
Design and development of a low poly
puzzle game

Jorge Bartol Guillamón

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 30, 2022

Supervised by: Carlos Marín Lora

http://creativecommons.org/licenses/by-nc-sa/3.0/

i

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Carlos Marín Lora,
for all the help and guidance during the whole development of the project

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

iii

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents the project report of the Video Game Design and Development
Degree Final project by Jorge Bartol Guillamón. It is a video game that consist of a
series of puzzles separated into small scenarios which the player must solve in order to
progress through the game.

To complete them, the player will control a small character who will interact with
all the elements on the stage. Each of this levels will have a different set of mechanics
to solve the puzzles.

v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 4

3 System Analysis and Design 7
3.1 Requirement Analysis . 7
3.2 System Design . 9
3.3 Flowchart . 12
3.4 Interface Design . 12
3.5 Game design research and references . 14

4 Work Development and Results 17
4.1 Player movement . 17
4.2 Animations . 19
4.3 Mechanics . 19
4.4 Game Levels . 21
4.5 Object Modelling . 25
4.6 Scenes . 27
4.7 Light and Post Processing . 30

5 Conclusions and Future Work 33
5.1 Conclusions . 33
5.2 Future work . 33

vii

viii Contents

Bibliography 35

A Other considerations 37
A.1 Source Code . 37

List of Figures

3.1 Flowchart of the game (U.I is user input) . 12
3.2 UI object . 13
3.3 Pause menu design . 13
3.4 Monument Valley level . 14
3.5 The House of Da Vinci level . 15

4.1 Input system window . 18
4.2 Animator Graph . 19
4.3 Grid prefab . 20
4.4 Tutorial layout . 21
4.5 Line renderer component . 22
4.6 Level 1 layout . 23
4.7 Level 2 layout . 24
4.8 Level 3 layout . 25
4.9 Example of an in game item (flashlight) . 25
4.10 Floor tile on Blender . 26
4.11 Wall tile on Blender . 26
4.12 Main scene design . 27
4.13 Level selector design . 27
4.14 Base level model on Blender . 28
4.15 Use of PlayerPrefs to ulock levels . 29
4.16 Light setup of the scenes . 30
4.17 Post Process component . 31

ix

List of Tables

2.1 Table of time distribution . 4

3.1 Case of use «R1. Play» . 9
3.2 Case of use «R2. Select Level» . 9
3.3 Case of use «R3. Movement» . 9
3.4 Case of use «R4. Jump» . 10
3.5 Case of use «R5. Use Object» . 10
3.6 Case of use «R6. Push and Pull objects» . 10
3.7 Case of use «R7. Pause menu» . 10
3.8 Case of use «R8. Close game» . 11
3.9 Case of use «R9. Main Scene» . 11
3.10 Case of use «R10. Change volume» . 11

xi

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Environment and Initial State . 2

This chapter is an explanation about which were the motivations that took to
project’s idea, which were the objectives initially fixed and how the idea started to
be developed

1.1 Work Motivation

The aim of the project is to create a complete video game in which all the knowledge
learned throughout the degree is applied, both at programming and artistic level.

One of the game genres that has always caught my attention has been puzzle games,
which challenge the player and can be combined with almost any other type of game
such as a shooter or an adventure game.

For this reason i decided to create a video game focused on solving puzzles which
are separated into different rooms. Being divided into individual levels makes it more
attractive and less time-consuming to solve the puzzles.

1.2 Objectives

• To create a project in which all the knowledge that has been learnt throughout the
degree has been applied, resulting in a complete and playable video game.

1

2 Introduction

• Modelling and designing all the elements that appear within the game and pro-
gramming the scripts to make the game logic work.

• Create several levels with a series of puzzles that are attractive to players and
entertaining to play, with mechanics that are correctly applied to the game play
and environment design.

1.3 Environment and Initial State
The project is based on the idea of developing a game in which the player must solve
the different obstacles that are presented throughout the game in order to overcome the
different levels.

For this purpose, a puzzle game will be developed, separated by levels, seen in iso-
metric perspective and low poly aesthetics. Each level will have a series of elements with
which the player will have to interact in order to complete it and advance to the next
one, increasing the difficulty progressively.

The work will be programmed entirely in Unity, and all the artistic section of the
game will be modeled on Blender.

First I will start programming the main mechanics of the game and base models that
are important in it, such as the movement of the character. This will be used to see if
any adjustments or changes need to be made in order to continue with the project.

It will be developed over a period of three months while it is combined with the
external internships of the degree that entail about five hours a day, so this work will
have a daily dedication of approximately three hours.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 4

This chapter shows the planning that has been followed to complete the project and
the resources used to accomplish that purpose.

2.1 Planning

This section details the approximate time distribution of all the tasks that have been
carried out for the development of the project (see figure 2.1).

This includes all the aspects worked on during the development, such as level design
and modelling, or the programming required for the implementation of the game me-
chanics. Also, a part of the total of these hours is dedicated to the creation of all the
necessary documents for the creation of the final degree project, including this one.

3

4 Planning and resources evaluation

Table 2.1: Table of time distribution
Task Time (Hours)
Design of puzzles, characters and levels 30
Modelling of scenarios and characters 60
Modelling of objects of the environment 40
Scenario implementation 2
Puzzle mechanics 40
Player movement 10
Visual effects 10
Material design 10
Lighting implementation 5
Animations 5
Interface 3
Main menu 7
Game Design Document 10
Memory 60
Project presentation 10
Total 302

2.2 Resource Evaluation
The resources used in the development of the project, both software and hardware, are
as follows:

• Desktop computer (procesador i5-7600k , 16GB de RAM and a MSI
1050 ti 4GB graphics card): This will be the core team with which the
majority of the project will be carried out.

• Laptop (Acer Nitro 5): Used to a lesser extent for when working away from
home

• Unity 3D version 2020.3.25f1: The version of the game engine to be used for
the project.

• Visual Studio 2022: Programming environment for game scripts.

• GitHub (GitHub Desktop): A Git repository where all the changes made
during the project will be stored. Useful for not losing the changes made, avoiding
conflicts in the code or sharing data between several computers.

• Blender version 3.1: Free 3D modelling program with which all the models that
appear in the game will be made.

• Krita: Drawing program to design the images that will make up the game inter-
face.

2.2. Resource Evaluation 5

• Mixamo: Website for downloading and importing animations for 3D models
within Unity.

• Lucidchart: Website to create diagrams.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 7
3.2 System Design . 9
3.3 Flowchart . 12
3.4 Interface Design . 12
3.5 Game design research and references 14

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, the flowchart of the game, the references and its interface design.

3.1 Requirement Analysis

This project consists of the development of a puzzle video game within the Unity 3D
game engine. Specifically, it is a third-person game in which you control a character in
small scenarios where each one will be part of a different level, reaching a total of three,
in each of them will be different types of puzzles to solve to complete the game.

To solve the puzzles you will have to use the player’s own mechanics, which are walk,
run and jump to move around the stage; and the mechanics of each puzzle, which are
push and pull objects and use items.

As mentioned before, each level has its own puzzle and scenario. These will have a
pre-established order, from less to more difficult, and in order to unlock them the player
has to complete them following this order. Once unlocked, any of them can be accessed
freely without any limitation.

7

8 System Analysis and Design

To guide the player on what to do at all times, a tutorial level will first load and
explain all the mechanics of the character. Once completed, it can be revisited in the
level selector at any time.

At all times the player will have a pause menu that will allow him to restart the
level, resume the game and exit to the main menu.

Regarding the artwork, all the elements that make up the scenery will have a low
poly aesthetic.

3.1.1 Functional Requirements

Functional requirements define which features of the game are to be developed:

• R1 The player can start the game.

• R2 The player can select levels.

• R3 The player can move the character in all directions around the stage by pressing
the W,A,S and D keys.

• R4 The player can make the character perform a jump by pressing Space.

• R5 The player can make the character use objects by pressing the E key.

• R6 The player can push and pull certain objects that appear on the map by
pressing the B key and moving in one direction.

• R7 The player can open the pause menu.

• R8 The player can exit the game.

• R9 The player can return to the main menu.

• R10 The player can control the sound volume.

3.1.2 Non-Functional Requirements

Non-functional requirements will impose conditions on the design and implementation
of the elements that appear in the game:

• R11 The game will be playable on PC

• R12 The game will use low poly models

• R13 The mechanics will be easy to learn

• R14 The interface will be simple, without obstructing any element of the game.

• R15 The mechanics will be fluid, providing feedback to the player.

3.2. System Design 9

3.2 System Design
This section presents the logical and operational design of the system to be carried out.
To design it, case of use diagrams will be used for each of the functional requirements
presented above.

Requirement: R1
Actor: Player
Description: At the main screen the player can push the button “Play” to start the

game
Preconditions: 1 The player is on the main screen.
Normal sequence: 1 The player pushes the “Play” button.

2 The game loads new scene.
Alternative sequence: None

Table 3.1: Case of use «R1. Play»

Requirement: R2
Actor: Player
Description: At the scene selector the player can select a level.
Preconditions: 1 The player is on the scene selector.
Normal sequence: 1 The player pushes the scene icon.

2 The game loads the scene selected.
Alternative sequence: None

Table 3.2: Case of use «R2. Select Level»

Requirement: R3
Actor: Player
Description: The player can move the character using the keys W,A,S and D.
Preconditions: 1 A level has been loaded.
Normal sequence: 1 The player pushes one or two key of the movement.

2 The game moves the character in the direction specified.
3 The game rotated the character in the direction specified.

Alternative sequence: None

Table 3.3: Case of use «R3. Movement»

10 System Analysis and Design

Requirement: R4
Actor: Player
Description: The player can make the character jump with the space key.
Preconditions: 1 A level has been loaded

2 The lower part of the character is touching some object.
Normal sequence: 1 The player pushes the space

2 The game moves the character upwards.
Alternative sequence: None

Table 3.4: Case of use «R4. Jump»

Requirement: R5
Actor: Player
Description: The player can use the available object.
Preconditions: 1 A level has been loaded

2 The character is not jumping.
Normal sequence: 1 The player pushes the E key

2 The character uses the object
Alternative sequence: None

Table 3.5: Case of use «R5. Use Object»

Requirement: R6
Actor: Player
Description: The player can push and pull some objects on the map.
Preconditions: 1 A level has been loaded

2 The character is touching the floor.
Normal sequence: 1 The player pushes the B

2 The player moves the character to one direction.
3 The game moves the object on this direction

Alternative sequence: None

Table 3.6: Case of use «R6. Push and Pull objects»

Requirement: R7
Actor: Player
Description: The player can open the pause menu
Preconditions: 1 A level has been loaded
Normal sequence: 1 The player pushes the Escape key
Alternative sequence: None

Table 3.7: Case of use «R7. Pause menu»

3.2. System Design 11

Requirement: R8
Actor: Player
Description: The player can close the game
Preconditions: 1 The player is on the main scene

2 The player has opened the pause menu
Normal sequence: 1 The player pushes the Quit button
Alternative sequence: Closing the program from windows

Table 3.8: Case of use «R8. Close game»

Requirement: R9
Actor: Player
Description: The player can go back to the main scene.
Preconditions: 1 A level has been loaded.
Normal sequence: 1 The player pushes the Escape key.

2 The player presses the Main Menu button.
Alternative sequence: None

Table 3.9: Case of use «R9. Main Scene»

Requirement: R10
Actor: Player
Description: The player can regulate the volume.
Preconditions: 1 The player is on the main scene.
Normal sequence: 1 The player presses the Options button.

2 The player moves the volume slider.
Alternative sequence: None

Table 3.10: Case of use «R10. Change volume»

12 System Analysis and Design

3.3 Flowchart
In order to identify which steps the player follows throughout the game, a flowchart
will be created which describes all the processes from the start of the game until the
completion of a selected level (see figure 3.1).

Figure 3.1: Flowchart of the game (U.I is user input)

3.4 Interface Design
The only interface element visible during the game will be the item that the character
has equipped to be used in that particular level. This will be in the top left corner of
the screen, where it will not cover any element of the stage.

On the other hand, if the escape key is pressed, the pause menu will appear in the
centre of the screen, where there will be three buttons: one to return to the game, one
to restart the current level from scratch, and the last one to return to the main menu.

3.4. Interface Design 13

Figure 3.2: UI object

Figure 3.3: Pause menu design

14 System Analysis and Design

3.5 Game design research and references

The main games that have inspired the development of the project are Monument Valley
and The house of Da Vinci.

Monument Valley [2] is a puzzle game developed for mobile devices by ustwo games.
It consists of a series of small levels seen in isometric perspective with minimalist aes-
thetics on which the player will have to interact with the environment to complete the
level. These levels are characterised in that the player has to play with the perspective
of the objects, generating mostly impossible geometries in order to continue advancing
and achieve the objectives(see figure 3.4).

Figure 3.4: Monument Valley level

The House of Da Vinci [1] is a puzzle game available for all devices, developed by Blue
Brain Games. It is a first-person game in which the player progresses through different
rooms in which he is presented with a variety of puzzles distributed around them. To
advance, the player must complete all the puzzles in a certain order, as completing some
of them unlocks objects needed to complete other puzzles; once completed, the player
moves on to the next room and repeats the same process (see figure 3.5).

3.5. Game design research and references 15

Figure 3.5: The House of Da Vinci level

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Player movement . 17
4.2 Animations . 19
4.3 Mechanics . 19
4.4 Game Levels . 21
4.5 Object Modelling . 25
4.6 Scenes . 27
4.7 Light and Post Processing . 30

This section will comment on the work carried out in each of the sections involved on
the development of the project, commenting the design changes that have been applied,
together with the problems that have arisen during development.

4.1 Player movement
The implementation of a movement system for the character, which feels responsive and
fluid for each action performed, is one of the most important aspects of the development
of the project, as this will be the element with which the player interacts with the
elements of the game.

This will be controlled with Unity’s new input system[5], which allows users to easily
modify all the actions assigned to the character, creating different action maps with their
respective actions to which one or several keys are assigned that will respond when that
action is executed (see figure 4.1).

17

18 Work Development and Results

Figure 4.1: Input system window

Using this system, the keys W, A, S and D will be used to move the character,
which will return a Vector2 that will represent the direction in which the player wants
to move, being W and S for the Y axis and A and D for the X axis. As the game
scenarios are represented in three dimensions, once this vector has been obtained, it will
have to be transformed into a Vector3 in which we will assign the values to the X and
Z components, which correspond to the axes of the horizontal plane of Unity. Besides,
the shift key has also been configured so that the character can run around the map, the
only thing it will do is to increase by three the normal movement speed of the character.
Since the camera is rotated to give the isometric perspective to the scene, the X and Z
components must be multiplied by the respective camera positions components to move
the character relative to the camera

Regarding the jumping mechanics, the character was initially configured with a rigid-
body next to a collider so that the unity physics system would take care of the collision
with objects and the character’s gravity; and to perform the jump, all that is done is
to apply an impulse force on the character in the vertical axis. When checking that
everything worked correctly, it was observed that when jumping against an object, the
character would stick to the collider randomly, even changing the friction of the materials
to zero.

As a solution we will use a character controller[4], a unity component that provides
all the basic features of character movement such as step detection, but is not affected
by all the physics of the engine, only the collision detection so the gravity will have to
be calculated manually. The new jump implementation will use the ground detection
of this component, which tells if the bottom of the collider is touching an object, and
if it doesn’t collide a value will be subtracted from the Y component of the movement
depending on the gravitational constant and a velocity multiplier.

4.2. Animations 19

4.2 Animations

For each of the actions that the character performs on the stage, such as moving or
jumping, an animation corresponding to each movement is executed to give visual feed-
back to the player. All these animations are downloaded from the Mixamo website which
provides a wide variety of animations for the characters.

Within unity these animations are managed by an animation tree (see figure 4.2),
which will activate the different nodes by code depending on the action performed.

Figure 4.2: Animator Graph

4.3 Mechanics

To solve the puzzles that appear throughout the levels, the player will have two mechanics
to interact with the stage: the use of items and pushing and pulling objects.

Pushing and pulling objects is executed by pressing the B key. Once pressed, a
raycast will be launched in front of the character which will detect whether the detected
object in front of it can be pushed or not. If so, it will wait for the player to make a
movement in one of the directions to move the object. While the object is moving, the
player’s controls will be disabled to prevent other actions from being performed.

All movements are performed within a grid (see figure 4.3) which will limit the
movement of the objects to each of the cells that compose it. Before each movement is
made, the cell where the selected object is to be moved will be calculated and checked

20 Work Development and Results

to ensure that it is free. This system will ensure that all the pieces end up in exact
positions that do not give errors when solving the puzzle.

Regarding the use of items, it will be executed with the E key. Once pressed, the
function assigned to the key of the item that the character has equipped at that moment
will be executed.

Figure 4.3: Grid prefab

4.4. Game Levels 21

4.4 Game Levels
There are three different puzzles in the game, each separated into different scenes, as
well as a tutorial level.

• Tutorial: The tutorial level will introduce the two main mechanics of the game:
pushing and pulling objects, and the use of items (see figure 4.4).
A grid will appear with a box which must be moved to a square marked in green.
Once taken to this point we unlock a key which we can use to open the door and
advance to the first level.
During this level all the mechanics will be explained with text on screen so that
the player knows how to interact with the elements that are presented during the
development of the game. First, it will be explained that you can move around
the stage with the W,A,S and D keys, run with the SHIFT key pressed, and jump
with the Space key. Next, the mechanics of pushing objects with the B key will
be introduced, which you will have to use to move the box to the marked point.
And finally the use of objects with the E key, in which you will have to use a key
in front of the door that appears on the stage to continue in the game.

Figure 4.4: Tutorial layout

22 Work Development and Results

• Level 1: The first level will use the mechanics of pushing objects to solve the
puzzle (see figure 4.6).
In this puzzle there are four types of objects: a light emitter, reflectors, obstacles
and a receiver. The objective is to move the reflectors around the grid and place
them in such a way that the beam emitted by the emitter is reflected by the
reflectors and reaches the receiver to complete the level.
The operation is based on a raycast that spreads through space. Each reflector is
formed by a pair of objects located on different sides of the base that will be in
charge of propagating the light ray through the puzzle. First a raycast is launched
from the emitter. If it collides with one of the objects in the reflector, it will
launch a ray from the pair, which will follow the same logic as the emitter. When
the object that detects the raycast is the light receiver, the two objects will be
connected, thus completing the puzzle and moving on to the next level.
For the drawing of the light ray we have used the unity line renderer component
(see figure 4.5), which draws a line in space given a set of points. These points
will be the result of the collision of the propagating beam. Each time a reflector is
moved, the points will be calculated to join only those that are connected to the
emitter.

Figure 4.5: Line renderer component

4.4. Game Levels 23

To update the beam as the reflectors move, we will use UnityEvents[9]. These allow
to subscribe the functions that you want to associate to the event, and execute
them when the event is called at some point. In this case two events will be created,
one which will eliminate the points of the light ray when an object starts to move;
and another one which will re-do the whole raycast from the emitter to recalculate
the light ray when the object has finished moving.

Figure 4.6: Level 1 layout

• Level 2: This second level employs the use of objects to solve the puzzle. In it
we will find four objects located on the walls which are linked to a sphere that
changes colour when we interact with the equipped object, which in this case is a
flashlight (see figure 4.7).
Each of these objects will rotate when a button in the centre of the room is ac-
tivated. Depending on the colour selected in each of the spheres, the associated
objects will rotate in different ways: Red colour, rotation of the object and the
object to its left; yellow colour, rotation of the object and the object to its right;
Purple colour, no rotation of the object. Even if the non-rotation mode is selected,
it will still be affected by the rotations of the other objects.
The aim of the puzzle is to alternate the different rotation modes with the help of
the flashlight, so that one of the selected faces of each of the objects, which will be
highlighted by a different colour to the others, faces the character.
To rotate all the pieces when the button is pressed, a rotation function is first
created in each of the objects which detects which is its rotation mode, and which
are its left and right neighbours to perform the rotation. Once applied from the
puzzle controller, each of these functions is called in turn so that the turns are

24 Work Development and Results

carried out in a fluid and orderly manner. When all the turns have been completed,
each element is checked to see if it is in the correct position to see if the puzzle has
been completed.

Figure 4.7: Level 2 layout

• Level 3:The third level will make use of the two previously mentioned techniques:
pushing and pulling objects and the use of items. This will be a variation of the
first level of the game where the objective was to connect the light beam from one
end to the other (see figure 4.8).
In this level there will be two light emitters with their respective receivers. As in
the first level we will have to move the reflectors inside the cells to connect both
emitters and receivers. Each of the reflectors will have a direct colour indicator
which will specify the specific light beam they can spread, which will prevent them
from reflecting any of the rays.
With the help of the item, which in this case will be a small bell, we will be able
to interact with the reflectors so that they make a 90º turn clockwise. When the
object is used, a raycast will be launched in front of the player, which, if it detects
that the object that has been interacted with can be rotated to make the turn.
Unlike the first level in which there are a series of obstacles that prevent the
movement of objects, in this one all the cells are free to move the objects, except
for one, which is the point where the two receivers converge. This is occupied by
a special reflector which cannot be moved out of the cell but can be rotated, and
which has four reflection points, two for each light beam. Because this reflector is
located in a key position which prevents both light beams from connecting directly
with a single object, it will be the main piece to be taken into account for solving
the puzzle.

4.5. Object Modelling 25

Figure 4.8: Level 3 layout

4.5 Object Modelling

All the elements that appear in the game like the items, the character and the scenery
will be modelled in 3D within the Blender program. For this, the low poly modelling
technique will be applied, which focuses on representing the models in a simple way and
with few polygons, resulting in a simple and striking aesthetic.

Figure 4.9: Example of an in game item (flashlight)

The floors and walls of the scenarios will be modelled as "tiles", which have a con-
tinuity on the parallel sides. This design allows the scene to be modelled in any size
desired and can be enlarged at any time, as the models are placed side by side in such
a way as to give the sensation of a single solid object.

26 Work Development and Results

Figure 4.10: Floor tile on Blender

Figure 4.11: Wall tile on Blender

Also within blender an approximation of the materials that the object will have
within unity will be created, due to the fact that many of the properties such as the
reflection are not imported correctly into the engine.

4.6. Scenes 27

4.6 Scenes
During the course of the game we will encounter three different types of scenes:

• Main scene: It will display the title of the game, the play button that will take
you to the next scene, a settings button that will allow you to adjust the volume
of the music and sound effects, and a button to exit the game (see figure 4.12).

Figure 4.12: Main scene design

• Level selector: This is the scene that will appear when we press the play button.
It will show four images indicating the levels to select. If you have never played
the game before, the only scene available to select will be the tutorial, which is
mandatory to continue to the other levels. Once the first level is completed, the
second level is unlocked and so on (see figure 4.13).

Figure 4.13: Level selector design

28 Work Development and Results

• Game level: The scene of the level we have previously selected. Once inside, you
can start moving the character and solve the puzzle. If you open the pause menu
and press the button to return to the main menu, the main scene will be reloaded.

All the scenes are assembled within the blender program which allows very easily
to put together several elements. With tools such as the magnet you can adjust the
different geometries so that everything fits together correctly without any errors (see
figure 4.14).

As all the 3D models are modelled within blender, when putting all the pieces to-
gether, the same scaling will be maintained at all times. Once assembled, only the fbx
file will be imported into the engine to introduce the scenes.

Figure 4.14: Base level model on Blender

On the other hand, to save the player’s progress we will make use of Unity’s integrated
class called PlayerPrefs[7], which allows us to store different types of values such as int,
floats or strings which will not be lost when the application is closed (see figure 4.15). To
do this, each level will be assigned a string with an associated numerical value, initially
set to -1. If a level has been completed, the value will be changed from -1 to 1 and it
will be unlocked for the rest of the game.

4.6. Scenes 29

Figure 4.15: Use of PlayerPrefs to ulock levels

For the level selector we have used a ScrollRect component which allows, given a
content, to move the objects in it horizontally or vertically, in this case each of the
buttons that give access to the level.

To make this movement more dynamic and provide a greater visual response we have
used a free asset from the Unity Asset Store called Simple Scroll-Snap[3] developed by
Daniell Lochner. This is an add-on for this component which provides a large number
of extra features that are not implemented by default in Unity. In this case the mag-
netisation of the objects will be used so that one of the buttons is always centred on the
screen when the scrolling is finished, and the scaling of the elements so that the button
that is centred has a larger size than the others.

30 Work Development and Results

4.7 Light and Post Processing

For the lighting of the scenes, a series of light points have been used throughout the
stage that will simulate the light coming from the lanterns that are scattered along the
walls (see figure 4.16). This light will use the Mixed lighting mode which combines the
elements of real time lighting, which is generated in real time for the elements that move
in the scene; and those of baked lighting, which is pre-calculated to generate a light map
on the models that remain static within the scene [6].

Figure 4.16: Light setup of the scenes

On the other hand, we have also configured the material of some objects such as the
line renderer of the first puzzle so that they have the property of light emission, thus
generating a more realistic result to the scene. For this we have used the Post-Processing
package provided by unity [8]. This provides a series of filters that are applied to the
final result of the scene, one of them is the light emission of the materials. To add it,
a Post-processing Layer is added to the scene’s camera, and once implemented, each of
the filters can be added to the image (see figure 4.17).

4.7. Light and Post Processing 31

Figure 4.17: Post Process component

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 33
5.2 Future work . 33

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions
In this project I have applied all the knowledge I have learnt throughout the degree,
both at a programming level, programming all the scripts within the Unity engine, and
at an artistic level, modelling all the 3D objects.

I have also learned new techniques such as the use of the new input system or event-
driven programming, which will be very useful when starting to develop new projects.

5.2 Future work
One of the main areas for future expansion would be to add a wider variety of levels
with new mechanics for the player to interact with. This would make the game more
complete and much longer.

Another aspect to consider would be to add more detail to the scenes. On the
background, which is currently just a flat colour, small visual effects or moving objects
could appear. For the 3D models of the scenes, different types of objects could be
designed with different themes depending on the mechanics to be used or the theme of
the puzzle.

33

34 Conclusions and Future Work

Finally, the implementation of a varied soundtrack would also be an addition to
enhance the player’s experience throughout the game.

Bibliography

[1] Blue Brain Games. The house of da vinci. https://www.bluebraingames.com/. Ac-
cessed: 2022-06-16.

[2] Ustwo Games. Monument valley. https://www.ustwogames.co.uk/. Accessed: 2022-
06-16.

[3] Daniel Lochner. Simple scroll-snap. https://assetstore.unity.com/packages/tools/gui/simple-
scroll-snap-140884. Accessed: 2022-06-29.

[4] Unity. Character controller. https://docs.unity3d.com/Manual/class-
CharacterController.html. Accessed: 2022-06-16.

[5] Unity. Input system. https://docs.unity3d.com/Packages/com.unity.inputsystem@1.3/manual/index.html.
Accessed: 2022-06-16.

[6] Unity. Light mode: Mixed. https://docs.unity3d.com/Manual/LightMode-
Mixed.html. Accessed: 2022-06-30.

[7] Unity. Playerprefs. https://docs.unity3d.com/ScriptReference/PlayerPrefs.html. Ac-
cessed: 2022-06-29.

[8] Unity. Post-processing. https://docs.unity3d.com/Packages/com.unity.postprocessing@2.3/manual/index.html.
Accessed: 2022-06-30.

[9] Unity. Unityevents. https://docs.unity3d.com/Manual/UnityEvents.html. Accessed:
2022-06-16.

35

A
p

p
e

n
d

ix A
Other considerations

A.1 Source Code
All the assets used for the development of the videogame, both the scripts and the rest of
the game elements can be found in the following github link, which contains the complete
Unity project: https://github.com/jorgebg12/TFGJorgeBartolGuillamon

37

A.1. Source Code 39

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	Flowchart
	Interface Design
	Game design research and references

	Work Development and Results
	Player movement
	Animations
	Mechanics
	Game Levels
	Object Modelling
	Scenes
	Light and Post Processing

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Other considerations
	Source Code

