Journal of Biomedical Informatics 141 (2023) 104359

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Original Research ' :.)

Check for

AwarNS: A framework for developing context-aware reactive mobile | opnes’
applications for health and mental health

Alberto Gonzalez-Pérez **, Miguel Matey-Sanz?, Carlos Granell ?, Laura Diaz-Sanahuja ",
Juana Bret6n-L6pez ™€, Sven Casteleyn ?

2 GEOTEC Research Group, Institute of New Imaging Technologies, Universitat Jaume I, Castellon, 12071, Spain
b Department of Basic Psychology, Clinical and Psychobiology, Universitat Jaume I, Castellon, 12071, Spain
¢ CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain

ARTICLE INFO ABSTRACT

MSC: In recent years, interest and investment in health and mental health smartphone apps have grown significantly.
6802 However, this growth has not been followed by an increase in quality and the incorporation of more advanced
6804 features in such applications. This can be explained by an expanding fragmentation of existing mobile platforms
Keywords: along with more restrictive privacy and battery consumption policies, with a consequent higher complexity of
mHealth developing such smartphone applications. To help overcome these barriers, there is a need for robust, well-
Smartphone designed software development frameworks which are designed to be reliable, power-efficient and ethical with

Data collection
Intervention
Context-awareness
Digital phenotyping

respect to data collection practices, and which support the sense-analyse-act paradigm typically employed in
reactive mHealth applications. In this article, we present the AwarNS Framework, a context-aware modular
software development framework for Android smartphones, which facilitates transparent, reliable, passive and
active data sampling running in the background (sense), on-device and server-side data analysis (analyse),
and context-aware just-in-time offline and online intervention capabilities (act). It is based on the principles of
versatility, reliability, privacy, reusability, and testability. It offers built-in modules for capturing smartphone
and associated wearable sensor data (e.g. IMU sensors, geolocation, Wi-Fi and Bluetooth scans, physical
activity, battery level, heart rate), analysis modules for data transformation, selection and filtering, performing
geofencing analysis and machine learning regression and classification, and act modules for persistence and
various notification deliveries. We describe the framework’s design principles and architecture design, explain
its capabilities and implementation, and demonstrate its use at the hand of real-life case studies implementing
various mobile interventions for different mental disorders used in clinical practice.

1. Introduction reductions [9] and faster access to relevant information [10]. In 2020,
investment in mHealth was the third biggest investment in digital

As of 2021, roughly 80% of the world’s population has access health worldwide [11].

to a smartphone [1,2]. This widespread proliferation, along with the While a large body of studies praises their potential, others highlight
possibilities these devices bring to health [3] and particularly mental the difficulty to get mobile applications to support mental health done
health [4], provide a promising opportunity to make health services right [12,13]. Technical complexity, development costs, regulatory
accessible to a broader population. They are capable of reducing bar- requirements and user acceptance form important challenges towards
riers to access to (mental) health care [5], such as cost, availability of effective, full-fledged mobile health solutions [14].

One decade after the initial optimism and expectations raised at
the start of the mHealth revolution [15], the reality is that we have
barely scratched the surface of what smartphones can technically of-
fer [16]. According to a recent systematic review [17], the major-
ity of mobile apps developed for mental health disorders do not yet
consider the variety and potential of the device’s embedded sensors

treatment or social stigma of disorders [6]. Mobile Health (mHealth)
apps have the potential to deliver psychological treatment through
patients’ self-applied interventions or by following a blended therapy
format [4,7]. While healthcare service users are increasingly willing
to use such medical apps, even more in the post-COVID era [8], also
practitioners stand to benefit from higher availability, potential cost

* Corresponding author.
E-mail addresses: alberto.gonzalez@uji.es (A. Gonzalez-Pérez), matey@uji.es (M. Matey-Sanz), carlos.granell@uji.es (C. Granell), Isanahuj@uji.es
(L. Diaz-Sanahuja), breton@uji.es (J. Bretdn-Lépez), sven.casteleyn@uji.es (S. Casteleyn).

https://doi.org/10.1016/j.jbi.2023.104359

Received 21 October 2022; Received in revised form 10 March 2023; Accepted 5 April 2023

Available online 10 April 2023

1532-0464/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/yjbin
http://www.elsevier.com/locate/yjbin
mailto:alberto.gonzalez@uji.es
mailto:matey@uji.es
mailto:carlos.granell@uji.es
mailto:lsanahuj@uji.es
mailto:breton@uji.es
mailto:sven.casteleyn@uji.es
https://doi.org/10.1016/j.jbi.2023.104359
https://doi.org/10.1016/j.jbi.2023.104359
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2023.104359&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Gonzdlez-Pérez et al.

or advanced (client-side) data analytics, even though these are key
ingredients to monitor and understand the patient’s behaviour in real-
time, and offer true ecological momentary assessments (EMA) and
interventions (EMI) [18]. Indeed, a recent study confirms that only
a small percentage of health apps in commercial marketplaces har-
ness the potential of built-in smartphone sensors for diagnosis and
treatment [19]. The technical and managerial complexity inherent to
developing multidisciplinary mHealth apps [14] is hampering more
advanced mobile solutions and is further exacerbated by constant
technological change. The diversity of smartphone manufacturers, each
with their software layer(s) on top of the mobile operating system,
which imposes operational restrictions due to privacy and battery con-
cerns, further complicates development [20]. Indeed, several mHealth
applications report unreliability of their data collection processes re-
sulting in missing data [21]. Data missingness has consistently been a
hurdle for smartphone-based data collection, and — with few exceptions
- remains largely unreported. In addition, there are other technical
challenges and trade-offs (battery usage versus data collection strategy;
real-time versus batch data processing) for which there is no consensus
on their solution, as the use cases of each application have specific
technical needs and requirements [22].

Closely related to technical challenges is the cost incurred to de-
velop mobile mHealth apps. It is estimated that even a low-feature
mobile health app costs between $70.000 and $150.000 when de-
veloped from scratch, an amount higher than typically foreseen by
research grants [14,23]. Even adding a feature to an existing app proves
burdensome, and financial restrictions may stall development [24].
When more advanced features — such as passive sensing or advanced
data analysis [20,22] — need to be implemented, development costs
increase significantly. Feature fragmentation, where different OS ver-
sions require different implementations for the same feature, further
stresses development efforts [25]. The current shortage of software
developers [26], and the need for multi-disciplinary teams (health-
care specialists — software developers) [14], puts further pressure on
the development costs. Given these budgetary constraints, researchers
mostly opt to use “generic”, closed-box solutions developed by indus-
try, which generally do not fully cover their needs [27]. For example,
re-usable development libraries by industry giants, such as Apple’s
ResearchKit, or the more recently proposed “no-coding platforms”,
do not cover more complex necessities of state-of-the-art mHealth
solutions [28]. Even though the costs of developing and maintaining
mHealth apps are known to be high, and dependent on each specific
use case covered, they remain largely unrecognised and undocumented
in the literature [29], and mHealth app development costs are seen
as an impediment to advance in the domain [30], as is development
time [27].

Finally, regarding regulatory requirements, several studies highlight
an almost general lack of privacy policies and Terms of Agreement
in mental health apps and, when present, they often show misleading
language [13,31]. This is particularly concerning in apps that con-
stantly monitor the private and personal data of patients, as users fear
their data may be disclosed [32]. In the long term, the lack of atten-
tion to privacy might generate an increasing mistrust among current
and potential users [12], and negatively affect uptake and retention
rates of mHealth applications. Regulatory initiatives, such as Europe’s
GDPR, have been raising awareness of the issue, and within the re-
search community, privacy design and development guidelines [33]
and trustworthiness checklists [34] have been proposed. “Privacy by
design”, whereby mHealth apps and frameworks incorporate privacy in
their development process, is hereby considered a promising research
direction.

In summary, developing mHealth apps is a challenging, costly and
time-consuming endeavour, even for relatively simple apps, and all the
more so for apps which aim to systematically (passively) collect sensor
and/or patients data, analyse and act in (quasi) real-time upon it, as

Journal of Biomedical Informatics 141 (2023) 104359

Table 1
Statement of significance.

Problem There exists no generic solution to reliably
sample patients’ context through smartphones,
analyse the data and react to its changes on the
device, which is critical for the success of digital
phenotyping and just-in-time assessments and

interventions.

What Existing tools can sample the context, but they

is Already Known are either intrusive or struggle with phone OS’
background execution restrictions. Only a few
can deliver assessments and interventions but
rely on external servers to analyse the data.

What A versatile, reusable framework to develop

this Paper Adds reactive mHealth applications, based on reliable
systematic context sampling while preserving
privacy, to enable timely (offline) assessments
and interventions.

is required for state-of-art EMAs and EMIs. Furthermore, the recent re-
search in digital biomarkers and digital phenotyping [35], which aims
to quantify human behaviours with respect to mental health, requires
reliable, high-frequency monitoring information over a longer period.
In this article, we aim to mitigate these technical, budgetary and regu-
latory challenges, by offering AwarNS, an Android-based open-source,
modular, re-usable and extensible context-aware development frame-
work. It follows the sense-analyse-act paradigm, widely used in Internet
of Things-driven scenarios [36], and encapsulates shared, common
functionalities of this paradigm. At the core of the framework lies our
NativeScript Task Dispatcher (NTD), a resource-efficient and reliable
task scheduling and execution model, which was empirically proven to
provide systematic reliable background execution (e.g., sensing) over
extended periods in Android smartphones [20]. Its reactive, event-
driven task model furthermore allows running arbitrary tasks triggered
by temporal or data-driven events, which enables app developers to
implement just-in-time, context-aware EMAs and EMIs. AwarNS pro-
vides the necessary data collection mechanisms and data representation
models (sense), real-time analysis facilities (analyse), and generic, ex-
tensible tasks (act), while being extensible for developers to plug in
custom analysis and concrete domain- or application-specific behaviour
as required by the application scenario at hand. Furthermore, it oper-
ates solely on the phone, with no external server-side dependencies —
even though optional remote server synchronisation is supported — ,
making it suitable for offline and privacy-strict scenarios.

AwarNS thus allows mHealth application developers to monitor
and detect changes in a wide variety of contextual features offered
by smartphones, while solving and hiding the technical complexity of
reliable (background) data collection and (real-time) task scheduling
on smartphones, even across subsequent OS versions. The modular
nature of the framework and the availability of flexible, re-usable
sense-analyse-act building blocks, along with its open-source nature
(see [37]) and extensive technical documentation, helps to minimise
development time and cost. AwarNS was furthermore designed with
privacy and regulatory concerns in mind (e.g., the possibility to apply
data filtering or transformations before storage), and has proven its
usefulness in the development of various mHealth applications (see
Section 5). Table 1 summarises the significance of this work.

In literature, researchers have indeed recognised the need to re-
duce development burden and costs, first by reusing applications and
tools [38-40], and beyond this, through generic, adaptable solutions
— just like AwarNS - that aim to simplify the development, main-
tenance and cost of context-aware (mHealth) apps. A representative
selection of the most relevant solutions is presented in Section 6, and
compared to our solution based on an extended version of Kumar
et al.’s comparison dimensions [41]. We distinguish between applica-
tion development frameworks [42-45], such as AwarNS, which allow

A. Gonzdlez-Pérez et al.

developers to implement their mHealth application using common
and reusable functionality, and software platforms [46-53], which are
aimed at lab technicians and offer out-of-the-box tools configurable
to some degree. In both groups, open-source solutions allow some
degree of modification to suit specific application use cases [38,39],
while commercial platforms are closed-sourced and heavily restricted
in customisation [27]. As identified in a recent systematic review by
Kumar et al. [41], these solutions have shown the potential to sim-
plify the implementation of behavioural (e.g., risk behaviours, obesity
monitoring, assessing the relationship between behavioural trends and
academic performance, etc.), mental health (e.g., tracking symptoms
of depression, anxiety, bipolar disorder, etc.) and physiological health
(e.g., heart rate monitoring, detect and intervene on heart failure,
elevated blood pressure, etc.) mobile applications. However, as the
authors point out: “[a]dding support for high-level feature extraction
on smartphones has the potential of enabling the design of advanced
just-in-time interventions in health sensing applications” [41, p. 8:20].
The ability to analyse collected data on the device and deliver just-in-
time interventions based on the results of those analyses is, precisely,
one of the key differentiating factors of AwarNS. All of the analysed
solutions have been used in a variety of use cases, demonstrating their
versatility and re-usability. AwarNS positions itself alongside the open-
source application development frameworks yet distinguishes itself
by:

« its modular and pluggable software architecture, which allows
including or excluding functionality as required by each use case.
its proven reliable background data collection engine, which
ensures an uninterrupted data flow.

its ability to schedule and execute arbitrary tasks (i.e. custom
code) based on data (e.g., the user’s location), temporal
(e.g., daily) or external triggers (e.g., Ul interactions, server-sent
events), or other tasks’ results, which enables the delivery of
just-in-time assessments (EMAs) and interventions (EMIs).

the seamless integration and scheduling of sense-analyse-act tasks,
where tasks can be chained and one task may act upon or trigger
other tasks, which means that the result of a data collection
task may trigger an (on-device or server-side) data analysis task,
which in turn may trigger additional data collection and/or an
intervention action (EMI).

the inclusion of primitives to support the sense-analyse-act
paradigm (e.g. passive and active data collection, mobile phone
and wearable sensors support, built-in location-based and ma-
chine learning-based analyses).

its built-in support for Test-driven Development (TDD), which
promotes the technical soundness of framework extensions and
usage.

The rest of the paper is structured as follows. Sections 2-4 present
the design principles, the architecture design and implementation high-
lights of the framework. Section 5 presents some of the use cases and
applications where the framework has been used. Section 6 includes
qualitative analysis and comparison with existing solutions. Last, Sec-
tion 7 includes a conclusion of the work presented here and future
work.

2. AwarNS framework: Design principles

The AwarNS Framework is a mobile software framework intended
to simplify the development of smartphone applications that base their
functionality on systematic data acquisition and/or event-based task
executions, and are capable of reacting to changes detected in the
context of the user, all being done right on the device. AwarNS-based
smartphone applications silently run in the background, monitoring the
patients and their context through passive or active data captures, until
arelevant event occurs. Captured events trigger custom, user-developed

Journal of Biomedical Informatics 141 (2023) 104359

actions to, for instance, analyse collected data, gather additional infor-
mation, request further input or actions, or communicate to the user.
Even though it is more generally applicable, AwarNS was conceived in
the context of health and mental health applications (see Section 5).

The design of the framework was informed by an extensive sys-
tematic literature review [54] studying and comparing 158 mental
health mobile applications to understand the status quo and identify
common components, a comprehensive comparison of existing generic
solutions to develop mHealth applications (see Section 6), and our
own experience developing a variety of mHealth applications used in
research and clinical practice (see Section 5). Based on this, a set
of design principles was discerned — versatility (i.e., enabling distinct
use cases), reliable execution, privacy preservation, code reuse, and
software verification and validation through well-established testing
practices — which we list and explain below.

2.1. Versatility

Versatile software solutions help reduce technical complexity and
development costs by hiding intricate technical details behind sim-
pler — composable and extendable — abstractions whilst at the same
time reducing developer overhead by allowing the selection of subsets
of segregated features (modularity) [55]. mHealth applications with
different requirements imply multiple and diverse features, some of
them are common across many apps, while others are domain- or
even app-specific. AwarNS aims to incorporate a broad set of common
features, while still allowing app developers the flexibility to select
which features to use and/or customise, to compose a new feature from
the pool of existing features, or to add new custom features. While
this promotes feature and code reusability, it also requires a certain
degree of versatility to allow developers to adapt, extend, or modify
AwarNS to concrete needs and contexts. AwarNS achieves this through
modularity, composability and extensibility: it offers a modular and
versatile design composed of a minimum set of (required) features
through a core package, while the rest of the features are contained
in isolated packages (modules) that can be optionally independently
included in apps. Furthermore, AwarNS promotes the development
of small, specific features as extensions and compositions of existing
features (see next Section 3), and a plugin architecture which allows
developers to develop and integrate completely new packages.

2.2. Reliability

Reliable software solutions also aim to reduce development costs
and increase user acceptance, as they lead to fewer reported errors
that need to be addressed and overall higher user satisfaction because
the software works as intended [56]. A natural consequence of custom
and from-scratch app development is that every time, similar and
recurring problems are faced, and critical issues may be over-sighted.
Reliable background task scheduling is one such recurring problem,
which is technically challenging and further complicated by subtle
barriers that some mobile OS (custom layers) impose. This results in
missing data samples when an event occurs, causing the data and the
associated event to be lost. Indeed, several mHealth researchers report
a significant amount of missing data measurements (e.g. [21]), which
consequently negatively impacts the subsequent data analyses and
(assessment and intervention) decisions made later on. The AwarNS
framework employs at its core the NativeScript Task Dispatcher, which
is experimentally shown to be highly reliable when it comes to exe-
cuting scheduled background tasks (e.g. data measurements — passive
sensing) [20]. It takes into account feature fragmentation, hides the
technical complexity for app developers, and provides abstractions to
simplify the definition and planning of these background activities.

A. Gonzdlez-Pérez et al.
2.3. Privacy

Privacy-preserving software solutions help to meet regulatory re-
quirements and increase user acceptance by working with and storing —
anonymised when possible — minimally necessary sensitive data while
respecting user’s privacy [57]. Detecting changes in multiple health
conditions means that a large variety and amount of data must be
collected and analysed, but for ethical and privacy reasons, only the
information relevant to the clinical practice should be stored. Collecting
and storing unnecessary data is considered invasive to users’ privacy
and against ethical standards in clinical practices. Therefore, it is vital
that mHealth apps only store the necessary patient data and avoid
data exchange and/or external storage when possible. AwarNS’s design
takes these considerations in mind in several ways. Firstly, it works
completely on the user’s phone and offers complete freedom regarding
which data to collect and at which sampling frequency, to adjust it to
the needs of each use case. The data collection and storage processes are
also completely decoupled, allowing the collected data to be processed
in memory and only kept as long as necessary before it is discarded
(e.g., location data used to determine presence at a certain place). By
default, data storage occurs locally first (on the user’s device), option-
ally offering the ability to implement custom adapters to synchronise
that data remotely, where additional filters (before synchronisation)
can be applied. Lastly, related to transparency, every acquisition of
sensitive data in the background is done through a foreground service,
which comes with a notification informing the user that the AwarNS
Framework is being used by the app, only while data is being collected
in the background.

2.4. Re-usability

Re-usable software solutions aim to reduce technical complexity and
development costs by fully or partially covering the features required
by one or more application use cases [58]. Common practice reported
in mHealth literature is to create ad-hoc apps for a particular study
case and/or cohort of patients, which are often unavailable beyond
the original research setting and are closed-source. A logical conse-
quence is that shared functionalities, such as systematic sensor data
collection or sending notifications, are re-developed over and over
again, and valuable implementation experience and best practices are
lost. In this research, we couple an extensive literature review [54]
to understand the necessities and current state-of-the-art in the field,
a thorough understanding of the technical challenges [20,22] and our
multiple years of experience developing mHealth solutions for different
usage scenarios (see Section 5), to bundle base/core processes and
features to develop context-aware (reactive) mHealth applications into
the AwarNS Framework. Therefore, AwarNS offers common re-usable
functionality such as reliable task scheduling and execution, acquiring
built-in and wearable sensor data, active sensing, data persistence, (op-
tional) remote collected/generated data synchronisation, notifications
delivery and specific data analysis (i.e. geofencing, machine learning
algorithms), all while hiding the underlying technicalities from the
mobile app developers. The framework is designed to be modular and
re-usable, yet also extensible through a plugin-based architecture. This
allows developers to compose new features from a pool of existing and
thoroughly tested ones while keeping the freedom to customise them
or extend the framework with use case-specific functionality. Indeed,
the evolution towards re-usable software development is common in
maturing fields, where basic necessities and common solution patterns
have crystalised.

2.5. Testability
Testable software solutions help to reduce development costs and

meet regulatory requirements by enabling test automation, which re-
duces time spent on software validation and increases the chances of

Journal of Biomedical Informatics 141 (2023) 104359

complying with Software as a Medical Device (SaMD) regulations [59].
Medical devices pass rigorous testing procedures to ensure they work as
expected in typical usage scenarios. They must conform to a specifica-
tion, be validated by experts and put in practice through several trials
during their development before being granted a trust certification.
We have a strong belief that health and mental health apps should be
no exception, and it is unacceptable to deliver a medical application
whose features have not been verified and validated by technicians
and experts. AwarNS addresses technical verification, by applying well-
established software testing practices and paradigms which combine
acceptance, integration and unit testing. We followed the well-known
Test-driven Development (TDD) paradigm, also known as test-first
development, ensuring that the implementation of the Framework’s
logic and features is technically sound. The used simulation and testing
tools allow us to simulate any possible usage scenario without the
need to manually perform it, phone in hand, and developed tests are
incremental, to test any task in isolation or combination. Furthermore,
all testing artefacts that were internally used are also exposed for
external validation and use by mobile app developers when using or
extending AwarNS.

3. AwarNS framework: Design and building blocks

AwarNS has been designed as a modular framework, where a
Core package defines a minimal but essential set of features to help
mHealth application developers to create mobile apps exhibiting ad-
vanced context-aware features. In addition, the Core package estab-
lishes a common language for context awareness — in terms of protocols
and data models — so that each optional module communicates con-
sistently with the Core package and with all other modules. The Core
package and some other modules offering commonly shared functional-
ity, which are grouped under the Common category in Fig. 1, form the
basis upon which application developers can develop their mobile apps
according to the Sense-Analyse-Act paradigm. Modules belonging to the
sense category monitor end users and their environment. They observe
some phenomena and dump collected data into the phone’s volatile
memory. Analysis modules require data from the sensing modules or
from other analyses, to compute and/or transform it into relevant
outputs. Act modules perform concrete actions towards end users, and
typically react to the results of certain analyses (analysis module).
Certain modules belong to more than one category. For example, a
module in charge of requesting input from the user acts and senses
at the same time.

The typical workflow is as follows: tasks contained in sensing mod-
ules trigger tasks in analysis modules, which in turn trigger actions de-
clared in acting modules. Nevertheless, each phase is optional (e.g. an
action can be triggered immediately after data collection, without
any analysis, for example, to persist data), and within each phase,
the developer can choose which modules to include and which not
according to the application scenario at hand. As such, the frame-
work complies with the re-usability and versatility principles, and the
modular nature of the Framework, along with the tools provided by
the Core package, makes it natural to re-use functionality common
to many mHealth applications, as well as implement custom modules
with bespoke, single-purpose feature sets. Furthermore, the separation
of concerns greatly facilitates the implementation of best practices to
preserve user privacy, ensure code reuse, and ease testability.

AwarNS relies on an event-driven architecture and uses the Reactive
Programming Paradigm: events drive the workflow execution, and trig-
ger reactive tasks. In AwarNS terminology, workflows are thus known
as task graphs, in which nodes are tasks and vertices denote task execu-
tion orchestration triggered by events. Tasks encode the functionality
of the app, and are either provided by the framework (e.g., sending
notifications to the user, acquiring the user’s location, persisting some
information), based on templates provided by the AwarNS framework
(e.g., generic data acquisition primitives), or custom-made. Tasks are

A. Gonzdlez-Pérez et al.

Sense

Core Tracing

NativeScript Task Dispatcher (NTD)

Common

Fig. 1. AwarNS Framework conceptual architecture overview, including the module
categorisation based on the Sense-Analyse-Act paradigm.

reactive to events, which are generated as a result of task execution
or by non-AwarNS entities, such as a button tap or server-sent event.
Finally, data - resulting from tasks (e.g., a data analysis) or specialised
data providers used by tasks (e.g., a geolocation data provider) — flows
through the workflow in the form of records, which are extended from
a common data model.

Fig. 2 illustrates an example of a task graph for a simplified use
case of an intervention for patients with gambling disorder. It shows
the graphical representation of the corresponding application workflow
instrumented with the AwarNS Framework, containing sense, analyse
and act modules contextualised to the domains of human activity,
geolocation, geofencing, notifications and persistence.

The application workflow in Fig. 2 is organised according to the
sense-analyse-act paradigm (respectively blue, yellow and red in Fig. 2),
and can be logically divided into four operational phases: workflow
setup, movement detection, location sampling and intervention. The
first phase, workflow setup, consists of the configuration and wrap-up
of the workflow, which are respectively triggered by the startEvent
and stopEvent, which the application can use to enable and disable
the workflow at any time. The start and stop events enable and disable
the detection of changes in human activity, which guides the rest
of the workflow. The second phase, movement detection, consists of
activating or deactivating recurrent (every minute) geolocation captur-
ing when the user starts (userFinishedBeingStill event) or stops
(userStartedBeingStill event) moving, saving phone resources
when possible. In the third phase, location sampling, each time a
location is acquired, it is analysed to detect entering or exiting an area
of interest (AOI), which are gambling places in this use case. In the
fourth phase, intervention, whenever entering
(movedInsideAreaOfInterest event) or exiting
(movedOutsideAreaOf Interest event) an area of interest, a no-
tification is sent to the patient, to dissuade the user from staying
within the area (alert) or to encourage the user to keep avoiding such
areas after leaving them (reinforcement), just as it would do when
supporting a stimulus control treatment component. Throughout the
process, all relevant collected data is also stored locally (using the
writeRecords task), i.e. changes in human activity, captured loca-
tions and variations in the distance (proximity) to specified gambling
areas. To preserve users’ privacy, locations are filtered (using the
filterGeolocationByAoIProximity task) to keep only those within
the range of a gambling establishment, omitting thus those locations
that are not of interest from a clinical practice perspective.

Tasks are implemented in complete isolation, making them indepen-
dent and testable, using the test utilities provided by the Framework.

Journal of Biomedical Informatics 141 (2023) 104359

Tasks can be either custom code implemented by a developer from
scratch or based on templates provided by the Framework. In the latter
case, developers are supported with built-in utilities. For example, for
both sense tasks in Fig. 2, i.e. acquiring human activity and geolocation
data, a template is provided by the Framework’s Core package. Devel-
opers only need to specify the output data type of the task and how
it will be obtained, i.e. by specifying the data provider. For example,
the “Human Activity Detection” box wraps two tasks to start and stop
the detection of changes in the activity of the user based on the data
from the corresponding data provider (PushHumanActivityprovider
). A data provider may deploy a push or pull-based strategy for data
retrieval. For example, PushHumanActivityprovider uses a push-
based strategy, as it is unpredictable when changes in human activity
will occur, while PullGeolocationProvider deploys a pull-based
strategy, as geolocation data is likely to be available at a relatively high
frequency.

The Framework provides a common data model (Record) to fa-
cilitate standardised communication with the Core package and other
modules. This common data model is extended by the
HumanActivityChange, Geolocation and
AoIProximityChange entities (ovals in Fig. 2). As a result, the task
in charge of locally storing the collected data (writeRecords) under-
stands its content and facilitates its later retrieval. This common data
model can be extended and used by sensing, analysis and acting tasks to
inform about key events that happen over time. AwarNS distinguishes
two types of data, namely those corresponding to instantaneous and
long-lived events, each with its own representation. While the former
is based on single captured data points (i.e., geolocations), the second
is based on changes in state over longer time periods (i.e., human activ-
ity). Support for both data representations in AwarNS’s common data
model ensures specific supporting primitives for querying, analysing
and storing such data.

4. AwarNS framework: Implementation

The AwarNS Framework has been developed using NativeScript,
a cross-platform mobile application development framework, where
developers can code the application views in HTML/CSS and the ap-
plication logic in JavaScript/TypeScript. Unlike other similar web-
based solutions (e.g., Ionic), NativeScript produces native-like appli-
cations, and works with any modern web development framework or
library (e.g., Angular, Vue, React, etc.) or without a framework at all
(i.e., vanilla JavaScript). It also exposes all the existing native APIs
through JavaScript and is interoperable with other well-known mobile
application development frameworks such as Ionic (Portals) and Flutter
(UD). Indeed, as of 2021, the chosen technologies employ the most
widely used programming languages [60], with solid support and large
developer communities and backed by organisations like the OpenJS
Foundation. This favours having a development team to work on a
web-based technology stack for the development of mobile applica-
tions, without hiring another specialised team, for example, in web
development (e.g., to create dashboards, etc.) [25]. Despite the use of a
cross-platform solution, the Framework is currently only supported on
Android devices, due to more restricted access to detection capabilities
and background scheduling in iOS; further investigation on how to cope
with iOS restrictions is foreseen.

During the development of AwarNS-based real-life applications (see
Section 5) and informed by our extensive literature review [54], we
identified several generic, shared sense, analyse and act features and
implemented them as independent, re-usable modules within the frame-
work. That is, the AwarNS Framework follows a modular architecture,
where the Core package is the central actor that provides the essential
building blocks for context-aware (mHealth) applications, and various
optional modules provide more specific functionality. Fig. 3 shows all
currently available modules and the dependencies between them rep-
resented as overlapping shapes. The Core package and Tracing module

A. Gonzdlez-Pérez et al.

Workflow setup Movement detection

Journal of Biomedical Informatics 141 (2023) 104359

Location sampling Intervention

Phases [. Configuration . Wrap-up] [. Movement O Stationary] [. Acquisition] [. Area entrance O Area exit

—startEvent{_] a 0 [}-stopEvent—

5 » HumanActivityChange
) startDetectingHumanActivityChanges [activity: still; change: {start, end}]
startProviding() Q
g hadthad Every minute
: stopDetectingHumanActivityChanges - e HumanActivityChange a 3
! ' ivity: still; g acquirePhoneGeolocation
: stopProviding() [activity: still; change: start] @ q g
: 3 ‘ A @
o Loszs » PushHumanActivityProvider |<----- d o i ‘)
e next() ° Geolocation
@ HumanActivityChange 4 :
Q [activity: still; change: end] y . .
PullGeolocationProvider Geolocation
= Y jeolocationAcquired-
Human Activity Detection Geolocation Acquisition
@ checkAreaOfInterestProximity @ filterGeolocationByAolProximity
e O @ geolocationClose ToAolAcquired-
movedinisideAreaOfinterest AolProximityChange .
[proximity: inside, change: end] Geolocation
AolProximityChange -
[proximity: inside, change: start] movedOutsideAreaOfinterest
Geofencing Computation
sendNotification sendNotification -
@ [title: "You have entered a gambling place", Q [title: "You have left the gambling place”, @ @ Q writeRecords @ 2
body: "Safely leave the area as soon as possible"] body: "For now, you must avoid these places"]

Notifications Delivery

Elements [[:] Tasks D Providers O Records]

Data Persistence

Arrows[---» Usage —b> Event]

Fig. 2. High-level operation example of the AwarNS Framework applied to intervention for gambling disorder. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

form the Common category on top of which the Framework modules
are grouped according to the Sense-Analyse-Act paradigm (see Fig. 1).
This section is accordingly divided into the Common modules, and the
sensing, analysis and acting modules. Because AwarNS is an extendible
software framework, we also describe the mechanisms which allow the
development of custom sensing, analysis or acting modules/features.

4.1. Common modules

4.1.1. The core package

The heart of the AwarNS Framework is the Core package, which
offers a scheduling mechanism and convenient building blocks to build
(mHealth) applications that gather, analyse and react to contextual
information. It sits on top of the NativeScript Task Dispatcher (NTD)
library, previously developed by the authors [20]. The NTD provides
domain-agnostic task definition and background execution mecha-
nisms, where arbitrary tasks can be triggered by temporal-, data-driven
or external events. That is why, on top of NTD, the Core package pro-
vides further primitives and abstractions to facilitate sense-analyse-act
workflows, namely, (1) Provider Task Templates, which supply generic
data acquisition support, to greatly simplify the implementation of data
acquisition tasks; (2) Data Provider interfaces, which specify how data
is collected and whether the pre-conditions for performing the data
collection are met, and their concrete Data Provider implementations,
which can be plugged into Task Templates and provide concrete data
collection; and (3) the Record, a data model abstraction to represent
the data collected and generated by the Framework and its extensions,

Geofencing

D e

Kit Persistence

COMMON

Battery

Fig. 3. AwarNS Framework modules. Touching edges represent dependencies between
modules. Colours represent categories. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

A. Gonzdlez-Pérez et al.

«abstract»
Record

«interface»
BaseDataProvider

o Extend
Extends N

Journal of Biomedical Informatics 141 (2023) 104359

«interface» «interface»
TaskGraph Event

«abstract»

Task StartPushProviderTaskTemplate

Extends

«interface»

Geolocation PullDataProvider

HumanActivityChange

«interface»
PushDataProvider

ProviderTaskTemplate }<} tOP TaskTempl

T
Extends

NTD Component

AwarNS Core
Component

Sensing Module Use
Component

ivityProvider

SinglePullProviderTaskTemplate < FExtendsf BatchPullProviderTaskTemplate

Use

acquirePhoneGeolocation
SinglePullProviderTask

startDetectingHumanActivityChanges
StartPushProviderTask

acquireMultiplePhoneGeolocation
BatchPullProviderTask

stopDetectingHumanActivityChanges
StopPushProviderTask

Fig. 4. Core Package UML diagram. Includes examples of the extension of the provided entities by the Geolocation and Human Activity modules.

allowing standardisation of communication between the Framework
entities. Fig. 4 shows the relationship between these entities and also
includes examples of concrete implementations provided by AwarNS
that correspond to the use case discussed in Section 3.

The core at the core: the NTD library

The NTD library allows the specification and execution of event-
driven, reactive workflows. It declares three types of basic entities:
Task graphs, Tasks and Events. Tasks are self-contained code units,
where developers can implement any kind of logic for the device to
execute in the background. Additionally, the developer can state any
task execution prerequisites (i.e., permissions, available hardware or
disabled features) and the way to fulfil them (e.g., asking the user to
perform certain actions). Tasks can run based on temporal events, data-
driven events (i.e., produced by other tasks, typically sensing or data
analysis tasks) or external events (i.e., based on Ul, external hardware,
or server-sent events). Tasks can also declare if they have additional
specific requirements for the system to execute them, for example, if
they must run in a foreground service because they collect sensitive
information or they require specific permissions from the user. Upon
finishing their execution, tasks always produce an event, which possibly
includes relevant data (e.g., geolocation). Events are the task execution
drivers and their main data communication mechanism. Events can
trigger the execution of one or more (reactive) tasks, and, since tasks
always produce events, their execution can be chained. Finally, task
graphs are the mechanisms to facilitate the composition of complex
reactive task execution workflows. The Core package exposes these
basic entities for the implementation of the various AwarNS modules
(see below), for future extensions of the framework and for application
developers to implement their custom application logic. The NTD fol-
lows the design guidelines presented in [20], was extensively tested
and shown to ensure highly reliable, long-term (background) data
collection, which corresponds with one of the main design principles
of the AwarNS Framework.

Simplifying data collection processes: Provider task templates and data
providers

Provider Task Templates and Data Providers seamlessly work to-
gether to ease data collection. Provider Task templates define the

generic logic of the data collection processes and provide a way to
integrate them into task graphs, taking advantage of background and
event-based task execution behaviour. Data Providers are actual im-
plementations, which are plugged into Provider Task Templates, ca-
pable of connecting to a specific source and acquiring the data, and
checking and enforcing the requirements imposed by the data source
(e.g., permission or feature enable requests, authentication).

As briefly covered in Section 3, the AwarNS Framework supports
push and pull data retrieval and offers corresponding Provider Task
Templates and Data Providers to achieve this. For pulling data from
a source, the Framework comes with single and batch provider task
templates. The former defines the logic to acquire single data updates
from a data source, while the latter defines the logic to keep polling a
data source in a timeframe determined by the frequency at which the
task becomes invoked. To connect to a concrete data source and pull the
actual data, both single and batch task templates use a concrete imple-
mentation of a PullDataProvider . The captured data is subsequently
encapsulated in an event, which is emitted by the corresponding task
template upon completion. For single data, a single data point is
captured in the task completion event, while for batch data pulling,
all the data captured during the polling timeframe is encapsulated. In
Fig. 4, the acquirePhoneGeolocationTask instantiates a single pull
task template, while the acquireMultiplePhoneGeolocationTask
instantiates a batch task template; both of them using a
GeolocationProvider, a concrete implementation of the pull Data
Provider which connects to the mobile phone’s GPS sensor to capture
geolocations.

For requesting data updates via push, the Framework provides two
task templates that define the logic for starting and stopping listening
for push-based events. As for pull-based task templates, they require a
concrete implementation of a Data Provider, namely a
PushDataProvider, to connect to a concrete push-based data source
and acquire the actual data. Push-based Data Providers set up a sub-
scription for the app to listen for certain updates pushed by an external
entity (e.g., a system API pushing detected physical activity changes,
instructing some external device to start reporting data updates, etc.).
Examples of concrete instances of push-based task templates are the
startDetectingHumanActivityChanges and
stopDetectingHumanActivityChanges tasks in Fig. 4, supported by

A. Gonzdlez-Pérez et al.

Instantaneous events +{ @1 of—feoffeotfetfeifeix

Long-lived events +§————@———@——————@x

Long-lived +
Instantaneous events

Fig. 5. Representation of the difference between instant and long-lived events, and
how they are interrelated over time.

HumanActivityProvider, a concrete implementation of a push Data
Provider which connects to the Android Play Services Location library
to get human activity updates.

Choosing between push- and pull-based task templates, and their
corresponding push- and pull-based data providers, depends on the
nature of the data that is collected, how often the app interacts with
the data source, and how long it remains active. On one hand, pull-
based data providers run on time-triggered Provider Task Templates
that regularly poll the provider for new data. This means that it allows
specifying when data updates are fetched and the provider is only
active for as long as it takes to acquire the data. On the other hand,
interactions with a push-based data provider are limited to start and
stop sending data updates, in a fire-and-forget manner. This type of
data provider fits perfectly in situations in which getting timely updates
is crucial, as in the case of change detection, because this type of
action is not restricted by the duty cycle of the underlying scheduling
mechanism.

Implementation-wise, Provider Task Templates and Data Providers,
both described by corresponding interfaces, permit maintaining a sepa-
ration of concerns regarding the reusability and extensibility of the data
collection processes. They enforce consistency with regard to data ac-
quisition, i.e. all data acquisition events generate data consistently and
use a well-defined naming scheme. The underlying NativeScript Task
Dispatcher furthermore ensures reliable data acquisition execution,
without the need for the developer to go into low-level Android task
execution mechanisms. These features greatly reduce the developer’s
effort when implementing data-driven mHealth apps.

A common specification to represent data: Records

By extending the Record abstraction, a developer can obtain a
consistent representation of some data obtained at a specific point
in time. This type of data can range from a sensor measurement to
the result of a complex calculation. These records are passed through
the task workflow encapsulated inside events and form the basis for
communication between framework modules. AwarNS distinguishes
between data records for instant events (i.e., a single data capture,
such as a geolocation capture) and long-lived events (e.g., events that
are not instantaneous, such as walking), where the start and end times
are relevant. Fig. 5 shows, on the two top timelines, the conceptual
difference between records representing instant and long-lived events.
The bottom timeline shows an example of how the two types can
coexist. For example, considering the Geolocation record in Fig. 2,
only the acquired data (i.e. geolocation) and timestamp matter, not
when the corresponding event (geolocationAcquired) started or
ended. In contrast, for long-lived events, their start and end times are
relevant (AoIProximityChange), e.g. when the user enters or leaves
an area of interest. At an implementation level, long-lived event data
records are identified by a change flag in the base Record abstraction,
which allows data records to be framed to a particular event and
facilitates querying, for example, considering data only while users
were running or while they were within a relevant area.

All AwarNS Data Providers generate output entities compliant with
the generic Record data model, as must any custom Data Providers.

Journal of Biomedical Informatics 141 (2023) 104359

This allows Provider Task Templates to include these data in Events
outputted upon ending their execution, ensuring proper data commu-
nication between the Core package and framework modules.

Enforcing task and module isolation: Task sandboxing and plugin loaders

Aside from the Task, Event and Task Graph concepts included in the
NTD library and exposed by the Core package, the NTD provides two
other mechanisms to enhance the development experience, strongly
connected to the principles of Testability and Versatility (Section 2). On
the one hand, the Task Sandboxing tools simplify the development and
testing of Tasks in complete isolation. These tools enable the simulation
of task invocation trigger events and capture them for evaluation within
a test environment, which is essential for running both closed- and
open-box tests against developed tasks. On the other hand, related to
the isolation and the versatility principles, the Plugin Loader interface
handles the registration of the modules that will be used during the
initialisation of the Framework at each application startup. Developers
can choose to import (only) those modules required to implement the
use case at hand through their associated loader, the same applies to
the individual tasks contained within each module, i.e., unused tasks
can be excluded. Both the Task Sandboxing tools and the Plugin Loader
interface are exposed by the Core package.

4.1.2. The Tracing module

Besides the Core package, AwarNS also includes the Tracing module
in the Common category to facilitate the traceability of the execution
of several tasks and events chained together. The Tracing module
provides tasks and task decorators to ease the debugging of complex
task graphs. It offers the makeTraceable decorator that takes a list
of task instances and wraps them with logging mechanisms. The re-
sulting traces contain the task name, the execution time, whether it
succeeded or failed, the result, and, if necessary, the reason for the
task execution failure. Similarly, the module provides the trackEvent
and trackSensitiveEvent tasks to log concrete events. The resulting
traces contain the name of the event and its content is included in
the trace. Both types of traces include a unique chain identifier to
keep track of associated events and/or task executions. In correspon-
dence with privacy concerns, traces can be configured to omit sensitive
data, allowing developers to specify which content is being logged.
All generated traces are stored in a common local data store, which
can optionally be synchronised with a remote database, or exported
in CSV and JSON data formats, using the Persistence module (see
Section 4.4.1).

4.2. Sensing modules

The Framework comes with sensing modules that, through moni-
toring of physical, physiological and environmental parameters, can be
used to quantify the users relative to their environment. Each sensing
module wraps a specific hardware (e.g. accelerometer) or software
(e.g. human activity through Android’s Android Play Services Location
library) sensor and allows data readings from them. AwarNS supports
most smartphone sensors, such as GPS, accelerometer, gyroscope and
magnetometer, and is able to access other smartphone features, such
as detecting nearby Wi-Fi or Bluetooth Low Energy devices, or the
smartphone battery level, and connect to WearOS-based smartwatches
to access its sensory data, such as heart rate, GPS, accelerometer,
gyroscope and magnetometer. Some sensors provide access to directly
actionable measurements (e.g., the geolocation module), while others
require analysis to yield relevant results (e.g. Wi-Fi and BLE modules
can be used to detect certain key devices nearby or build indoor
positioning systems [61]). In this sense, AwarNS provides the basis for
digital phenotyping, as it allows both low- and high-level data to be
collected by the sensing modules, and analysis modules to process them
and extract physiological biomarkers. For example, the WearOS module

A. Gonzdlez-Pérez et al.

movedinsideAreaOfinterest

O
O
O
O

A

movedCoseToAreaOfInterest\
O
O O
O
OO Nearby radius
O

Journal of Biomedical Informatics 141 (2023) 104359

movedOutsideAreaOfinterest

movedAwayFromAreaOfinterest

O

Inside radius

(» Geolocation
m —> Resulting event

Fig. 6. Geolocation records (trajectory) analysed by the checkAreaOfInterestProximity task and where each relevant event is emitted.

supports heart rate sampling, which can be used to infer nervousness
or anxiety [62].

Connecting the AwarNS sensing modules with the core of the frame-
work, we provide in supplemental material a detailed table summaris-
ing the tasks related to each module, the events each task produces
and the records these events encapsulate when they are emitted. Tasks
related to the Geolocation, Wi-Fi, BLE and Battery modules are all
pull-based, allowing for the acquisition of new data on demand, both
individually and in batches (except for the Battery module). Tasks asso-
ciated with the Human Activity, Phone Sensors and WearOS modules
are all push-based. Push-based tasks do not directly produce events,
instead, the ones listed in the table are generated by their associated
data provider. All the tasks ensure that execution requirements are
met (i.e., required permissions, mandatory features, etc.), and run on
a foreground scheduler when needed (i.e., when dealing with sensitive
data such as location and IMU sensors).

4.3. Analysis modules

In line with the generality of the Framework, the analysis modules
find their use in location analysis, pattern recognition and prediction.

4.3.1. The geofencing module

For location analysis, the Geofencing module can be directly com-
bined with the Geolocation and/or WearOS modules to detect prox-
imity changes of the users to previously defined areas of interest.
To do so, the latter modules emit Geolocation records through their
corresponding Geolocation data providers, which in turn connect to the
phone/smartwatch’s sensors. Based on single location or trajectory data
input, the predefined task checkAreaOf InterestProximity defined
in the Geofencing module emits (movedCloseToAreaOf Interest),
(movedInsideAreaOfInterest), (movedOutsideAreaOfInterest)
or (movedAwayFromAreaOfInterest) events, which encapsulate
AoIProximityChange records to represent long-lived events which
determine the start and end time of a user within or nearby an area.
Fig. 6 illustrates this process based on a sequence of geolocation
records.

Implementation-wise, the Geofencing module includes an API to
register, retrieve and remove areas of interest relevant to the appli-
cation, and it allows observing changes in the registered areas, to
act upon them. Additionally, the Geofencing module comes with a
predefined task to filter geolocation records right after the acquisition,
based on their relative proximity to the defined areas of interest. The
filterGeolocationByAoIProximity task only outputs geolocation
records that are spatially within, or close to, one or more areas. This

allows for preserving privacy, as only those geolocation records that
are relevant for the purpose of the app (i.e. those acquired while in or
near the relevant areas) are persisted. This filtering task is configurable
and allows us to (optionally) set the distance, in meters, to interpret
when to consider a user close to an area. Due to its generality, the
Geofencing module can also be used with other data providers, such
as those defined in Wi-Fi and/or BLE modules, to detect proximity.

4.3.2. The ML Kit module

The ML Kit module allows running TensorFlow Lite Machine Learn-
ing (ML) models for regression and classification jobs on the phone
based on the data generated by other tasks. It does not include ML
models but allows the use of models provided by the developer. These
models have to be provided as .tflite files (i.e., lightweight portable
model representation format), including model’s metadata (e.g., name,
version, description, etc.) with associated labels (i.e., classes) file (only
required for classification models). To operate, the module provides
the necessary functions to generate regression and classification tasks.
These functions require an ML model and an “aim”, a string de-
scribing the objective of the generated tasks, which is used in their
name too. For instance, a regression task named “aimRegression” is
generated to support a (developer-provided) aim (e.g., “stress-level”
as aim generates the stressLevelRegression task). When such a
task is subsequently invoked, the regression or classification is car-
ried out using the specified ML model. Upon completion, the regres-
sion or classification task emits the “aimPredicted” event containing
a Regression or a Classification record with the results of the
model, respectively (e.g., the stressLevelRegression task generates
the stressLevelPredicted event).

4.4. Acting modules

The AwarNS Framework comes with two built-in modules: the
Persistence and Notifications modules.

4.4.1. The persistence module

The Persistence module serves to store collected or generated data
so that other tasks, application views or remote processes (in case of en-
abling the optional external synchronisation) can use it. In short, it is in
charge of locally handling data storage, data exporting to different file
exchange formats and remote synchronisation with external data stores.
Focusing on the primary purpose, data storage, the Persistence module
includes a software abstraction that takes any custom extension of the
record model as input and stores it in a local (CouchBase Lite) database.
The interaction with the record storage abstraction can be either man-
ual, using its public API, or automatic, using the writeRecords task of

A. Gonzdlez-Pérez et al.

Journal of Biomedical Informatics 141 (2023) 104359

| listLast(‘a") | [listLastGroupedBy(d', 'c') |

(ii)

Fig. 7. Marble diagrams schematically showing the Persistence module’s advanced query methods: (i) 1istBy () retrieves updates on records of type “a”
within a list (default sorting — descending); (ii) same as (i) but overriding the default sorting behaviour to ascending; (iii) 1istLast () retrieves updates of records of type
(only most recent); (iv) listLastGroupedBy () to query the most recent updates of records of type “d”, grouped by unique values (concretely, “s
(change). Concretely, this query returns the start en end times for long-lived events, such as entering/exiting an area of interest.

for property “c”

the Persistence module. Either operation automatically triggers a one-
way data synchronisation process, which developers can customise via
an optionally provided adapter.

The record storage abstraction provides typical persistence oper-
ations, such as inserting, retrieving and deleting records. In addi-
tion to these persistence operations, the abstraction provides com-
mon query methods to access and retrieve records, but also advanced
query methods to query changes in them over time. These advanced
queries are launched at a certain point in time and return live data
streams, which are updated on-the-fly as relevant updates occur over
time. Such queries are particularly suitable for change inspection.
AwarNS supports four advanced query types, 1istBy(recordType),
listLast(recordType) and
listLastGroupedBy (recordType, groupByProperty), which are
schematically depicted using marble diagrams in Fig. 7. The 1istBy ()
query method, shown in Figs. 7(a) and 7(b), retrieves records of a
certain type, whereby updates of the record type (i.e., overlapping
circles in Fig. 7) are ordered in chronologically descending and as-
cending order, respectively. Aside from filtering records, the advanced
methods can also be used to perform complex analyses that combine
recently added records — as a result of updates in the data stream
- with old ones. An example is the 1istLast () method (Fig. 7(c)),
which notifies the existence of updates of a particular record type
obtained after the method was called, yet without including the record
type history (i.e., only the last received record is added to the result
stream; no overlapping circles in Fig. 7(c)). A more sophisticated
method is listLastGroupedBy (), which retrieves the most recent
records of a given type (selection property) grouped by property values.
This method is advantageous, for instance, to obtain pairs of records
associated with long-lived events, determining the start and end time
(group by values) of the event, as shown in Fig. 7(d). Another example
is to obtain the most recent visits of a user to all the registered areas
of interest. For more fine-grained querying, all the above-advanced
methods allow the specification of optional query conditions or filters.
These filters can be used, for example, to obtain just the start records
of long-lived events, or to obtain the last user’s visit to a given area.
All in all, the combination of these query methods enables us to fetch
real-time data in different ways, as the basis for further analyses.

Next to data storage, the Persistence module also includes mecha-
nisms to export records in CSV and JSON formats. This is particularly
useful for applications that need to work completely offline, as users
can then download the resulting files and handle them using any
(local) tool. By default, the Persistence module completely runs on the
mobile (client) device, i.e. offline first. This allows for a better app
user experience since the developed applications do not suffer network
delays or interruptions when accessing data. Nevertheless, AwarNS also
supports one-way synchronisation of the locally stored records into an
external system, either locally or remotely. This is done by providing
an adapter interface, which developers can implement to connect the
Persistence module’s storage operations with a remote storage system
of choice. Leaving remote storage optional preserves users’ privacy
and gives freedom to the developers to implement custom logic in the

10

.

G-

(il
(iv)

over time contained

wyn
a

e

i.e. ‘start’ and “e” i.e. ‘end’)

synchronisation adapter, e.g. alter or prevent certain types of data from
being remotely stored.

Finally, beyond the storage of records, the Persistence module offers
an abstraction mechanism on top of the database to allow an easy
definition of app-specific data stores, i.e., not only data records but also
other app-specific data (such as notifications, temporary or partial re-
sults of analyses, the persistence of the internal state of a module, etc.)
stores. For example, in between application wake-ups, the Geofencing
module uses an internal data store to keep the proximity status of the
nearby areas, and the notifications module stores the list of pending
notifications along with their metadata. Via the abstractions offered
by the Persistence module, AwarNS provides the following operations
on app-specific data stores: single and bulk insert, single and multiple
fetches, update, delete, observe changes in the stored data and grant
access to the underlying (CouchBase Lite) database engine to perform
custom queries.

4.4.2. The notifications module

The second acting module is the Notifications module, which sends
notifications to the users via their mobile devices. Next to pure in-
formation delivery, such as displaying brief information or provid-
ing quick feedback (acting), this module also incorporates sensing
features, namely when notifications require feedback from the user
(e.g., giving confirmation or answering some questions). Consequently,
the Notification module falls both in the sensing and acting cate-
gories (see Fig. 3). On the acting side, the Notification module offers
a task called sendNotification, which allows sending a notifica-
tion after an event triggers. Apart from the regular properties of a
notification, such as a title and body message, it also contains a
content type property that indicates the type of content and action
associated with the notification (i.e., when tapping the notification).
AwarNS supports various actions, such as opening the app (OPEN_APP
), showing additional textual or multimedia content (OPEN_CONTENT),
delivering questions (DELIVER_QUESTIONS), asking for confirmation
(ASK_CONFIRMATION) or free-form feedback (ASK_FEEDBACK), or
developer can implement their custom action. Once received, users can
tap on a notification or discard it. Either action triggers a corresponding
event, notificationTapped and notificationDiscarded respec-
tively, which are useful to understand the interaction/involvement of
the user with the app and to calculate usage statistics.

On the sensing side, the Notification module offers predefined
record types to hold the result of user interaction with the previously
mentioned supported content types (except for OPEN_APP, which pro-
duces no output). The corresponding data record types are
UserReadContent, used to hold content that was seen including if it
was completely seen, QuestionnaireAnswers used to hold answers to
the delivered questions, UserFeedback to store a single answer, and
UserConfirmation to hold the answer to a yes/no question. As usual,
these data records are encapsulated inside events, which the framework
emits when a corresponding action was performed.

Finally, the Notification module offers APIs to list unread notifica-
tions, mark them as read and set up a notification tap handler, which

A. Gonzdlez-Pérez et al.

allows the application developer to select the user interface to show
when opening the application through a notification.

4.5. Extending the framework

Aside from the built-in modules presented in this section, appli-
cation developers can implement custom sensing, analysis or acting
features or modules to exhibit domain- or application-specific features.
Concretely, the framework can be extended with data providers, new
tasks and record types to realise specific features required in custom
apps. These features can be either implemented right in the app or
wrapped in new external modules, to reuse them across different apps
or for the sake of better code organisation.

New sensing features can be implemented using the primitives
provided by the Core package: application developers can rely on the
framework’s base functionality offered by Provider Task Templates,
which provide generic data acquisition support, and Data Providers,
which provide push- and pull data acquisition, to support custom
sensor data acquisition. New analysis features can be implemented as
NTD Tasks provided by the Core package, while having the support
of AwarNS’s basic and advanced querying mechanisms, and machine
learning module to integrate regression and classification analysis tasks.
Similarly, new acting features can be implemented using Task prim-
itives. Concretely, the Notifications module can be used or extended
to deliver more advanced content to the users, such as images, audio
or videos, which users can access right after tapping on a notification.
Lastly, by implementing the plugin loader interface, any setup and
configuration can be ensured.

5. Real-life use cases

The design and development of the AwarNS Framework were driven
by continuous analysis of requirements collected while developing
AwarNS-based applications in the context of health and mental health
domains. In this section, we describe three applications that have
been developed and applied to four different use cases, each using a
particular configuration of the AwarNS framework and a combination
of framework modules. The three applications below have in common
the need to regularly and transparently sample the environment and
react on time to the detected changes in it. Based on these development
experiences and the empirical observation of the needs and require-
ments of these apps, we seized the opportunity to design and further
develop the AwarNS Framework to help all those applications succeed
and reduce development time. Through their use in practice, these
applications have served as a validation of the Framework features.

The first application is called SyMptOMS, a smartphone application
for the delivery of psycho-educational location-based notifications for
the treatment of mental disorders associated with specific places. In
particular, SyMptOMS has shown positive results when applied to
the treatment of panic disorder and agoraphobia [63], and gambling
disorder [64]. The second application was the TUG Test, a fully in-
strumented version of the well-known Timed Up and Go (TUG) test
to assess a person’s mobility, implemented through a smartphone and
a wearable application [65]. The last application is SyMptOMS-ET,
a rewrite and extension of the original SyMptOMS application, to
automate the process of place-based emotional exposure therapy, using
timely assessments and applying a rule-based ecological momentary
intervention. Next, we summarise the main features of each application
and how they are using the AwarNS Framework.

5.1. SyMptOMS: Geolocated psycho-educational notifications

The SyMptOMS application is a companion smartphone app to a
web management tool, in which therapists can register patients in
treatment, including areas of interest for each patient and personalised
messages to be delivered when a patient enters or leaves each specified

11

Journal of Biomedical Informatics 141 (2023) 104359

area of interest. This information is stored, for each patient, in their
patient profile. The smartphone app is configured for each patient by
downloading their profile and is used as an adjunctive treatment. The
app has been successfully used in clinical practice with patients diag-
nosed with panic disorder and agoraphobia [63], where it delivered
the acting instructions of the exposure treatment component, indicating
the patient to stay at a given area until reducing the perceived anxiety
level. More recently, it has been used as part of a treatment for patients
diagnosed with gambling disorder [64], where it was applied in two
different treatment phases. First, after the patient has stopped gambling
and presents abstinence syndrome, the app supports the stimulus con-
trol treatment component, delivering warning messages when detecting
the patient’s presence nearby a gambling establishment. Second, once
the patient has learned more strategies to cope with gambling urges
and symptoms of the abstinence syndrome have decreased, the app
supports another exposure treatment component, this time with re-
sponse prevention, instructing the patient to stay outside (but close to)
the gambling establishment, without playing, until the urge to gamble
lowers. In both use cases, the application was personalised to each
patient profile and disorder.

Fig. 8 details the AwarNS modules used by the SyMptOMS app,
along with some application screenshots. This app is based on early
versions of the Core package and the Geolocation, Human Activity,
Geofencing and Notifications modules. Additionally, it declares two
custom modules, the Data Uploader and the Aol Exit Counter. The
Core package is used for the coordination of all the built-in and custom
modules, and the background scheduling of the tasks. The Geolocation
module is used to regularly acquire the user’s location, every 2 min. The
Human Activity package is used for the reporting of physical activity
stats. The Geofencing module is used to detect the presence inside or
outside one of the registered relevant areas. The app-specific (custom)
Data Uploader module enables the direct upload of the collected data
to a remote server, with no local persistence. Lastly, the other custom
module, the Aoi Exit Counter, is used to count how many times a
day the patients left each area. Both the Human Activity and Aoi Exit
Counter modules were only used for informational purposes for the
therapists; they were not used as part of the psychological intervention.
Finally, the Notifications module is used to deliver the enter and/or
exit messages, previously defined by the therapist, to the patients when
they enter or leave an area. These notifications consisted of dissuading
(e.g., “You are in a risk area because nearby there is a place where you
gambled. Remember that now it is important to avoid staying here”
in case of gambling disorder, for stimulus control) or motivational
(e.g., “You have arrived at an area of interest. Remember to use all the
strategies you have learned” in case of panic disorder and agoraphobia,
and “You are in an area of interest, the exposure begins. If there is an
urge to gamble, use the strategies you have learned and leave the area
once the urge has decreased” in the case of gambling disorder, at the
beginning of the exposure) messages.

5.2. TUG test: Smartphone- and wearable-based instrumented timed up and
go test

The TUG Test smartphone application aims to instrumentalise
(i.e., automatically obtain results) the execution of the TUG test, a
well-known mobility test usually used for fall-risk assessment in elderly
people. The application uses the data collected from the Inertial Motion
Unit (IMU) sensors of either a smartwatch or smartphone to detect the
activities the user executes while performing the TUG test, i.e. stand
up, walk, turn around, walk, turn around, sit down. Once done, it
computes the amount of time the user spent on each activity. The
machine learning models used to detect the activities are previously
trained offline with data collected by the application running in data
capture mode only.

Fig. 9 details the AwarNS modules used by the TUG Test app, along
with some application screenshots. It includes the Core package, and

A. Gonzdlez-Pérez et al.

Journal of Biomedical Informatics 141 (2023) 104359

AT ERE 0 30 W4 61%m 2026 Moulsie S04 § 2028
g Data Uploader Counter J B ~
g Symptoms v Y94 80w % 9
=]
(&] Mar, 28 ago. o v
\ Lugar importante
Has do a un area de mterés, Recuerda usar todas las
-
° estrategias que has aprendido
<
BORRAR TODO
IMPORTANTE: contraste con su terapeuta si n®
Vs Y expediente coincide;
9 Geofenci
Q, 9 N? Expediente Usuariol
©
c
<
J
. Human
3 [Geolocation] [Activity]
c
o
(2]
J Si no es correcto pulse el botén: 'BORRAR DATOS'.
Si es correcto, continde.
- 0
o BORRAR DAT CONTINUAR
£
£
8 =]
)
Fig. 8. SyMptOMS application screenshots (centre, right) and framework modules in use (left).
N
g
‘g Evaluator TUG Test a :
5 Start a TUG execution from an available
device: TUG Test
Local device:
moto g(30)
\ D Operation mode: Start
ersistence
5
< Connected devices:
TicWatch Pro 3 GPS 0462
Open the smartwatch application and start a
TUG execution following the instructions.
[
g ML Kit
= Results from TUG tests
g performed
J
Tap on a TUG test result to see more
information TUG Resul
Phone (Time used to
[WearOS 2 11: -04-25
g [Sensors] [] LH. Date.L1NZ 20220429 perform the test
o Duration: 15.64 seconds
) . / 10,54 seconds
J Ll Date: 11:17 2022-04-25
Duration: 13.02 seconds
c \ J
o Core
E Ll Date: 11:17 2022-04-25
o Duration: 14.23 seconds
U . J

)

Fig. 9. TUG Test application screenshots (centre, right) and framework modules in use (left).

the Phone Sensors, WearOS, ML Kit and Persistence modules. The Core
package is used for the coordination of all built-in and custom modules,
and task scheduling. The Phone Sensors module is used to collect IMU
sensor samples when the smartphone acts as a sensing device. The
WearOS module does the same task when the smartwatch is the sensing
device. The ML Kit module uses the sensor samples as input to the
previously trained machine-learning model for activity inference. The
Persistence module stores sensor samples collected by the Phone Sen-
sors and WearOS modules, and activity recognition results computed
by the ML Kit module. Finally, the TUG test app also incorporates an
app-specific module called Result Evaluator, which detects when the
user has finished the test and computes the time spent in each inferred

12

activity. It is an example of a Framework extension to develop ad-hoc
modules. Full details of the application can be found in [65].

5.3. SyMptOMS-ET: in-vivo exposure therapy with timely assessments and
rule-based EMI

The SyMptOMS-ET smartphone application represents a rewrite and
extension of the original SyMptOMS app. The app was developed as a
close collaboration between research teams in computer science and
psychology and aims to automate the detailed process of emotional
in-vivo exposure therapy in places that cause discomfort to patients
undergoing psychological treatment. Similarly to the original SyMp-
tOMS app, this application takes a set of areas of interest provided by

A. Gonzdlez-Pérez et al.

Journal of Biomedical Informatics 141 (2023) 104359

e 221 *an 457 & *an
£ Exposure Exposure Exposure
S Managers State Watchers | |Dropout Checks Tu progreso &Coémo te encuentras?
7}
=} Answers Exposure Exposure Result
o Evaluators Evaluators Aggregators Umma exposicién

Ve ™ ° En\l.‘uvga‘ﬂ . s

[Notifications] [Persistence] FITPUSI CORIFEIRaS
k3]
<
e N
N J Moderads, » _—
1 con si alas preg
Leve, que te planteamos
Evolucion
De 0 (ninguno) a 10 (maximo), ¢como
Human il En todos los lugares puntuarias tu nivel de ansiedad en este
] Geolocation L Notifications Nivel de ansidedad madio momento?
» Activity
c
[
(/2]
0
Al
o [Core] [Tracing] SHIEIe
£ 8 :
£ Progiesa Comenido Natlkacines
[«
Fig. 10. SyMptOMS-ET application screenshots (centre, right) and framework modules in use (left).

therapists, with which patients associate emotional discomfort or fear.
Patients can inspect their exposure areas in the app via an interactive
map. When they approach an area of interest (i.e. an exposure area), the
application begins by providing questions to acquire baseline assess-
ments regarding emotional discomfort and tolerance values, as well as
to assess pre-exposure negative or positive beliefs of the patients. Once
patients enter and as long as they stay inside the area, they regularly
receive a custom question set to sample those subjective variables on
a regular basis. Depending on the reported values, the app delivers
specific psycho-educational content to help patients in coping with high
values of emotional discomfort and difficult situations or help them
maintain low values. Exposures are limited in time, determined by
evaluating the trend of emotional discomfort reported regularly or by
a maximum time set by psychologists. These rule-based evaluations,
established by psychologists, are performed after the patient answered
a question set. During exposure, the application not only reacts to
changes in reported subjective measurements but also changes in the
patient’s relative proximity to the exposure area. For example, if a
patient leaves an exposure area early, the application delivers specific
content trying to convince the patient to return and continue with the
exposure. It also asks for feedback in case of total abandonment, so that
the therapist is informed of this circumstance. Shortly after finishing an
exposure, patients are given a different set of questions to assess their
behaviour during the exposure. Patients can also consult aggregated
and detailed data on the evolution of their emotional discomfort in the
areas where they have had exposures. The SyMptOMS-ET app has been
experimentally tested, evaluated and validated for use by a committee
of independent psychologists, and a clinical study is currently under
recruitment for clinical validation.

Fig. 10 details the AwarNS modules used by the SyMptOMS-ET
app, along with some application screenshots. It uses the Core package
and Tracing module from the common category, along with the Ge-
olocation, Human Activity, Geofencing, Notifications and Persistence
modules. As usual, the Core package is used for module coordination
and task scheduling. The Tracing module is used to decorate with a
logging mechanism for the tasks conforming to the critical background
execution path. An adapter, as part of the module implementation,
uploads the collected traces to a remote server for its analysis or
debugging purposes. Yet, the Tracing module discards logging the result

13

of tasks that output sensitive information. The Geolocation module is
used to acquire the patient’s location every minute, while in movement
and the vicinity of an area of interest, and every 15 min while the
device is stationary and not in an area of interest to reduce battery
consumption. The Human Activity module is used to detect changes
in the physical activity of patients, i.e. being in motion or stationary.
When no movement is detected, the Geolocation module is signalled to
reduce the location acquisition sampling rate. The Geofencing module
is used to detect when a patient is approaching an area of interest, in
which case the Geolocation module is signalled to increase the location
acquisition sampling rate. Additionally, a geolocation filter is used to
restrict geolocation storage only to points acquired in the vicinity of
areas of interest. The Notifications module is used to send confirma-
tion questions, question sets, and feedback requests and acquire the
answers, and deliver psycho-educational content to the patient. The
Persistence module is used to locally store and remotely synchronise
collected data, i.e. geolocation points, changes in exposure status, and
patient answers and reactions to notifications. All this actively and
passively sensed data can be consulted later by the therapists using a
companion Web application.

Apart from the Framework modules, the SyMptOMS-ET app also
comes with a set of specific modules, namely the Exposure Managers,
Exposure State Watchers, Exposure Dropout Checks, Answers Evalua-
tors, Exposure Evaluators and Exposure Result Aggregators modules.
The Exposure Managers module contains tasks to act on the internal
exposure states, to control their start and end. The tasks included
in the Exposure State Watchers module observe the events emitted
by the Geofencing module when the exposure is in progress, to re-
port exits and re-entries to the exposure area. The Exposure Dropout
Checkers module builds on the previous one to decide when it is
necessary to ask for feedback on exposure escapes, i.e. dropouts. The
Answers Evaluators module contains tasks to evaluate patients’ answers
during exposure at specific times using rules established by psycholo-
gists. Similarly, the tasks in the Exposure Evaluations module assess
whether tailored psycho-educational content is delivered right after
the end of an exposure, based on the patient’s outcomes during the
exposure. Lastly, the Exposure Result Aggregators include tasks for
compacting reported post-exposure answers and calculating overall and
place-specific emotional discomfort trends across all exposures.

A. Gonzdlez-Pérez et al.
6. Qualitative comparison with existing solutions

In this section, we qualitatively analyse a representative selection
of existing generic, adaptable solutions that aim to simplify the devel-
opment, maintenance and cost of context-aware (mHealth) apps and
compare them to the AwarNS Framework. Our selection is based on a
2020 systematic review on mobile and wearable sensing frameworks for
mHealth studies and applications [41], extended with an exploratory
literature search (to include more recent studies) and further vali-
dated using a snowball analysis (2 levels deep) on references of the
identified set. We limited the included solutions to those meeting the
following criteria: (1) general purpose or health-specific, not targeted
at a concrete use case or health condition; (2) running on, at least,
Android smartphones; (3) with, at least, active sensing capabilities; (4)
whose validity has been proved by additional studies applied to, at
least, one specific health condition; and (5) currently in-service or with
activity in the last five years (2017-2022). Applying these criteria, we
obtained 12 related solutions: Open Data Kit (ODK) [42], AWARE [43],
mCerebrum [44], the CARP Mobile Sensing (CAMS) framework [45],
the Personal Analysis COmpanion (PACO) [46], Sensus [47], RADAR-
base [48], BEIWE [49], the LAMP Platform [50], CommCare [51],
movisensXS [52] and mEMA [53]. Below, we detail our findings,
grouping the identified solutions into software frameworks, and open-
source and commercial platforms. Next, the comparison criteria are
introduced. Then, we compare the identified solutions to the AwarNS
Framework. We focus on the re-usable functionality offered by these
solutions, examine their main features and study how they adhere
to the design principles exposed in Section 3. Finally, we discuss
limitations.

6.1. Related solutions

In the group of software framework solutions, which offer reusable,
common functionality for developers to implement mHealth apps,
ODK [42] can be considered the precursor of modern smartphone-based
data collection frameworks. It has been used in PTSD screening [66],
prenatal anxiety and depression screening [67]. It comes with a web
dashboard to design forms that allow including contextual data acqui-
sition controls (geolocation, pictures, videos, etc.), which are tied to
data forms for manual entry. An ODK-powered app downloads the form
definition from the server, which is responsible for facilitating commu-
nication between the app and the dashboard. The dashboard is used to
display the data submitted through the app’s forms. AWARE [43] is a
mature and widely used framework, which has been used in behaviour
phenotyping [68], binge drinking detection [69], and depression and
anxiety symptoms prediction [70]. Like ODK, AWARE comes with a
dashboard, a server, and a client mobile app. The framework can be
used through the ready-to-use AWARE application or integrated into an
existing application. It follows a monolithic plugin-based architecture,
where most of the data sources are part of the monolith, but others can
be incorporated through plugins. Support for data sources is diverse.
Data sources are self-contained, including data acquisition, storage,
synchronisation and history data access of a single data type. mCere-
brum [44] has been used in stress management interventions [71].
In terms of design principles, mCerebrum is the closest framework to
AwarNS, but conceptually it is very different: each mCerebrum module
is implemented as a separate app, whereby a core app, called DataKit,
serves as central information storage for all other apps, which use inter-
process communication (IPC) for storing and querying data via the
DataKit API. A full installation of mCerebrum involves over 20 frame-
work apps, even though partial installations are possible. CAMS [45]
has been used in behavioural activation [72]. The CAMS framework is
the closest in terms of architectural decisions to AwarNS. It follows a
modular architecture, where the developer can decide which packages
to include in each application. Unlike previous frameworks, it follows a
reactive programming paradigm to define simple interactions between

14

Journal of Biomedical Informatics 141 (2023) 104359

the different framework components (i.e., sensor data collection, EMAs,
etc.). The framework includes many sensing packages (modules). CAMS
features data filtering, transformation and anonymisation of individual
records before persistence. It features centralised data storage, but each
module implements its own mechanism for data collection.

In the group of open-source platform solutions, which are aimed at
lab technicians and offer configurable (ready-to-use) tools, PACO [46]
was born as an internal Google experiment for experience sampling. It
has been used in sadness and boredom screening [73]. It is limited to
capturing users’ answers, which can be enriched with contextual data
(similar to ODK). EMAs are delivered using time-based triggers only.
A server and a web interface accompany the PACO app, to remotely
visualise the captured data. All data is automatically uploaded, without
the possibility of transforming it beforehand. Sensus [47] has been used
to test clinical models of depression, social anxiety, state affect and so-
cial isolation [74]. It is a platform aimed at large crowdsensing studies.
It features both time-based and sensor-based EMAs and treats surveys
and sensor probing independently. Collected data is encrypted and
anonymised prior to server upload, but cannot be further transformed
before this happens. The studies are configured from the same mobile
app, which supports two functioning modes: researcher and participant.
RADAR-base [48] has been used to monitor behavioural changes [75]
and for depression and epilepsy screening [76]. It is a platform that
consists of two mobile apps, for active and passive sensing respectively,
a web management tool and a separate data visualisation dashboard.
It features wearable support for passive sensing and allows third-party
app integrations. It focuses on server-side storage, which has been
designed for scalability and to comply with data storage regulations.
BEIWE [49] has been used in medication adherence and behaviour
phenotyping [77]. It is an advanced mobile data collection platform
focused on digital phenotyping. Similarly to the previous platforms,
BEIWE allows, to a certain extent, to configure when EMAs should be
delivered to the user and allows to passively collect data from smart-
phone data sources. The data is encrypted and uploaded to a remote
server, and only then can the data be filtered and transformed. Simi-
larly, reacting to the collected data is not considered, limiting its use
for EMI. Finally, LAMP Platform [50] has been used for depression and
anxiety screening [78]. Initially based on BEIWE, the LAMP Platform
extended BEIWE'’s data collection capabilities with in-app educational
content and just-in-time interventions (EMIs) driven by server-side data
analysis. Yet, it shares the same data collection and upload limitations
as BEIWE: although the collected data is encrypted end-to-end, data
cannot be altered or filtered before being stored. Moreover, LAMP-
based EMIs require the phone to always be connected to operate,
limiting their use in areas where network coverage is unreliable or
non-existent.

Lastly, in the group of commercial solutions, CommCare [51] has
been used in the treatment of PTSD [79] and allows form-based data
collection. Like the rest of the solutions in this group, its mobile app
is configured through a no-code web interface, which allows specifying
basic logic for determining which form controls or screens are displayed
on user input or action. movisensXS [52] has been used in the treatment
of bipolar disorder [80], coping with hearing voices [81] and behaviour
change for Anorexia Nervosa [82], while mEMA [53] has been used
in suicide prevention [83] and binge drinking prevention [84]. Both
solutions support passive data collection but are form-centric. They
allow the delivery of EMIs based on rules defined through a web-
based assistant. However, no custom code is allowed. Collected data
is uploaded to a server using secure channels but data analysis is
server-side only.

6.2. Comparison criteria

Performance-wise, AwarNS is mainly tied to the performance of
the underlying scheduling solution (NTD), hence we refer to [20] for

A. Gonzdlez-Pérez et al.

battery consumption and data completeness figures and focus here on
qualitative aspects. Our comparison builds on Kumar et al.’s work [41],
expanding it with additional criteria to address all of the design prin-
ciples outlined in Section 3, and validating it through an analysis of
criteria used in the set of related solutions. Concretely, Kumar et al.
focused their analysis on reusable features, where our more holistic
approach also included versatility, reliability and testability features.
As a result, and in line with the literature, the comparison dimensions
of background behaviour”, “Single app”, “Modular design” and “Auto-
mated testing” were added to our analysis. Other original dimensions
in [41] were merged due to space limitations, and some were renamed
to indicate a change in scope. The impact of each dimension on its
related principle(s) is detailed below.

The reusability (RU) principle enforces the presence of reusable
features in mHealth applications. Here, we identify “Active data col-
lection” (ADC), “Passive data collection” (PDC), “Assessment delivery”
(AD), “Intervention delivery” (ID), ‘“Health-specific features” (HSF),
“No-code app” (NCA), “Web dashboard” (WD), “Server sync” (SS)
and “On-device analysis support” (ODAS). Solutions presenting ADC
and PDC include reusable data collection and representation models,
respectively for user- and device-provided information (i.e. built-in
sensors, wearables and context sampling). Solutions covering AD and
ID provide reusable features for assessment and intervention deliv-
ery based on ADC, PDC or the analysis of the two. Solutions with
HSF provide some reusable well-known tests — mainly cognitive or
psychometric — and/or health domain-specific data analysis models.
Solutions featuring an NCA provide a quick reusable way to conduct a
research study via an already-made generic configurable app. Similarly,
solutions offering a WD provide a reusable way to manage study
participants and visualise reports. Solutions offering some degree of
SS provide specific reusable data transformation and communication
adapters for remote upload and synchronisation. Lastly, solutions of-
fering ODAS provide reusable mechanisms to execute arbitrary code
on users’ devices, able to process ADC and PDC for quality assurance,
data anonymisation, and provide AD and ID right from the phone.

The versatility (VE) principle is related to the “Server sync” (SS),
“On-device analysis support” (ODAS), “Background behaviour” (BB),
“Single app” (SA) and “Modular design” (MD) dimensions. Solutions
with server-agnostic SS are more versatile because they allow more
varied integrations. Solutions supporting ODAS allow more diverse use
cases by enabling offline data analysis workflows. Solutions featuring
BB show more versatility by enabling automated task scheduling and
execution - for sensing, analysis or acting tasks — whether the main app
screen is open or not. Solutions composed of multiple apps (non-SA) are
more versatile since the patient only has to install the necessary fea-
tures. Similarly, solutions that follow MD allow developers to exclude
unnecessary features from the application package, thus limiting what
the patient must install too.

The reliability (RE) principle is represented by “On-device analysis
support” (ODAS), “Background behaviour” (BB), “Single app” (SA),
“Automated testing” (AT), “Maturity” (MT) and “Proven efficacy”
(PE) dimensions. ODAS influences reliability by offering consistent
behaviours both in online and low-connectivity environments. The way
in which the BB is implemented also affects reliability as demonstrated
in [20]. Solutions composed of more than one SA have more moving
pieces and hence are more prone to suffer from reliability issues.
Solutions tested using AT are less prone to issues during actual usage
and hence potentially more reliable. The same applies to more mature
(MT) solutions and those solutions whose efficacy has been proven
(PE) by conducting additional applicability and feasibility studies to
concrete health conditions.

The privacy (PR) principle is related to the “Server sync” and “On-
device analysis support” dimensions of each solution. Making the first
one a requirement hurts privacy, by not allowing captured data to just
stay on the patient’s device. The same applies to the latter when the

15

Journal of Biomedical Informatics 141 (2023) 104359

captured data cannot be altered prior to its storage and/or remote
upload.

Lastly, the testability (TE) principle is present in the “Automated
testing” and “Proven efficacy” dimensions. Solutions whose quality is
assured by a battery of automated tests are testable by definition. The
same applies to those solutions whose feasibility and applicability to
specific use cases were proven in additional studies.

6.3. Comparing AwarNS to existing solutions

Table 2 lists the selected solutions along with usage/health scenar-
ios reported in the literature. For the analysis, we first extracted the
strengths and weaknesses of each solution based on published articles
and available technical documentation. Next, for those solutions that
work in the background, we analysed their code base to assess if they
assure reliable background task execution, according to our previously
published guidelines [20]. In the case of commercial platforms, only
publicly available information on the website could be analysed, due
to restricted access to the code base.

The main conclusions to be drawn from the comparison exercise,
concisely summarised in Table 2, are as follows:

+ All solutions are compatible with Android and half are also with
i0S. AwarNS currently does not support iOS due to iOS’ more re-
stricted access to sensing capabilities and background scheduling.

+ All solutions (including AwarNS) allow data collection directly
from the user, i.e. active data collection. ODK is the only tool
which does not allow scheduling such data collection requests.

» All solutions (including AwarNS), except for ODK, PACO and
CommCare, collect data from sensors in an automated way,
i.e. passive data collection.

+ All solutions can be used for assessment to some degree, although
some show some limitations. ODK does not allow performing
assessment requests based on arbitrary triggers (i.e. time, loca-
tion or any other detected change), and PACO only supports
time-based triggers.

» Only mCerebrum, LAMP, movisensXS, mEMA and AwarNS have
support for the delivery of timely interventions based on time-
based and data-based triggers. Here, open-source framework so-
lutions (mCerebrum and AwarNS) have the advantage of al-
lowing the implementation of server-agnostic triggers, although
mCerebrum requires implementing an app from scratch for that
purpose.
Only mCerebrum, LAMP, movisensXS and mEMA provide (some)
predefined health-specific functionalities, such as default psycho-
metric and/or cognitive tests, etc. AwarNS does not offer such
pre-cooked health or disorder-specific functionalities but instead
offers the basic building blocks that allow developers to focus on
the details of each concrete health use case, such as the logic of
health decisions based on collected or previously analysed data.

All solutions but AwarNS and CAMS, offer an out-of-the-box

tool for researchers to conduct studies. These two exceptions

(“No-code app” column in Table 2) come with application demon-

strators to test the features offered, yet no ready-to-use app is

available. Instead, both offer a flexible software framework, with
support for common functionality and features, which developers
can re-use and build upon to obtain custom solutions, suitable for

a wide variety of use cases.

All platform solutions, along with ODK, must be paired with a

server to work. AWARE makes this optional, but, when needed,

server sync is not server-agnostic, i.e., it must work with the

AWARE server. AwarNS, mCerebrum and CAMS are the only

server-agnostic solutions; AwarNS is the only solution that offers

fine-grained control over what data is stored and synced.

91

Table 2
Comparing the AwarNS Framework with existing solutions.

Design principles RU RU RU RU RU RU RU RU, VE, PR RU, VE, RL, VE, RL VE, RL VE RL, TE RL RL, TE
PR
Passive data
Category ~ Nature Name Supported Active data Assessment Intervention ~ Health- No-code app Web Server sync On-device Background Single Modular Automated Maturity Proven
platforms?® collection collection delivery delivery specific dashboard analysis behaviour app design testing efficacy
features support
AwarNS A v v v v xb x¢ X Optional, Complete Opportunis- v v v Recent [63-65]
server-agnostic, tic
fine-grained
” g ODK(-X) A W) X (€3] X X v v Required None None v X v Established [66,671
8 5 [42]
£ 2
g 5 AWARE [43] A, d v v v X X v v Optional, Limited Continuous v W) X Established [68-70]
E & AWARE-server (cannot
only transform
data before
storage)
mCerebrum A v v v v v v Under Optional, Complete Continuous X v X Intermediate [71]
[44] development server-agnostic
CAMS [45] Al v v v X X x¢ X Optional, Limited None v v v Recent [72]
server-agnostic (transform
data only)
PACO [46] Al v X (2] X X v v Required None None X Intermediate [73]
9
; Sensus [47] Al v v v X X v X Required None None X Established [74]
o
5 RADAR-base A v v v X X v v Required None 0S-driven® X X Established [75,76]
E = [48]
3 o
£
& BEIWE [49] Al v v v X X v v Required None Continuous X X Intermediate [77]
)
LAMP [50] A 1 v v v v v v v Required None Continuous X X Intermediate [78]
§ CommCare A, WB v x v X X v v Required None N/Df v X N/Df Established [79]
g [51]
g
S movisensXS A v v v v v v v Required None N/Df v X N/Df Established [80-82]
[52]
mEMA [53] A, I v v v v v v v Required None N/Df v x N/Df Established [83,84]

A = Android; I = i0S; WB = Web Browser.

b Allows for easy implementation of health decisions as simple functions taking collected and/or analysed data as input or using custom machine learning models.
CFeature demo available.

dNot all features are available.

€Uses system-wide inexact, non-deterministic, delayed alarms.

fNo data. Source code not available.

‘D 12 2049d-2o[PZU0D Y

6SEYOI (€20Z) Y1 soupuLiofu] [pa1pauiolg fo jpumor

A. Gonzdlez-Pérez et al.

+ AwarNS is the only solution that offers complete freedom to run
any code right after data capture (and before it is stored), a fea-
ture that can be used to filter and transform data or implement on-
device just-in-time analyses for momentary interventions. AWARE
and CAMS offer limited support for just-collected data analysis.
In AWARE, developers can implement plugins to perform actions
on top of the acquired data, but the hard coupling between data
capture, storage and upload prevents these plugins from avoiding
the upload of certain sensitive data before it is transformed.
In CAMS, post-capture code execution is limited to performing
basic data transformation and filtering before data storage and
uploading. Conceptually, mCerebrum also offers full flexibility
but forces the developer to implement a dedicated app for that
purpose.

AwarNS is the only solution to offer opportunistic, alarm-based,
background scheduling of tasks. AWARE, mCerebrum, BEIWE
and LAMP also function in the background; however, they use a
continuous service to gather data while the application view is not
open or in the background, a method that has its disadvantages,
i.e., it is not reliable because the OS regularly kills long-lived
services and it is more battery intensive [20]. RADAR-base relies
on alarms for task scheduling too but uses the inexact type, which
raises based on OS convenience, thus making data sampling tasks
unreliable [20]. In CAMS, all sensing modules but the location
module require the main application screen to be open to work,
which may lead to missing data if the user forgets to open the
app or inadvertently closes it. Furthermore, it increases battery
consumption and overall phone resource usage and is arguably
more intrusive than triggering the app to run in the background
for periodic short-lived sensing tasks. Sensus works in a similar
way, where all the data collection features are tied to user in-
terface components that must be disabled to implement custom
interfaces [45].

AWARE and mCerebrum partly follow a modular design, while
AwarNS and CAMS follow a completely modular design. AWARE
exposes a monolithic architecture, with support for external plu-
gins to extend its core functionality. At the other end of the
spectrum, mCerebrum encapsulates each module in a separate,
independent app, which means it is not self-contained and re-
quires multiple apps to work. Installation is cumbersome, and
technically, the effort to successfully configure a series of apps to
consistently run in the background on recent Android versions is
not negligible [20,21]. Added to this, keeping users interested in
individual applications is already difficult [85], therefore, having
multiple apps to install, configure and interact with can be a
decisive factor in the abandonment of the end users.

All open-source solutions, except AWARE, mCerebrum, BEIWE
and LAMP, include automated tests along with source code, thus
increasing trust that the solutions will work as expected in the
conceived usage scenarios and reducing developer onboarding
friction by exposing how the individual software components
work internally in case any adjustments or extensions must be
implemented. Close-sourced solutions could not be analysed in
this regard.

6.4. Choosing a solution based on intended use and limitations

In summary, the result of this comparison shows that the AwarNS
framework stands out when context-based reactive features are re-
quired, as is the case for advanced mobile health interventions in, but
not limited to, behavioural, mental health and physiological health
monitoring. mCerebrum stands as a strong competitor to AwarNS, but
AwarNS outperforms mCerebrum in development and deployment sim-
plicity, background behaviour and on-device analysis, which are key
features for just-in-time interventions as highlighted by [41]. Neverthe-
less, in less demanding usage scenarios, other solutions may be a better

17

Journal of Biomedical Informatics 141 (2023) 104359

fit. For example, for mHealth apps that only require active data collec-
tion, possibly in combination with passive data collection tied to the
actively collected data, any of the commercial platforms (i.e., Comm-
Care, movisensXS and mEMA), ODK, PACO or Sensus are probably a
better option due to the availability of ready-to-use components for
manual input. For applications mainly involving the collection of pas-
sive data, visualised and exported quickly (i.e., via a web dashboard),
and requiring none or almost no custom functionality, RADAR-base,
BEIWE, LAMP or AWARE with server deployment and the default
client app are a good option. Apps that are centred on the delivery
of well-established health tests or data analyses should particularly
consider LAMP, movisensXS, mEMA or mCerebrum, as these have some
pre-defined health-specific artefacts available. Studies or applications
in which it is not necessary to monitor, evaluate or intervene in
the patient’s behaviour on a regular basis, i.e. context-independent
mHealth apps such as patient management apps, treatment diaries, etc.,
should simply consider standard reusable user interface component
solutions. The AwarNS Framework is the tool of choice for mHealth
apps that require reliable passive and active data collection, possibly
involving local (on-phone) analysis of the collected data to provide
timely interventions, and/or have high expectations to bring them into
clinical practice.

7. Conclusion

In this article, we presented the AwarNS Framework, developed
in the context of health and mental health. It implements the sense-
analyse-act paradigm, and is aimed at easing the development of mobile
applications that regularly sample the users and their environment
(sense), analyse this data on-device or server-side (analyse), and per-
form reactive interventions based on this analysis (act). The framework
is based on the design principles of reusability, reliability, privacy,
versatility and testability. It follows a completely modular architecture,
where a core package provides reliable, background task scheduling,
and on top of this, optional modules provide specific sensing, analysis
or intervention tasks. The framework comes with built-in modules to
facilitate the sensing tasks of passively capturing the phone’s location,
scanning nearby Wi-Fi and Bluetooth devices, detecting physical activ-
ity changes, collecting samples from smartphone’s and smartwatch’s
sensors, sampling the phone’s battery level and actively requesting
users’ input through various pre-defined forms (e.g. confirmation, mul-
tiple choice, free answers). The framework also comes with modules
to perform geofencing analysis over the captured locations, and run
machine-learning models on top of the collected samples for pattern
recognition and prediction. It includes a module to locally persist,
export and remotely synchronise the information generated by the
framework. It comes with a notifications module that facilitates the
delivery of assessments and interventions. In addition, it includes a
tracing module that facilitates debugging and error reporting in com-
plex task workflows. Last but not least, it allows the developers to
implement their own sensing, analysis, acting and common features,
i.e., the framework is completely extensible.

AwarNS stands out for working transparently in the background,
allowing to perform complex custom data analysis, data filtering and
transformation tasks right on the phone, even offline, acquiring both
active and passive data and delivering both assessments and interven-
tions. These can be triggered time-based, or based on the collected
data or the results of the conducted analyses. AwarNS is not an out-of-
the-box or no-code solution, i.e., it does not come with a ready-made
and (limitedly) configurable mobile application and Web dashboard.
Instead, it is a software framework that provides developers with
the basic building blocks to develop sense-analyse-act context-aware
reactive (mHealth) mobile applications.

AwarNS has been used to implement a variety of mobile appli-
cations applied in clinical practice, addressing different health and
mental health assessments and interventions. Among them, presented

A. Gonzdlez-Pérez et al.

in this article, a mobile application that applies geofencing based on the
smartphone’s GPS sensor, to deliver psycho-educational notifications
when the patients enter or leave an area of interest (i.e. panic disorder,
agoraphobia, gambling disorder), an application that instruments the
TUG test using smartwatch IMU sensors, which show promising results
when compared to manual tests, and an application that allows detailed
guided exposure therapy in places that provoke emotional discomfort.

As future work, we plan to expand the framework’s features, both
in sensing (i.e. support additional sensors), analysis (i.e. built-in vs
external analysis) and acting (i.e. novel intervention modules). We
will also evaluate the possibility of extracting and publishing, as new
independent modules, concrete health features from the implemented
and future applications. All are possible due to the extensibility of the
AwarNS framework. In this sense, we also plan to continue maintaining
and improving the current functionality of the framework, both at the
core and in the different modules. Application-wise, we foresee the use
of AwarNS as a basis of a variety of modern mobile health solutions,
which sense the users and their environment, provide custom analysis
to yield (mental) health markers, and perform just-in-time interventions
based on the performed analysis. Nevertheless, AwarNS is a versatile
framework, not limited to health. We foresee applications in other areas
where the sense-analyse-act paradigm is applicable, not only to track
people (e.g., to conduct behaviour studies, passive crowdsourcing, etc.),
but also to monitor and activate objects with embedded or attached
Android-based sensing devices. For example, in fleet management, asset
tracking or B2C services; scenarios that involve observing and reacting
to changes in the status of certain assets (e.g. goods) throughout their
lifecycle.

Software access and code availability

The AwarNS framework is completely open for anyone to use. It has
been published both to GitHub' and Zenodo [37]. The code repository
contains extensive documentation on the use and extension of the
framework, and a demo application, to immediately test the features
that the framework offers.

CRediT authorship contribution statement

Alberto Gonzalez-Pérez: Conceptualization, Methodology, Soft-
ware, Formal analysis, Investigation, Writing - original draft,
Visualization. Miguel Matey-Sanz: Software, Validation, Writing —
review & editing, Visualization. Carlos Granell: Conceptualization,
Methodology, Validation, Resources,Writing — review & editing,
Supervision, Project administration, Funding acquisition. Laura
Diaz-Sanahuja: Conceptualization, Resources,Writing - review &
editing. Juana Breton-Lopez: Conceptualization, Resources, Writing
- review & editing, Supervision. Sven Casteleyn: Conceptualization,
Methodology, Validation, Resources,Writing - review & editing,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowledgements

Alberto Gonzalez-Pérez and Miguel Matey-Sanz are funded by the
Spanish Ministry of Universities [grants FPU17/03832 and

FPU19/05352]. This study was supported by grant PID2020-120250RB-
100 (SyMptOMS-ET) funded by MCIN/AEI/10.13039/501100011033.

1 https://github.com/GeoTecINIT/awarns-framework

18

Journal of Biomedical Informatics 141 (2023) 104359
Appendix A. Supplementary data

Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.jbi.2023.104359.
References

[1] Smartphone wusers 2026, 2022, https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide. (Accessed 21 June 2022).
U.S. and world population clock, 2022, https://www.census.gov/popclock/world.
(Accessed 21 June 2022).
S. Jusoh, A survey on trend, opportunities and challenges of mHealth apps, Int.
J. Interact. Mob. Technol. 11 (6) (2017) 73-85, http://dx.doi.org/10.3991/ijim.
v11i6.7265.
L. Marzano, A. Bardill, B. Fields, K. Herd, D. Veale, N. Grey, P. Moran, The
application of mhealth to mental health: opportunities and challenges, Lancet
Psychiatry 2 (10) (2015) 942-948, http://dx.doi.org/10.1016/52215-0366(15)
00268-0.
A.E. Kazdin, Technology-based interventions and reducing the burdens of mental
illness: Perspectives and comments on the special series, Cogn. Behav. Pract. 22
(2015) 359-366, http://dx.doi.org/10.1016/j.cbpra.2015.04.004.
J. Li, A. Brar, The use and impact of digital technologies for and on the mental
health and wellbeing of indigenous people: a systematic review of empirical
studies, Comput. Hum. Behav. 126 (2022) 106988, http://dx.doi.org/10.1016/
$2215-0366(15)00268-0.
K.K. Weisel, L.M. Fuhrmann, M. Berking, H. Baumeister, P. Cuijpers, D.D. Ebert,
Standalone smartphone apps for mental health—a systematic review and meta-
analysis, npj Digit. Med. 2 (1) (2019) 1-10, http://dx.doi.org/10.1038/s41746-
019-0188-8.
Covid-19 growth in medical app downloads by country 2020, 2020,
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-
during-covid-pandemic-by-country/. (Accessed 21 June 2022).
S.J. Iribarren, K. Cato, L. Falzon, P.W. Stone, What is the economic evidence for
mHealth? A systematic review of economic evaluations of mHealth solutions,
PLoS One 12 (2) (2017) e0170581, http://dx.doi.org/10.1371/journal.pone.
0170581.
J. Kim, D. Marcusson-Clavertz, K. Yoshiuchi, J.M. Smyth, Potential benefits of
integrating ecological momentary assessment data into mhealth care systems,
BioPsychoSoc. Med. 13 (1) (2019) 1-6, http://dx.doi.org/10.1186/s13030-019-
0160-5.
Top funded digital health technologies 2020, 2020, https://www.statista.
com/statistics/736163/top-funded-health-it-technologies-worldwide/. (Accessed
21 June 2022).
J. Torous, J. Nicholas, M.E. Larsen, J. Firth, H. Christensen, Clinical review
of user engagement with mental health smartphone apps: evidence, theory and
improvements, Evid.-Based Ment. Health 21 (3) (2018) 116-119, http://dx.doi.
org/10.1136/eb-2018-102891.
K. Huckvale, J. Nicholas, J. Torous, M.E. Larsen, Smartphone apps for the
treatment of mental health conditions: status and considerations, Curr. Opin.
Psychol. 36 (2020) 65-70, http://dx.doi.org/10.1016/j.copsyc.2020.04.008.
A.J. Siegler, J. Knox, J.A. Bauermeister, J. Golinkoff, L. Hightow-Weidman, H.
Scott, Mobile app development in health research: pitfalls and solutions, mHealth
7 (2021) http://dx.doi.org/10.21037/mhealth-19-263.
D.D. Luxton, R.A. McCann, N.E. Bush, M.C. Mishkind, G.M. Reger, mHealth for
mental health: Integrating smartphone technology in behavioral healthcare., Prof.
Psychol. Res. Pract. 42 (6) (2011) 505, http://dx.doi.org/10.1037/a0024485.
J. Torous, S. Bucci, L.H. Bell, L.V. Kessing, M. Faurholt-Jepsen, P. Whelan,
A'F. Carvalho, M. Keshavan, J. Linardon, J. Firth, The growing field of digital
psychiatry: current evidence and the future of apps, social media, chatbots, and
virtual reality, World Psychiatry 20 (3) (2021) 318-335, http://dx.doi.org/10.
1002/wps.20883.
I. Miralles, C. Granell, L. Diaz-Sanahuja, W. Van Woensel, J. Bretén-Lopez, A.
Mira, D. Castilla, S. Casteleyn, et al., Smartphone apps for the treatment of
mental disorders: systematic review, JMIR mHealth uHealth 8 (4) (2020) €14897,
http://dx.doi.org/10.2196,/14897.
D. Colombo, J. Ferndndez-Alvarez, A. Patané, M. Semonella, M. Kwiatkowska,
A. Garcia-Palacios, P. Cipresso, G. Riva, C. Botella, Current state and future di-
rections of technology-based ecological momentary assessment and intervention
for major depressive disorder: a systematic review, J. Clin. Med. 8 (4) (2019)
465, http://dx.doi.org/10.3390/jcm8040465.
C. Baxter, J.-A. Carroll, B. Keogh, C. Vandelanotte, Assessment of mobile health
apps using built-in smartphone sensors for diagnosis and treatment: Systematic
survey of apps listed in international curated health app libraries, JMIR mHealth
uHealth 8 (2) (2020) e16741, http://dx.doi.org/10.2196,/16741.
A. Gonzélez-Pérez, M. Matey-Sanz, C. Granell, S. Casteleyn, Using mobile
devices as scientific measurement instruments: reliable android task scheduling,
Pervasive Mob. Comput. 81 (2022) 101550, http://dx.doi.org/10.1016/j.pmc;j.
2022.101550.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

https://github.com/GeoTecINIT/awarns-framework
https://doi.org/10.1016/j.jbi.2023.104359
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.census.gov/popclock/world
http://dx.doi.org/10.3991/ijim.v11i6.7265
http://dx.doi.org/10.3991/ijim.v11i6.7265
http://dx.doi.org/10.3991/ijim.v11i6.7265
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1016/j.cbpra.2015.04.004
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1016/S2215-0366(15)00268-0
http://dx.doi.org/10.1038/s41746-019-0188-8
http://dx.doi.org/10.1038/s41746-019-0188-8
http://dx.doi.org/10.1038/s41746-019-0188-8
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-during-covid-pandemic-by-country/
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-during-covid-pandemic-by-country/
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-during-covid-pandemic-by-country/
http://dx.doi.org/10.1371/journal.pone.0170581
http://dx.doi.org/10.1371/journal.pone.0170581
http://dx.doi.org/10.1371/journal.pone.0170581
http://dx.doi.org/10.1186/s13030-019-0160-5
http://dx.doi.org/10.1186/s13030-019-0160-5
http://dx.doi.org/10.1186/s13030-019-0160-5
https://www.statista.com/statistics/736163/top-funded-health-it-technologies-worldwide/
https://www.statista.com/statistics/736163/top-funded-health-it-technologies-worldwide/
https://www.statista.com/statistics/736163/top-funded-health-it-technologies-worldwide/
http://dx.doi.org/10.1136/eb-2018-102891
http://dx.doi.org/10.1136/eb-2018-102891
http://dx.doi.org/10.1136/eb-2018-102891
http://dx.doi.org/10.1016/j.copsyc.2020.04.008
http://dx.doi.org/10.21037/mhealth-19-263
http://dx.doi.org/10.1037/a0024485
http://dx.doi.org/10.1002/wps.20883
http://dx.doi.org/10.1002/wps.20883
http://dx.doi.org/10.1002/wps.20883
http://dx.doi.org/10.2196/14897
http://dx.doi.org/10.3390/jcm8040465
http://dx.doi.org/10.2196/16741
http://dx.doi.org/10.1016/j.pmcj.2022.101550
http://dx.doi.org/10.1016/j.pmcj.2022.101550
http://dx.doi.org/10.1016/j.pmcj.2022.101550

A. Gonzdlez-Pérez et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Béhr, G.-C. Haas, F. Keusch, F. Kreuter, M. Trappmann, Missing data
and other measurement quality issues in mobile geolocation sensor data,
Soc. Sci. Comput. Rev. (2021) 0894439320944118, http://dx.doi.org/10.1177/
0894439320944118.

A. Gonzalez-Pérez, 1. Miralles, C. Granell, S. Casteleyn, Technical challenges to
deliver sensor-based psychological interventions using smartphones, in: Adjunct
Proceedings of the 2019 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers, 2019, pp. 915-920, http://dx.doi.org/10.
1145/3341162.3346271.

S. Liu, H. La, A. Willms, R.E. Rhodes, et al., A “No-Code” app design platform
for mobile health research: Development and usability study, JMIR Form. Res.
6 (8) (2022) 38737, http://dx.doi.org/10.2196/38737.

C. Jacob, A. Sanchez-Vazquez, C. Ivory, et al., Factors impacting clinicians’
adoption of a clinical photo documentation app and its implications for clinical
workflows and quality of care: qualitative case study, JMIR mHealth uHealth 8
(9) (2020) €20203, http://dx.doi.org/10.2196,/20203.

A. Ahmad, K. Li, C. Feng, S.M. Asim, A. Yousif, S. Ge, An empirical study of
investigating mobile applications development challenges, IEEE Access 6 (2018)
17711-17728, http://dx.doi.org/10.1109/ACCESS.2018.2818724.

Software developers’ biggest challenges 2022, 2022, https://www.revealbi.io/
whitepapers/software-developers-biggest-challenges. (Accessed 21 June 2022).
K.L. Fortuna, M.C. Lohman, L.E. Gill, M.L. Bruce, S.J. Bartels, Adapting a
psychosocial intervention for smartphone delivery to middle-aged and older
adults with serious mental illness, Am. J. Geriatr. Psychiatry 25 (8) (2017)
819-828, http://dx.doi.org/10.1016/j.jagp.2016.12.007.

S. Barnett, K. Huckvale, H. Christensen, S. Venkatesh, K. Mouzakis, R. Vasa, et
al., Intelligent sensing to inform and learn (InSTIL): A scalable and governance-
aware platform for universal, smartphone-based digital phenotyping for research
and clinical applications, J. Med. Internet Res. 21 (11) (2019) e16399, http:
//dx.doi.org/10.2196,/16399.

M. Andrachuk, M. Marschke, C. Hings, D. Armitage, Smartphone technologies
supporting community-based environmental monitoring and implementation: a
systematic scoping review, Biol. Cons. 237 (2019) 430-442, http://dx.doi.org/
10.1016/j.biocon.2019.07.026.

A. Kuerbis, A. Mulliken, F. Muench, A.A. Moore, D. Gardner, Older adults and
mobile technology: Factors that enhance and inhibit utilization in the context of
behavioral health, CUNY Acad. Work. (2017) http://dx.doi.org/10.15761/MHAR.
1000136.

J.M. Robillard, T.L. Feng, A.B. Sporn, J.-A. Lai, C. Lo, M. Ta, R. Nadler,
Availability, readability, and content of privacy policies and terms of agreements
of mental health apps, Internet Interv. 17 (2019) 100243, http://dx.doi.org/10.
1016/j.invent.2019.100243.

M. Bauer, T. Glenn, J. Geddes, M. Gitlin, P. Grof, L.V. Kessing, S. Monteith,
M. Faurholt-Jepsen, E. Severus, P.C. Whybrow, Smartphones in mental health: a
critical review of background issues, current status and future concerns, Int. J.
Bipolar Disord. 8 (1) (2020) 1-19, http://dx.doi.org/10.1186/540345-019-0164-
X.

L. Nurgalieva, D. O’Callaghan, G. Doherty, Security and privacy of mHealth
applications: a scoping review, IEEE Access 8 (2020) 104247-104268, http:
//dx.doi.org/10.1109/ACCESS.2020.2999934.

A. van Haasteren, F. Gille, M. Fadda, E. Vayena, Development of the mHealth
app trustworthiness checklist, Digit. Health 5 (2019) 2055207619886463, http:
//dx.doi.org/10.1177/2055207619886463.

D.A. Adler, F. Wang, D.C. Mohr, D. Estrin, C. Livesey, T. Choudhury, A call
for open data to develop mental health digital biomarkers, BJPsych Open 8 (2)
(2022) 58, http://dx.doi.org/10.1192/bjo.2022.28.

C. Granell, A. Kamilaris, A. Kotsev, F.O. Ostermann, S. Trilles, Internet of things,
in: H. Guo, M.F. Goodchild, A. Annoni (Eds.), Manual of Digital Earth, Springer
Singapore, Singapore, 2020, pp. 387-423, http://dx.doi.org/10.1007/978-981-
32-9915-3_11.

A. Gonzalez, M. Matey, C. Granell, GeoTecINIT/Awarns-Framework, Zenodo,
2022, http://dx.doi.org/10.5281/zenodo.7100416.

J.B. Torous, Focusing on the future of mobile mental health and smartphone
interventions, Psychiatr. Serv. 69 (9) (2018) 945, http://dx.doi.org/10.1176/
appi.ps.201800308.

B. Aryana, L. Brewster, J.A. Nocera, Design for mobile mental health: an
exploratory review, Health Technol. 9 (4) (2019) 401-424, http://dx.doi.org/
10.1007/512553-018-0271-1.

L. Piwek, D.A. Ellis, A. Sally, Can programming frameworks bring smartphones
into the mainstream of psychological science? Front. Psychol. 7 (2016) 1252,
http://dx.doi.org/10.3389/fpsyg.2016.01252.

D. Kumar, S. Jeuris, J.E. Bardram, N. Dragoni, Mobile and wearable sensing
frameworks for mHealth studies and applications: a systematic review, ACM
Trans. Comput. Healthc. 2 (1) (2020) 1-28, http://dx.doi.org/10.1145/3422158.
P. Loola Bokonda, K. Ouazzani-Touhami, N. Souissi, Mobile data collection using
open data kit, in: International Conference Europe Middle East & North Africa
Information Systems and Technologies to Support Learning, Springer, 2019, pp.
543-550, http://dx.doi.org/10.1007/978-3-030-36778-7_60.

19

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Journal of Biomedical Informatics 141 (2023) 104359

D. Ferreira, V. Kostakos, A.K. Dey, AWARE: mobile context instrumentation
framework, Front. ICT 2 (2015) 6, http://dx.doi.org/10.3389/fict.2015.00006.
S.M. Hossain, T. Hnat, N. Saleheen, N.J. Nasrin, J. Noor, B.-J. Ho, T. Condie,
M. Srivastava, S. Kumar, mCerebrum: a mobile sensing software platform
for development and validation of digital biomarkers and interventions, in:
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
2017, pp. 1-14, http://dx.doi.org/10.1145/3131672.3131694.

J.E. Bardram, The CARP mobile sensing framework-A cross-platform, reactive,
programming framework and runtime environment for digital phenotyping,
2020, http://dx.doi.org/10.48550/arXiv.2006.11904, arXiv preprint arXiv:2006.
11904.

K.K. Baxter, A. Avrekh, B. Evans, Using experience sampling methodology to
collect deep data about your users, in: Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems, 2015,
Pp. 2489-2490, http://dx.doi.org/10.1145/2702613.2706668.

H. Xiong, Y. Huang, L.E. Barnes, M.S. Gerber, Sensus: a cross-platform,
general-purpose system for mobile crowdsensing in human-subject studies, in:
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2016, pp. 415-426, http://dx.doi.org/10.1145/2971648.
2971711.

Y. Ranjan, Z. Rashid, C. Stewart, P. Conde, M. Begale, D. Verbeeck, S. Boettcher,
R. Dobson, A. Folarin, R.-C. Consortium, et al., RADAR-base: open source mobile
health platform for collecting, monitoring, and analyzing data using sensors,
wearables, and mobile devices, JMIR mHealth uHealth 7 (8) (2019) e11734,
http://dx.doi.org/10.2196/11734.

J.-P. Onnela, C. Dixon, K. Griffin, T. Jaenicke, L. Minowada, S. Esterkin, A. Siu, J.
Zagorsky, E. Jones, Beiwe: a data collection platform for high-throughput digital
phenotyping, J. Open Source Softw. 6 (68) (2021) 3417, http://dx.doi.org/10.
21105/joss.03417.

A. Vaidyam, J. Halamka, J. Torous, et al., Enabling research and clinical use
of patient-generated health data (the mindLAMP platform): digital phenotyping
study, JMIR mHealth uHealth 10 (1) (2022) e30557, http://dx.doi.org/10.2196/
30557.

CommCare by Dimagi: Data collection app, 2022, https://www.dimagi.com/
commcare/. (Accessed 21 June 2022).

Experience sampling - movisensXS, 2022, https://www.movisens.com/en/
products/movisensXS/. (Accessed 21 June 2022).

mEMA app, 2021, https://ilumivu.com/solutions/ecological-momentary-
assessment-app/. (Accessed 21 June 2022).

1. Miralles, C. Granell, L. Diaz-Sanahuja, W. Van Woensel, J. Bretén-Lépez, A.
Mira, D. Castilla, S. Casteleyn, Smartphone apps for the treatment of mental
disorders: Systematic review, JMIR Mhealth Uhealth 8 (4) (2020) €14897, http:
//dx.doi.org/10.2196/14897.

R.C. Martin, Agile Software Development: Principles, Patterns, and Practices,
Prentice Hall PTR, 2003, http://dx.doi.org/10.5555/515230.

K. Sahu, R. Srivastava, Revisiting software reliability, Data Manag. Anal. Innov.
(2019) 221-235, http://dx.doi.org/10.1007/978-981-13-1402-5_17.

M.T. Baldassarre, V.S. Barletta, D. Caivano, M. Scalera, Integrating security
and privacy in software development, Softw. Qual. J. 28 (3) (2020) 987-1018,
http://dx.doi.org/10.1007/s11219-020-09501-6.

S.U. Khan, A.W. Khan, F. Khan, M.A. Khan, T.K. Whangbo, Critical success
factors of component-based software outsourcing development from vendors’
perspective: A systematic literature review, IEEE Access 10 (2021) 1650-1658,
http://dx.doi.org/10.1109/ACCESS.2021.3138775.

H. Toivakka, T. Granlund, T. Poranen, Z. Zhang, Towards RegOps: A DevOps
pipeline for medical device software, in: International Conference on Product-
Focused Software Process Improvement, Springer, 2021, pp. 290-306, http:
//dx.doi.org/10.1007/978-3-030-91452-3_20.

L.S. Vailshery, Most used languages among software developers globally
2021, 2022, Statista, https://www.statista.com/statistics/793628/worldwide-
developer-survey-most-used-languages/.

P. Pascacio, S. Casteleyn, J. Torres-Sospedra, E.S. Lohan, J. Nurmi, Collaborative
indoor positioning systems: A systematic review, Sensors 21 (3) (2021) 1002,
http://dx.doi.org/10.3390/s21031002.

N.C. Jacobson, B. Feng, Digital phenotyping of generalized anxiety disorder:
using artificial intelligence to accurately predict symptom severity using wearable
sensors in daily life, Transl. Psychiatry 12 (1) (2022) 1-7, http://dx.doi.org/10.
1038/541398-022-02038-1.

I. Miralles, C. Granell, A. Garcia-Palacios, D. Castilla, A. Gonzélez-Pérez, S.
Casteleyn, J. Bretén-L6pez, Enhancing in vivo exposure in the treatment of
panic disorder and agoraphobia using location-based technologies: A case
study, Clin. Case Stud. 19 (2) (2020) 145-159, http://dx.doi.org/10.1177/
1534650119892900.

L. Dfaz-Sanahuja, I. Miralles, C. Granell, A. Mira, A. Gonzélez-Pérez, S. Casteleyn,
A. Garcia-Palacios, J. Bretén-Lépez, Client’s experiences using a location-based
technology ICT system during gambling treatments’ crucial components: A
qualitative study, Int. J. Environ. Res. Public Health 19 (7) (2022) 3769,
http://dx.doi.org/10.3390/ijerph19073769.

http://dx.doi.org/10.1177/0894439320944118
http://dx.doi.org/10.1177/0894439320944118
http://dx.doi.org/10.1177/0894439320944118
http://dx.doi.org/10.1145/3341162.3346271
http://dx.doi.org/10.1145/3341162.3346271
http://dx.doi.org/10.1145/3341162.3346271
http://dx.doi.org/10.2196/38737
http://dx.doi.org/10.2196/20203
http://dx.doi.org/10.1109/ACCESS.2018.2818724
https://www.revealbi.io/whitepapers/software-developers-biggest-challenges
https://www.revealbi.io/whitepapers/software-developers-biggest-challenges
https://www.revealbi.io/whitepapers/software-developers-biggest-challenges
http://dx.doi.org/10.1016/j.jagp.2016.12.007
http://dx.doi.org/10.2196/16399
http://dx.doi.org/10.2196/16399
http://dx.doi.org/10.2196/16399
http://dx.doi.org/10.1016/j.biocon.2019.07.026
http://dx.doi.org/10.1016/j.biocon.2019.07.026
http://dx.doi.org/10.1016/j.biocon.2019.07.026
http://dx.doi.org/10.15761/MHAR.1000136
http://dx.doi.org/10.15761/MHAR.1000136
http://dx.doi.org/10.15761/MHAR.1000136
http://dx.doi.org/10.1016/j.invent.2019.100243
http://dx.doi.org/10.1016/j.invent.2019.100243
http://dx.doi.org/10.1016/j.invent.2019.100243
http://dx.doi.org/10.1186/s40345-019-0164-x
http://dx.doi.org/10.1186/s40345-019-0164-x
http://dx.doi.org/10.1186/s40345-019-0164-x
http://dx.doi.org/10.1109/ACCESS.2020.2999934
http://dx.doi.org/10.1109/ACCESS.2020.2999934
http://dx.doi.org/10.1109/ACCESS.2020.2999934
http://dx.doi.org/10.1177/2055207619886463
http://dx.doi.org/10.1177/2055207619886463
http://dx.doi.org/10.1177/2055207619886463
http://dx.doi.org/10.1192/bjo.2022.28
http://dx.doi.org/10.1007/978-981-32-9915-3_11
http://dx.doi.org/10.1007/978-981-32-9915-3_11
http://dx.doi.org/10.1007/978-981-32-9915-3_11
http://dx.doi.org/10.5281/zenodo.7100416
http://dx.doi.org/10.1176/appi.ps.201800308
http://dx.doi.org/10.1176/appi.ps.201800308
http://dx.doi.org/10.1176/appi.ps.201800308
http://dx.doi.org/10.1007/s12553-018-0271-1
http://dx.doi.org/10.1007/s12553-018-0271-1
http://dx.doi.org/10.1007/s12553-018-0271-1
http://dx.doi.org/10.3389/fpsyg.2016.01252
http://dx.doi.org/10.1145/3422158
http://dx.doi.org/10.1007/978-3-030-36778-7_60
http://dx.doi.org/10.3389/fict.2015.00006
http://dx.doi.org/10.1145/3131672.3131694
http://dx.doi.org/10.48550/arXiv.2006.11904
http://arxiv.org/abs/2006.11904
http://arxiv.org/abs/2006.11904
http://arxiv.org/abs/2006.11904
http://dx.doi.org/10.1145/2702613.2706668
http://dx.doi.org/10.1145/2971648.2971711
http://dx.doi.org/10.1145/2971648.2971711
http://dx.doi.org/10.1145/2971648.2971711
http://dx.doi.org/10.2196/11734
http://dx.doi.org/10.21105/joss.03417
http://dx.doi.org/10.21105/joss.03417
http://dx.doi.org/10.21105/joss.03417
http://dx.doi.org/10.2196/30557
http://dx.doi.org/10.2196/30557
http://dx.doi.org/10.2196/30557
https://www.dimagi.com/commcare/
https://www.dimagi.com/commcare/
https://www.dimagi.com/commcare/
https://www.movisens.com/en/products/movisensXS/
https://www.movisens.com/en/products/movisensXS/
https://www.movisens.com/en/products/movisensXS/
https://ilumivu.com/solutions/ecological-momentary-assessment-app/
https://ilumivu.com/solutions/ecological-momentary-assessment-app/
https://ilumivu.com/solutions/ecological-momentary-assessment-app/
http://dx.doi.org/10.2196/14897
http://dx.doi.org/10.2196/14897
http://dx.doi.org/10.2196/14897
http://dx.doi.org/10.5555/515230
http://dx.doi.org/10.1007/978-981-13-1402-5_17
http://dx.doi.org/10.1007/s11219-020-09501-6
http://dx.doi.org/10.1109/ACCESS.2021.3138775
http://dx.doi.org/10.1007/978-3-030-91452-3_20
http://dx.doi.org/10.1007/978-3-030-91452-3_20
http://dx.doi.org/10.1007/978-3-030-91452-3_20
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
http://dx.doi.org/10.3390/s21031002
http://dx.doi.org/10.1038/s41398-022-02038-1
http://dx.doi.org/10.1038/s41398-022-02038-1
http://dx.doi.org/10.1038/s41398-022-02038-1
http://dx.doi.org/10.1177/1534650119892900
http://dx.doi.org/10.1177/1534650119892900
http://dx.doi.org/10.1177/1534650119892900
http://dx.doi.org/10.3390/ijerph19073769

A. Gonzdlez-Pérez et al.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

M. Matey-Sanz, A. Gonzalez-Pérez, S. Casteleyn, C. Granell, Instrumented timed
up and go test using inertial sensors from consumer wearable devices, in:
International Conference on Artificial Intelligence in Medicine, Springer, 2022,
pp. 144-154, http://dx.doi.org/10.1007/978-3-031-09342-5_14.

B. Hashemi, S. Ali, R. Awaad, L. Soudi, L. Housel, S.J. Sosebee, Facilitating
mental health screening of war-torn populations using mobile applications, Soc.
Psychiatry Psychiatr. Epidemiol. 52 (1) (2017) 27-33, http://dx.doi.org/10.
1007/500127-016-1303-7.

A. Bante, A. Mersha, Z. Zerdo, B. Wassihun, T. Yeheyis, Comorbid anxiety and
depression: Prevalence and associated factors among pregnant women in Arba
Minch zuria district, gamo zone, southern Ethiopia, PLoS One 16 (3) (2021)
0248331, http://dx.doi.org/10.1371/journal.pone.0248331.

A. Doryab, D.K. Villalba, P. Chikersal, J.M. Dutcher, M. Tumminia, X. Liu, S.
Cohen, K. Creswell, J. Mankoff, J.D. Creswell, et al., Identifying behavioral
phenotypes of loneliness and social isolation with passive sensing: statistical
analysis, data mining and machine learning of smartphone and fitbit data, JMIR
mHealth uHealth 7 (7) (2019) e13209, http://dx.doi.org/10.2196,/13209.

S. Bae, D. Ferreira, B. Suffoletto, J.C. Puyana, R. Kurtz, T. Chung, A.K. Dey,
Detecting drinking episodes in young adults using smartphone-based sensors,
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (2) (2017) 1-36,
http://dx.doi.org/10.1145/3090051.

1. Moshe, Y. Terhorst, K. Opoku Asare, L.B. Sander, D. Ferreira, H. Baumeister,
D.C. Mohr, L. Pulkki-Raback, Predicting symptoms of depression and anxiety
using smartphone and wearable data, Front. Psychiatry 12 (2021) 625247,
http://dx.doi.org/10.3389/fpsyt.2021.625247.

S.L. Battalio, D.E. Conroy, W. Dempsey, P. Liao, M. Menictas, S. Murphy, I.
Nahum-Shani, T. Qian, S. Kumar, B. Spring, Sense2Stop: a micro-randomized trial
using wearable sensors to optimize a just-in-time-adaptive stress management
intervention for smoking relapse prevention, Contemp. Clin. Trials 109 (2021)
106534, http://dx.doi.org/10.1016/j.cct.2021.106534.

D.A. Rohani, A. Quemada Lopategui, N. Tuxen, M. Faurholt-Jepsen, L.V. Kess-
ing, J.E. Bardram, MUBS: A personalized recommender system for behavioral
activation in mental health, in: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1-13, http://dx.doi.org/10.
1145/3313831.3376879.

C.S. Chan, W.A. Van Tilburg, E.R. Igou, C. Poon, K.Y. Tam, V.U. Wong, S.
Cheung, Situational meaninglessness and state boredom: Cross-sectional and
experience-sampling findings, Motiv. Emot. 42 (4) (2018) 555-565, http://dx.
doi.org/10.1007/511031-018-9693- 3.

P.I. Chow, K. Fua, Y. Huang, W. Bonelli, H. Xiong, L.E. Barnes, B.A. Teachman,
Using mobile sensing to test clinical models of depression, social anxiety, state
affect, and social isolation among college students, J. Med. Internet Res. 19 (3)
(2017) e6820, http://dx.doi.org/10.2196/jmir.6820.

S. Sun, A.A. Folarin, Y. Ranjan, Z. Rashid, P. Conde, C. Stewart, N. Cummins,
F. Matcham, G. Dalla Costa, S. Simblett, et al., Using smartphones and wearable
devices to monitor behavioral changes during COVID-19, J. Med. Internet Res.
22 (9) (2020) €19992, http://dx.doi.org/10.2196/19992.

20

[76]

771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Journal of Biomedical Informatics 141 (2023) 104359

C.L. Stewart, Z. Rashid, Y. Ranjan, S. Sun, R.J. Dobson, A.A. Folarin, RADAR-
base: major depressive disorder and epilepsy case studies, in: Proceedings of the
2018 ACM International Joint Conference and 2018 International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers, 2018, pp.
1735-1743, http://dx.doi.org/10.1145/3267305.3267540.

M. Straczkiewicz, H. Wisniewski, K.W. Carlson, Z. Heidary, J. Knights, M.
Keshavan, J.-P. Onnela, J. Torous, Combining digital pill and smartphone data
to quantify medication adherence in an observational psychiatric pilot study,
Psychiatry Res. 315 (2022) 114707, http://dx.doi.org/10.1016/j.psychres.2022.
114707.

J. Melcher, S. Patel, L. Scheuer, R. Hays, J. Torous, Assessing engagement
features in an observational study of mental health apps in college students,
Psychiatry Res. 310 (2022) 114470, http://dx.doi.org/10.1016/j.psychres.2022.
114470.

A.M. Bauer, S. Hodsdon, J.M. Bechtel, J.C. Fortney, Applying the principles for
digital development: case study of a smartphone app to support collaborative
care for rural patients with posttraumatic stress disorder or bipolar disorder, J.
Med. Internet Res. 20 (6) (2018) €10048, http://dx.doi.org/10.2196/10048.

E. Miihlbauer, M. Bauer, U. Ebner-Priemer, P. Ritter, H. Hill, F. Beier, N.
Kleindienst, E. Severus, Effectiveness of smartphone-based ambulatory assessment
(SBAA-BD) including a predicting system for upcoming episodes in the long-term
treatment of patients with bipolar disorders: study protocol for a randomized
controlled single-blind trial, BMC Psychiatry 18 (1) (2018) 1-9, http://dx.doi.
org/10.1186/s12888-018-1929-y.

L.H. Bell, S.F. Fielding-Smith, M. Hayward, S.L. Rossell, M.H. Lim, J. Farhall, N.
Thomas, Smartphone-based ecological momentary assessment and intervention
in a coping-focused intervention for hearing voices (SAVVy): study protocol for
a pilot randomised controlled trial, Trials 19 (1) (2018) 1-13, http://dx.doi.org/
10.1186/513063-018-2607-6.

D.R. Kolar, F. Hammerle, E. Jenetzky, M. Huss, Smartphone-enhanced low-
threshold intervention for adolescents with Anorexia Nervosa (SELTIAN) waiting
for outpatient psychotherapy: study protocol of a randomised controlled trial,
BMJ Open 7 (10) (2017) e018049, http://dx.doi.org/10.1136/bmjopen-2017-
018049.

C. Nuij, W. van Ballegooijen, J. Ruwaard, D. De Beurs, J. Mokkenstorm, E. van
Duijn, R.F. de Winter, R.C. O’Connor, J.H. Smit, H. Riper, et al., Smartphone-
based safety planning and self-monitoring for suicidal patients: Rationale and
study protocol of the CASPAR (Continuous assessment for suicide prevention and
research) study, Internet Interv. 13 (2018) 16-23, http://dx.doi.org/10.1016/j.
invent.2018.04.005.

B.L. Stevenson, C.E. Blevins, E. Marsh, S. Feltus, M. Stein, A.M. Abrantes,
An ecological momentary assessment of mood, coping and alcohol use among
emerging adults in psychiatric treatment, Am. J. Drug Alcohol Abuse 46 (5)
(2020) 651-658, http://dx.doi.org/10.1080/00952990.2020.1783672.

L. Ceci, Mobile app user retention rate by category 2020, 2022, Statista, https:
//www.statista.com/statistics/259329/ios-and-android-app-user-retention-rate/.

http://dx.doi.org/10.1007/978-3-031-09342-5_14
http://dx.doi.org/10.1007/s00127-016-1303-7
http://dx.doi.org/10.1007/s00127-016-1303-7
http://dx.doi.org/10.1007/s00127-016-1303-7
http://dx.doi.org/10.1371/journal.pone.0248331
http://dx.doi.org/10.2196/13209
http://dx.doi.org/10.1145/3090051
http://dx.doi.org/10.3389/fpsyt.2021.625247
http://dx.doi.org/10.1016/j.cct.2021.106534
http://dx.doi.org/10.1145/3313831.3376879
http://dx.doi.org/10.1145/3313831.3376879
http://dx.doi.org/10.1145/3313831.3376879
http://dx.doi.org/10.1007/s11031-018-9693-3
http://dx.doi.org/10.1007/s11031-018-9693-3
http://dx.doi.org/10.1007/s11031-018-9693-3
http://dx.doi.org/10.2196/jmir.6820
http://dx.doi.org/10.2196/19992
http://dx.doi.org/10.1145/3267305.3267540
http://dx.doi.org/10.1016/j.psychres.2022.114707
http://dx.doi.org/10.1016/j.psychres.2022.114707
http://dx.doi.org/10.1016/j.psychres.2022.114707
http://dx.doi.org/10.1016/j.psychres.2022.114470
http://dx.doi.org/10.1016/j.psychres.2022.114470
http://dx.doi.org/10.1016/j.psychres.2022.114470
http://dx.doi.org/10.2196/10048
http://dx.doi.org/10.1186/s12888-018-1929-y
http://dx.doi.org/10.1186/s12888-018-1929-y
http://dx.doi.org/10.1186/s12888-018-1929-y
http://dx.doi.org/10.1186/s13063-018-2607-6
http://dx.doi.org/10.1186/s13063-018-2607-6
http://dx.doi.org/10.1186/s13063-018-2607-6
http://dx.doi.org/10.1136/bmjopen-2017-018049
http://dx.doi.org/10.1136/bmjopen-2017-018049
http://dx.doi.org/10.1136/bmjopen-2017-018049
http://dx.doi.org/10.1016/j.invent.2018.04.005
http://dx.doi.org/10.1016/j.invent.2018.04.005
http://dx.doi.org/10.1016/j.invent.2018.04.005
http://dx.doi.org/10.1080/00952990.2020.1783672
https://www.statista.com/statistics/259329/ios-and-android-app-user-retention-rate/
https://www.statista.com/statistics/259329/ios-and-android-app-user-retention-rate/
https://www.statista.com/statistics/259329/ios-and-android-app-user-retention-rate/

	AwarNS: A framework for developing context-aware reactive mobile applications for health and mental health
	Introduction
	AwarNS Framework: Design principles
	Versatility
	Reliability
	Privacy
	Re-usability
	Testability

	AwarNS Framework: Design and Building Blocks
	AwarNS Framework: Implementation
	Common modules
	The Core Package
	The core at the Core: the NTD library
	Simplifying data collection processes: Provider Task Templates and Data Providers
	A common specification to represent data: Records
	Enforcing task and module isolation: Task Sandboxing and Plugin Loaders
	The Tracing module

	Sensing modules
	Analysis modules
	The Geofencing module
	The ML Kit module

	Acting modules
	The Persistence module
	The Notifications module

	Extending the Framework

	Real-life use cases
	SyMptOMS: Geolocated psycho-educational notifications
	TUG Test: Smartphone- and wearable-based instrumented Timed Up and Go test
	SyMptOMS-ET: in-vivo exposure therapy with timely assessments and rule-based EMI

	Qualitative comparison with existing solutions
	Related solutions
	Comparison criteria
	Comparing AwarNS to existing solutions
	Choosing a solution based on intended use and limitations

	Conclusion
	Software access and code availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A. Supplementary data
	References

