UNIVERSITAT
JAUME-I

Application of virtual reality to the
Rubik’s cube learning

José Fenollera Faustino

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume I

May 25, 2022

Supervised by: Miguel Chover Sellés

@0l

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my mother, my father, my brother, my friends, my
family and all the people who have supported me during these years
far away from home.

To my uncle Pedro, who
has helped and supported me when I have had problems in a subject.

ACKNOWLEDGMENTS

First of all, I would like to thank my Final Degree Work supervisor, Miguel Chover
Sellés, for his support on the project from the beginning and during its development.

I also want to thank the professor José Martinez Sotoca, who sadly passed away this
year, for his help and support.

ABSTRACT

This document is the Final Degree Project report of José Fenollera Faustino of the Video
Game Design and Development degree.

The project consists of a virtual reality video game tutorial that teaches the user
how to solve the Rubik’s cube step by step. There are various modes, including a free
one and tutorial.

1ii

CONTENTS

Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Work Motivation e 1
1.2 Objectives 1
1.3 Environment and Initial State 2
2 Planning and resources evaluation 3
2.1 Planningo 3
2.2 Resource Evaluation, 4
3 Game Design Document 5
3.1 Introduction e e e 5
3.2 Level Design e 6
3.3 Gameplay e 6
3.4 ATt . 6
3.5 Sound and Music 8
3.6 User Interface 8
3.7 Game Controls e 10
4 Functional and Technical Specification 13
4.1 System Design 13
4.2 Game Mechanics e 21
4.3 User Interface e 21
4.4 Art ... e 23
4.5 Level Requirements 24
5 Results 27
5.1 Work Development 27
5.2 Planning Control 40

vi

Contents

5.3 Changes, Difficulties and Solutions

54 Results.

6 Conclusions

6.1 Objectives Achieved
6.2 Futurework

7 Bibliography

LIST OF FIGURES

3.1 Rubik’scube.
3.2 Example of the tutorial.
3.3 The two arrows used in the tutorial.
3.4 Twohands. e
3.5 The Main menu. e e e e e e
3.6 The Play menu. o e
3.7 The Controls menu. e
3.8 The Controls menu of the Free mode. The difference is below on the left,
showing how to scramble with the X button.
3.9 The Help menu. 0 0 0 i i e e e e e e e e
3.10 The Exit menu. o o e e e e e e
3.11 The Pause menu of the Free mode.

4.1 Use case diagram (made with StarUML [9])..
4.2 Menu flowchart (made with StarUML [9]).
4.3 Pause flowchart (made with StarUML [9])..
4.4 Default button of Unity.
4.5 Model of the cube splitted to show the parts.
4.6 Sequence of the tutorial. o
4.7 Diagram of thelevels

5.1 [Inmitial Rubik’s cube.
5.2 A sample of how the cubeisdone.
5.3 Example that shows the front block, whose each cubelets’ x axis equals 1. . .
5.4 Example showing the rotation of the front block.
5.5 Example of different button inputs. L.
5.6 Extraction of part of the code to select the layers.
5.7 Extraction of part of the code to call the function.
5.8 Example of the cube with the right layer selected.
5.9 Example of code showing how to activate the rotation of the whole cube
towards the right and the left.
5.10 Example of code that shows the rotation of the cube towards the right. .
5.11 Peek rotation of the cube.
5.12 World Space render mode of the canvas.

vii

24

viii List of Figures

5.13 A sample of the order of the facelets in the hierarchy. 36
5.14 The order shown in a netted cube o000 37
5.15 Code to get the facelets in the order of the hierarchy in the inspector. 37
5.16 A sample of the front face represented in the tutorial. 38
5.17 A sequence of the tutorial showing the movements of the front face step by

Step. . . . e 38
5.18 An example of a netted cube of the tutorial representing one movement. . . . 39

5.19 The same sequence of the Figure 5.17 but showing all the faces with netted
cubes. . .. e 39

LIST OF TABLES

4.1 Case of use «UC1. Start the game» 15
4.2 Case of use «UC2. Select mode» 16
4.3 Case of use «UC3. See the controls» 16
4.4 Case of use «UC4. Quit the game» 17
4.5 Case of use «UCH. Select alayer» 17
4.6 Case of use «<UC6. Rotate alayer» 18
4.7 Case of use «UC7. Unselect all the layers» 18
4.8 Case of use «UC8. Rotate the whole cube» 19
4.9 Case of use «UC9. Peek rotation» 19
4.10 Case of use «UC10. Pause» 20
4.11 Case of use «UC11. Return to the Main menu» 20
4.12 Case of use «UC12. Scramble the cube in the Free mode» 21
4.13 Asset Revelation Schedule Lo 24

ix

CHAPTER

INTRODUCTION

Contents
1.1 Work Motivation 1
1.2 Objectives 1
1.3 Environment and Initial State 2

This chapter describes the motivation to start with the idea of creating a Rubik’s
cube game tutorial for a virtual reality environment and its different objectives achieved
during these months. And also the working environment with the professors and the
initial state.

1.1 Work Motivation

The idea of this FDP came because in the Game Engines subject, the professor Miguel
Chover Sellés asked the students that if any of them wanted to experience the virtual
reality or propose a project to develop with it they could ask him to do that, so he
accepted to supervise the purpose of a FDP the next course about the Rubik’s cube.

Moreover, it is meaningful to develop such a game tutorial, not only because of its

usefulness to implement a tutorial in a virtual reality environment, but also because it
would be a challenge to program something like this.

1.2 Objectives

The main objectives of this project are the following:

1

Introduction

e Analyse how to program a Rubik’s cube from zero and create a virtual cube that
was able to rotate its faces independently of the position and rotation in the com-
puter.

e Learn how virtual reality works in a game engine and get that cube to work in
such an environment.

e Make the menus.

e Create a way to make the controls of the game for some controllers with very few
buttons.

¢ Analyse how to create a tutorial for the cube, based on the book "El Cubo Mégico"
[1] and implement it.

e Make a list of the cube algorithms to be used in the tutorial and link them to the
movements of the user, to check if the movement is good or not.

1.3 Environment and Initial State

As it is said in the Work Motivation section, the idea of this FDP started the previous
course, so months later a first project was finally finished. A continuation of the project
is planned for the future, but this will be commented on in section 6.2 Future Work.

It is important to mention that the project started from zero and the work environ-
ment has been significant due to the the new technologies used, the new ideas to be
developed and all the process and experience obtained with it.

CHAPTER

PLANNING AND RESOURCES EVALUATION

Contents
2.1 Planning Lo 3
2.2 Resource Evaluation 4

In this chapter the planning proposed for the project is exposed and all the resources
needed to complete it are listed. This is important to have an estimation of the cost of
the project.

2.1 Planning

The planning proposed for this project is the following:

¢ Learning:
- Task 1 (3 hours): Learn about basic virtual reality programming for a
game engine.
¢ Interaction:

- Task 2 (20 hours): Make the selection of the faces and rotate them with
hand controllers.

- Task 3 (10 hours): Adapt the cube to virtual reality.
- Task 4 (20 hours): Make the selection of the layers.
- Task 5 (35 hours): Rotate the selected layer.

- Task 6 (35 hours): Rotate the cube.

Planning and resources evaluation

o Interface:
- Task 7 (10 hours): Make the menus.
- Task 8 (40 hours): Make a tutorial with indications at the top.
- Task 9 (40 hours): Make an Al to solve the cube.

e Control of the game:

- Task 10 (2 hours): Create a model of the virtual Rubik’s cube in a game
engine.

- Task 11 (20 hours): Create the movements of the cube.

- Task 12 (5 hours): Create the logic for when the cube is completed or a
bad movement is done.

- Task 13 (10 hours): Complete the remainder of the game.

¢ Memory and presentation:
Task 14 (40 hours): Final memory.
Task 15 (10 hours): Final presentation.

The total hours is 300.

There are different group tasks, so it is possible that tasks from different groups are
made at the same time and before others of the same or different groups.

2.2 Resource Evaluation

This project has been possible thanks to the material offered by the Universitat Jaume I
and my own, but in case it had to be done without any of them, this is an approximation
of its cost.

o A laptop Acer with Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 2.40 GHz, 8 GB
of RAM and 512 GB of Hard Disk Storage Capacity with Windows 10. 750 €

e Oculus Quest, the device where the game is shown. 349 €.

e Cable Link, to connect the Oculus Quest into the computer. 99 €.
o Unity 2020.2.2f1 Personal, used to create the game [2]. Free.
 Blender, used to create some of the models [3]. Free.

o Visual Studio 2019, used to program the game [4]. Free.

o Inkscape, used to make the arrows [5]. Free.

CHAPTER

GAME DESIGN DOCUMENT

Contents
3.1 Introduction 5
3.2 Level Design 6
3.3 Gameplay 6
3.4 Art ..o 6
3.5 Sound and Music 8
3.6 UserInterface 8
3.7 Game Controls 10

This is the game design document, where the specifications of the game are described
to understand how is it designed before more detailed functionalities be written.

3.1 Introduction

The title of this game tutorial is "Rubik kocka", which means Rubik’s cube in Hungarian.
That name was decided in homage for the creator of this 3D puzzle, Erné Rubik, who

is Hungarian.

In fact, this is really a game tutorial, whose aim is to help the user to solve the
Rubik’s cube with a virtual reality device like the Oculus Quest.

The main features are the central cube, that the user rotates, and the tutorial up to
it, where the movements are shown to solve properly the cube.

Game Design Document

3.2 Level Design

There are only two modes to play: a Free mode and a Tutorial mode. In the first mode
initially there is a solved cube, and the user can rotate its faces and the cube itself, and
also make random scrambles. In the other one the initial cube is previously scrambled,
and the user can do the same except to scramble it. In addition, there is a tutorial to
teach the user how to solve the cube.

3.3 Gameplay

In this game tutorial the player starts in the Main menu where there are four buttons.
The first one is Play, and is to choose the Free mode or the Tutorial mode. The player
can only interact directly with the cube, but according to the effected rotations, the
tutorial can change erasing the solved steps. Moreover, there is a pause menu in both
modes. Returning to the Main menu, the second button is Controls, that shows the
indications of the controllers in an image. The third button is Help, and explains to the
user the aim of each mode and some help in case of necessity. And the last button is
FEzit, with which the user can quit the game.

3.4 Art

As this is a game about the Rubik’s cube, there is no need to add complex art and it
is very geometric. There is a Rubik’s cube with the six colours for the faces (white,
red, blue, green, orange and yellow), and black for the inner parts of the cubelets (see
Figure 3.1).

7‘

Figure 3.1: Rubik’s cube.

For the tutorial the same colours are used for each square of the facelets (see Fig-
ure 3.2).

3.4. Art

Figure 3.2: Example of the tutorial.

There are also some two different arrows indicating the direction of the rotation (see
Figure 3.3).

G

Figure 3.3: The two arrows used in the tutorial.

There are also two geometric models for the hands (see Figure 3.4).

'

Figure 3.4: Two hands.

Game Design Document

3.5 Sound and Music

There are only two pieces of music in this game, both for free use and without any cost:
one for the menus, and the other one for the game. The first one is "Synthwave Vintage
Future Synth 80s Retro Game Futuristic Music" of REDproductions [7], and the second
one is "Cosmic Glow" of Andrewkn [8].

3.6 User Interface

The game starts with the main menu, where it shows four buttons that are Play, Con-
trols, Help and Ezit (see Figure 3.5).

Figure 3.5: The Main menu.

Once the Play button is selected, there will be another menu that shows the mode
to play (see Figure 3.6): Free and Tutorial. Also the Go back button. If each of those
buttons are selected each game will start.

Figure 3.6: The Play menu.

3.6. User Interface

If the Controls button is selected, a new menu is shown where the user can see a
drawing of the controllers with some indications (see Figure 3.7).

Press the right trigger
to make a clockwise rotation
(if a layer is selected)

To select a depth layer, press the left joystick (back) or
the right joystick (front)

To select a horizontal or vertical
layer, move the right joystick in
the desired direction

To rotate the whole cube,
move the left joystick to the
desired direction

To select anything
in the manus, point to |
with any controller and
| press the tri

To make a little peek,
use the left joystick,
the left trigger or
the left grip while
the A button Is pressed

Press the menu button to pause Press the B button to unselect any layer

Press the right grip to make an
anticlockwise rotation (if a layer is selected)

Go back

Figure 3.7: The Controls menu.

It is needed to mention that the Controls menu of the pause in the Free mode (ex-
plained later) is different and shows also the indications of how to scramble the cube,
which is not in the normal controls (see Figure 3.8).

Press the right trigger
to make a clockwise rotation
(if a layer is selected)

To select a depth layer, press the left joystick (back) or
the right joystick (front)

To select a horizontal or vertical
ayer, move the right joystick in
the desired direction

To rotate the whole cube,
maove the left joystick to the
desired direction

To select anything
in the menus, point to |
with any controller and
press the trigger

&0\

p— To make a little peek, -y
use the left joystick,

the left trigger or

the left grip while

the A button is pressed

Press the menu button to pause Press the B button to unselact any layer

Scramble (in Free mode only) Press the right grip to make an ‘
anticlockwise rotation (If a layer is selected)

Ga back

Figure 3.8: The Controls menu of the Free mode. The difference is below on the left,
showing how to scramble with the X button.

If the Help button is selected, a new screen appears, showing some help indications
in case the user does a wrong rotation not fitting the indicated in the tutorial, and in

10 Game Design Document

case the user solves the cube (see Figure 3.9).

' -In the Free mode you ca

'~ -In the Tutorial mode you
you do a wrong rotation yo

- And if you get to solv

start again pressing the "P

as you wish.
otations of the tutorial. If

Figure 3.9: The Help menu.

And finally the last button, Exit, asks the user to exit the game (see Figure 3.10).

Figure 3.10: The Ezit menu.

In addition, the Pause menu is similar to the Main menu, and is accessed in any of
the two modes of the game. The difference is the first button, that is Continue instead
of Play (see Figure 3.11).

3.7 Game Controls

The following are the controls of this game tutorial:

o To access the elements of the menu the user has to point with the pointer (a red
laser) to the corresponding button and then press the trigger to click it.

o To select a layer of the cube, use the joysticks. Move the right joystick up or down
to select a horizontal layer, or left or right to select a vertical layer. And click the
left joystick to select a back layer and the right to select a frontal layer.

3.7.

Game Controls

11

Figure 3.11: The Pause menu of the Free mode.

Once selected a layer, to rotate with a clockwise direction, press the right trigger,
and to rotate with an anticlockwise direction, the right grip.

To unselect any layer, press the B button.

To peek at the hidden face without rotating the cube, maintain the A button of
the right controller while the left joystick, the left trigger or the left grip are used
. Once released, the cube returns to its original orientation.

To rotate the cube, use the left joystick, the left trigger and the left grip. This is
different from the previous control because the cube changes its orientation.

To access the pause menu, press the menu button of the left controller.

In the Free mode, to scramble the cube press the X button.

CHAPTER

FUNCTIONAL AND TECHNICAL
SPECIFICATION

Contents
4.1 System Design Lo 13
4.2 Game Mechanics 21
4.3 User Interface 21
4.4 Art ..o e 23
4.5 Level Requirements o 24

Here the elements of the Game Design Document are more detailed.

4.1 System Design

4.1.1 Use case diagram

This is the use case diagram (see Figure 4.1).

4.1.2 Functional Requirements

The work of the game tutorial has been previously explained so there is no need for an
explanation to understand the functional requirements.

Functional Requirements

With all this said, the functional requirements are described below:

13

14

Functional and Technical Specification

R12. Scramble the cube in Free mode R1. Start the game

R2. Select mode
R11. Return to the main menu

R3. See the controls
an

% — R4. Quit the game
R resromon >

Player
/ R35. Select a layer
R8. Rotate the whole cube \
R6. Rotate a layer
R7. Unselect all the layers

Figure 4.1: Use case diagram (made with StarUML [9]).

o R1: start the game.

o R2: select mode.

e R3: see the controls.

e R4: quit the game.

o R5: select a layer.

* R6: rotate a layer.

e RT7: unselect all the layers.
o RS8: rotate the whole cube.
e R9: peek rotation.

e R10: pause.

e R11: return to the main menu.

¢ R12: scramble the cube in Free mode

Non-Functional Requirements

And also, the non-functional requirements are some of the conditions on the game’s de-
sign due to its characteristics. These are the following:

¢ R13: will be required virtual reality glasses.

4.1. System Design 15

e R14: the game is more a tutorial or simulator than a game.
o R15: it is a very artistically poor game.

¢ R16: the controls may be complicated.

Requirement: R1

Actor: Player

Description: The player can start the game
Preconditions:

1. The player is in the Main menu

Normal sequence:

—_

. The player selects the button Play

Alternative sequence:

The player selects the button Controls

The player selects the button Options

The player selects the button Ezxit

Table 4.1: Case of use «UC1. Start the game»

Functional and Technical Specification

Requirement: R2

Actor: Player

Description: The player can select either the Free mode or the Tutorial
mode

Preconditions:

1. R1. The player is in the Play menu

Normal sequence:

1. The player selects one of the two available modes

Alternative sequence:

1. The player goes back to the Main menu

Table 4.2: Case of use «UC2. Select mode»

Requirement: R3

Actor: Player

Description: The player can see the controls
Preconditions:

1. R1. The player is in the Main menu

2. R10. The player is in the pause

Normal sequence: None

Alternative sequence:

1. The player presses the return button

Table 4.3: Case of use «UC3. See the controls»

4.1. System Design

17

Requirement: R4

Actor: Player

Description: The player can quit the game
Preconditions:

1. R1. The player is in the Main menu

Normal sequence:

1. The player selects the button Exit

2. The player selects the option Yes

Alternative sequence:

1. The player selects the option No

Table 4.4: Case of use «UC4. Quit the game»

Requirement: R5

Actor: Player

Description: The player can select a layer
Preconditions:

1. R2. The player is playing in one of the available modes

Normal sequence:

1. The player moves the right joystick or presses either the
left or the right joystick to change the selected layer

Alternative sequence:

None

Table 4.5: Case of use «UCH. Select a layer»

18

Functional and Technical Specification

Requirement: R6

Actor: Player

Description: The player can rotate the selected layer
Preconditions:

1. R5. A layer is already selected

2. The cube must not be rotating

Normal sequence:

1. The player presses the trigger to rotate clockwise

2. The player presses the grip to rotate anticlockwise

Alternative sequence: None

Table 4.6: Case of use «UC6. Rotate a layer»

Requirement: R7

Actor: Player

Description: The player can unselect any selected layer
Preconditions:

1. R5. A layer is already selected

Normal sequence:

1. The player presses the B button of the right controller

Alternative sequence: None

Table 4.7: Case of use «UCT. Unselect all the layers»

4.1. System Design

19

Requirement: RS

Actor: Player

Description: The player can rotate the whole cube
Preconditions:

1. R2. The player is in any of the chosen modes

2. The cube must not be rotating

Normal sequence:

1. The player moves the left joystick

Alternative sequence: None

Table 4.8: Case of use «UCR. Rotate the whole cube»

Requirement: R9

Actor: Player

Description: The player can peek briefly a hidden face of the cube
Preconditions:

1. R2. The player is in any of the chosen modes

2. The cube must not be rotating

Normal sequence:

1. The player moves the left joystick or presses the left
trigger or the left grip while maintaining the A button
of the right controller

Alternative sequence: None

Table 4.9: Case of use «UC9. Peek rotation»

20

Functional and Technical Specification

Requirement: R10

Actor: Player

Description: The player can pause the game in any moment
Preconditions:

1. R2. The player is in any of the chosen modes

Normal sequence:

1. The player presses the menu button of the left controller

Alternative sequence: None

Table 4.10: Case of use «UC10. Pause»

Requirement: R11

Actor: Player

Description: The player can return to the main menu in the pause
Preconditions:

1. R10. The player is in the pause

Normal sequence:

1. The player selects the Main menu option of the pause

Alternative sequence: None

Table 4.11: Case of use «UC11. Return to the Main menu»

4.2. Game Mechanics

21

Requirement: R12

Actor: Player

Description: The player can scramble the cube with the X button
Preconditions:

1. The player is in the Free mode

Normal sequence:

1. The cube scrambles randomly

Alternative sequence: None

Table 4.12: Case of use «UC12. Scramble the cube in the Free mode»

4.2 Game Mechanics

The main working of the game has been previously explained, how to rotate the cube
and its layers, and what the tutorial represents. The remaining to explain is the method
shown in the tutorial to help to solve the cube. Basically it is done with an algorithm,
it is, a sequence of movements that teaches how to solve the cube. This is coded and
represented in the tutorial.

4.3 User Interface

4.3.1 Flowchart

The flowchart of the menu user interface is in Figure 4.2.
The flowchart of the pause user interface is in Figure 4.3.

4.3.2 Functional Requirements

¢ Menu screen: it is just a screen with a menu where the player can select the
different options shown.

o Free screen: here the player can rotate the cube freely. Moreover, the user can
also scramble the cube randomly.

o Tutorial screen: they are the same as Free except that the scramble is inactive
and have some additions: the player can rotate the cube according to the tutorial.
The tutorial will guide the player how to solve the Rubik’s cube.

22 Functional and Technical Specification

Play ‘ Options ‘ Controls ‘

Go back

(ree) (o)

Quit game

Figure 4.2: Menu flowchart (made with StarUML [9]).

/? Continue

Free ‘ Tutorial ‘

Menu

Yes

Options

Go back

Controls

Figure 4.3: Pause flowchart (made with StarUML [9]).

4.4. Art

Except the menu screen, all of the others have access to a pause window, with which
the player can turn back to the menu.

4.3.3 Mockups

The following images are some mockups of the different screens and windows of the game:

4.3.4 Graphic User Interface Objects

The elements of the graphic user interface are the default buttons of Unity (see Fig-

ure 4.4).

Figure 4.4: Default button of Unity.

4.4 Art

This is the art of the game and its functionalities explained.

4.4.1 2D Art and Animation

The 2D art there is in this game are the arrows of the tutorial that shows the direction
to rotate each layer of the cube. To avoid having 9 different arrows, only one curved
arrow and one straight arrow were enough, modified in rotation and position to get the
others.

4.4.2 3D Art and Animation

The 3D art of this game will be shown next:

There is a Rubik’s cube model made of 27 cubelets done with separated squares in
3D space shaping a cube. This is all well ordered in the hierarchy, so inside each cubelet
folder are the six faces of that cubelet, with its corresponding colours (see Figure 5.2).

To be able to rotate they are grouped by dynamic layers of 3 x 3 cubelets and there-
fore, rotate by their central axis. And to show a selected layer, the faces of the colours
of that layer change their colours to highlight them.

The art of the tutorial is a netted cube obtained from the cube with a 3 x 3 square
with 9 little squares by face of the net, in which the squarelets have the colours of the

24 Functional and Technical Specification

Figure 4.5: Model of the cube splitted to show the parts.

cube and its calculated sequences (see Figure 4.6).

Figure 4.6: Sequence of the tutorial.

The remaining 3D art of the game are the hands of the user, that are 3D models of
two hands and represent the position and orientation of the user’s hands that hold the
controllers.

The animations are controlled by code and are the rotations of each layer of cubelets
around a central axis. Also the rotation of the whole cube.

4.5 Level Requirements

Here the diagram of the levels is shown in the Figure 4.7

In the Table 4.13 is the Asset Revelation Schedule is shown.

Menu Cube | Tutorial | Menu list
Free Cube - Pause
Tutorial | Cube | Tutorial Pause

Table 4.13: Asset Revelation Schedule

4.5. Level Requirements

Menu

AN

Free Tutorial

Figure 4.7: Diagram of the levels

In this section the level design is shown as follows:

e Menu: This is a scene with a menu. In the background there is a Rubik’s cube.
e Free: This is a scene with only a Rubik’s cube.

¢ Tutorial: This is the same with the addition of a tutorial.

CHAPTER

RESULTS

Contents
5.1 Work Development L. 27
5.2 Planning Control Lo 40
5.3 Changes, Difficulties and Solutions 41
54 Results e 41

In this chapter the work developed during these months is described. The changes
on the planning in relation to the original planning are also presented, and the carried
variations are also explained. Finally, the results of this Final Degree Project will be
described in the end.

5.1 Work Development

As said in the introduction of this chapter, here only will be described the process of the
work developed.

5.1.1 Creation of the Rubik’s cube

At the beginning of this project, the first thing to develop was the Rubik’s cube, both
the model and the rotations. So the first to consider was how to make a model of a
Rubik’s cube, in which there are 27 cubes, all of them related and that can change its
position and orientation all around the cube.

27

28

Results

It started with an empty game object with 27 cubelets to at least have an idea of
the shape, and then each cubelet was changed with another empty game object in which
there were only the faces of each cubelet, with its corresponding colour (see the whole
cube in Figure 5.1, and a sample of how it has been created in Figure 5.2). So the
following was to evaluate how to make them rotate not only about one axis, but also
about different axis because of the different positions every cubelets can attain.

7‘

Figure 5.1: Initial Rubik’s cube.

Figure 5.2: A sample of how the cube is done.

To make this the idea was to create by code nine blocks of 3 x 3 cubelets each one.
Those nine blocks (which represent the layers) are three by depth, three by height and
three by width. So the best was to centre all the cubelets axis components in -1, 0
or 1, and compare its x, y and z axis positions with those numbers. Thus, each block
would have their corresponding nine cubelets (for example, the block of the front (seen
in Figure 5.3) is the one whose cubelets’ x axis component equals 1).

5.1. Work Development

29

Figure 5.3: Example that shows the front block, whose each cubelets’ x axis equals 1.

Only one thing remains, and that is that if a block rotates, it should change its
cubelets. A fast way to implement this is just to empty the blocks and refill again with
the position changed cubelets.

Once this was achieved, the following was to make each layer rotate around its centre,
so to do that all the cubelets of a corresponding block had to be traversed and rotate
them around the centre axis of that block. Then a complete rotation would have 90
degrees (see an example in Figure 5.4).

Figure 5.4: Example showing the rotation of the front block.

Finally, in order to interact with the cube in the computer was implemented an input
of the numeric keyboard that represents the rotations, and the spacebar that represents
the direction of rotation. To activate a rotation, when a key is pressed its corresponding
rotation activates and the block rotates.

30

Results

5.1.2 Learning about the virtual reality

At first, the material used to learn how to use Unity with virtual reality were some video
tutorials for beginners [10] recommended by the professor. Although there were various
assets for Unity to use virtual reality, it was enough with just XR Interaction Toolkit
[11], which is a free Unity asset. Moreover, there is many documentation about XR
Interaction Toolkit and many tutorials to solve anything, unlike other assets, many of
them expensive.

So the next thing to do is adapt the project into the XR Interaction Toolkit with
the virtual reality environment, and the only thing to change was needed to change the
camera and have an XR Rig, where the head camera would be, and automatically the
hands would also appear, that are controlled by the controllers. What left now was to
adapt the interactions, it is, how to interact with the cube and rotate it.

5.1.3 Making the interaction with the cube

The part regarding the buttons was similar to the input of the computer keyboard,
except the manner to make the inputs by code (see Figure 5.5), and despite the few
buttons of the controllers, it was enough for the project.

yGetFeatureValue(C .primary2DAxis, out Vector2 ejeMandoDer);
s .GetDeviceAtXRNode (XRNode.RightHand) .
etFeatureValue(Common es.gri t float gripDer);
s .GetDeviceAtXRNode(XRNode . Ri and) .
on .trigger, t float triggerDer);
Node . RightHand) .

yGetFeatureValue(Common ges.secondaryButton, out bool botonB);
s .GetDeviceAtXRNode(XRNode . RightHand).
etFeatureValue(Common es.primary2DAxisClick, out bool botonEjeDer);
= .GetDeviceAtXRNode(XRNode. LettHand).
TryGetFeatureValue(C es.primary2DAxisClick, out bool botonEjelzqg);

Figure 5.5: Example of different button inputs.
Therefore, next was to be able to choose the adequate layer to rotate:

In order to make that, a system to choose handly the layers was done using the
joysticks, and instead of having a button for each layer, previously the user would select
the layer to rotate and then press either the trigger or the grip to do a clockwise or
anticlockwise rotation. So if the user moves the right joystick up or down, the selected

5.1. Work Development

31

layers would be from the vertical axis; moving it to the right or to the left, the selected
layers would be from the horizontal axis; and for the depth axis, pressing the left joystick
selects the back layers and with the right, the front.

The functionality is explained next:
There is a function called seleccionarYRotarBloques() where there are the inputs of the
buttons. Then, it checks if the button is correctly pressed and activates the adequate
boolean (0, 1, 2, 3, 6 and 7 are to select the layer, and 4 and 5 to make the rotation),
like in the Figure 5.6.

if (ejeMandoDer.x >
T
L

f (!algunaSeleccionActivada)

seleccionActivada[@] =
algunaSeleccionActivada = true;

}

LT (ejeMandoDer.x <= -8.3f)

it (!algunaSeleccionActivada)

{
seleccionActivada[1l] = true;
algunaSeleccionActivada = tr

Figure 5.6: Extraction of part of the code to select the layers.

According to the activated selection, if it is one of the selections’, a new function se-
leccionarBlogquesSegunOrientacionCubo(int estado, string seleccion) is called with some
parameters (see Figure 5.7). That function will return the selected block according to a
state (-1, 0 or 1) and a string that can be "Horizontal", "Vertical" or "Profundidad".

But if the selection is one that activates the rotation, there is a code that activates
the adequate rotation and with a determined direction. The rotations have been previ-
ously explained, and there is an example in Figure 5.4.

With this, the function seleccionarBloqueSequnOrientacioncubo(int estado, string se-
leccion) will be explained:

It starts checking the state, which must be between 1 and -1, and then the different
options are to be coded.

32

Results

(seleccionActivada[e])

eccionarBloqueSegunOrientacionCubo(--estadoSeleccion,
eccionActivada[l] = false;

Figure 5.7: Extraction of part of the code to call the function.

Furthermore, to highlight the selected layer the colours of each of the facelets are
changed to lighter ones (except the white colour, that darkens a little bit) to differentiate
them (shown in Figure 5.8). First it returns the original colour of any selected layer (first
foreach of any estado in Figure 5.8), and then, it traverses in the second foreach only the
cubelets of the selected block to change its colour (also seen in the same Figure 5.8). It
was just to access the mesh component of each facelet and assign a new colour previously
chosen according to the original colour of the facelet.

Figure 5.8: Example of the cube with the right layer selected.

Once a layer is selected, to rotate it the right trigger is to make a clockwise rotation
and the right grip to the anticlockwise rotation.

Finally, to unselect any layer it was the same but changing from the modified colour
to the original, and this is done with the B button.

5.1. Work Development 33

On the other hand, it was useful not only to rotate a layer but also the cube or just
make a little peek of another face. To do that the buttons and the joystick of the left
controller in combination with the A button of the right controller were used. So to
rotate the cube and change its orientation, the right joystick was needed. This is done
in the function rotarCubo(), and is similar to the rotation of the layers. First there is
the activation of the code of the desired rotation (from 0 to 6, that is towards right,
left, up, back, anticlockwise and clockwise), as seen in Figure 5.9, and then the rotations
themselves (Figure 5.10).

if (ejeMandoIzq.x >= 8.5f)
{
if (!algunaRotacionActivada &% !algunGiroActivado)
{
rotacionActivada[@] =
algunaRotacionActivada = t
algunGiroActivado = true;
1
}
if (ejeMandoIzq.x <= -8.5f)

{

if (!algunaRotacionActivada && !algunGiroActivado)

I
L

rotacionActivada[l] =
alpunaRotacionActivada
alpunGiroActivado = true;

Figure 5.9: Example of code showing how to activate the rotation of the whole cube
towards the right and the left.

And to make a little peek, it was the same but while maintaining the A button
pressed and moving the joystick or pressing the left trigger or the left grip.

This code is very short, as it is just a simple transform of the angles (see Figure 5.11).

34

Results

(rotacionActivada[@])

cubito in cubitos)
angulo += Ti deltaTime * 4 * velocidad;

cubito.transform.RotateAround(transform.localPosition,
transform.up, -98 * velocidad * T .deltaTime);

cubito in cubiteos)

cubito.transform.localPosition =

r3 hf.RoundToInt(cubito.transform.localPosition.x),
RoundToInt(cubito.transform.localPosition.y),
f.RoundToInt(cubito.transform.localPosition.z}));
cubito.transform.localRotation =
i Euler(aproximarAMultiploMasCercano(cubito.transform.localEulerAngles.x, 98),
aproximarAMultiploMasCercano(cubito.transform.localEulerAngles.]
aproximarAMultiploMasCercano(cubito.transform.localEulerAngles
i}
organizarBloguesCubitos(cubitos, f: : £
organizarBloquesCubitos(cubitos,
rotacionActivada[@] = fals
algunaRotacionActiv
algunGiroActivado =
angulo = 8;

Figure 5.10: Example of code that shows the rotation of the cube towards the right.

Figure 5.11: Peek rotation of the cube.

5.1. Work Development

To end, in the case of the Free mode a button to scramble the cube was created. To
activate it the user has to press the X button of the left controller and there will be a
random list of movements that will activate the necessary rotations.

5.1.4 Creation of the menus

The creation of the menus is a canvas prepared for the virtual environment. The differ-
ence with the usual canvas is on the camera, because the canvas should appear in 3D
and not in a fixed screen, so it is needed to render in World Space instead of the default
Screen Space (see Figure 5.12).

Canvas

World Space

Event Camera m Main Camera (1

(Camera)

Sorting Layer Default

Lirder In Laye

Additional Shader Channe Mixed...

Figure 5.12: World Space render mode of the canvas.

All the menus are made with the Unity user interface components and are very
similar. Furthermore, because this part does not require technical explanations and the
system of the menus have been already explained in the GDD, this section finishes here
to pass to explain the creation of the tutorial.

5.1.5 Creation of the tutorial

Once this is all achieved, the next and one of the most important parts of the game is
the tutorial.

The main idea is to graphically show the steps of the algorithms with arrow indica-
tions, and this is based on the tutorial of the book "El Cubo Mégico" [1], because it is
a very graphical method to learn from. But in the game, instead of only showing the
main face the net of the whole cube is shown in each step, so it is easier to understand
what happens in the entire cube.

To start creating the tutorial, the first was to create a new empty game object at
the top of the screen with nine squarelets, altogether shaping a 3 x 3 bigger and whole

36

Results

square. They were initially coloured in black.

After that, they had to represent the colour of each facelet, in this case of the frontal
face, and for that, there was needed a way to access the facelets of the cube. To do that
a map of all the facelets of the cube was done, not only to represent the faces in the
tutorial but also to make the calculi of the next movements of the tutorial.

Unity traverses the game objects in order in the hierarchy (see Figure 5.13), so can
be taken advantage of it to get a map from the order of the facelets of the cube.

i"’i Lubo
£ Esquina Blanca Roja Azul
e Blanco
P Rojo
i'"i Az Ul

ﬁ Megro (3)

I-II Ezquina Blanca Roja Verde
ﬁ Elanco
P Roj

Figure 5.13: A sample of the order of the facelets in the hierarchy.

Thus, the order would be written on a piece of paper to facilitate the calculi of each
step. With all that, the mapping is initially done in the Start() part of the code from
the name of each facelet and then added to a list.

And also, six little arrays that represent each face would be created to indicate the
numbers of the list. This is to later make the calculi and to represent it in the tutorial.

5.1. Work Development

51149 (47
31)30(29
1917 (15
B2|32|20|18|16(13|14|28|46)45|50 |53
A4127T 112|110 8 | 9 |26|41)42|43 |45
3257|5302 (22]34)35|37|40
6|41
24123 (21
383633

Figure 5.14: The order shown in a netted cube .

¢ cubo.transform.childCount; i++)
j < cubo.transform.GetChild(i).childCount; j++)
- {cubo.transform.GetChild(i).GetChild(j).name == “Amarillo")
caritasCubo.Add("Amarillo™);
- {cubo.transform.GetChild(i).GetChild(7j).name

caritasCubo.Add("Azul");

f {cubo.transform.GetChild(i).GetChild{j).name == "Blanco")

caritasCubo.Add("B1:

- (cubo.transform.GetChild(i).GetChild(j).
caritasCubo.Add("Naranja");

- {cubo.transform.GetChild(i).GetChild(7j).name
caritasCubo.Add("R

f (cubo.transform.GetChild(i).GetChild(j).name

caritasCubo.Add("V

Figure 5.15: Code to get the facelets in the order of the hierarchy in the inspector.

38

Results

Once done this, the next thing to do was to colour the squarelets of the tutorial ac-
cording to the name of the colours already obtained in the previous list (see Figure 5.16.

Figure 5.16: A sample of the front face represented in the tutorial.

Now a single facelet is shown in the tutorial, and the next was to get multiple copies
of it. This was made making as many copies of the face as needed and translated hori-
zontally to the right separated by a little gap.

Next, each copy should show step by step the theoretical movements to make. To do
this there is another function, giro Tutorial(int giro, int sentido), that calculates the next
position according to a given rotation and direction. It is just done having calculated
the next position a facelet would achieve.

Once done the calculi, the calculated faces would be added in order to the tutorial
(as seen in Figure 5.17).

HER L L

Figure 5.17: A sequence of the tutorial showing the movements of the front face step by
step.

With this all done, the process to make the net of the cube was the same, but instead
of only the front face, all the faces shaping the net (see Figure 5.18).

However, to make the tutorial useful not only the changes should be made, but also
some type of indications to the user: the arrows. They were created with Inkscape [5],
and with geometric transforms done in the function Flecha(int giro, int sentido) I added
them to the tutorial the same way I did with the faces, but in a previous position. That
is because the arrows indicate the action to do to be shown in the next movement (see

5.1. Work Development

39

Figure 5.18: An example of a netted cube of the tutorial representing one movement.

Figure 5.19).

Figure 5.19: The same sequence of the Figure 5.17 but showing all the faces with netted
cubes.

And finally, what lasts is to check if the movement done by the user to the cube
corresponds to the indicated from the tutorial.

5.1.6 Implementation of the algorithm to solve the cube

The final step is to make the algorithms to solve the cube, and for that the official no-
tation [12] will be used.

This is a set of letters that indicate either the rotation of the layers and the rotation
of the whole cube:

o F (front), R (right), U (up), L (left), B (back) and D (down) are for the rotation
of the faces.

e M (middle, same direction as an L rotation), E (equatorial, same direction as a D
rotation) and S (standing, same direction as an F rotation) are for the rotation of
the middle layers.

Results

 x (same direction as an R rotation), y (same direction as a U rotation) and z (same
direction as an F rotation) are for the rotation of the whole cube along the axis.

e The ’ after a letter means that the rotation is anticlockwise.

o The 2 after a letter means that the rotation is double.

It is important to mention that the clockwise and anticlockwise direction of the nota-
tion for the left, back and down is different from the ones for the rotations programmed
in the game. That is because in the game, all the layers that move along the same axis
will rotate to the same direction, and in the case of the notation, it is seen from the
point of view of the face, so the anticlockwise direction for the notation of the left is the
clockwise direction for the rotation.

Once this is all explained, to make the algorithms in the tutorial it is needed to pass
a list of strings in which each string is the algorithm written in the official notation.
And then, a conversion into the already coded rotations and directions is needed. Each
algorithm of the list will be shown in the tutorial and, when it is completed, the next
one continues.

The result is that now it is possible to write any algorithm only with strings with
the official notation, and in the case of this project, the list of algorithms used to solve
the cube is {"ULB’U’BU’", "R’'UB’D’", "R’FLF’'L’", "FDF’R’L"}.

With all of this, the work development has been finally explained.

5.2 Planning Control

The planning achieved for this project is the following:

e Learning:
- Task 1 (3 hours): Learn about basic virtual reality programming for a
game engine.
e Interaction:

- Task 2 (25 hours): Make the selection of the faces and rotate them with
hand controllers.

- Task 3 (10 hours): Adapt the cube to virtual reality.
- Task 4 (25 hours): Make the selection of the layers.
- Task 5 (35 hours): Rotate the selected layer.

- Task 6 (40 hours): Rotate the cube.

5.3. Changes, Difficulties and Solutions

41

e Interface:
- Task 7 (20 hours): Make the menus.
- Task 8 (45 hours): Make a tutorial with indications at the top.
- Task 9 (5 hours): Make the algorithm to solve the initial previously scram-
bled cube.
¢ Control of the game:

- Task 10 (2 hours): Create a model of the virtual Rubik’s cube in a game
engine.
- Task 11 (25 hours): Create the movements of the cube.

- Task 12 (5 hours): Create the logic for when the cube is completed or a
bad movement is done.

- Task 13 (10 hours): Complete the remainder of the game.

¢ Memory and presentation:
Task 14 (40 hours): Final memory.
Task 15 (10 hours): Final presentation.

The total hours is 300.

5.3 Changes, Difficulties and Solutions

In this section will be explained the changes from the initial planning to the final results.

As the project was achieving the total hours and the main objective of the project
was to create a tutorial to solve the Rubik’s cube, the part of the Al was discarded and
instead, a sample of how an algorithm would solve the cube from an initial scrambled
cube. The Al required the study of all the cases of the cube and construct the algorithms
in base of each case.

5.4 Results

The final result of the project is a game tutorial to solve the Rubik’s cube, in which there
is a mode to freely rotate the cube from an initially solved cube; and another mode, that
starts from an initially scrambled cube, that has a tutorial that shows step by step how
to solve the cube.

CHAPTER

CONCLUSIONS

Contents
6.1 Objectives Achieved 43
6.2 Future work 44

6.1 Objectives Achieved

Through all this time most of the objectives of the project have been finally achieved,
which are the following:

¢ Analyse how to program a Rubik’s cube from zero and create a virtual cube that
was able to rotate its faces independently of the position and rotation in the com-
puter.

o Learn how virtual reality works in a game engine and get that cube to work in
such an environment.

e Make the menus.

o Create a way to make the controls of the game for some controllers with very few
buttons.

¢ Analyse how to create a tutorial for the cube, based on the book "El Cubo Mégico"
[1] and implement it.

e Make an algorithm that solves the cube given the initial scrambled cube.

43

44

Conclusions

6.2 Future work

An initial version of the main idea is already done, that is a tutorial to solve the Ru-
bik’s cube in a virtual reality environment, controlled by the controllers, and given an
initial scrambled state. But due to the short period of time allowed, an Al to be able
to make algorithms for any initial state of the cube was not possible to do, so in the
future it is planned to complete it. Moreover, it is scheduled to adapt the project to a
hand-tracking virtual reality to track the user’s hands and, if it is possible, also a real
Rubik’s cube, so the tutorial could be used to solve a real cube, and not only a virtual one.

In the end, with the advances in technology, a more advanced variant is interesting,
in which the virtual reality glasses also scans the colours of the faces and shows a tutorial
to solve it, just like some robots do nowadays.

CHAPTER

BIBLIOGRAPHY

[1] El Cubo Mégico, Tom Werneck (1981), Ediciones DS. ISBN: 84-7464-111-X
[2] https://unity.com/es
[3] https://www.blender.org/
[4] https://visualstudio.microsoft.com/es/vs/older-downloads/
[5] https://inkscape.org/es/
[6] http://www.gimp.org.es/

[7] https://pixabay.com/es/music/synthwave-synthwave-vintage-future-synth-80s-retro-
game-futuristic-music-16535/

[8] https://pixabay.com/es/music/ambiente-cosmic-glow-6703/

[9] https://staruml.io/

[10] https://www.youtube.com/playlist?list=PLmc6GPFDyfw-LG5NUdrJcUeAU21 TrrTWT

[11] https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@1.0/manual /index.html

[12] https://ruwix.com/the-rubiks-cube/notation/advanced/

45

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	Game Design Document
	Introduction
	Level Design
	Gameplay
	Art
	Sound and Music
	User Interface
	Game Controls

	Functional and Technical Specification
	System Design
	Game Mechanics
	User Interface
	Art
	Level Requirements

	Results
	Work Development
	Planning Control
	Changes, Difficulties and Solutions
	Results

	Conclusions
	Objectives Achieved
	Future work

	Bibliography

