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The minimum distance of a linear code is a key concept in information theory. Therefore, the time required

by its computation is very important to many problems in this area. In this paper, we introduce a family of

implementations of the Brouwer-Zimmermann algorithm for distributed-memory architectures for computing

the minimum distance of a random linear code over F2. Both current commercial and public-domain software

only work on either unicore architectures or shared-memory architectures, which are limited in the number

of cores/processors employed in the computation. Our implementations focus on distributed-memory archi-

tectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum

distance. Our experimental results show that our implementations are much faster, even up to several orders

of magnitude, than current implementations widely used nowadays.
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1 INTRODUCTION
In 1948, Claude Shannon published his seminal paper “A Mathematical Theory of Communica-
tions” [22], which is widely recognized as the foundation of the Information Theory field. As

of today, this work is still considered a key reference in the area, as it describes the concept of

information and how to measure it; actually, nowadays it is even more up-to-date than ever given

the widespread development of network communications. As information is sensitive to be cor-

rupted due to external factors –e.g. noise–, Coding Theory can be leveraged to detect and correct

errors [16]. It is worthwhile mentioning that Coding Theory goes beyond error correction, as it can

be used for many other purposes, namely: quantum computing [7], biological systems [1, 17], data

compression [2, 15], cryptography [18, 19], network coding [13], or secret sharing [8, 21], among

others.

For practical reasons, the most common codes employed are usually linear codes, i.e., vector

subspaces 𝐶 of dimension 𝑘 within a vector space of dimension 𝑛. In addition to 𝑛 and 𝑘 , a crucial

parameter to be considered is the Hamming minimum distance 𝑑 of the vector subspace 𝐶 , since it

strongly determines error detection and error correction capabilities. In other words, if a corrupted

word 𝑟 is received, the most likely codeword that was sent is the closest to 𝑟 in 𝐶 , according to

the mentioned metric. If the minimum distance of a linear code is 𝑑 , up to 𝑑 − 1 errors can be

detected and up to ⌊𝑑−1
2
⌋ errors can be corrected. The knowledge of 𝑑 is not only crucial to detect

and correct errors, but also in the other applications mentioned above.
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The scientific literature contains fast algorithms for computing –or bounding– the minimum

distance of linear codes with a complex structure, such as the Reed-Solomon codes or the BCH

codes [16]. In contrast, computing the minimum distance of random linear codes is an NP-hard

problem. As of today, the fastest algorithm for computing this minimum distance is the so-called

Brouwer-Zimmerman algorithm [24], which was described and updated by Grassl [9]. Nevertheless,

there are some other algorithms that are faster in some special cases, such as when the dimension

is small and the length is large. Hernando et al. [11] carried out a brief performance comparison

of an implementation of Brouwer-Zimmermann and an exhaustive algorithm based on the Gray

code for some linear codes with different dimensions and lengths. The commercial software

MAGMA [4] contains an implementation of this algorithm over both small and large fields. The

public-domain software GAP [3, 10] contains an implementation of this algorithm over F2 and
F3. A family of implementations of this algorithm over F2 with much higher performances has

been recently developed [11]. These implementations produced higher performances on both

serial computers (unicore processors) and shared-memory architectures with multiple/multicore

processors by exposing and efficiently exploiting thread-level and data-level parallelism by means

of vector instructions.

After submitting this manuscript, Bouyukliev et al. [6] developed a modification of the Brouwer-

Zimmermann algorithm that can accelerate the original algorithm in some cases by creating and

processing additional systematic sets in order to enumerate a fewer number of codewords.

However, the computation cost of computing the distance of large random linear codes is

really humongous even when employing shared-memory architectures with several cores. As the

number of cores in these architectures is limited, a new approach is presented in this paper. We

introduce several new efficient implementations, also over F2, that can be employed in distributed-

memory architectures with hundreds (or even thousands) of cores. Experiments show that the new

implementations are scalable and can compute the minimum distance of the random linear codes

much faster than current optimized shared-memory implementations. In fact, the computation of

the minimum distance of a random linear code with the public-domain GAP (Guava) software

took 5 days, whereas the computation of the same distance took only 5 minutes with our new

implementations.

This article is organized as follows: Section 2 introduces the necessary background in order to

make this article self-contained. Section 3 describes several new algorithms and implementations for

distributed-memory architectures. Section 4 presents the performances of the the new algorithms,

and compares the results with current software. Section 5 contains the conclusions.

2 BACKGROUND
The objective of this section is twofold: First, to provide the necessary mathematical tools employed

in the rest of the manuscript; second, to review the new fast implementations for computing the

minimum distance of a random linear code introduced in [11].

Although a part of the mathematical background is described for F𝑞 , the algorithms are described

and implemented over F2.

2.1 Mathematical Background
Let 𝑒 be a prime number and 𝑞 = 𝑒𝑟 a power of it. We denote by F𝑞 the finite field with 𝑞 elements.

By definition, a linear code 𝐶 is a vector subspace of F𝑛𝑞 . The dimension of 𝐶 as a vector subspace

is denoted by 𝑘 and is referred as the dimension of the linear code. The encoding is done via the

generator matrix, i.e., a 𝑘 × 𝑛 matrix denoted by 𝐺 , whose rows form a base of 𝐶 . After elementary

row operations and columns permutations, any generator matrix can be written in the systematic

form 𝐺 = (𝐼𝑘 | 𝐴), where 𝐼𝑘 is the identity matrix of dimension 𝑘 , and 𝐴 is a 𝑘 × (𝑛 − 𝑘) matrix. To
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encode the information, it is only needed to multiply (𝑐1, . . . , 𝑐𝑘 ) (𝐼𝑘 | 𝐴) = (𝑐1, . . . , 𝑐𝑘 , 𝑐𝑘+1, . . . , 𝑐𝑛),
introducing 𝑛 − 𝑘 new symbols, which eventually will help to detect and correct errors. In the

decoding process, if a corrupted word is received, it is replaced by the closest codeword, in case

it is unique. Therefore, a metric to measure the closeness is needed. In coding theory, the most

common metric is the Hamming distance. Given two vectors 𝑎, 𝑏 ∈ F𝑞 , the Hamming distance

between 𝑎 = (𝑎1, . . . , 𝑎𝑛) and 𝑏 = (𝑏1, . . . , 𝑏𝑛) is:
d(𝑎, 𝑏) = #{𝑖 | 𝑎𝑖 ≠ 𝑏𝑖 }.

Then, the minimum distance of a linear code 𝐶 is:

d(𝐶) = min{d(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝐶}.
Since the code is linear, the minimum distance coincides with the minimum weight:

wt(𝐶) = min{wt(𝑎) | 𝑎 ∈ 𝐶},
where wt(𝑎) = d(𝑎, 0).

For the sake of simplicity, in the following we will use 𝑑 instead of d(𝐶) will refer to either the

minimum distance or the minimum weight. A linear code with minimum distance 𝑑 can detect up

to 𝑑 − 1 errors and can correct up to ⌊𝑑−1
2
⌋ errors. Computing the parameter 𝑑 for a random linear

code is a NP-hard problem [23], and the corresponding decision problem is NP-complete.

To this day, the fastest algorithm for computing the minimum distance of a random linear code

is the so-called Brouwer-Zimmerman algorithm [24], which was described and slightly modified

in [9]. The method for F2 is outlined in Algorithm 1. The key components in this algorithm are the

information sets, i.e, a subset of 𝑘 indices 𝑆 = {𝑖1, . . . , 𝑖𝑘 } ⊂ {1, . . . , 𝑛} such that the corresponding

columns of the generator matrix 𝐺 are linearly independent. There are several approaches for

finding the maximum number of disjoint information sets. Despite its crucial role, the computational

cost of this step is negligible compared with the rest of the algorithm. Assume that one has found

𝑚 − 1 disjoint information sets 𝑆 𝑗 , 𝑗 = 1, . . . ,𝑚 − 1. For each disjoint information set 𝑆 𝑗 , a matrix in

systematic form Γ𝑗 = (𝐼𝑘 | 𝐴 𝑗 ) can be obtained. In addition to that, there are 𝑛 − 𝑘 (𝑚 − 1) columns

in 𝐺 that do not form an information set, i.e., the corresponding columns have rank strictly less

than 𝑘 , say 𝑘𝑚 . After elementary row operations and column permutations, the following matrix

can be obtained:

Γ𝑚 =

(
𝐼𝑘𝑚 𝐴

0 𝐵

)
.

Once the matrices Γ1, . . . , Γ𝑚 have been computed, the process of enumerating codewords can

proceed. This process is as follows: A lower bound 𝐿 is initialized to one, and an upper bound𝑈

is initialized to 𝑛 − 𝑘 + 1. First, all the linear combinations of the form 𝑐 · Γ𝑗 , 𝑗 = 1, . . . ,𝑚 where

wt(𝑐) = 1 are generated. For each linear combination, if its weight is smaller than 𝑈 , the upper

bound 𝑈 is updated to the new weight. After processing all the vectors 𝑐 of weight one, the lower

bound is increased in𝑚 − 1 units. Then, if 𝐿 ≥ 𝑈 , the minimum weight is 𝑈 and the algorithm

stops. Otherwise, this same process is repeated for all vectors 𝑐 such that wt(𝑐) = 2, then wt(𝑐) = 3,

and so on, until 𝐿 ≥ 𝑈 , in which case𝑈 is the minimum distance.

2.2 Improved algorithms
Hernando et al. [11] introduced several new algorithms and implementations that were faster than

both current commercial software and public-domain software, including accelerated versions of

both the brute-force algorithm and the Brouwer-Zimmermann algorithm. These algorithms were

designed for both unicore systems and shared-memory architectures (multicore and multiproces-

sors). Since the new parallelizations for distributed-memory computers are based on and make
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Algorithm 1 Minimum weight algorithm for a linear code 𝐶

Require: A generator matrix 𝐺 of the linear code 𝐶 with parameters [𝑛, 𝑘, 𝑑].
Ensure: The minimum weight 𝑑 of 𝐶 .

1: 𝐿 := 1;𝑈 := 𝑛 − 𝑘 + 1;

2: 𝑔 := 1;

3: while 𝑔 ≤ 𝑘 and 𝐿 < 𝑈 do
4: for 𝑗 = 1, . . . ,𝑚 do
5: 𝑈 := min{𝑈 ,min{wt(𝑐Γ𝑗 ) : 𝑐 ∈ F𝑘

2
| wt(𝑐) = 𝑔}} ;

6: end for
7: 𝐿 := (𝑚 − 1) (𝑔 + 1) +max{0, 𝑔 + 1 − 𝑘 + 𝑘𝑚} ;
8: 𝑔 := 𝑔 + 1;

9: end while
10: return 𝑈 ;

heavy use of these algorithms, we proceed first with a brief description of these serial versions.

The reader can refer to [11] for an in-depth description and detailed analysis.

The focus of all the algorithms is the generation of all the linear combinations since it is the

most compute-intensive part. The next descriptions and algorithms do not show the updates of

the lower and upper bounds (𝐿 and𝑈 , respectively), nor the termination condition to simplify the

notation. All the algorithms stop as soon as the lower bound is equal to or larger than the upper

bound after processing a Γ matrix.

A common first step is the computation of the Γ matrices out of the generator matrix 𝐺 . As the

cost of this part is usually much cheaper than the rest of the algorithm, and its results can greatly

affect the overall computational cost of the algorithm, several random permutations are applied to

the original generator𝐺 in order to find one permutation with both the largest number of full-rank

Γ matrices and the largest rank in the last Γ matrix. Lisoněk et al. [14] described how to perform a

more clever election of the Γ matrices.

Once the Γ matrices have been computed, the basic goal of the Brouwer-Zimmermann algorithm

is simple: For every Γ matrix, the additions of all the combinations of its rows taken one at a time

must be computed, and then the minimum of the weights of those additions must be computed.

This process is repeated then taking successively two rows at a time, then taking three rows at a

time, etc. After processing each Γ matrix in each of these stages, the lower and upper bounds are

checked, and this iterative process finishes as soon as the lower bound is equal to or larger than

the upper bound.

2.2.1 Serial algorithms . All the algorithms presented hereafter focus on how to generate the

different codewords, that is, line 5 in Algorithm 1, with as few additions as possible. All of them

enumerate exactly the same number of codewords, which depends on the maximum number of

linear combinations 𝑔 generated. The number of linear combinations enumerated is:

𝑚

𝑔∑︁
𝑗=1

(
𝑘

𝑗

)
,

where𝑚 is the number of Γ matrices. This number depends on the ranks of Γ matrices. On the other

hand, the number of additions carried out in each algorithm is completely different. In [11], we

describe in detail the cost in terms of additions of the code within the innermost for loop. Further

interesting references for algorithms that minimize the number of additions are [12] as a general

reference and [5] for linear codes.

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2020.



Algorithm xxx: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on
Distributed-memory Architectures 0:5

Basic algorithm. This is an straightforward implementation of the Brouwer-Zimmermann algo-

rithm. Let us say that a Γ matrix has 𝑘 rows, then the basic algorithm generates all the combinations

of the 𝑘 rows taken with an increasing number of rows. For every generated combination, the

rows of this combination are added, and the overall minimum weight is updated. This method

is outlined in Algorithm 2. The Get_first_combination() function returns true and the row

indices of the first combination, such as (0, 1, 2, . . . , 𝑔 − 1). In this one and the next algorithms a

combination is represented as a sequence of row indices, where the first row index is zero. The

Get_next_combination( 𝑐 ) function receives a combination 𝑐 and returns both true and the

next one if there is one. The Process_combination( 𝑐, Γ ) function computes the weight of the

addition of the rows of Γ with indices in 𝑐 . Besides, it updates the lower and upper bounds if needed.

Though in this algorithm the order in which the combinations are generated is not important, the

lexicographical order was employed to reduce the number of cache misses.

Algorithm 2 Basic algorithm

Require: A generator matrix 𝐺 of the linear code 𝐶 with parameters [𝑛, 𝑘, 𝑑].
Ensure: The minimum weight of 𝐶 , i.e., 𝑑 .

1: Beginning of Algorithm
2: [ Γ𝑗 ] = Compute_gamma_matrices( G );

3: for 𝑔 = 1, 2, . . . do
4: for every Γ matrix (𝑘 × 𝑛) of 𝐺 do
5: // Process all combinations of the 𝑘 rows of Γ taken 𝑔 at a time:

6: ( done, c ) = Get_first_combination();

7: while ( ! done ) do
8: Process_combination( c, Γ );

9: ( done, c ) = Get_next_combination( c );

10: end while
11: end for
12: end for
13: End of Algorithm

Optimized algorithm. In the lexicographical order, the only difference between each combination

and the next one (or the previous one) is usually the last element; hence, this algorithm reduces

the number of additions by saving and reusing the addition of the first 𝑔 − 1 rows. The outline of

this algorithm is very similar to the previous one. The main difference is that combinations are

generated with 𝑔 − 1 rows instead of 𝑔 rows. Therefore, the new Process_combination( 𝑐, Γ
) function must perform the following two tasks: First, it adds and saves the combination with

the 𝑔 − 1 rows with indices in 𝑐 . Then, it builds all the combinations with 𝑔 rows by adding the

corresponding rows to the previous addition, thus saving a considerable number of row additions

(compute operations) and row accesses (memory operations).

Stack-based algorithm. The goal of this algorithm is to further reduce the number of additions

needed to compute the addition of the 𝑔 − 1 rows, performed in each iteration of the while loop, by
using a stack with 𝑔− 1 vectors of dimension 𝑛 and the lexicographical order. The stack, which only

requires a few KB, stores data progressively. When the combination 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑔−1), where 𝑐𝑖 is
a row index, is being processed, the stack contains the following elements (incremental additions):

row 𝑐1, the addition of rows (𝑐1, 𝑐2), the addition of rows (𝑐1, 𝑐2, 𝑐3), . . . , and finally the addition

of rows (𝑐1, 𝑐2, 𝑐3, · · · 𝑐𝑔−1). The main savings of this algorithm are obtained in the computation of
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the addition of the 𝑔 − 1 rows because the top of the stack contains that information. Then, when

computing the next combination of 𝑔 − 1 rows, the contents of the stack must be rebuilt from the

left-most index that has changed between the current combination and the next one.

Algorithm with saved additions. The key to this algorithm is the efficient composition of combi-

nations with up to 𝑠 elements to build combinations with larger number of elements. If 𝑔 = 𝑎 + 𝑏
with numbers 𝑎 and 𝑏 such that 0 < 𝑎 ≤ 𝑠, 0 < 𝑏 ≤ 𝑠 , the addition of the rows of the combina-

tion 𝑐 with indices (𝑐1, 𝑐2, . . . , 𝑐𝑎, 𝑐𝑎+1 . . . , 𝑐𝑔) can be computed as the addition of the rows of the

combination (𝑐1, 𝑐2, . . . , 𝑐𝑎) (called left combination) and the combination (𝑐𝑎+1 . . . , 𝑐𝑔) (called right

combination). In this way, with just one addition the desired result can be obtained if the additions

of the combinations with up to at least max(𝑎, 𝑏) rows have been previously saved. Therefore, if

𝑔 = 𝑎+𝑏, to obtain the combinations of 𝑘 rows taken 𝑔 at a time, the combinations of 𝑘 rows taken 𝑎

at a time (left combinations) and the combinations of 𝑘 rows taken 𝑏 at a time (right combinations)

must be composed. However, not all those combinations have to be processed since there are some

restrictions. These restrictions to the combinations must be applied efficiently to accelerate this

algorithm since otherwise an important part of the performance gains could be lost.

The outline of the method is very different to the previous ones since it can be implemented as a

recursive algorithm (see [11] for further details). The data structure that stores the saved additions

of the combinations of the rows of every Γ matrix must be built in an efficient way. Otherwise,

the algorithm could underperform for matrices that finish after only a few generators. For every

Γ matrix, this data structure contains several levels (𝑙 = 1, . . . , 𝑠), where level 𝑙 contains all the

combinations of the 𝑘 rows of the Γ matrix taken 𝑙 at a time. The way to do it in an efficient way

is to use the previous levels of the data structure to build the current level. A similar approach

proposed by Bouyukliev [5] further reduces the number of additions to one. This method is even

faster, but its execution for larger number of rows is limited by the available memory. In contrast,

our implementation performs some more additions in some cases, but it works for any number of

rows (since it does not exceed the available total memory).

Algorithm with saved additions and unrolling. This algorithm reduces the number of memory

accesses (not additions) by processing several left combinations at the same time (called unrolling).
To do that, right combinations will be reused when brought from main memory. For instance,

by processing two left combinations at the same time, the number of data being accessed can be

nearly halved since each accessed right combination is used twice (one time for every one of the

two left combinations), thus doubling the ratio of vector additions to vector accesses. However,

this technique is more effective when the two left combinations must be composed with the same

subsets. To achieve that, the right-most element of the two left combinations must be the same. As

in the lexicographical order the right-most index always changes, a variant was employed.

Vectorization and other implementation details. The main advantage of hardware vector instruc-

tions is to be able to process many elements simultaneously by using data stored in large vector

registers. Although the length 𝑛 is usually smaller than a few hundreds (very small compared with

the size of modern vector registers), an efficient vectorization was achieved. Four-byte integers

were employed to store data, thus packing 32 elements into each integer and hence leveraging

vector instructions to boost performance on modern and legacy computing architectures.

2.2.2 Parallel algorithms for shared-memory architectures . The parallelization of the basic, opti-

mized, and stack-based algorithms do not render good results because of the restrictions of the

loop sizes and the size of the critical regions in comparison with the amount of work that can be

simultaneously executed. See Hernando et al. [11] for more details.
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In contrast, the parallelization of the two algorithms with saved additions is much easier and

more effective. However, to create a large-grain parallelism, it must be parallelized only for the first

level of the recursion. Though we used a small critical region for updating the overall minimum

weight (a reduction operation), the impact of this critical region was minimized because of the

small computational cost of the operation and by making every thread work with local variables

throughout its execution, and by updating the global variables just once at the end. In the parallelized

codes, OpenMP [20] was employed.

3 NEW ALGORITHMS AND IMPLEMENTATIONS FOR DISTRIBUTED-MEMORY
ARCHITECTURES

This section describes several new algorithms for distributed-memory architectures. Two families of

algorithms have been developed: The first family employs a dynamic distribution of tasks, whereas

the second family employs a static distribution of tasks. Each family comprises four different

algorithms.

Algorithm 3 Distributed algorithm

Require: A generator matrix 𝐺 of the linear code 𝐶 with parameters [𝑛, 𝑘, 𝑑].
Require: A prefix size 𝑝 (integer value).

Require: The number of processes to employ 𝑃 (integer value).

Ensure: The minimum weight of 𝐶 , i.e., 𝑑 .

1: Beginning of Algorithm
2: 𝑖 = Process_identifier(); // Number between 0 and 𝑃-1.

3: [ Γ𝑗 ] = Compute_gamma_matrices( G );

4: for 𝑔 = 1, 2, . . . do
5: for every Γ matrix (𝑘 × 𝑛) of 𝐺 do
6: // Process all combinations of the 𝑘 rows of Γ taken 𝑔 at a time:

7: Process_all_combinations( Γ, 𝑔, 𝑝 , 𝑖 , 𝑃 );

8: end for
9: end for
10: End of Algorithm

3.1 Distributed-memory algorithms outline
The main outline of all the distributed algorithms is common, and can be found in Algorithm 3.

Although the structure is similar to the Brouwer-Zimmermann algorithm (see Algorithm 1) and

the serial algorithm (see Algorithm 2), there are some subtle differences that need to be described.

As usual in distributed-memory programming, in this distributed algorithm all processes execute

the algorithm from the beginning. Then, inside the Process_all_combinations function both

the distribution among processes and the parallel computation of all the combinations of the rows

of Γ taken 𝑔 at a time are performed. This distribution of combinations among processes can be

performed in a dynamic or in a static way, thus generating two different families of algorithms.

The Process_all_combinations function will be described later for both families of algorithms.

Note that this algorithm requires two new parameters: 𝑝 is the so-called prefix size, and 𝑃 is the

number of processes to be employed. These two parameters strongly determine the parallelization

of the computational process.

Usually, the prefix size 𝑝 must be smaller than 𝑔. Although inside the innermost for loop

combinations must contain 𝑔 rows of Γ, in the computational process the basic task to be assigned
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to processes contains only 𝑝 rows (assuming 𝑝 ≤ 𝑔). If only one different combination of 𝑔 rows was

assigned to every process, the overhead generated by a too small computational task would make

the parallelization very slow and thus useless. In contrast, by assigning 𝑝 rows to every process, we

can increase the size of the computational task assigned to every process. Once a process receives

a combination 𝑐 of 𝑝 elements, it must generate and process all the combinations with 𝑔 elements

starting with 𝑐 . Therefore, 𝑝 determines the task size of the distributed algorithms, where each one

can be assigned to a different process in a distributed implementation. A task or combination 𝑐

with 𝑝 elements is also called a prefix, since the combination 𝑐 will be then employed to generate

all the combinations with 𝑔 elements starting with 𝑐 .

It is important to study in detail the effect of the prefix size on the number of tasks and on the

computational cost of tasks.

3.1.1 Impact of the prefix size on the number of tasks. First, the effect of the prefix size on the

number of tasks is explored. The number of tasks is (
(
𝑘−(𝑔−𝑝)

𝑝

)
) for every value of 𝑔 being processed

(every iteration of the For 𝑔 loop). In fact, when working with usual values of 𝑘 and 𝑔 (𝑘 is usually

smaller than a few hundreds and 𝑔 is usually smaller than 20), the smaller the prefix size, the fewer

tasks will be generated. With those values, just by increasing the prefix size by one, the number of

prefixes (and tasks) to be processed is increased by about one order of magnitude.

3.1.2 Impact of the prefix size on the computational cost of tasks. A prefix size 𝑝 requires that in

every task only the proper combinations of 𝑔 − 𝑝 elements are composed with the prefix. Therefore,

the smaller the prefix size, the larger the computational cost of tasks will be, and vice versa.

It is interesting to note that the cost of processing a prefix is very heterogeneous, and it strongly

depends on the right-most element in the prefix, since it determines the number of combinations

with𝑔 elements to be generated starting with the prefix (or combination with 𝑝 elements). Obviously,

the smaller the right-most element of the prefix, the more combinations with 𝑔 elements must be

generated and processed, and the larger the right-most element of the prefix, the fewer combinations

with 𝑔 elements must be generated and processed. For instance, if 𝑘 = 50, 𝑔 = 5, and 𝑝 = 3, the

cost of processing the prefix (0, 1, 2) is much larger than the cost of processing the prefix (0, 1, 47),
since the first prefix requires a lot of combinations with 5 elements to be generated and processed,

whereas the second prefix only requires one combination with 5 elements to be generated and

processed: (0, 1, 47, 48, 49).
The advantage of distributing prefixes is that every prefix can be processed in parallel, but its

main disadvantage is the extremely wide range of the computational cost of processing prefixes.

Some prefixes require a lot of time, whereas other prefixes are almost instantaneous.

3.1.3 Orderings in combination generation. The distributed algorithm shown in Algorithm 3 can

employ any order to generate the combinationswith 𝑝 rows inside the Process_all_combinations
function. Nevertheless, in our implementation we have employed two orders: the lexicographical
order and the left-lexicographical order, a variant of the first one:

• In the lexicographical order, the right-most element is the one that changes most. For instance,

if 𝑘 = 6, 𝑔 = 4, 𝑝 = 3, the prefixes are generated in the following order: (0, 1, 2), (0, 1, 3),
(0, 1, 4), (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), and (2, 3, 4).
With this ordering, the computational cost of the prefixes is usually (although not always)

decreasing, as it depends on the right-most element of the prefix. For instance, in the previous

example the prefix (0, 1, 4) appears before the prefix (0, 2, 3), but the cost of processing the
latter is higher than the cost of processing the former one.
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• In the left-lexicographical order, the left-most element is the one that changes most. For

instance, if 𝑘 = 6, 𝑔 = 4, 𝑝 = 3, the prefixes are generated in the following order: (0, 1, 2),
(0, 1, 3), (0, 2, 3), (1, 2, 3), (0, 1, 4), (0, 2, 4), (1, 2, 4), (0, 3, 4), (1, 3, 4), and (2, 3, 4).
As can be seen, in this ordering the right-most element of each prefix is always the same as

or larger than the previous one. Therefore, the first prefixes are always much more expensive

than the last ones. This might be an advantage when scheduling prefixes to avoid that

expensive prefixes arise in the final stages of the algorithm, thus slowing some processes and

unbalancing the load.

3.2 Dynamic algorithms
Both dynamic algorithms and static algorithms share general outline depicted the Algorithm 3 pre-

sented above. However, both families of algorithms implement the the Process_all_combinations
function in a different way. Therefore, only this function is presented when describing both families.

Algorithm 4 depicts the implementation of the function for the dynamic family.

Algorithm 4 Process_all_combinations( Γ, 𝑔, 𝑝 , 𝑖 , 𝑃 )

Require: 𝐺𝑎𝑚𝑚𝑎: A gamma matrix.

Require: 𝑔: The number of elements of Γ taken at a time.

Require: 𝑝: The prefix size.
Require: 𝑖: The process identifier.
Require: 𝑃 : The number of processes.

1: Beginning of Algorithm
2: if 𝑖 = 0 then
3: // Coordinator process.

4: ( done, c ) = Get_first_combination_with_𝑝_elements();

5: while ( ! done ) do
6: Receive request of prefix from any process.

7: Send prefix 𝑐 to the process that just asked for it.

8: ( done, c ) = Get_next_combination_with_𝑝_elements( c );

9: end while
10: for all the rest of processes do
11: Receive request of new prefix and previous result from any process.

12: Send a poisonous prefix 𝑐 to the process that just asked for it.

13: end for
14: else
15: // Rest of processes.

16: Send request of new prefix to process 0.

17: Receive prefix 𝑐 from process 0.

18: while ( 𝑐 is not poisonous ) do
19: Process_prefix( c, Γ, 𝑔 );

20: Send request of new prefix and previous result to process 0.

21: Receive prefix 𝑐 from process 0.

22: end while
23: end if
24: End of Algorithm
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As can be seen, the while loop of the process 0 in the distributed algorithm generates and

processes all the combinations of 𝑘 rows taken 𝑝 at a time, instead of 𝑔 at a time.

The Get_first_combination_with_. . . function and the Get_next_combination_with_. . .
function are similar to those with similar names in previous algorithms, but note that in this case

they process combinations with 𝑝 elements.

Another difference lies in the method employed to process combinations, called Process_prefix.
This method computes the addition of all the combinations with 𝑔 rows of Γ starting with the

received combination 𝑐 with 𝑝 rows. To improve performances, the addition of the 𝑝 rows in the

received combination 𝑐 (prefix) must be computed first. Then, the proper additions with 𝑔 − 𝑝 rows

must be computed and added to the previous addition. (Obviously, when 𝑝 > 𝑔, no parallel work is

generated since the prefix size is larger than the number of elements in a combination. In this case,

no prefix distribution is performed, and prefix replication is done instead.)

For example, if 𝑔 = 5, 𝑝 = 3, the lexicographical order is employed, and the combination (0, 1, 2)
is assigned; this method must compute all the combinations with 5 elements starting with (0, 1, 2),
that is, (0, 1, 2, 3, 4), (0, 1, 2, 3, 5), (0, 1, 2, 3, 6), . . ., (0, 1, 2, 4, 5), (0, 1, 2, 4, 6), . . ., etc. To save work, first
the addition of the rows (0, 1, 2) must be computed, and then the addition of all the combinations

with 𝑔 − 𝑝 = 2 rows starting at least with the index row 3 (the right-most element of (0, 1, 2) plus
one) must be computed.

Although the right-most element in a combination of 𝑔 rows can be up to 𝑘 − 1, the right-most

element of a prefix with 𝑝 rows (𝑝 < 𝑔) must be smaller than or equal to 𝑘 − 1 − (𝑔 − 𝑝), because
no valid combination of 𝑘 elements taken 𝑔 at a time can be formed with a value larger than

𝑘 − 1 − (𝑔 − 𝑝) in the position 𝑝 . For instance, if 𝑘 = 6, 𝑔 = 4, 𝑝 = 3, the right-most element of valid

prefixes must be smaller than or equal to 4, since obviously no valid combination of 6 (𝑘) elements

taken 4 (𝑔) at a time can be formed starting with a prefix such as (0, 1, 5).
Note that the processing of a prefix within the Process_prefix method is performed by only

one process, and therefore it can be performed by using any of the previous serial or shared-

memory algorithms, thus making the code more modular. In the case of the algorithms with saved

additions special care must be applied since combinations must be saved up to size 𝑠 . The code

that is executed inside the Process_prefix method to process a prefix is called the node engine
because it is executed by only one process, and thus it is executed inside one node of a distributed-

memory machine. The order in which the combinations with 𝑔 − 𝑝 rows are generated inside the

Process_prefix method is not important to the distributed algorithm, and it is determined by the

node engine (the serial or the shared-memory algorithm).

All the dynamic algorithms work in a similar way: They apply the one-master-𝑛-workers model.

As can be seen, one process in the application is the coordinator process, and the remaining

processes are workers.

The coordinator process generates the prefixes (combinations with 𝑝 elements) in a certain

order and assigns them to the worker processes under request. When one worker has finished

the processing of its current prefix, it sends the minimum distance computed for that prefix, and

waits for the next prefix. The sending of the result tells the coordinator process that it has finished,

and therefore it is ready to accept another prefix. When the coordinator receives a result from a

worker, it updates its global minimum distance, and then sends the next prefix to that worker. When

there are no more prefixes, it sends a special message (a poisonous task) to indicate the finishing

condition.

When all the prefixes with 𝑝 elements for the combinations with 𝑔 elements are done, the

Process_all_combination method finishes. Then, the current iteration of the For 𝑔 loop (line 3

of Algorithm 3) finishes, and the next iteration starts if the values of the lower and upper bounds

allow it.
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We propose four different algorithms in this family:

• D-Lex: Distributed algorithm with a dynamic scheduling of tasks, in which the prefixes are

generated in the lexicographical order.

• D-Lex-2cm: Same as the previous one, but two prefixes are assigned at the same time (within

the same message). This technique reduces the communication cost (latencies) of the previous

algorithm, that could be very effective in networks with high latencies. Targeting load balanc-

ing, one prefix is picked up from the beginning of the ordering and the other one is picked

up from the end of the ordering, since the first prefixes are usually more computationally

expensive.

• D-Lle: Distributed algorithm with a dynamic scheduling of tasks, in which the prefixes are

generated in the left-lexicographical order.

• D-Lle-2cm: Same as the previous one, but two prefixes are assigned at the same time (within

the same message). The rationale has just been described above.

3.3 Static algorithms
As previously told, the main algorithm outline has already been shown before, and only the

Process_all_combinations function remains to be presented. Algorithm 5 shows that function

in this case.

Algorithm 5 Process_all_combinations( Γ, 𝑔, 𝑝 , 𝑖 , 𝑃 )

Require: 𝐺𝑎𝑚𝑚𝑎: A gamma matrix.

Require: 𝑔: The number of elements of Γ taken at a time.

Require: 𝑝: The prefix size.
Require: 𝑖: The process identifier.
Require: 𝑃 : The number of processes.

1: Beginning of Algorithm
2: ( done, c ) = Get_first_combination_with_𝑝_elements_for_process( i );

3: while ( ! done ) do
4: Process_prefix( c, Γ, 𝑔 );

5: ( done, c ) = Get_next_combination_with_𝑝_elements_for_process( i, P, c );

6: end while
7: End of Algorithm

All the algorithms from the static family work in a similar way. In this family, all the processes in

the application are peer, and therefore no coordination role is necessary. The distribution of the tasks

ismade in a static way. By calling to the Get_first_combination_with_𝑝_elements_for_process
function, and the Get_next_combination_with_𝑝_elements_for_process function each process
works on different prefixes, but the prefixes processed by every process are exactly the same ones

in any run with the same parameters.

For example, if 𝑔 = 5, 𝑝 = 3, 𝑃 = 2, the lexicographical order is employed, and the static cycling

data distribution is employed, the calls to Get_first_combination_with_𝑝_elements_for_process
function made by process 0 and process 1 return the combinations (0, 1, 2) and (0, 1, 3), respectively.
In this same case, the first calls to Get_next_combination_with_𝑝_elements_for_processmade

by process 0 and process 1 return the combinations (0, 1, 4) and (0, 1, 5), respectively.
The cyclic distribution (or a similar variant) has been employed because it provides a better load

balancing than the block distribution since the most expensive prefixes are usually the first ones.
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One important difference between this family and the previous one is the handling of the

prefix size. The dynamic family employs an absolute prefix size, whereas the static family em-

ploys a so-called relative prefix size since the actual prefix size is: 𝑔 − 𝑝 , where 𝑝 is the given

prefix size. To achieve this, the only easy change to the previous algorithm is to modify the

Get_first_combination_with_. . . function and the Get_next_combination_with_. . . func-

tion to process combinations with 𝑔−𝑝 elements, instead of 𝑝 elements. The reason to use a relative

prefix in the static algorithms is that the static scheduling requires a larger number of tasks to

achieve a good load balancing of the workload across the processes. Since there must be many

tasks and they cannot be too small, the actual prefix size 𝑝 should increase when 𝑔 increases (in

every iteration of the For 𝑔 loop). The use of relative prefix sizes achieves this, thus making that

some values of the relative prefix size work fine on a wide range of 𝑔 values, and on a wide range

of linear codes.

Next, the similarities and differences among the four algorithms of this family are described:

• S-Lex: Distributed algorithm with static scheduling of tasks that employs the cyclic distribu-

tion of tasks generated using the lexicographical order.

For example, the following table shows the distribution of prefixes for 𝑘 = 11, 𝑔 = 4, 𝑝 = 3,

and three processes. Recall that the right-most element in those prefixes must be 9, because

no valid combination of 11 (𝑘) elements taken 4 (𝑔) can be formed with the value 10 in the

third position.

Process 0 Process 1 Process 2

(0, 1, 2) (0, 1, 3) (0, 1, 4)
(0, 1, 5) (0, 1, 6) (0, 1, 7)
(0, 1, 8) (0, 1, 9) (0, 2, 3)
(0, 2, 4) (0, 2, 5) (0, 2, 6)

...
...

...

• S-Lex-Snc: Same as the previous one, but a variant of the cyclic distribution, called snake
cyclic, is employed. In the usual cyclic distribution, the right-most elements of the prefixes

assigned to the 𝑖-th process are very often (but not always) smaller than the right-most

elements of the prefixes assigned to the (𝑖 + 1)-th process, which can unbalance the load by

assigning more work to the first processes. You can compare the right-most elements of every

two consecutive columns in the above example. The snake variant of the cyclic distribution

tries to break this frequent event by using the usual cyclic distribution in half of the cases

(the odd rows of the table), and then reversing the usual cyclic distribution in the other half

(the even rows of the table). In this way, the right-most elements of the prefixes assigned to a

process are not so often smaller that those assigned to the next process.

For example, the following table shows the distribution of prefixes for 𝑘 = 11, 𝑔 = 4, 𝑝 = 3,

and three processes.

Process 0 Process 1 Process 2

(0, 1, 2) (0, 1, 3) (0, 1, 4)
(0, 1, 7) (0, 1, 6) (0, 1, 5)
(0, 1, 8) (0, 1, 9) (0, 2, 3)
(0, 2, 6) (0, 2, 5) (0, 2, 4)

...
...

...

• S-Lle: Distributed algorithm with static scheduling of tasks that employs the cyclic distribu-

tion of tasks generated using the left-lexicographical order.
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The combination of the cyclic distribution and this new ordering achieves the following

two goals: First, it ensures that the most expensive prefixes are processed at the beginning.

Second, it ensures that the right-most elements of the prefixes assigned to a process are very

similar (usually the same) to those assigned to the next process.

For example, the following table shows the distribution of prefixes for 𝑘 = 12, 𝑔 = 3, 𝑝 = 2,

and three processes.

Process 0 Process 1 Process 2

(0, 1, 2) (0, 1, 3) (0, 2, 3)
(1, 2, 3) (0, 1, 4) (0, 2, 4)
(1, 2, 4) (0, 3, 4) (1, 3, 4)
(2, 3, 4) (0, 1, 5) (0, 2, 5)

...
...

...

• S-Lle-Snc: Same as the previous one, but the snake cyclic distribution of tasks is employed.

Although in the previous algorithm the right-most elements in the prefixes assigned to a

process are often the same as those assigned to the next process, in the few remaining cases

the right-most elements assigned to a process are smaller (by one) than those assigned to the

next process. The snake cyclic distribution tries to avoid that fact by reversing the ordering

in half of the cases (the even rows of the table). Thus, the right-most elements assigned to a

process will be often the same as those assigned to the next process, and in the few remaining

cases the right-most elements assigned to a process will be smaller (by one) or larger (by

one) than those assigned to the next process.

For example, the following table shows the distribution of prefixes for 𝑘 = 12, 𝑔 = 3, 𝑝 = 2,

and three processes.

Process 0 Process 1 Process 2

(0, 1, 2) (0, 1, 3) (0, 2, 3)
(0, 2, 4) (0, 1, 4) (1, 2, 3)
(1, 2, 4) (0, 3, 4) (1, 3, 4)
(0, 2, 5) (0, 1, 5) (2, 3, 4)

...
...

...

3.4 Comparison of the dynamic algorithms and the static algorithms
3.4.1 Communication cost. In the dynamic algorithms, the coordinator must send every prefix to a

worker under request. Then, after being processed by the worker, the worker must send the result

back to the coordinator. Although the amount of data is not very large since the prefix comprises

only 𝑝 indices (integer values) and the result is just one value (an integer), the number of point-to-

point communication is considerable. The communication cost of the dynamic algorithms depends

on the number of tasks, which strongly depends on the prefix size (𝑝). In fact, the communication

cost is 2(
(
𝑘−(𝑔−𝑝)

𝑝

)
) point-to-point operations for every value of 𝑔 being processed (every iteration

of the For 𝑔 loop). The dynamic algorithms with suffix 2cm reduce this communication cost by

sending two combinations per message. Obviously, a large value of 𝑝 would greatly increase the

communication cost by creating many tasks, and therefore many point-to-point communications.

In fact, when working with usual values of 𝑘 and 𝑔 (such as those in the experimental section),

just by increasing the prefix size by one, the number of prefixes is increased by about one order of

magnitude, and therefore the communication cost increases by the same order.

In contrast, the communication cost of the static algorithms is much smaller, since they do not

send each prefix and do not receive each result. The assignment of tasks is static and requires no
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communication at all, and the computation of the global result requires one collective reduction

operation (no point-to-point communications at all) after processing all the prefixes for every

value of 𝑔 being processed (every iteration of the For 𝑔 loop). The goal of the collective reduction

operation is to compute the minimum distance of the distances computed by all the processes.

Actually, the number of global reduction operations per iteration of the For 𝑔 loop is two (instead

of one) to avoid uninitialized distances. Nevertheless, the cost is much smaller than that of the

dynamic algorithms. Note that the communication cost of the static algorithms does not depend on

𝑘 , 𝑔, nor 𝑝 , and it only depends on the number of processes logarithmically and the total number of

iterations of the For 𝑔 loop.

3.4.2 Number of tasks. Now the effect of the number of tasks on both distributed families is

explored. In the dynamic family, as said, a large number of tasks increases the communication cost.

Therefore, a large prefix size will greatly increase the number of tasks and thus the communication

costs. Nevertheless, despite the dynamic nature of the scheduling, a too low number of tasks could

unbalance the load. To guarantee a good load balancing across all the processes, the number of

tasks should be at least several times larger than the number of processes being employed. If the

number of tasks is too small (and therefore the variability is very large), several processes could be

processing a prefix with a large computational cost, while others could have already finished all

their work. Therefore, a balance must be found between the communication costs and the load

balancing, since the reduction of the communication cost requires few tasks, whereas a better load

balancing requires a large number of tasks.

In contrast, in the static family, since the communication cost does not depend on the number

of tasks, a large number of tasks can render better performances because a large number of tasks

with smaller computational costs can be more evenly distributed among the processes.

The dynamic algorithms employ one process, the coordinator process, to assign the work to

be done and to gather the results. This can be a disadvantage when employing a low number of

process because the coordinator process is not really processing combinations. In contrast, the

static algorithms employ all the processes to work on combinations.

Table 1 summarizes these findings by linking the prefix size with the communication cost and

the load balancing.

Table 1. Relationship between the actual prefix size, communication costs, and load balancing

Prefix size No. of tasks Task size Dynamic algs. Static algs.

Small Few Large Low comm. cost Fixed comm. cost

Bad load balancing Bad load balancing

Medium Medium Medium Medium comm. cost Fixed comm. cost

Good load balancing Bad load balancing

Large Many Small High comm. cost Fixed comm. cost

Good load balancing Good load balancing

4 PERFORMANCE ANALYSIS
4.1 Experimental setup
The experiments reported in this article were performed on the following two computing platforms:

• ua: This is a multicomputer in which each node contained two Intel Xeon® CPU X5560

processors running at 2.8 GHz, with 12 cores and 48 GiB of RAM in total.
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The nodes were connected with an Infiniband 4X QDR network. This network is capable of

supporting 40 Gb/s signaling rate, with a peak data rate of 32 Gb/s in each direction.

The OS of each node was GNU/Linux (Version 3.10.0-514.21.1.el7.x86_64). OpenMPI 1.4.3

was employed to compile (the mpicc compiler) and to deploy the implementations on the

cluster (the mpirun tool).

• skx: This is a subset of compute nodes of the Stampede2 supercomputer at Texas Advanced

Computing Center. Each node contained two Intel Xeon® CPU Platinum 8160 (“Skylake”)

running at 2.1 GHz with 48 cores and 192 GB in total.

The nodes were connected with a 100 Gb/s Intel Omni-Path (OPA) network with a fat tree

topology employing six core switches. There is one leaf switch for each 28-node half rack,

each with 20 leaf-to-core uplinks (28/20 oversubscription).

The OS of each node was GNU/Linux (Version 3.10.0-957.5.1.el7.x86_64). Intel MPI from Intel

C compiler Version 18.0.2 20180210 was employed.

In this experimental study we have usually employed the two following linear codes with

parameters [𝑛,𝑘 ,𝑑]: The first one had parameters [150,77,17] and was called mat015; the second one
had parameters [232,51,61] and was called mat023. These two different linear codes were chosen

because the computational costs, the dimensions 𝑘 , and the lengths 𝑛 were very different. First, the

computational cost of computing the minimum distance of mat023 is about one order of magnitude

larger than that of mat015. Second, the dimension 𝑘 of mat015 is larger than that of mat023, which
is a critical factor since th number of parallel tasks depends on this value. Third, the length 𝑛 of

mat023 is much larger than that of mat015, which can affect the vectorization and other aspects

of the different implementations. Usually, the left plot shows the results for mat015, whereas the
right plot shows the results for mat023.

In the following, we report experimental results for the assessment of the following distributed

algorithms:

• D-Lex: Distributed algorithm with a dynamic scheduling of tasks generated using the lexico-

graphical order.

• D-Lex-2cm: Same as the previous one, but two tasks are assigned at the same time.

• D-Lle: Distributed algorithm with a dynamic scheduling of tasks generated using the left-

lexicographical order.

• D-Lle-2cm: Same as the previous one, but two tasks are assigned at the same time.

• S-Lex: Distributed algorithm with a static cyclic scheduling of tasks generated using the

lexicographical order.

• S-Lex-Snc: Same as the previous one, but the snake cyclic distribution of tasks is employed.

• S-Lle: Distributed algorithm with a static cyclic scheduling of tasks generated using the

left-lexicographical order.

• S-Lle-Snc: Same as the previous one, but the snake cyclic distribution of tasks is employed.

4.2 Impact of node engine
The first round of experiments includes two versions of the node engines previously described: node

engines with scalar (non-vectorized) codes, and node engines with vectorized codes. Figure 1 reports

the times spent by the different node engines on ua to compute the minimum distance of both

linear codes when using the algorithm D-Lex with prefix 3 and 1 thread per process on 10 nodes

(120 cores), including scalar (Sca) and vectorized (Vec) versions. Results for other configurations
(distributed algorithms, prefixes, number of threads per process, etc.) were observed to be similar.

The obtained results clearly show that the node engine employed within the distributed algorithm

can dramatically affect performance. When comparing the vectorized codes of the saved variants
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Fig. 1. Times (in seconds) of several node engines on ua for the algorithm D-Lex with prefix 3 and 1 thread
per process on the two linear codes. Sca means scalar codes (non-vectorized), whereas Vec means vectorized
codes. To improve legibility, the time in seconds is shown on top of all bars.

(Vec Saved and Vec Saved Unrolled) and the scalar codes of the saved variants (Sca Saved and

Sca Saved Unrolled), the vectorized codes are about 1.4 times as fast as the scalar codes for the

mat015 linear code, and the vectorized codes are about 2.5 times as fast as the scalar codes for the

mat023 linear code. The main reason behind the larger impact on the mat023 linear code might be

its larger length (𝑛 = 232 versus 𝑛 = 150). On the other side, the unrolling only seems effective for

the mat023 linear code, which can be caused by the larger computational cost of this linear code.

Unless otherwise stated, from now on, the node engine with saved additions and vectorization

will been employed in the remaining experiments.

4.3 Impact of the prefix size
Figure 2 reports the times spent by different distributed implementations on ua to compute the min-

imum distance versus the prefix size, using one thread per process. Each plot shows four lines: Two

different distributed algorithms (D-Lex Vec and S-Lex Vec), and two different node configurations
(5 and 15 nodes, that is, 60 and 180 cores). Prefix sizes are absolute for the dynamic algorithms, and

relative the static algorithms. The D-Lex Vec name means the distributed algorithm D-Lex and the
vectorized Saved node engine. Analogously, the S-Lex Vec name means the distributed algorithm

S-Lex and the vectorized Saved node engine. Similar results were obtained for the remaining

distributed algorithms.

As can be seen in Figure 2, for the dynamic algorithm D-Lex the prefix size with the best

performances is 3 for the mat015 linear code, and 4 for the mat023 linear code. For this dynamic

algorithm, performances drop very quickly as the prefix size increases. This is due to the fact that

for the dynamic algorithms the number of parallel tasks generated, assigned and then recollected

among the processes is 2(
(
𝑘−(𝑔−𝑝)

𝑝

)
), where 𝑔 is the number of rows in the combinations, and 𝑝 is

the prefix size. Therefore, as the prefix increases in one unit, the number of tasks to be processed

increases in nearly one order of magnitude, which correspondingly increases the communications

costs.

As observed in Figure 2, for the static algorithm S-Lex the relative prefix size with the best

performances is 4 for mat015, and 6 for mat023. Note that the performances of this algorithm are

not so affected by the prefix sizes, and the range of optimal prefix sizes is much larger. The reason

is that the communication cost of this algorithm is much smaller and therefore having a larger

number of tasks does not usually harm performances so much.
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Fig. 2. Times (in seconds) of two distributed algorithms on ua for several prefix sizes on the two linear codes.

4.4 Number of threads per process
Figure 3 reports the times spent by the distributed implementations on ua to compute the minimum

distance versus the number of threads per process. The prefix sizes have been obtained from the

previous experiment: The dynamic algorithms employ 3 for mat015, and 4 for mat023, whereas the
static algorithms employ 4 for mat015, and 6 for mat023. Each plot shows four lines: Two different

distributed algorithms (D-Lex Vec and S-Lex Vec), and two different node configurations (5 and 15
nodes, that is, 60 and 180 cores). Similar results were obtained for the other distributed algorithms.
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Fig. 3. Times (in seconds) for different number of processes per node and nodes on ua for the two linear
codes.

To efficiently employ all the cores in every node, when increasing the number of threads per

process, a proportional reduction in the number of total processes must be applied. If each node

has 12 cores, 𝑙 is the number of nodes being used, and 𝑡 is the number of threads being deployed

by each process, then the number of processes must be: 𝑝 = (𝑙 · 12)/𝑡 . When the number of

threads per process is increased, the communication cost is usually reduced since there are fewer

processes communicating among themselves. In contrast, the computing power of each process

is increased since each process has several threads and therefore several cores to process tasks.

This larger computational power per process requires larger tasks, which can only be achieved by
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generating fewer tasks, which can unbalance the load. Therefore, a balance must be found between

the communication cost and the number of tasks.

As can be observed in Figure 3, for the dynamic algorithm D-Lex the optimal number of threads

per process is 1 when using 5 nodes, and about 2 or 3 when using 15 nodes. In the first case (5

nodes) the number of total processes is not so high, and thus the coordinator process can keep up

with the requests. However, in the second case (15 nodes) the number of total processes is much

higher, and thus the burden on the coordinator process can reduce performances. In this case, 2 or

3 threads per process are optimal, and achieve a good balance between the communication cost

and the task size. On the other hand, for the static algorithm S-Lex the optimal number of threads

per process is 1, since the communication cost of this type of algorithms is very small, and they

require many tasks to effectively balance the load.

4.5 Distributed-memory algorithms: performance comparison
Figure 4 compares the proposed distributed implementations on ua. The prefix sizes and the

numbers of threads per process employed in these experiments are the optimal values obtained

in the above experiments. For the dynamic algorithms, the prefix size employed by the dynamic

algorithms is 3 for mat015, and 4 for mat023, and the number of threads per process is 2 in both

cases. For the static algorithms, the prefix size employed by the dynamic algorithms is 4 for mat015,
and 6 for mat023, and the number of threads per process is 1 in both cases. Each plot contains two

blocks of bars: one for 5 nodes and the other one for 15 nodes. Each block shows the performances

of the eight distributed algorithms. In all cases, the vectorized Sav node engine has been employed.

5 nodes 15 nodes
Configuration

0

25

50

75

100

125

150

175

Ti
m

es
 in

 se
co

nd
s (

lo
we

r i
s b

et
te

r)

Times vs dist. alg. for ua-mat015
D-Lex
D-Lex-2cm
D-Lle
D-Lex-2cm
S-Lex
S-Lex-Snc
S-Lle
S-Lle-Snc

5 nodes 15 nodes
Configuration

0

200

400

600

800

1000

1200

1400

Ti
m

es
 in

 se
co

nd
s (

lo
we

r i
s b

et
te

r)

Times vs dist. alg. for ua-mat023
D-Lex
D-Lex-2cm
D-Lle
D-Lex-2cm
S-Lex
S-Lex-Snc
S-Lle
S-Lle-Snc

Fig. 4. Times (in seconds) for several distributed algorithms and nodes on ua for the two linear codes.

When comparing the dynamic algorithms with the static algorithms, the static algorithms clearly

outperform the dynamic algorithms on the mat015 linear code. This improvement is larger when

the number of nodes is smaller. In contrast, on the mat023 linear code dynamic algorithms are

slightly faster. The reason of this performance difference in the two linear codes might be that the

computation of the linear distance of mat015 requires the generation of a much larger number

of tasks than the computation of the linear distance of mat023. Recall that the number of tasks

generated by the dynamic algorithms is 2(
(
𝑘−(𝑔−𝑝)

𝑝

)
), and that 𝑘 = 77 in mat015, whereas 𝑘 = 51 in

mat023. A large number of tasks (mat015) allows the static algorithms to balance the load more

evenly, while simultaneously taking advantage of their lower communication cost. Moreover, if

the number of cores is not so large (such as in the 5-node configuration), performances of the

static algorithms increase because the load balancing of the static algorithms improves with fewer
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processes and because the static algorithms employ one more process to perform computations. In

contrast, a smaller number of tasks (mat023) allows the dynamic algorithms to balance the load

more evenly than the static algorithms while simultaneously reducing the communication cost.

Therefore, the static algorithms seem to require a large number of tasks to balance the load evenly

on all the cores, which is a bit difficult when 𝑘 is small.

When comparing the four dynamic algorithms, performances are similar. The mat015 linear case
(the one with the shortest computational cost), and the 5-node configuration, performances of the

D-Lex are the better. In the other cases, performances are very similar. When comparing the four

static algorithms, the performances of the two D-Lex variants (lexicographical order) are slightly
better than those of the two D-Lle variants (left-lexicographical order).
Figure 5 compares the distributed implementations on skx. The prefix sizes for the dynamic

and the static algorithms employed in these experiments are 5 and 6, respectively, since they are

optimal or very close to optimal. In both cases, the numbers of threads per process is two. In this

case, we only assessed the mat023 linear code since it is more expensive and many cores are going

to be employed. The plot contains four blocks of bars for several number of nodes: 8 nodes (384

cores), 16 nodes (768 cores), 32 nodes (1536 cores), and 64 nodes (3072 cores). Each block shows the

performances of the eight distributed algorithms. In all cases, the vectorized Sav node engine has

been employed.
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Fig. 5. Times (in seconds) for several distributed algorithms and nodes on skx for mat023.

As may be seen in Figure 5, when comparing the dynamic algorithms with the static algorithms,

the dynamic algorithms clearly outperform the dynamic algorithms when employing 8, 16, and 32

nodes. When employing 64 nodes, the static ones are very competitive with respect to the dynamic

ones. This can be due to the fact that the dynamic algorithm is based on a central process (the

coordinator) that distributes the work and gathers the results. As the number of processes grow,

this central coordinator may become the bottleneck of the application. On the other hand, static

algorithms are not based on a central coordinator and can work independently, but the distribution

of the work might not be so efficient.

When comparing the four dynamic algorithms, performances of the two algorithms that assigns

two tasks at a time (D-Lex-2cm and D-Lle-2cm) are always better. This fact can support the previous
hypothesis of the bottleneck in the dynamic algorithms. When comparing the four static algorithms,

the performances of the new algorithms based on the left-lexicographical order and the snake

cyclic (S-Lex-Snc, S-Lle, and S-Lle-Snc) are much better for 8, 16, and 32 nodes than the basic

static algorithm (S-Lex).
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4.6 Scalability
To measure the scalability of our implementations, Figure 6 shows the speedups obtained by several

configurations to compute the minimum distance of both linear codes on ua. The prefix sizes and
the numbers of threads per process employed in these experiments are the optimal values obtained

in the above experiments. Recall that the speedup is the number of times that the parallel algorithm

is as fast as the serial (one core) algorithm. Obviously, all the number of cores assessed in this

experiment were multiple of 12 (the number of cores per node).
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Fig. 6. Speedups of configurations with several number of nodes (and cores) for the two linear codes. on the
ua multicomputer. The top row shows the results for the scalar node engine Sav; the bottom row shows the
results for the vectorized Sav node engine.

As may be observed in Figure 6, the static algorithms are faster on the mat015 linear code,

whereas the dynamic algorithms are faster on the mat023 linear code. As was commented, this

might be related to the number of parallel tasks generated: the static algorithms require many tasks

to balance the load, and the number of tasks greatly depend on the dimension 𝑘 . Note that the

speedups on the mat015 linear code are smaller than those on the mat023 linear code. The reason is

that the computational cost of the mat015 linear code is about one order of magnitude smaller than

the computational cost of the mat023 linear code. Note that for the mat015 linear code the total
time on 240 cores is about 44 seconds, which is very small in comparison with the total number

of cores. The speedups for the scalar codes (top row) are slightly larger that the speedups of the

vectorized codes (bottom row) since the vectorized codes are much more efficient on one core. Note

that the speedups achieved are remarkable and can be up to about 200 when employing 240 cores.
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Next, we measure the scalability of our implementations on the skx multicomputer to assess a

larger number of cores. Figure 7 shows the speedups obtained by several configurations to compute

the minimum distance on the skx multicomputer. This figure shows the results for the mat023
linear code (left side) since it is the most expensive one of both previous linear codes. Besides, it

also shows the results for the mat020 linear code with parameters [235,51,64] (right side), since

this requires twice the total time of the previous one. As many cores (several thousands) are going

to be employed, more expensive linear codes must tested. The prefix sizes for the dynamic and the

static algorithms employed in these experiments are 5 and 6, respectively, since they are optimal or

very close to optimal. In both cases, the numbers of threads per process is two. Obviously, all the

number of cores assessed in this experiment were multiple of 48 (the number of cores per node).
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Fig. 7. Speedups of configurations with several number of nodes (and cores) for the mat023 linear code (left)
and mat020, a linear code with parameters [235,51,64] (right) on skx. The second linear code requires about
twice the cost of the first one.

As can be easily observed in Figure 7, the dynamic algorithms are usually faster when employing

up to 1536 cores. However, when employing 3072 cores or more, the static algorithms clearly

outperform the dynamic ones.

Note that the efficiency (speedup divided by the number of cores) is smaller on the skx mul-

ticomputer than on the ua one. The reason is that the number of cores employed on the skx is

more than one order of magnitude higher whereas similar linear codes are employed. Moreover,

the total run time when employing so many cores on the skx is very short. For instance, when

employing 3072 cores, the total runtime of processing the mat023 linear code is about 34 seconds,

which is a very short execution time. However, when employing more expensive linear codes such

as mat020, speedups and efficiencies grow higher when comparing the same algorithms and same

number of cores (such as 1536). Note that the mat020 linear code obtains higher speedups than the

mat023 since its computational cost is twice higher. In any case, note that the speedups achieved

are remarkable, and they grow as the computational cost grows.

4.7 Comparison with state-of-the-art software implementations
Now we compare the performances of the new distributed algorithms in the ua cluster with the

performances of both commercial and public-domain software published by Hernando et al. [11].
In this paper the times were obtained in the cplex server, which is a computer based on AMD

processors. It contained an AMD Opteron™ Processor 6128 (2.0 GHz), with 8 cores (though only 6

were used to let other users work). Its OS was GNU/Linux (Version 3.13.0-68-generic). Gcc compiler

(version 4.8.4) was employed.
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Although the computational power of the cores in the cplex server is not exactly the same as

that of the cores in the ua cluster, the processors were released in similar dates: The processor in the

cplex server was launched in the first quarter of 2010, whereas the processor in the nodes of the ua
cluster was launched in the first quarter of 2009. Therefore, the processors are of similar generations.

We could not assess Magma in the same machine, the ua cluster, because it is a commercial software

and we do not have a license for it.

Two of the most-common implementations currently available were assessed:

• Magma [4]: It is a commercial software package focused on computations in algebra, algebraic

geometry, algebraic combinatorics, etc. Version 2.22-3 was employed in those experiments.

In the cplex server, vectorization could not be employed since Magma only implements this

feature on modern processors with AVX support. Magma was assessed on one core as well

as 6 cores since this software is parallelized.

• Guava [3, 10]: GAP (Groups, Algorithms, Programming) is a public-domain software envi-

ronment for working on computational group theory and computational discrete algebra. It

contains a package named Guava that can compute the minimum distance of linear codes.

Guava Version 3.12 within GAP Version 4.7.8 was employed in those experiments. Guava

does not implement any vectorization, and it only works on one core since the software is

not parallelized.

In contrast, our implementations can use hardware vector instructions both on old processors

(SSE) and modern processors (AVX), both from Intel and AMD. Furthermore, our implementations

can employ any number of cores inside a node.

Table 2 compares the times required by the commercial software Magma, the times required by

the public-domain software Guava, and the times required by the new algorithms for distributed-

memory architectures to compute the minimum distance of both linear codes. The vectorized D-Lex
algorithm with prefix size 4 and two threads per process was employed on 24 nodes (288 cores). In

this table the new distributed algorithms exceedingly reduce the time by making many computers

(24 computers with 12 cores each one) cooperate to compute the minimum distance. Thus, large

processing times in commercial and public-domain software can be significantly reduced. For

instance, computing the distance of the mat023 linear code with the public-domain software Guava

required about 5 days and 7 hours, whereas employing our new software required a bit less than 5

minutes.

Magma Guava Magma New alg.

1 core 1 core 6 cores 288 cores

Code cplex cplex cplex ua

mat015 53,052.9 40,804.3 9,562.8 38.9

mat023 503,984.2 456,413.2 85,341.1 282.6

Table 2. Times (in seconds) for the commercial software Magma, the public-domain software Guava, and the
new distributed algorithms for computing the distance of both linear codes.

5 CONCLUSIONS
In this paper, we have introduced several new implementations of the Brouwer-Zimmermann

algorithm for computing the minimum distance of a random linear code over F2 on distributed-

memory architectures. Both state-of-the-art commercial and public-domain software can only be
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employed on either unicore architectures or shared-memory architectures, which have a strong

bottleneck in the number of cores/processors employed in the computation. In contrast, our family

of implementations focuses on distributed-memory architectures, which are well known because of

its scalability and being able to comprise hundreds or even thousands of cores. In the experimental

results we show that our implementations are much faster, even up to several orders of magnitude,

than current implementations widely used nowadays because of its capability of employing these

scalable architectures. For a particular linear code the time to compute the minimum distance has

dropped from about 11 hours and 2.5 hours (in public domain and commerical software, respectively)

to half a minute with our code on a distributed-memory machine with 288 cores. For another

particular linear code the time to compute the minimum distance has dropped from about 5 days

and 1 day (in public domain and commerical software, respectively) to five minutes with our code

on a distributed-memory machine with 288 cores.

Future work in this area will investigate the development of specific new algorithms and im-

plementations for new architectures such GPGPUs (General-Purpose Graphic Processing Units).

Another interesting line of future work is the adaptation of these fast implementations to other

finite fields.
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