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ABSTRACT
Multispectral imaging and time-resolved imaging are two common acquisition schemes in fluorescence microscopy, and their combination
can be beneficial to increase specificity. The multidimensionality of the dataset (space, time, and spectrum) introduces some challenges, such
as the acquisition of big datasets and long measurement times. In this work, we present a time-resolved multispectral fluorescence microscopy
system with a short measurement time, achieved by exploiting Compressive Sensing (CS) based on the Single-Pixel Camera (SPC) scheme.
Data Fusion (DF) with a high-resolution camera allows us to tackle the problem of low spatial resolution, typical of SPC. The combined use
of SPC, CS, and DF, in which hardware and algorithms are integrated, represents a computational imaging framework to reduce the number
of measurements while preserving the information content. This approach has been exploited to demonstrate a zoom feature without moving
the optical system. We describe and characterize the system in terms of spatial, spectral, and temporal properties, along with validation on a
cellular sample.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135452

I. INTRODUCTION

Fluorescence microscopy is a powerful technique to study
physical, chemical, and biological processes over a broad range of
applications.1 It generally comprises an imaging system, which aims
at revealing the fluorophores’ localization, and various methods
have been proposed over the years to maximize the information
attainable from the multidimensional fluorescence signal. Indeed,
the emission spectrum represents a fingerprint of a fluorophore,
and consequently, multispectral/hyperspectral microscopy2 has the
capability to discriminate fluorophores and to study their spectro-
scopic properties. Its applications span from biomedical3,4 to materi-
als science.5 Similarly, the information provided by the fluorescence
temporal decay can be exploited to better discriminate spectrally

overlapping fluorophores6,7 and to probe their local environment8

(e.g., pH, temperature, chemical bonds, and energy transfer6,9) that
affects the de-excitation pathways. Time-resolved microscopy has
found important applications in the study of cellular metabolism10,11

and natural and artificial photosynthetic processes12 and in the
characterization of functional properties of engineered materials.13

In the most common imaging acquisition schemes, the sam-
ple is scanned across the area of interest with short light pulses
and the emitted fluorescence, after being spectrally dispersed (e.g.,
by a grating or a prism), is acquired in parallel by a linear array
of detectors or by a single detector while the dispersive element is
rotated (monochromator mode).2 The fluorescence temporal profile
can be measured directly in time domain by using a gated detec-
tor or by the Time-Correlated Single-Photon Counting (TCSPC)
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technique.7 In the latter case, each measurement is repeated until
a sufficient number of photons are collected, to draw a histogram
of their arrival times. The most common detectors are Photomulti-
plier Tubes (PMTs) or Single-Photon Avalanche Diodes (SPADs).
A wide-field scheme is frequently based on a time-gated intensi-
fied camera, which has the advantage of directly providing an image
(thanks to parallelization in space) and the disadvantages of a limited
number of temporal samples (serial acquisition of delayed temporal
gates) and a lower temporal resolution of about 100 ps compared to
a few tens of ps of TCSPC.7,8 Then, the time-resolved signal is typi-
cally fitted to a multi-exponential model to retrieve the maps of the
fluorescence lifetimes and relative amplitudes.

Imaging complemented with both temporal and spectral
dimensions results in a four-dimensional dataset14,15 that increases
the specificity of fluorescence microscopy. However, more dimen-
sions generally lead to a longer acquisition time, which should be
limited when measuring in vivo or photosensitive specimens.16

An efficient acquisition scheme is the Single-Pixel Camera
(SPC),17 which allows us to acquire multidimensional information
by means of a point-like detector (or a linear array) and to reduce
the number of measurements. In the SPC scheme, a target is illu-
minated with a series of sampling masks (patterns), generated on a
Spatial Light Modulator (SLM), and the emitted light is integrated
in a point-like detector by using a lens. Each measurement is the
hardware implementation of the inner product between the tar-
get emission and the patterns; then, a computational operation is
required for image reconstruction.18

In the past decade, much interest has been devoted to Compres-
sive Sensing (CS), a sampling strategy that requires less acquisition
effort than conventional schemes, preserving the information con-
tent. This is possible by performing the acquisition in a domain
that is incoherent to that in which the information is supposed
to be sparse.19,20 In the SPC design, this is achieved through a
proper choice of patterns. Thereby, combining SPC with CS, the
resulting image can be inferred with a number M of measurements
lower than the number of pixels N. Recently, compression ratios
(CR = 1 −M/N) higher than 90% have been reported.21,22 It is worth
recalling that, in this case, the image reconstruction requires the
solution of an ill-posed inverse problem, and thus, regularization is
needed.23

A few architectures have been proposed for compressive flu-
orescence microscopy.22 CS multispectral systems are frequently
based on SPC coupled to a spectrometer,24 on interferometric tech-
niques,25 or on coded imaging,26 while CS time-resolved ones are
generally based on SPC coupled to a PMT or a SPAD detector.15,27–29

SPC with a spectrometer and a multichannel time-resolved detector
has been presented by Pian et al.15 for macro-/mesoscopic appli-
cations. Streak cameras have also been used as a multidimensional
detector, either with SPC30 or for compressive ultrafast spectral
FLIM.31 It is worth stressing that all these acquisition schemes
share a computational imaging paradigm where a strong integration
between hardware and software allows for improving the perfor-
mances32 of the conventional microscope in terms of acquisition
speed and information content.

However, the spatial resolution of SPC systems is gener-
ally limited by the trade-off among several factors: measure-
ment/reconstruction time, compression ratio, and frame rate. The
typical number of pixels of an SPC image is less than 128 × 12833

(the actual size of the field-of-view is set by the projection optics).
However, a better spatial resolution is possible at the cost of a higher
acquisition time, which is not always compatible with the sam-
ple. One strategy to mitigate this limit is provided by Data Fusion
(DF). Earlier, this computational imaging method was adopted
in remote sensing, and then, it spread to several areas, includ-
ing autonomous vehicles and biomedical imaging.34,35 With DF,
the information obtained with different imaging modalities can be
merged into a single dataset. Recently, Soldevila et al.36 employed
two SPCs to measure, respectively, a time-resolved and a mul-
tispectral dataset with a low spatial resolution and a standard
Complementary Metal–Oxide–Semiconductor (CMOS) camera to
obtain a high-spatial resolution image. The result, after DF, is a
single multispectral and time-resolved dataset with a higher spatial
resolution.

In this work, we present a novel wide-field, multispectral, time-
resolved fluorescence microscope based on computational imaging
techniques. This scheme provides spectral, temporal, and spatial
information and a significant reduction in the acquired dataset by
combining a single-pixel camera and a conventional pixelated detec-
tor [Charge-Coupled Device (CCD) camera] with compressive sens-
ing and data fusion techniques. We take advantage of the proposed
versatile design to demonstrate a non-mechanical zoom capabil-
ity, which allows us to reconstruct with high resolution a region
of interest (ROI) smaller than the field-of-view (FOV). We propose
and characterize the experimental system, and we demonstrate its
potential on cell samples.

II. MATERIALS AND METHODS
The experimental system is shown in Fig. 1.
The illumination path features a 40 MHz mode-locked super-

continuum fiber laser (Fianium Inc., SC-450), with a few tens of
ps of pulse duration. The laser beam is filtered by a bandpass fil-
ter [10 nm full width at half maximum (FWHM)] centered at
520 nm (FB520-10, Thorlabs, Inc.), coupled to a graded-index fiber
(100 μm diameter), and then expanded and projected by a lens (L1,
f = 25 mm) on a Digital Micromirror Device (DMD, V-7000 ViaLUX
GmbH) acting as a binary reflective SLM. The DMD is constituted by
a matrix (1024 × 768) of independently tiltable (±12○) micromirrors
of size 13.7 × 13.7 μm2 each. The DMD chip is rotated by 45○ to have
both the incident and the reflected beams on the horizontal plane.

FIG. 1. Optical scheme of the microscope. L, lens; DM, dichroic mirror; F, filter; M,
mirror; FM, flip mirror; Obj, objective; and DMD, digital micromirror device.
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As a DMD acts as a two-dimensional grating for coherent light,37

the angle of the incident light is adequately tuned to approach the
blaze condition at the illumination wavelength. The system’s aper-
tures remove all the diffraction orders of the DMD but the central
one, and this helps in preventing diffraction-induced distortions in
the illumination patterns.38

The modulated light is collected by a 2 inches achromatic
doublet lens (L2, f = 200 mm, AC508-200-A, Thorlabs, Inc.),
reflected by a dichroic mirror (DM, cut-on 550 nm, DMLP550R,
Thorlabs, Inc.) toward an objective (Obj., Plan N 40× NA
0.65 infinity corrected, Olympus Corp.), and thus, sent to the
specimen.

In the detection path, the fluorescence is selected by a long-pass
filter at 550 nm (F1, FELH0550, Thorlabs, Inc.) and can be addressed
to a spectrometer (Acton SP-2151i, Princeton Instruments, Inc.)
by means of a lens (L3, f = 50 mm) and an aperture-converting
fiber bundle (from 3 mm diameter to 1 × 10 mm2). The spectrom-
eter includes a diffraction grating (600 lines/mm) that disperses
the light toward a 16-channel PMT detector (PML-16-1, Becker &
Hickl GmbH) whose channels have a bandwidth of ∼9 nm FWHM
each. Different PMT channels were corrected for spectral efficien-
cies using a commercial spectrometer (Hamamatsu TM-VIS/NIR
C10083CA-2100) as a reference. The detected signal is then pro-
cessed with a TCSPC board (SPC-130-EM, Becker & Hickl GmbH)
with 4096 temporal channels. Patterns are pre-loaded on the DMD
memory and then projected for a pre-determined exposure time. A
trigger signal generated by the DMD allows us to synchronize the
TCSPC acquisition with each pattern. The temporal Instrumental
Response Function (IRF) is acquired by means of a reflecting sur-
face (a silicon wafer) at the sample plane, without the long-pass filter
F1. All the 16 PMT channels show an IRF width of less than 180 ps
FWHM.

With a flip mirror (FM), light can be delivered to a 16-bit
512 × 512 cooled CCD camera (VersArray 512, Princeton Instru-
ments) through an achromatic doublet lens (L4, f = 200 mm). The
camera is used both for focusing operations and for acquiring a high-
resolution image (256 × 256 pixels) of the sample. Another filter
(F2, FESH0700, Thorlabs, Inc.) is placed in front of the camera
to make this detector work within the same spectral band of the
16-channel PMT.

The acquisition with SPC has the following mathematical for-
mulation: mM×1 =WM×N xN×1, with xN×1 being the target to be
imaged reshaped into a column array, WM×N being the measure-
ment matrix, and mM×1 being the vector of the measurements. In
this work, WM×N is built from the first M rows of the scrambled
Hadamard matrix, which is obtained, in turn, from random permu-
tations of columns and rows of the Hadamard matrix HN×N with
N = 1024.39,40 This means that the DMD modulates the light accord-
ing to the rows of WM×N , reshaped in a collection of M patterns
whose size is N = 32 × 32. We substituted the native (+1, −1)
matrix elements with (+1, 0) so that the patterns can be encoded
onto a DMD. Moreover, scrambled Hadamard patterns are pseudo-
random and, thus, well suited for CS. Each pattern contains 1 and
0 elements (in the same amount), except for one pattern that cor-
responds to a uniform illumination (only 1 value): to prevent the
latter from saturating the dynamic range of the detector, a measure-
ment is performed with the complementary of another pattern and
the two are subsequently added together.41 The spectral and tem-

poral dimensions of each element of mM×1 are implicit, as they are
acquired in parallel.

With the choice of a 40× objective, each pattern illuminates
an area of about 150 × 150 μm2, which is quantized with 32 × 32
pixels (each pixel involves 16 × 16 DMD mirrors). However, the
setup design offers a handy zoom feature to increase the spatial res-
olution:28 by using a calibrated and registered camera image (e.g.,
the one obtained at the end of the focusing operations), a smaller
area can be selected, and therein, patterns can be projected by sim-
ply adjusting the codification of micromirrors in the DMD. Hence,
32 × 32 pixels are exploited over different fields of view. This repre-
sents a method for multiscale imaging, which preserves the image’s
aspect ratio between various zoom levels and does not require any
change in the optical setup.

When the number of patterns M equals the desired number of
pixels N, the resulting image can be reconstructed by a straightfor-
ward matrix inversion. If M < N patterns have been collected, the
dataset mM×1 requires a decoding step into the pixel’s space with a
reconstruction algorithm. We chose the total variation minimiza-
tion by augmented Lagrangian and alternating direction algorithms
(TVAL3),42 a state-of-the-art solver in CS. A background noise sub-
traction is performed on the experimental data within each spectral
channel, considering the mean value of the time-resolved signal over
1 ns before the arrival of the pulse; then, a low-resolution image
(32 × 32) is reconstructed for each time bin and each spectral chan-
nel, leading to a 4D hypercube yspc. Further details on the use and
settings of TVAL3 can be found in the supplementary material.

yspc can be fused with the CCD camera image yccd, which has a
higher spatial resolution (for every pixel in yspc, there are 64 in yccd),
to reconstruct a high-resolution 4D hypercube named X. This has
been obtained with a variational approach through the minimization
of the following merit function F(X):36

F(X) = 1
2

ε∥STX − yccd∥2
2 + 1

2
∥RLX − yspc∥2

2 + 1
2

δ∥RGX − ỹspc∥2
2,

where S is an operator that performs the integration of the multidi-
mensional variable across the spectral dimension and, analogously,
T acts by integrating across the temporal dimension (i.e., S and
T applied to X lead to an image of the same dimension of yccd),
RL is a spatial down-sampling operator, and RG integrates the
space dimension to get a global wavelength–time map. ỹspc is the
wavelength–time map that is obtained from yspc after it has been
integrated over the spatial dimension. ε and δ are two hyperparame-
ters that are tuned to find the best trade-off in minimizing the three
contributions of F(X). The first term expresses the data fidelity of
the reconstructed data to the CCD image, the second one expresses
the data fidelity of the down-sampled reconstructed data, and the
third term expresses the global fidelity of the time–wavelength map.
Minimization is obtained through a conjugated-gradient descent
with line search.36,43 A background noise subtraction is required for
yccd, too. The camera image has been used to create a pixel mask
for yspc, based on a fixed threshold, to exclude noisy pixels mainly
lying in the background. The images from CCD and the SPC data
are normalized to have the same energy.

Two types of samples have been measured to validate the
system’s capabilities. First, the imaging properties have been char-
acterized with fluorescent beads (4 μm diameter each) deposited on
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a microscope slide (FocalCheck F36909, Invitrogen). Each bead is
stained with four different fluorophores; two of them emit within the
detection spectral window. The second is a sample of fixed HEK-293
(ATCC) cells. Cells are treated with poly(3-hexylthiophene-2,5-diyl)
nanoparticles (P3HT NPs) (abs: 500 nm; em.: 650 nm), and their
actin filaments are stained with phalloidin conjugated to Alexa-
Fluor 488 (ALF, abs.: 490 nm and em.: 520 nm, Sigma-Aldrich).
Additional information about the sample preparation is reported
in the supplementary material. These samples are quite interest-
ing due to the possible role played by nanoparticles at the interface
with living cells. Organic and inorganic nanoparticles have proven
to be a valuable tool for optical cell stimulation, biosensing, and
drug delivery, among others, even reaching clinical trials for various
applications.44–46

III. RESULTS AND DISCUSSION
Figure 2(a) shows a wide field fluorescence image of the bead

sample acquired by using a CCD camera with 1 s exposure time
and uniform illumination. The same field of view (FOV) is acquired
by the SPC by using 307 patterns (CR = 70%) for 10 ms each
(3 s total measurement time), resulting in a 4D dataset (x, y, time,
and spectrum). The sample is illuminated with 170 μW, correspond-
ing to ∼1 × 106 counts per second on the TCSPC board. The spectral
dimension is resolved with 16 channels over the 550–690 nm band
and with 256 temporal bins of 100 ps each. Figure 2(b) shows the
reconstructed image obtained by integrating over the entire emis-
sion spectrum and a temporal window of 10 ns from the fluorescence
peak.

Data fusion is applied to the two datasets. Figure 2(c) represents
the reconstructed images at several iterations of the regularization

process from the acquired SPC image to the one after DF, within
the small area indicated by a red square in Fig. 2(a). Initially, the
two highlighted spots (blue and orange) contain the same spec-
tral and temporal information (graphs in the upper row) as they
belong to the same pixel of the low-resolution image. After DF, the
orange spot has lowered into the background, while the blue one
corresponds to a bead. The temporal and spectral signals (graphs in
the lower row) have differentiated, too: the orange plots approach
the baseline, while the blue plots still contain a spectrum and a
decay.

As previously stated, one of the advantages of the proposed
SPC-based microscope is the capability to zoom into a specific area
without changing the optics while measuring emission spectrum and
temporal decay. Figures 2(d) and 2(e) show the zoom over a group of
three beads within the red square in Fig. 2(a) without and with com-
pression (CR = 90%; M = 102 measurements), respectively. The size
of the zoomed area is about 20 × 20 μm2, exploiting 64 × 64 DMD
mirrors, and it has been discretized into 32 × 32 pixels. Hence, the
pixel size of the zoomed image is about 0.6 μm, which is equivalent
to the spatial resolution achievable with our CCD camera. The mea-
surement time is 20 ms per pattern, which leads to a total acquisition
time of 2 s for CR = 90%. In this case, it is still possible to recognize
the shape of the three beads even if we observe a small loss of spatial
detail.

An analysis of the impact of compression on image quality, and
on spectral and temporal information, has been performed and is
reported in the supplementary material; in particular, in Fig. S1(c),
the Peak Signal-to-Noise Ratio (PSNR) parameter with respect to
the CCD camera image, considered as a reference, is plotted as
an indicator of the image degradation as the compression level
increases. The parameter is calculated on images integrated over the

FIG. 2. (a) Beads FOV acquired with a CCD camera. (b) Image from SPC of the FOV in (a), with CR = 70% and 10 ms/pattern acquisition time. (c) Data fusion in a ROI [in
red from (a)] between (b) and (a) at different iterations. Spectral and temporal information is extracted from two spots, in blue and orange: the upper row refers to the SPC
dataset and the lower row refers to the dataset after DF. (d) Zoom-in of a ROI from SPC without compression (CR = 0%) and with 20 ms/pattern acquisition time. (e) The
same as (d), with CR = 90%. All the images are normalized to the brightest pixel.
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full spectral band and a 10 ns temporal window from the fluores-
cence peak. We observe a slow decay trend from the uncompressed
case up to CR = 80%; then, beyond CR = 90%, there is a rapid
degradation. For this reason, we have considered CR = 90% as the
highest acceptable compression level for this dataset. Three images
at intermediate values of CR (60%, 80%, and 95%) are reported
in Fig. S2.

Once the image quality has been evaluated, it is important to
quantify the effect of CS and DF on the reconstructed spectral and
temporal behaviors. With the 4D dataset from the zoomed image,
we performed an analysis by varying the compression ratio from
10% to 90%, shown in Fig. S1. A quantitative analysis of the sim-
ilarity among spectra at different CRs is summarized in Table S3
by calculating the mean squared error (MSE) with respect to the
uncompressed case, as reported in the supplementary material. Until
CR = 90%, the MSE error is less than 0.3%. Temporal curves are fit-
ted to a mono-exponential model, and the corresponding lifetimes
are compared at different CRs. Until CR = 80%, the maximum error,
with respect to the uncompressed case, is <9%, and at 90%, it is 11%.
The values of MSE on the spectrum, estimated lifetime, and PSNR
demonstrate the compressibility of this dataset, until CR = 90%. The
case with CR = 70%, wide FOV, and data fusion is also analyzed in
Table S5 and shows a minimal impact.

We then measured a cellular sample composed of ALF-stained
HEK cells and P3HT nanoparticles. Following a workflow similar
to the one adopted for the bead sample, a CCD image [Fig. 3(a)]
is acquired over a wide field of view (150 × 150 μm2) with an
exposure time of 1 s. The same FOV has been measured with SPC
with 205 patterns (CR = 80%), for 50 ms each (about 10 s of
measurement time). The sample is illuminated with 280 μW. The
corresponding dataset, integrated over the whole spectral dimension

(580–720 nm) and 10 ns window from the fluorescence peak, is
reported in Fig. 3(b).

One control microscope slide containing HEK cells marked
with ALF fluorophore and another one containing P3HT alone (no
cells) have been measured with the CCD camera [Figs. S3(a) and
S3(d)] and a time-resolved multichannel PMT [Figs. S3(b) and S3(e);
Figs. S3(c) and S3(f)], in order to spectrally and temporally charac-
terize the fluorophores. ALF is characterized by a mono-exponential
behavior with a lifetime of about 3.14 ns and P3HT by a lifetime
shorter than 200 ps.

By means of the preliminary measurements, ALF can be high-
lighted by selecting a spectral band between 580 and 595 nm and a
time gate of 7 ns, starting 1.5 ns after the fluorescence peak. Similarly,
P3HT can be better discriminated with a spectral band 650–700 nm
and a time gate of 1 ns from the peak. Data fusion is applied as
described above, and the resulting two gated-and-filtered images are
assigned to the corresponding spectral range and are visualized in
Fig. 3(c). Multidimensionality and data fusion can help in show-
ing a synthetic representation of the specimen, which is useful for
a rapid screening or deciding where to proceed with further mea-
surements. These images allow us to better localize the aggregates of
P3HT nanoparticles (the red spots) inside the cells, and this is quite
relevant for studying their spatial and temporal internalization.

To increase the spatial resolution and, hence, to discriminate
smaller P3HT clusters, SPC measurement is repeated in a zoomed
FOV [marked in red in Fig. 3(b)], of size 40 × 40 μm2. We used
77 patterns with 16 × 16 pixels (CR = 70%), projected for 100 ms
each (total time 8 s), and the dataset is fused with the camera image
of Fig. 3(a), resulting in Fig. 3(d). From the two selected regions,
circled with blue and orange, the spectral [Fig. 3(e)] and temporal
[Fig. 3(f)] signals are extracted. While the low signal from the orange

FIG. 3. (a) Fluorescence intensity imaging acquired with a CCD camera. (b) SPC imaging of the FOV in (a), with CR = 80% and 50 ms/pattern acquisition time. (c) RGB
rendering from data fusion between camera’s and 4D SPC’s dataset. (d) Data fusion between the camera image and an SPC dataset in a zoomed ROI obtained with 100
ms/pattern acquisition time. (e) Emission spectra in the highlighted regions of (d). (f) Decays in the highlighted regions of (d) (solid line: exponential curve fit).
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region does not allow us to deduce the content based on the emis-
sion spectrum, the temporal profile shows a very clear presence of
a short lifetime, compatible with the presence of P3HT. Conversely,
the blue region has a stronger signal in the leftmost spectral chan-
nels and a slower decay, corresponding to a prevalent contribution
of ALF.

This set of measurements demonstrates the capability of
the setup to discriminate nanoparticles in a complex environ-
ment, such as the biological one. The ability to collect multispec-
tral information from nanoparticles could be used in the field
of biosensing exploiting lifetimes-related information to enhance
specificity.47,48 Furthermore, nanoparticles can be sensing/triggering
elements for biological hubs, such as synapses and intracellular
organelles.

IV. CONCLUSION AND FUTURE PERSPECTIVES
In this work, we have proposed and experimentally validated

a time-resolved multispectral fluorescence microscope based on
single-pixel camera detection and its symbiotic use with com-
pressive sensing and data fusion algorithms. We have shown that
this integration between hardware and algorithms, at the base of
the computational imaging approach, is an effective strategy for
reducing the acquisition time while preserving multidimensional
images with high spatial, temporal, and spectral resolutions. In fact,
while spectral and temporal information is acquired in parallel and
fully sampled, for what concerns the spatial dimensions, we have
reported images with 32 × 32 pixels obtained from a low percentage
(CR = 80% for the cell sample) of measurements and whose pixel
number is then increased by exploiting a camera image up to 256
× 256. In this way, the measurement duration is much shorter (about
0.3%) than that of a fully sampled SPC system with the same number
of pixels in the final image and the same integration time for photon
counting. This approach is important when a short measurement
time is a priority to avoid bleaching and cell damage or to capture
dynamic phenomena. Moreover, it allows a handy zoom capabil-
ity without changing the magnification optics. Zooming allows us
to quickly observe FOVs of different sizes and, consequently, dif-
ferent spatial resolutions, with relevant opportunities in biological
applications.

The use of multiple detectors to observe the same sample and
perform data fusion certainly raises the issue of different spec-
tral efficiencies. Since the PMT data are spectrally calibrated and
the response of a CCD sensor is almost flat within the spectral
window we used, this aspect was not critical at this time, but, in
general, it might be useful to allow the S operator of data fusion to
account for the spectral efficiencies. The use of a DMD, which is a
standard component of common light projectors, a state-of-the-art
cooled camera, and a linear array of time-resolved detectors, makes
this design less expensive, less complex, and more sensitive than
pixelated detector-based systems.

Future developments to improve the performance, in terms of
acquisition time reduction and higher temporal, spectral, and spa-
tial resolutions, involve hardware and software co-design. In the
future, algorithms for the optimization of the hyperparameters of
the data fusion can be applied,49,50 in order to automatize the pro-
cess, which currently relies on manual tuning. A possible strategy to

further reduce the integration time relies on technological improve-
ments of the detection chain by exploiting more efficient TCSPC
systems,51,52 more sensitive detectors, or higher parallelism in mul-
tichannel detector architecture.29 Concerning the reconstruction
algorithm, recently, machine learning has shown to be effective32

for high CRs and lower computation times. Different patterns, as
an alternative to those based on the Hadamard matrix,30,32,53 can
be used to increase the CR and spatial details, such as wavelet, dis-
crete cosines, or Morlet.54,55 In particular, optimal patterns can be
designed with deep learning56 or even with adaptive methods.57

Moreover, a static/dynamic combination of the compressed dataset
with global analysis and linear fast-fit approaches58 can provide
a faster analysis toward real-time applications. In conclusion, we
believe that the proposed experimental system represents an ideal
platform for the development of advanced computational imaging
approaches exploiting novel algorithms.
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