki/HTML5.

[18] Mozila Firefox, “Javascript.” https://developer.mozilla.org/es/docs/Web/

JavaScript.

[19] Wikipedia, “Css.” https://es.wikipedia.org/wiki/CSS.

[20] SearchAppArchitecture, “What is an endpoint?.” https://www.techtarget.com/

searchapparchitecture/definition/API-endpoint#:~:text=An%20API%20endpoint%

20is%20a,server%20and%20receiving%20a%20response.

[21] Riot Games, “Jax champion.” https://www.leagueoflegends.com/es-es/champions/

jax/.

[22] Vue.JS, “Components, basic unit of vue.js.” https://vuejs.org/guide/essentials/

component-basics.html.

[23] League of Graphs, “League of graphs.” https://www.leagueofgraphs.com/es/.

[24] U.GG, “U.gg.” https://u.gg/.

[25] Redis, “In-memory data store.” https://redis.io/.

[26] Redis, “In-memory data store performance study.” https://www.datadoghq.com/

pdf/Understanding-the-Top-5-Redis-Performance-Metrics.pdf.

[27] Wikipedia, “What is data pipeline?.” https://es.wikipedia.org/wiki/Segmentaci%

C3%B3n_(electr%C3%B3nica)#:~:text=La%20segmentaci%C3%B3n%20(en%20ingl%C3%

A9s%20pipelining,usa%20principalmente%20en%20los%20microprocesadores.

[28] Redis, “Task queuing.” https : / / redis . com / ebook / part-2-core-concepts /

chapter-6-application-components-in-redis/6-4-task-queues/.

[29] Redis, “Task queuing.” https://developer.mozilla.org/es/docs/Web/JavaScript/

Reference/Statements/try...catch.

[30] Docker, “What is docker?.” https://www.docker.com/.

[31] UJI, “Vj1225.” https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/

asignatura/VJ1225.

[32] Citrix, “What is a vm?.” https://www.citrix.com/es-es/solutions/vdi-and-daas/

what-is-a-virtual-machine.html.

[33] Wikipedia, “What is unix?.” https://es.wikipedia.org/wiki/Unix.

https://www.postgresql.org/
https://es.wikipedia.org/wiki/Single-page_application
https://es.wikipedia.org/wiki/Single-page_application
https://es.wikipedia.org/wiki/HTML5
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://es.wikipedia.org/wiki/CSS
https://www.techtarget.com/searchapparchitecture/definition/API-endpoint#:~:text=An%20API%20endpoint%20is%20a,server%20and%20receiving%20a%20response.
https://www.techtarget.com/searchapparchitecture/definition/API-endpoint#:~:text=An%20API%20endpoint%20is%20a,server%20and%20receiving%20a%20response.
https://www.techtarget.com/searchapparchitecture/definition/API-endpoint#:~:text=An%20API%20endpoint%20is%20a,server%20and%20receiving%20a%20response.
https://www.leagueoflegends.com/es-es/champions/jax/
https://www.leagueoflegends.com/es-es/champions/jax/
https://vuejs.org/guide/essentials/component-basics.html
https://vuejs.org/guide/essentials/component-basics.html
https://www.leagueofgraphs.com/es/
https://u.gg/
https://redis.io/
https://www.datadoghq.com/pdf/Understanding-the-Top-5-Redis-Performance-Metrics.pdf
https://www.datadoghq.com/pdf/Understanding-the-Top-5-Redis-Performance-Metrics.pdf
https://es.wikipedia.org/wiki/Segmentaci%C3%B3n_(electr%C3%B3nica)#:~:text=La%20segmentaci%C3%B3n%20(en%20ingl%C3%A9s%20pipelining,usa%20principalmente%20en%20los%20microprocesadores.
https://es.wikipedia.org/wiki/Segmentaci%C3%B3n_(electr%C3%B3nica)#:~:text=La%20segmentaci%C3%B3n%20(en%20ingl%C3%A9s%20pipelining,usa%20principalmente%20en%20los%20microprocesadores.
https://es.wikipedia.org/wiki/Segmentaci%C3%B3n_(electr%C3%B3nica)#:~:text=La%20segmentaci%C3%B3n%20(en%20ingl%C3%A9s%20pipelining,usa%20principalmente%20en%20los%20microprocesadores.
https://redis.com/ebook/part-2-core-concepts/chapter-6-application-components-in-redis/6-4-task-queues/
https://redis.com/ebook/part-2-core-concepts/chapter-6-application-components-in-redis/6-4-task-queues/
https://developer.mozilla.org/es/docs/Web/JavaScript/Reference/Statements/try...catch
https://developer.mozilla.org/es/docs/Web/JavaScript/Reference/Statements/try...catch
https://www.docker.com/
https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1225
https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1225
https://www.citrix.com/es-es/solutions/vdi-and-daas/what-is-a-virtual-machine.html
https://www.citrix.com/es-es/solutions/vdi-and-daas/what-is-a-virtual-machine.html
https://es.wikipedia.org/wiki/Unix

Bibliography 49

[34] Wikipedia, “What is linux?.” https://es.wikipedia.org/wiki/Linux.

[35] Wikipedia, “What is ubuntu?.” https://es.wikipedia.org/wiki/Ubuntu.

[36] UJI, “Vj1220.” https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/

asignatura/VJ1220.

[37] TypeScript, “Typescript documentation.” https://www.typescriptlang.org/.

[38] Geeks for Geeks, “What is a post method?.” https://www.geeksforgeeks.org/

http-get-post-methods-php/#:~:text=POST%20Method%3A%20In%20the%20POST,be%

20visible%20in%20the%20URL.&text=The%20query%20string%20(name%2Fweight,

body%20of%20a%20POST%20request.

[39] CloudAppi, “Cloudappi s.l..” hhttps://cloudappi.net/.

[40] Wikipedia, “What is tarball?.” https://en.wikipedia.org/wiki/Tar_(computing).

[41] Adobe, “Illustrator.” https://www.adobe.com/es/products/illustrator.html?

mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_

oQNSEAAYASAAEgLJK _ D _ BwE : G : s & s _ kwcid = AL ! 3085 ! 3 ! 441886954705 ! e ! !g !

!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_

oQNSEAAYASAAEgLJK_D_BwE.

[42] DeepL, “English translator.” https://www.deepl.com/translator.

[43] Grammarly, “English cohesion and coherence corrector.” https://www.grammarly.

com/.

[44] Riot Rate Limiter, “Limiter that ensures the compliance of the riot api limits.”
https://github.com/fightmegg/riot-rate-limiter.

[45] Wikipedia, “What is parsing?.” https://en.wikipedia.org/wiki/Parsing.

https://es.wikipedia.org/wiki/Linux
https://es.wikipedia.org/wiki/Ubuntu
https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1220
https://ujiapps.uji.es/sia/rest/publicacion/2021/estudio/231/asignatura/VJ1220
https://www.typescriptlang.org/
https://www.geeksforgeeks.org/http-get-post-methods-php/#:~:text=POST%20Method%3A%20In%20the%20POST,be%20visible%20in%20the%20URL.&text=The%20query%20string%20(name%2Fweight,body%20of%20a%20POST%20request.
https://www.geeksforgeeks.org/http-get-post-methods-php/#:~:text=POST%20Method%3A%20In%20the%20POST,be%20visible%20in%20the%20URL.&text=The%20query%20string%20(name%2Fweight,body%20of%20a%20POST%20request.
https://www.geeksforgeeks.org/http-get-post-methods-php/#:~:text=POST%20Method%3A%20In%20the%20POST,be%20visible%20in%20the%20URL.&text=The%20query%20string%20(name%2Fweight,body%20of%20a%20POST%20request.
https://www.geeksforgeeks.org/http-get-post-methods-php/#:~:text=POST%20Method%3A%20In%20the%20POST,be%20visible%20in%20the%20URL.&text=The%20query%20string%20(name%2Fweight,body%20of%20a%20POST%20request.
hhttps://cloudappi.net/
https://en.wikipedia.org/wiki/Tar_(computing)
https://www.adobe.com/es/products/illustrator.html?mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE:G:s&s_kwcid=AL!3085!3!441886954705!e!!g!!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE
https://www.adobe.com/es/products/illustrator.html?mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE:G:s&s_kwcid=AL!3085!3!441886954705!e!!g!!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE
https://www.adobe.com/es/products/illustrator.html?mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE:G:s&s_kwcid=AL!3085!3!441886954705!e!!g!!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE
https://www.adobe.com/es/products/illustrator.html?mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE:G:s&s_kwcid=AL!3085!3!441886954705!e!!g!!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE
https://www.adobe.com/es/products/illustrator.html?mv=search&mv=search&sdid=KCJMVLF6&ef_id=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE:G:s&s_kwcid=AL!3085!3!441886954705!e!!g!!illustrator!1479761001!62724397092&gclid=EAIaIQobChMI8byYo8n79wIVFdtRCh3_oQNSEAAYASAAEgLJK_D_BwE
https://www.deepl.com/translator
https://www.grammarly.com/
https://www.grammarly.com/
https://github.com/fightmegg/riot-rate-limiter
https://en.wikipedia.org/wiki/Parsing

A
p

p
e

n
d

ix A
Riot API

This appendix will be used to describe the technical sections related to one of the most
important parts of the project: the Riot Games API [6]. It is of utmost importance to
describe the various problems that have arisen when interacting with the free but limited
tool provided by the League of Legends [8] developer.

Once I started working with it when developing the BackEnd, many doubts and
problems arose due to the limitations that Riot imposes on all developers who want
to interact with its API and who want to make use of the data stored in the multiple
databases that its servers keep.

A.1 Endpoints
It is time to talk about the endpoints present in the API. There are multiple endpoints,
each one serving a purpose within the same, besides being able to make use of endpoints
that belong to other games of the developer. Therefore, the endpoints that have been
used are going to be listed, with a brief description of the items that each one returns.

• Match-V5: This endpoint allows to obtain information about the games from the
puuid (unique id) of a summoner. A list of summoner’s games can be obtained,
and at the same time, from the id of the games in this list, the details of each one
of them.

• Summoner-V4: This endpoint allows to obtain the puuid (unique id) of a sum-
moner, using their name. This endpoint is crucial to allow the application to

50

A.1. Endpoints 51

transform the name given by a user in a unique id that will be used in every other
endpoint.

• League-V4: This endpoint allows to obtain information about the ranks of a
summoner in a given queue.

Combining these three endpoints, plus sub-endpoints present within them, which
were specified in the Figure 3.6 in the BackEnd design, absolutely all the necessary data
for the application is obtained.

An example of the use of one of the endpoints could be the following. Imagine that it
is necessary to obtain for the first time the puuid of a summoner that has never made a
search in the application, and therefore the database does not have any indication of the
existence of the same one. It will be necessary to make a request to the Summoner-V4
endpoint, sending the name as a string, in order to obtain this unique id from the API.

Once a name is passed to the endpoint, if it exists, it will return an object class of its
own called SummonerDTO, which contains the sub-objects described in the Figure A.1.

Figure A.1: Object returned by the Riot API when requesting a Summoner puuid

Knowing how a basic but crucial endpoint such as the Summoner-V4 works, it
is easy to imagine how to obtain information from the other endpoints. This is where

A.1. Endpoints 52

Jax 3.2.1.1, the intermediary that was described in the BackEnd design, comes into play.
By designing a generalized interface for API calls, Jax 3.2.1.1 simply has to take care of
completing a path that shares common points, and is simply differentiated by the name
of each of the endpoints.

This is how, thanks to the use of an intermediary, an elegant solution is achieved
instead of having to program the calls one by one depending on the information to be
obtained. All the endpoints related to the BackEnd database have their own name,
which translates into an existing name in the Riot API.

1 export default class JaxRequest {

2 private region: string

3 private config: JaxConfig

4 private endpoint: string

5 private limiter: RiotRateLimiter}

6
7 public async execute() {

8 const url = ‘https://${this.region}.api.riotgames.com/lol/${this.endpoint}‘

9
10 try {

11 const resp: any = await this.limiter.executing({

12 url,

13 token: this.config.key,

14 })

15 return JSON.parse(resp)

16 } catch ({ statusCode, ...rest })

As can be seen in the code, Jax 3.2.1.1 obtains the region, the endpoint to be accessed,
and a limiter object that will be in charge of complying with the demanding limitations
imposed in the API. Simply with these parameters, and by completing the url present
in the request execution method, Jax 3.2.1.1 will quickly find the desired information.

This limiter, a crucial part of the project to allow the correct execution of requests,
was obtained from a free repository on GitHub, developed by a fan who also had to deal
with Riot’s API. The JavaScript library is called Riot-Rate-Limiter [44].

It is also important to know what kind of information and in what form it is obtained
from the API. The class of each type of object obtained is given by the API, and can
be seen in the Data Type section in Figure A.1. But the information is given in a
JSON [14], and therefore, it is necessary to treat it before it can be used in the database
and passed to the FrontEnd. This is called JSON [14] Parsing [45], and will be discussed
in Appendix B.

A
p

p
e

n
d

ix B
JSON Parsing

Parsing [45] is a technique used for obtaining and classifying each of the objects that
make up a JSON [14] file. For example, when requesting a game from the API, it
returns a JSON [14] with an infinite number of variables, objects and statistics. It is the
developer’s job to choose, discard and classify this information, since most of the data
is used by Riot for various purposes but is not necessarily useful for applications such
as the one developed in the project. An output example of a call to the Match-V5
endpoint could be the following:

1 "metadata": {

2 "dataVersion": "2",

3 "matchId": "EUW1_5805593624",

4 "participants": [

5 "UtQQvGUFnuqcDyBGUOQ0OzIcIjAX2_DmMwG_5P5mtAq3RmTuIn8bWczxVQut0NM4eu_a_9InAKtdQA",

6 "uevndakk6HP7E1gLn2Jr44hJyTDYUQC3ngd9VNHiPAusqWAMbqBbx7P70ZKIafgWvOaiIRxlxsFlRw",

7 "oJpwbms8Ra8ny9M5NU-GgVmUS7wsVS9sfFkcU__OAWeUI3fu-w1pyePqBa3KuB6F7pwQT2cPtqI7-A",

8 "-ov4EyI7O1dO9Z3IqkRa_D6xjtg9wdElnR0VkQdqS1WaTkKEmw6zxmi0ydQvmWBmMR7HQpml265SmQ",

9 "pGQANpwdJ_bG3xTCAC46SkvlM6-Qf4TioalvezHtnAkJkYRQ1IYBu1Ok0Pz1eRjV2kDDAtOGU4CB4A",

10 "mXlXnDvq1w1OoL2rCS8G6fqOxUNJsB6N3zCe2FoIqiBR8aMKfLc1uZimbVRRmlSwvBVIkv0JRGnsyQ",

11 "tXcvCECbdVe0xhEigREQjIjjobM7lTLOCFO4BOzsII-BkplOOMpMx3gzIMEt4MkwtBgyaxHwjSxFHQ",

12 "wcwAW7ybxR2xP78YMr1Lk1KDXLs__qs1vavXLF16o0sEWRPuhgdwW5PgyED3TgxEKxfTV6M8UX_L1g",

13 "-vfjEHTxQ2LHt8ksQsS4WiPa2p_GpLkhPlgolTfb4-NMjzlcwECpJo8ZnB7_puiY7JE14uxRGj2Pig",

14 "dWCCVPZuRu2wy4aMzF58qeRHyZrP6oXnee2NlfXiByO8uJBFQs-WMdv-ETFcfhns--LDprVDqeOIVw"

15]

16 },

17 "info": {

18 "gameCreation": 1648924674000,

19 "gameDuration": 931,

20 "gameEndTimestamp": 1648925654289,

21 "gameId": 5805593624,

22 "gameMode": "ARAM",

53

JSON Parsing 54

23 "gameName": "teambuilder-match-5805593624",

24 "gameStartTimestamp": 1648924723175,

25 "gameType": "MATCHED_GAME",

26 "gameVersion": "12.6.432.1258",

27 "mapId": 12,

28 "participants": [

29 {

30 "assists": 29,

31 "baronKills": 0,

32 "bountyLevel": 0,

33 .

34 .

35 .

36 .

This file has a total of 2892 lines, which for obvious reasons have been omitted, since
getting a general idea of how a JSON [14] object works is more than enough for the
purpose of this appendix. It is visible how a game JSON [14] has the puuid of each of
the players in it, information such as the time of creation, the game mode, the id within
the server, and an object containing the statistics of each of the participants, in addition
to many other data.

Here lies an example of how to parse a complete game, including each of the players
in the game and their statistics. The elements seen in the code are those shown in the
relational database schema in Figure 3.10.

1 public async parseOneMatch(match: MatchDto) {

2 let parsedMatch: Match | null = null

3 let trx: TransactionClientContract | undefined

4
5 try {

6 // Start transaction

7 trx = await Database.transaction()

8
9 const gameDuration =

10 match.info.gameDuration > 100_000

11 ? Math.round(match.info.gameDuration / 1000)

12 : match.info.gameDuration

13
14 const isRemake = gameDuration < 300

15
16 // - 1x Match

17 parsedMatch = await Match.create(

18 {

19 id: match.metadata.matchId,

20 gameId: match.info.gameId,

21 map: match.info.mapId,

22 gamemode: match.info.queueId,

23 date: match.info.gameCreation,

24 region: match.info.platformId.toLowerCase(),

25 result: match.info.teams[0].win ? match.info.teams[0].teamId : match.info.teams[1].teamId,

JSON Parsing 55

26 season: getSeasonNumber(match.info.gameCreation),

27 gameDuration,

28 },

29 { client: trx }

30)

31
32 // - 2x MatchTeam : Red and Blue

33 for (const team of match.info.teams) {

34 let result = team.win ? ’Win’ : ’Fail’

35 if (isRemake) {

36 result = ’Remake’

37 }

38 await parsedMatch.related(’teams’).create({

39 matchId: match.metadata.matchId,

40 color: team.teamId,

41 result: result,

42 barons: team.objectives.baron.kills,

43 dragons: team.objectives.dragon.kills,

44 inhibitors: team.objectives.inhibitor.kills,

45 riftHeralds: team.objectives.riftHerald.kills,

46 towers: team.objectives.tower.kills,

47 bans: team.bans.length ? team.bans.map((ban) => ban.championId) : undefined,

48 banOrders: team.bans.length ? team.bans.map((ban) => ban.pickTurn) : undefined,

49 })

50 }

51
52 matchPlayers.push({

53 match_id: match.metadata.matchId,

54 participant_id: player.participantId,

55 summoner_id: player.summonerId,

56 summoner_puuid: player.puuid,

57 summoner_name: player.summonerName,

58 win: team.win ? 1 : 0,

59 loss: team.win ? 0 : 1,

60 remake: isRemake ? 1 : 0,

61 team: player.teamId,

62 team_position:

63 player.teamPosition.length && queuesWithRole.includes(match.info.queueId)

64 ? TeamPosition[player.teamPosition]

65 : TeamPosition.NONE,

66 kills: player.kills,

67 deaths: player.deaths,

68 assists: player.assists,

69 kda: kda,

70 kp: kp,

71 champ_level: player.champLevel,

72 champion_id: player.championId,

73 champion_role: ChampionRoles[champRoles[0]],

74 double_kills: player.doubleKills,

75 triple_kills: player.tripleKills,

76 quadra_kills: player.quadraKills,

77 penta_kills: player.pentaKills,

78 baron_kills: player.baronKills,

79 dragon_kills: player.dragonKills,

JSON Parsing 56

80 turret_kills: player.turretKills,

81 vision_score: player.visionScore,

82 gold: player.goldEarned,

83 summoner1_id: player.summoner1Id,

84 summoner2_id: player.summoner2Id,

85 item0: player.item0,

86 item1: player.item1,

87 item2: player.item2,

88 item3: player.item3,

89 item4: player.item4,

90 item5: player.item5,

91 item6: player.item6,

92 damage_dealt_objectives: player.damageDealtToObjectives,

93 damage_dealt_champions: player.totalDamageDealtToChampions,

94 damage_taken: player.totalDamageTaken,

95 heal: player.totalHeal,

96 minions: player.totalMinionsKilled + player.neutralMinionsKilled,

97 critical_strike: player.largestCriticalStrike,

98 killing_spree: player.killingSprees,

99 time_spent_living: player.longestTimeSpentLiving,

100 })

101 }

102 await Database.table(’match_players’).multiInsert(matchPlayers)

103
104 return parsedMatch

105 }

A
p

p
e

n
d

ix C
Data Dragon

Data Dragon, or DDragon for short, is a set of static data files that provides images and
info about champions, runes, and items. This includes info to translate champion IDs
to names.

Because the data in DDragon only changes when new patches come out, it is possible
to cache the data by saving it into a computer. An app can then load the data from
disk rather than requesting it over the Internet. This will speed up the app and reduce
the load on Riot’s servers, which ensures the servers don’t go down due to abnormally
high usage. In general, it’s a good idea to cache data that will be used often and that
does not change often at the same time.

DDragon provides two kinds of static data; data files and game assets. The data files
provide raw static data on various components of the game such as summoner spells,
champions, and items. The assets are images of the components described in the data
files.

There are two kinds of data files for champions. The champion.json data file returns
a list of champions with a brief summary. The individual champion JSON files contain
additional data for each champion.

It is possible to obtain too assets related to a specific champion. For example, using
the following URL it is possible to obtain a specific skin that the desired champion
possesses.

DDragon also provides the same level of detail for every item in the game. Within

57

http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/champion.json
http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/champion/Aatrox.json
http://ddragon.leagueoflegends.com/cdn/img/champion/splash/Aatrox_0.jpg
http://ddragon.leagueoflegends.com/cdn/img/champion/splash/Aatrox_0.jpg
http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/item.json

Data Dragon 58

DDragon it is possible to find info such as the item’s description, purchase value, sell
value, items it builds from, items it builds into, and stats granted from the item.

Thanks to DDragon it is possible to make a basic structure of URLs to call to obtain
the different assets of the game. The structure followed in the project is explained in
the following lines of code.

1 public async obtainGeneralChampionData(){

2 url = "http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/champion.json";

3 const requestCached = await Redis.get(url);

4 }

5
6 public async obtainSpecificChampionData(championName : string){

7 url = "http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/champion/${championName}.json";

8 const requestCached = await Redis.get(url);

9 }

10
11 public async obtainSpecificChampionSkin(championName : string, skinNumber : number){

12 url = "http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/champion/${championName}_{skinNumber}.json";

13 const requestCached = await Redis.get(url);

14 }

15
16 public async obtainSpecificItemData(itemName : string){

17 url = "http://ddragon.leagueoflegends.com/cdn/12.10.1/data/en_US/${itemName}.json";

18 const requestCached = await Redis.get(url);

19 }

Data Dragon 59

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	BackEnd
	FrontEnd

	Environment and Initial State
	Expected Results

	Planning and resources evaluation
	Project Planning and Time Estimation
	Resource Evaluation
	Project Actual Time Cost
	Tools

	System Analysis and Design
	OP.GG
	FullStack Development
	BackEnd
	Jax
	Database

	FrontEnd
	Landing Page
	Summoner Page

	Work Development
	Work Development
	BackEnd
	FrontEnd

	Project Technical Report Writing and Project Defense

	Results
	Results
	Objectives Accomplished
	Access to the Project

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Riot API
	Endpoints

	JSON Parsing
	Data Dragon

