
End of degree project Memory

Full Vertical Slice development of a
videogame to reach the

publisher/influencer’s attention
Gerard Ardit Castells

End of degree project
Videogame Design and Devlopment degree: course 2021-2022

Universidad Jaume I

May 11, 2022

Project tutored by: Michael Gould

http://creativecommons.org/licenses/by-nc-sa/3.0/

To Esther

Acknowledgements

First of all, I would like to thank my final degree project director, Michael
Gould, for following up on the work.

To Esther, my life partner who has accompanied me on this journey, who
has helped and supported me at all times.

To my family, who have been a fundamental support throughout the whole
process.

Lastly, I would like to thank Sergio Barrachina Mir for his «Plantilla LATEX
for the writing of the thesis report", which I have used as a starting point for
the writing of this report. used as a starting point for the writing of this
report.

i

http://lorca.act.uji.es/curso/latex/
http://lorca.act.uji.es/curso/latex/

Summary

In this work we are going to make a vertical slice of a 3D platform game with
the intention of catching the attention of a publisher. Throughout the work
you will be able to read about the course of development over the weeks.

iii

Contents

Contents v

1 Introduction 1
1.1 Project motivation . 1
1.2 Aims of the project . 2
1.3 Environment and initial state 2

2 Resource planning and evaluation 5
2.1 Planning . 5
2.2 Resource evaluation . 8

3 System analysis and design 11
3.1 Requirements analysis . 11
3.2 System design . 13
3.3 System architecture . 14
3.4 User Interface Design . 15

4 Work development and results 19
4.1 Work development . 19
4.2 Results . 23

5 Conclusions and future work 25
5.1 Conclusions . 25
5.2 Future work . 26

Bibliography 27

A Source Code 29

v

C
h

a
p

t
e

r

1
Introduction

Índice
1.1 Project motivation . 1
1.2 Aims of the project . 2
1.3 Environment and initial state 2

1.1 Project motivation
The main reason for choosing this thematic for the final thesis is to satisfy some
personal concerns related to entrepreneurship and self-improvement. Another
reason why this thematic fits my preferences is the possibility of creating an
employment opportunity to be able to finish college and start a job.

Regarding entrepreneurship, there has always resided in me a spirit that
has pushed me to not only have ideas, but also to put them into practice and
try to exploit them.

As for the opportunity to generate a job opportunity, it is true that one of
the main motivations when choosing the subject was this, however, over the
course of time, this need has already been satisfied since I have obtained a job
opportunity in other ways. Even so, I still find interesting the idea of creating
a project with these characteristics, because I think that if it turns out well,
it would be a very interesting point to highlight in my future portfolio and a
nice flag to plant in my upcoming career as a professional.

In addition, another of the motivations for doing the project, is to prove to
myself that I am able to create, from scratch and by myself, the basic systems
that a platform style game needs, not only to be playable, but to be good

1

2 Introduction

enough to cause good impressions, at all levels, to anyone who is going to play
it.

Finally, there is also an intention to create a series of libraries and tools of
my own from this project that I can use and extend to facilitate future game
developments.

1.2 Aims of the project

The ultimate goal of the project is to make, from scratch, a product, albeit
short, playable, and that can capture the attention of a publisher in a short
period of time.

For this, it is necessary that the systems to be developed in the project
work smoothly and satisfactorily and without many bugs. However, it is
understood that this is an early version of the project and the appearance of
some bugs is tolerated, although, of course, the fewer the better.

Also, the project is going to require an art that, although simple, it has to
be pleasant to see for the player, implying that I do not intend to be the one
in charge of making the art in a complete and finished version of the game,
but I can be the one who controls and monitors the management of it, as I do
have notions in the field.

Also, as mentioned above, from this project, I intend to create my own
library of scripts, prefabs, functionalities and various tools that will allow me,
in the future, to develop video games more easily.

Finally, it is also necessary that all this is accompanied by a previously
thought, tested and quality design to make all of the above make sense and
that all together form a memorable experience.

1.3 Environment and initial state

To develop the project we will only count on my work throughout the total
hours stipulated by the course.

As mentioned above, we want to start from the crudest possible basis, that
is, with the basic Unity 3D template. Without plugins or external tools.

From there, the different systems that will build the basis for a 3D platform
videogame will be created. However, we do not rule out the option of adding
some tools for Unity’s own development, such as, for example, cinemachine,
to lighten the time in case it is necessary.

For the development section, the VisualStudio 2019 [6]tool will be used
together with the Unity version 2020.3.22f1. [4]

For the artistic section, in terms of visuals, Blender 2.8 will be used for
the creation of 3D assets, while Adobe Photoshop CS6.v13.0 [8] will be used
for the creation of textures. While we expect to use free online libraries for
the sound part.

1.3. Environment and initial state 3

For the preparation of the Gantt chart, Google Sheets has been used. [3]
For the generation of this document, Overleaf has been used. [12]
To keep track of the tasks in more detail and to control their progress,

Notion was used. [7]
For version management, GitHub was used. [10]

C
h

a
p

t
e

r

2
Resource planning and evaluation

Índice
2.1 Planning . 5
2.2 Resource evaluation . 8

2.1 Planning

For the development of the vertical slice we have relied on the traditional
methodology used in most of the companies that make up the video game
industry, which is also the one that has been taught in some of the subjects
of the degree. That is, starting the project from pencil and paper, designing
every little aspect of what will be developed in the future, taking into account,
of course, that it is virtually impossible to accurately predict all the content
of a game and anticipate all the decisions to be taken, so, although the design
part is the first thing that will be worked on, this may vary throughout
the development. This phase will last, at least, during the 3-5 weeks of
development, developing issues such as the general idea and theme of the
game, conceptualize the scenarios, make a design of the basic mechanics of
the game or design the levels.

Secondly, the basic and fundamental mechanics of the game will be developed
in order to test the viability of the previously elaborated design. It is important
to keep in mind that in this phase of the development, the viability of the
design will be checked, so it does not matter too much if in the development
of the mechanics some minor bugs arise, because this phase has to be dynamic

5

6 Resource planning and evaluation

and agile in order to be able to iterate in the design phase if the results are
not as expected. This process can be developed in parallel with the first one,
although with some caution, and would last approximately until the first 5-6
weeks of development.

To continue, once the fundamental mechanics are already developed and
we are satisfied with the results, we will make a round of confection of the
most recurrent assets in order to give a little shape to the world, the main
character, which involves modeling and main animations such as running,
jumping, hitting... and even some basic enemies. This is so for a specific
reason, and that is that, being that the development will be done by a single
person, it is important to diversify the tasks, in order to make the process
more enjoyable and avoid the "burnout" effect. Also, if for some reason, the
project gets stuck in any of the future phases, at least there will be a part of
it that will be easy to show. It is believed that the development of this phase
would last from week 6 to week 10.

Once the artwork is done and implemented, the project will take shape and
will have another face, it will start to look like a demo, although with more
work to be done. The next phase will consist of the development of more
secondary mechanics, more frequent enemies and elements that will appear
later in the game, such as special enemies, or, for example, final bosses. It
could also be used to polish some minor bugs that have been left pending
in the first phase of development, although in the future a few weeks will be
dedicated to the polishing of the game, where this type of tasks are included.
This block corresponds to the following 5 weeks, that is to say, approximately,
from week 10 to week 15 of development.

Following this week, it remains to make the remaining assets, less recurring
assets, modeling and animations of secondary characters, including some extra
animations for the main character, modeling and animations for final bosses.
This phase of the project development could be summarized between 3 and 5
weeks.

Finally, the rest of the time left until the delivery of the project, efforts will
be focused on polishing mechanics, implementing some sounds, generating a
nice lighting for the project, finishing with the most important bugs, taking
into account that this is still a demo/vertical slice, which allows the appearance
of some minor bugs. In this phase we could also make some extra assets to
give more life to the world, but we will avoid as much as possible everything
related to the technical part, such as the implementation of new mechanics or
enemies. This could lead to the appearance of bugs or unexpected errors that
could lead to an undesired result.

A summary of the above, with a more detailed task breakdown, can be
seen in the following Gantt chart (see Figure).

2.1. Planning 7

Figure 2.1: Example of a Gantt chart (made with Google Sheets)

8 Resource planning and evaluation

2.2 Resource evaluation
In this section, it is important to learn to differentiate between what would be
the development of a complete project, and the vertical slice that is intended
to develop in this TFG. They are two projects that, although related, are also
very different in terms of the resources that must be allocated to each part.
Thus, only the development costs will be mentioned with regard to the vertical
slice.

Human costs: As mentioned in previous sections, the project will be
developed by only one person over approximately 21 to 24 weeks, working,
generally, a little less than half a day, which roughly sums up to about 315
hours at the end of the project. Given that the person in charge of the
development can be classified as a junior developer, and taking into account
the salaries offered in Spain to this profile, we will assume that the price to
be paid for the development would be about 6.5€ per hour. Then, the human
cost of that part would total, approximately, about 2000€.

Equipment costs: Knowing the time in which the project will be developed,
we can calculate approximately the costs of electricity and internet during the
5 or 6 months that the development will last, which would be about 500€
additional.

Taking into account that the development can be elaborated telematically,
it would not be necessary to hire a physical office, so the costs of a rent could
be discarded.

Regarding the material used for the development, student licenses and free
licenses of the different software mentioned above are being used.

Initially, the financing of these costs will be provided by the use of the
three F’s: family, friends and fools.

The total sum of the different costs amounts to approximately 2500€.

2.2. Resource evaluation 9

Figure 2.2: Table the project balance (made with Google Sheets)

C
h

a
p

t
e

r

3
System analysis and design

Índice
3.1 Requirements analysis . 11
3.2 System design . 13
3.3 System architecture . 14
3.4 User Interface Design . 15

3.1 Requirements analysis

Before carrying out any development, it is necessary to perform a previous
analysis of the analysis of the requirements of the project.

3.1.1 Functional requirements

In this project it is impossible to do without the following systems:

Input: Horizontal and vertical movement input
Output: Horizontal movement and jump
This system includes running, jumping in the air and jumping on the
wall.

Table 3.1: Functional requirement «Movement system»

11

12 System analysis and design

Input: Attack Input
Output: The character will launch an attack in the direction

where the character is facing
The player expects that if an enemy is encountered in the direction of
the attack, it will take damage.

Table 3.2: Functional requirement «Combat system»

Input: Difficulty for sound implementation
Output: Ease of implementation
System with which it is easy and simple so that the developer himself
can implement any audio of any type in any place in an agile way.

Table 3.3: Functional requirement «Sound system»

Input: Any trigger
Output: Effective storage without data loss
A system that does not allow the loss of progress

Table 3.4: Functional requirement «Save system»

Input: Any trigger
Output: Efficient data save
A system that allows for the efficient updating of data in a timely
manner.

Table 3.5: Functional requirement «Checkpoints system»

Input: Any trigger
Output: Load the following scene and download the previous

one
A system that allows concurrent loading and unloading of scenes
without loading screens.

Table 3.6: Functional requirement «Scene loading/unloading system»

3.2. System design 13

Input: Action input in front of a neutral NPC
Output: Display of a text interface
A system that allows the player to interact with the different neutral
npcs.

Table 3.7: Functional requirement «Dialogue system»

Input: Any input
Output: An appropriate response to each input
A system that allows the player to interact with the game from any
controller

Table 3.8: Functional requirement «Hybrid control system»

Input: Interaction input
Output: A response adapted to each interaction
A system that allows the player to interact with any element that is
desired.

Table 3.9: Functional requirement «Interactables system»

3.2 System design

Motion system 3.1 : This is the most used system and the one with which
the player will be most connected. It is important that these systems are
responsive to the player’s inputs, that the jump is fluid, trying to avoid the
balloon effect. When the user will press the movement input, the result will
be the displacement of the character in the world. While when he presses the
jump input, he will get the character to jump vertically.

Combat system 3.2 : This is the second of the pillars that make up this
video game. A combat system that is fair to the player must be developed,
otherwise, this is one of the most frustrating systems. The user will press the
input to attack, and the character will launch an attack towards the direction
where he is looking. The player will expect that if an enemy is found in the
direction where the attack has been launched, it will receive damage, so this
is how the system should work. In addition, for the cases where the visual
collision is adjusted, an extra margin will be given to the player with the
physical collision of the attack.

Sound system 3.3 : A system must be developed with which it is easy
and simple for the developer himself to implement any audio of any kind

14 System analysis and design

anywhere in an agile way. And, at the same time, it should be easy for the
user to control the levels of each audio track, from the most general to the
most specific.

Save system 3.4 : A system must be developed that does not allow the
loss of the progress that the player has achieved so far. These, if they fail,
are also systems that can generate a lot of frustration. Otherwise, if the save
points are well designed and the system works well, it becomes very satisfying
for the user.

Checkpoints system 3.5 : This system, although related to the previous
one, at a technical level and, above all, in terms of resource consumption, has
subtle differences when it is developed. This system must allow the developer
to store only the necessary data at each checkpoint to avoid processing cost
and memory load peaks.

Scene loading and unloading system 3.6 : As in the previous system,
a good scene loading and unloading system can save the player from waiting
times in obnoxious loading screens.

Dialog systems 3.7 : A system should be developed that allows the player
to interact with the non-playable neutral characters in the game, the player
expects to receive information in the form of conversations with the different
characters in the game.

Hybrid control system 3.8 : The player must be able to choose the type
of controller to play with via the virtual3.4 of the game, either keyboard and
mouse or a controller.

Interactable system 3.9 : A system that allows the creation of all types
of interactive elements in an agile way.

3.3 System architecture

The project can be divided into two main sections: Gameplay systems and
functionality systems.

In the gameplay systems, we find the GameManager, the PlayerController
and the enemies. These systems are located in the AlwaysScene, which is
a persistent scene throughout the gameplay. This structure allows us to
elaborate the functional requirement of loading and unloading scenes 3.6
without abrupt performance jumps.

The GameManager will allow us to manage the game status, that is, the
whole system will be able to know at all times if the game is paused, in dialogue
state or in normal execution. In addition, the GameManager will contain the
UI Manager, from which the interface and menus are managed and also the
SoundManager, which will make it accessible to the developer.

On the other hand, the PlayerController, will be in charge of managing
everything related to the player, containing the MainCamera, the PlayerMovement
and also all its Combat part.

3.4. User Interface Design 15

Finally, there are systems that are independent from others, but bring a
lot of value to the project.

Figure 3.1: Diagram of the main project structure (made with Diagrams.net)
[2]

3.4 User Interface Design
For the game interface, we intend to maintain a clean and neat user interface
with as little information on screen at the same time as possible with the
intention of generating the greatest possible immersion in the game, making
each part of the game enjoyable to its fullest potential. To do this, the
necessary information will be shown and hidden at all times.

To indicate the player’s remaining life, the number of lives left will be
shown only when it is relevant, that is, once the player is about to enter
combat, or in an area where we know it will be dangerous for the player.

For additional information such as the player’s damage, speed or other
possible statistics that will be added in the future, they will be visible in the
pause menu, which will open with a button assigned to this menu. In addition,
from this same menu, the player will be able to return to the main menu.

16 System analysis and design

Figure 3.2: Design of the inGame UI (made with Photoshop) [8]

3.4. User Interface Design 17

Figure 3.3: Design of the Pause menu (made with Photoshop) [8]

C
h

a
p

t
e

r

4
Work development and results

Índice
4.1 Work development . 19
4.2 Results . 23

4.1 Work development
This section will provide a detailed description of the work carried out chronologically.
From the beginning until the moment this document is being written.

4.1.1 Design phase

As intended in the planning phase, the project was started from pen and paper,
conceptualizing a design that can appeal to the player. What the design phase
involves is thinking about the most important aspects you want the game to
have, knowing exactly where the game is going to start and how far the game
is going to go.

In this project, we knew that we wanted to make a short game, with the
most fundamental systems but at the same time we wanted to see the potential
of a future game. So it was concluded, through the design phase, that a main
character in humanoid form would be the link that would unite the player with
the virtual world. In addition, it was concluded that the game had to have a
fluid, responsive and satisfying control, both in jumping and with movement.
Then, through certain references mentioned and analyzed in the GDD, that
a stealth mechanic was going to be implemented, since it was known that the

19

20 Work development and results

target publisher was sympathetic to this type of mechanics. Then the map
where the action would take place was designed. Giving rise to 4 or 5 zones in
which the different elements would be gradually introduced. Then, the types
of enemies that would appear in the game were designed, resulting in two
basic enemies, an enemy that patrols horizontally, and another enemy that
flies, circling randomly in an area. Finally, a series of interactive elements
such as NPCs, death zones, healing elements, walls and breakable elements
were devised along with the story that will give meaning to the world.

4.1.2 First technical phase

Once the design phase is over, the technical phase of development begins, so,
we started with the creation of the repository, where the version has been
updated so as not to lose the progress.

Once the repository was created in GitHub, we started creating the basic
mechanics of movement and jumping, this mechanics was created simply using
the physics engine provided by Uinity, resulting in the PlayerMovement.cs
script, which will collect all the features related to the movement of the
character.

Next, the development of the basis of what would be an enemy and its
interaction is continued, which implies the CombatUnit.cs script, although
not much more progress was made in this aspect.

The development of the interacting elements continued, giving rise to the
InteractuableBase.cs script.

It should be noted that these systems were developed very quickly without
much depth or attention to detail, they were the first steps in the project and
really aimed to have moving elements on the screen and to be able to play
something.

4.1.3 First Artistic Phase

Once some of the most fundamental systems were functional, it was time to
make some assets so that the game could begin to be seen in its earliest phase.

We started with the modeling of the main character, which was modeled
from scratch using Blender 2.8, a humanoid with proportions that were intended
to be cartoon style. The quality of the modeling did not matter too much,
because, as in the previous section, the intention was to be able to implement
some art, although later it would be retouched and improved, in order to
outline certain details of the development.

Once the modeling was finished, the basic idle, running and jumping
animations were elaborated, also using Blender.

In addition, an attempt was made to model some scenery elements such
as stones or pillars, but after a couple of failed attempts due to the lack

4.1. Work development 21

of resemblance to the target style in the result obtained, these assets were
discarded.

4.1.4 Second technical phase

Once the model and animations of the main character were available, we
proceeded to polish and complement the scripts developed in the first technical
phase, that is, to implement the animations and add other more secondary
systems such as footsteps.

When the animations were already implemented, testing the game in a
small improvised scenario, we could see that the result of the movement, which
was given so much importance in the design of the game, was not exactly
as intended, since it was neither responsive nor fluid, and the balloon effect
appeared. So the next step would be to review and redesign the script in
charge of the movement to make it work as we wanted.

First, it was decided to do without Unity’s physics engine, because the
inertias that this engine generates made the system respond slowly to the
player’s input. So a simple movement system was programmed that was
intended to simply increase or decrease the position value according to the
input that was pressed. This should work, but for the combat system and
for the footsteps system we made use of Unity’s collision system, and this
in turn is closely related to the physics system, so if you make use of these
collision systems, you can not modify the position of a transform that has a
Rigidbody and a collider in the same object, so we had to discard this first
implementation.

So, we had to make use of the physics system for the movement of the
character, if we didn’t want to implement our own collision system as well.
The decision was made not to go that far, discarding the option of developing
a new collision system.

The final decision was to make use of Unity’s physics system, but limiting
it and making use of certain tricks so that the accumulation of inertia would
not be a problem.

For the jump, in the ascent phase, it was intended that the speed on the
vertical axis did not draw a parabola, because we wanted the ascent speed
to be continuous, that would make it much easier for the player to predict
how far his character is going to ascend. So instead of using an impulse force
when pressing the input, a constant force was used while holding down the
jump button, in each frame a small vertical force would be applied until the
input was released or until the jump time was over. For the descent phase, as
for the ascent phase, we wanted a constant speed, that would make it much
easier for the player to predict where his character is going to fall. For that,
once the character has reached the maximum point of his jump (isGrounded
= false jumping = true velocity.y == 0), in that instant the speed of fall is
assigned to the desired value, and it is checked in each frame that this value

22 Work development and results

is not lower in any case until touching the ground. If so, the value would be
reset again.

For the horizontal movement, use is also made of the constant forces, thus
accumulating the inertia that at first gave problems. Now a solution had
to be found. The solution found was as follows: When changing direction,
not only was going to change the direction of the velocity applied to the
movement (addForce(-v)), but to the change of speed, would be added change
of direction, the current speed at which the character goes, but in the opposite
direction (addForce(-v + currentVelocity.x). This solved the problem of inertia
and turned out to be a good solution for both controller and keyboard.
Resulting in the movement system that was sought at first.

4.1.5 Second artistic phase

With the movement system already satisfactory, it was time to polish the
artwork, improving the character modeling and animations. It was also time
to start modeling some assets to start generating a more immersive scenario.

Once in Blender, the current animations are improved and the attack
animation is added.

For a second time, we tried to generate a series of assets suitable to
recreate the designed levels and also to create an immersive environment in the
scenario. However, given the lack of skill, the generated assets did not meet
the minimum quality standards expected. So those assets were discarded and
the option of looking for free and freely available assets was considered.

Finally, after a lot of searching, we took advantage of an offer to buy a
pack of assets for the creation of scenarios.

After acquiring the pack, a world building phase began, shaping the world
in which the game would be played, and starting to make a final version of
the scenarios updated in the design phase.

4.1.6 Last phase of development before the paradigm change

In this last phase of development, base patrol enemies were implemented using
placeholder assets and added to the world design, also a round of bugfixing was
done, solving some of the minor technical issues that arose. Finally, we added
detail to the world created using the purchased assets pack, added dynamism
to the camera using Unity’s cinemachine tool and generated lighting to the
scenery, giving a very finished look to the game.

4.1.7 Change of paradigm

At this point, after having tried to contact the influencer proposed in the
technical proposal but without success. The decision was made to aim a little
lower and try to contact some smaller, but still influential streamers/influencers
with interesting numbers.

4.2. Results 23

So, taking advantage of my position as an active developer and a situation
of interest for the streamer el Yuste with 88mil followers on his twitter @inyustificado
[14], 64mil followers on the twitter of his project @Esportmaniacos, 42mil
followers on his Youtube channel, and an average of 5mil live viewers every
day on Twitch, an agreement was reached to implement a mechanic that he
wanted in his video game, and from there the possibility of further developing
the video game would be assessed.

In addition, on the other hand, it was possible to contact a content creation
club called Inevitables with 110,000 followers on their Tiktok account @inevitablesmk
[5] whose videos reach, in some cases, 700,000 and 800,000 reproductions.

With this party, they are already negotiating the conditions for further
development, contributing illustrators, music producers and project managers
and, above all, how the project will be monetized.

4.1.8 After the changes

After the events concerning the publishing and its subsequent negotiations,
it was assumed that one of the possible future publishers required to add
a specific mechanic and, on the other hand, the other publisher is already
prepared to start including varied content, both illustration and sound, a
decision had to be made.

The decision to be taken, at least for the moment, is to keep the main
branch for the Yuste variant. While for the Inevitables variant a new branch
will be created from the current state of the game and, from there, adapt the
project to what Inevitables wants to do, both with the story and with the
direction of the project.

These events result in a shortening of the previously planned project,
because given the publishers’ proposals, the decisions to be taken will be
different from what has been planned so far.

4.2 Results

After the development process of the final degree project, most of the objectives
set at the beginning of it have been achieved.

In the first place, the aim of this project was to capture the attention
of a publisher who, given the right conditions, could generate a business
opportunity when the time came. In this case, although we have failed in the
attempt to capture the attention of the targeted publisher, we have managed
to contact two other potential publishers, of which one seems motivated to
start working as soon as possible, and another one is open to be convinced.

In addition, we have managed to develop a project of sufficient quality to
be able to capture the attention of these publishers.

24 Work development and results

However, it is true that the intention was to develop a short vertical slice,
but, even so, it was expected that the length and the amount of content
included in the project would be a little more extensive.

Finally, it was intended to generate, from this project, a series of assets,
scripts, prefabs and development tools that could be extrapolated to allow,
in the future, to develop our own videogames in a more agile way. Regarding
this point, as in the previous point, we have achieved a library of elements
such as combat scripts, enemy prefabs, character movement scripts, footsteps
and others. Even so, it is true that it was expected to generate a larger library
according to the expectations of the extension of the game.

C
h

a
p

t
e

r

5
Conclusions and future work

Índice
5.1 Conclusions . 25
5.2 Future work . 26

5.1 Conclusions
Once finished the development process of the final degree project, the experience
of developing the final degree project over these months has made me a better
developer and has allowed me to draw a number of conclusions which I will
express below.

First of all, although I already had certain notions about how complicated
it is to plan in terms of time and amount of content a multidisciplinary project
such as the development of a video game, the experience with this project
has reaffirmed it. That leads me to think that only a team of flexible and
experienced developers are able to adapt to the multiple unforeseen events
that these projects are subject to in many cases.

Another lesson that I have reinforced with this development, is the complete
admiration I have for developers who are able to bring out a game with only
one person. For me, it is so difficult to do a decent job in so many different
fields and disciplines, that I can only admire those who manage to do it.

Finally, in this project, it was important for me to prove to myself that I
could do what I had set out to do, to prove to myself that I was good enough
at it to know how to develop the fundamental mechanics at a level that is not
the minimum, giving a leap of quality in terms of functionality. Now that it’s

25

26 Conclusions and future work

finished, I must say that I expected the process to be simpler, I didn’t expect
to get stuck and encounter problems in something that was supposed to be as
simple as movement. That made me doubt myself. Nevertheless, I managed
to overcome the situation and get the expected results, even if it took longer
than expected.

5.2 Future work
This final degree project was designed from the beginning to provide opportunities
to continue working on this project. Given the results, everything indicates
that it will be possible to continue developing projects based on the project
that has been developed in this final degree project.

On the one hand, the project will be expanded, adding a specific mechanic
in order to convince one of the publishers that have been contacted, in the
hope of continuing to convince the publisher and continue working with this
publisher.

On the other hand, regarding the Inevitables club, we are already negotiating
the conditions under which we will continue with the project, adding illustrators,
writers, music producers and other profiles to the project.

Bibliography

[1] Blender Foundation. (s. f.). Download. Blender.Org. Last visited: May 11,
2022, from https://www.blender.org/download/

[2] Diagram Software and Flowchart Maker. (s. f.). Diagrams dot net. Last
visited: May 11, 2022, from https://www.diagrams.net/

[3] Fulls de càlcul de Google: creeu i editeu fulls de càlcul en línia de franc.
(s. f.). Fulls de càlcul de Google. Last visited: May 11, 2022, from https:

//www.google.com/intl/ca_es/sheets/about/

[4] Get - Download Archive. (s. f.). Unity. Last visited: May 11, 2022 https:

//unity3d.com/es/get-unity/download/archive

[5] I. (s. f.). Inevitables (@inevitablesmk) TikTok | Watch Inevitables’s Newest
TikTok Videos. TikTok. Last visited: May 11, 2022 https://www.tiktok.

com/@inevitablesmk

[6] Microsoft. (s. f.). Visual Studio 2022 | Descargar gratis. Visual Studio.Last
visited: May 11, 2022, from https://visualstudio.microsoft.com/es/vs/

[7] Notion Desktop App for Mac Windows. (s. f.). Notion. Last visited: May
11, 2022, from https://www.notion.so/desktop

[8] Official Adobe Photoshop | Photo and design software. (s. f.). Official
Adobe Photoshop | Photo and Design Software. Last visited: May 11,
2022, from https://www.adobe.com/products/photoshop.html

[9] Stylized Ancient Ruins Environment | 3D Environments. (2022,
12 marzo). Unity Asset Store. Last visited: May 11, 2022,
from https://assetstore.unity.com/packages/3d/environments/

stylized-ancient-ruins-environment-195760

[10] T. (2021, 29 diciembre). GitHub - Taspaya. GitHub.Last visited: May
11, 2022, from https://github.com/Taspaya/TFG_Project

[11] Technologies, U. (s. f.). Cinemachine. Unity. Last visited: May 11, 2022,
from https://unity.com/es/unity/features/editor/art-and-design/

cinemachine

27

https://www.blender.org/download/
https://www.diagrams.net/
https://www.google.com/intl/ca_es/sheets/about/
https://www.google.com/intl/ca_es/sheets/about/
https://unity3d.com/es/get-unity/download/archive
https://unity3d.com/es/get-unity/download/archive
https://www.tiktok.com/@inevitablesmk
https://www.tiktok.com/@inevitablesmk
 https://www.notion.so/desktop
 https://www.adobe.com/products/photoshop.html
 https://assetstore.unity.com/packages/3d/environments/stylized-ancient-ruins-environment-195760
 https://assetstore.unity.com/packages/3d/environments/stylized-ancient-ruins-environment-195760
 https://github.com/Taspaya/TFG_Project
 https://unity.com/es/unity/features/editor/art-and-design/cinemachine
 https://unity.com/es/unity/features/editor/art-and-design/cinemachine

28 Bibliography

[12] Templates - Journals, CVs, Presentations, Reports and More. (s. f.).
Overleaf, Online LaTeX Editor.Last visited: May 11, 2022, from https:

//www.overleaf.com/latex/templates

[13] Unity Asset Store - The Best Assets for Game Making. (s. f.). Unity Asset
Store. Last visited: May 11, 2022, from https://assetstore.unity.com/

[14] Yuste (@inyustificado) | Twitter. (s. f.). Twitter. Last visited: May 11,
2022, from https://twitter.com/inyustificado

https://www.overleaf.com/latex/templates
https://www.overleaf.com/latex/templates
https://assetstore.unity.com/
https://twitter.com/inyustificado

A
p

p
e

n
d

ix A
Source Code

BaseEnemy.Cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class Cs_BaseEnemy : Cs_CombatUnit

6 {

7 public override void Attack()

8 {

9 throw new System.NotImplementedException();

10 }

11 // Start is called before the first frame update

12 void Start()

13 {

14 maxLife = 2;

15 currentLife = maxLife;

16 }

17 }

CombatUnit.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public abstract class Cs_CombatUnit : MonoBehaviour

6 {

7 public int maxLife { get; set; }

8 public int currentLife { get; set; }

29

30 Source Code

9 public int strength { get; set; }

10 public Vector3 direction { get; set; }

11 public bool canMove { get; set; }

12
13
14 [Header(" ======= COMBAT =========")]

15 [System.NonSerialized]

16 public bool isStunned;

17
18 public int currentDamage = 1;

19
20 private void Awake()

21 {

22 currentLife = maxLife;

23 }

24
25 public abstract void Attack();

26 public void RecieveDamage(int n) {

27 Debug.Log(gameObject.name + ": Ouch");

28 currentLife -= n;

29 DeathChecker();

30 }

31
32 public void Init_BasePatrol()

33 {

34 maxLife = 1;

35 currentLife = 1;

36 strength = 1;

37 canMove = true;

38 }

39 void DeathChecker()

40 {

41 if (currentLife <= 0) Destroy(gameObject);

42 }

43 public void Heal(int n)

44 {

45 currentLife += n;

46 }

47
48 public void DealDamage(Cs_CombatUnit other)

49 {

50 other.RecieveDamage(currentDamage);

51 }

52 }

InteractableBase.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine.Events;

4 using UnityEngine;

5

Source Code 31

6 public abstract class InteractableBase : MonoBehaviour

7 {

8
9 public bool compareTag = false;

10
11 [SerializeField]

12 string tagToCompare = "";

13
14 [SerializeField]

15 public UnityEvent customEvent;

16
17 public virtual void ExecuteAction()

18 {

19 customEvent.Invoke();

20 }

21
22 private void OnTriggerEnter(Collider other)

23 {

24 if (compareTag)

25 {

26 if (other.tag == tagToCompare) ExecuteAction();

27 }

28 else ExecuteAction();

29 }

30 }

PlayerMovement.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class PlayerMovement : MonoBehaviour

6 {

7 Animator myAnimator;

8 Rigidbody myRb;

9 float horizontal;

10 bool isGrounded = true;

11
12
13
14 //Gravity implementation

15 [Header(" ======= Gravity Settings =========")]

16 const float FALL_SPEED = -10;

17
18 //Jumping variables

19 bool isJumping = false;

20 float initialJumpVelocity;

21 float maxJumpHeight = 1;

22 float currentJumpTime;

23 float jumpTimeCounter;

24

32 Source Code

25 // ======= Run Settings =========")

26 float speed = 2;

27 float currentSpeed;

28
29
30 [SerializeField]

31 Transform feetPos;

32
33 float jumpTime;

34 [SerializeField]

35 float checkRadius = 1;

36 [SerializeField]

37 LayerMask groundMask;

38 [SerializeField]

39 float jumpForce = 3;

40
41 [Header(" ======= Other Settings =========")]

42 [SerializeField]

43
44 [Tooltip("Used to flip the mesh")]

45 GameObject playerMesh;

46 private bool jumping;

47
48 private void Awake()

49 {

50 myAnimator = playerMesh.GetComponent<Animator>();

51 myRb = GetComponent<Rigidbody>();

52 speed = PlayerController.Instance.speed;

53 jumpTime = PlayerController.Instance.jumpTime;

54 currentSpeed = speed;

55 currentJumpTime = jumpTime;

56 }

57
58 // Update is called once per frame

59 void Update()

60 {

61 isGrounded = Physics.OverlapSphere(feetPos.position, checkRadius, groundMask).Length > 0 || (myRb.velocity.y < 0.1f && myRb.velocity.y > -0.1f);

62
63 FlipPlayer();

64 ManageAnimations();

65 ManageWallJump();

66 jumping = Input.GetButton("Jump");

67
68 if (isGrounded && Input.GetButtonDown("Jump"))

69 {

70 isJumping = true;

71 myRb.AddForce(transform.up * jumpForce, ForceMode.VelocityChange);

72 }

73 else if (isGrounded && !Input.GetButtonDown("Jump")) isJumping = false;

74
75 if(!isGrounded && Input.GetButton("Jump") && currentJumpTime > 0)

76 {

77 myRb.AddForce(transform.up * 0.5f, ForceMode.VelocityChange);

78 }

Source Code 33

79
80 if (isGrounded && currentJumpTime <= 0) currentJumpTime = jumpTime;

81 HandleGravity();

82 }

83
84 private void FixedUpdate()

85 {

86 if (!isGrounded && Input.GetButton("Jump") && currentJumpTime > 0)

87 {

88 currentJumpTime -= 0.1f;

89 }

90
91 ManagePlayerMovement();

92 if (!isGrounded && myRb.velocity.y <= 0 &&

93 !PlayerController.Instance.GetIsLeftLimited() &&

94 !PlayerController.Instance.GetIsRightLimited())

95
96 myRb.AddForce(-transform.up * (jumpForce * 0.1f), ForceMode.Acceleration);

97 }

98
99

100 void ManageWallJump()

101 {

102 if(PlayerController.Instance.GetIsLeftLimited() && !isGrounded && Input.GetButtonDown("Jump"))

103 {

104 Vector3 walljumpForce = new Vector3(jumpForce, -myRb.velocity.y + jumpForce * 2, 0);

105 myRb.AddForce(walljumpForce, ForceMode.Impulse);

106 FlipPlayer();

107 }

108 }

109
110 void ManagePlayerMovement()

111 {

112 if (!isGrounded) currentSpeed = speed / 2;

113 else currentSpeed = speed;

114
115 if (PlayerController.Instance.GetCanWalk()) horizontal = Input.GetAxis("Horizontal");

116 else

117 {

118 horizontal = 0;

119 myRb.velocity = new Vector3(0, myRb.velocity.y, 0);

120 }

121
122 if (horizontal < 0.2f && horizontal > -0.2f) myRb.velocity = new Vector3(0, myRb.velocity.y, 0);

123
124 if (!PlayerController.Instance.GetIsLeftLimited() && !PlayerController.Instance.GetIsRightLimited())

125 MovePlayer();

126 else if (PlayerController.Instance.GetIsLeftLimited() && horizontal > 0)

127 MovePlayer();

128 else if (PlayerController.Instance.GetIsRightLimited() && horizontal < 0)

129 MovePlayer();

130 //myRb.velocity = myRb.velocity + new Vector3(horizontal * currentSpeed, 0, 0);

131
132 }

34 Source Code

133
134 void MovePlayer()

135 {

136 float factor = 10;

137 //Going Left

138 if(myRb.velocity.x < 0)

139 {

140 //Direction change

141 if(horizontal > 0) {

142 factor = 10;

143 }

144 //Same direction

145 else if(horizontal < 0) {

146 factor = 1f;

147 }

148 }

149 //Going Right

150 else if(myRb.velocity.x > 0)

151 {

152 //Direction change

153 if (horizontal < 0)

154 {

155 factor = 10;

156 }

157 //Same direction

158 else if (horizontal > 0)

159 {

160 factor = 1f;

161 }

162 }

163
164 myRb.AddForce(new Vector3(horizontal * currentSpeed * factor, 0, 0), ForceMode.Impulse);

165
166 }

167
168 void FlipPlayer()

169 {

170 if (PlayerController.Instance.GetCanWalk())

171 {

172 if (horizontal > 0 && transform.rotation.y != 90) playerMesh.transform.rotation = Quaternion.Euler(new Vector3(0, 90, 0));

173 else if (horizontal < 0 && transform.rotation.y != -90) playerMesh.transform.rotation = Quaternion.Euler(new Vector3(0, -90, 0));

174 }

175 }

176
177 void ManageAnimations()

178 {

179 myAnimator.SetBool("isRunning", ((horizontal < -0.5f || horizontal > 0.5f || horizontal != 0)));

180 myAnimator.SetBool("isGrounded", isGrounded);

181 }

182
183 void HandleGravity()

184 {

185 if (!isGrounded && (myRb.velocity.y > FALL_SPEED && myRb.velocity.y < 0)) myRb.AddForce(-Vector3.up, ForceMode.VelocityChange);

186

Source Code 35

187 if (Input.GetButtonUp("Jump"))

188 {

189 myRb.AddForce(new Vector3(0, myRb.velocity.y,0));

190 }

191 }

192
193 }

UIManager.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine.UI;

4 using UnityEngine;

5
6 public class UI_Manager : MonoBehaviour

7 {

8 [SerializeField]

9 GameObject dialogueCanvas;

10 [SerializeField]

11 GameObject objectiveCanvas;

12 [SerializeField]

13 Text currentDialogueText;

14
15 [System.NonSerialized]

16 public SimpleDialogue currentSimpleDialogue;

17 public void ShowUIDialogue()

18 {

19 dialogueCanvas.SetActive(true);

20 }

21 public void HideUIDialogue()

22 {

23 dialogueCanvas.SetActive(false);

24 }

25 public void WriteDialogue(string text)

26 {

27 currentDialogueText.text = text;

28 }

29
30 private void Update()

31 {

32 if (GameManager.Instance.GetCurrentGameState() == GameManager.GameState.Dialogue)

33 if (Input.GetButtonDown("Attack")) currentSimpleDialogue.NextDialogue();

34 }

35
36 }

	Contents
	Introduction
	Project motivation
	Aims of the project
	Environment and initial state

	Resource planning and evaluation
	Planning
	Resource evaluation

	System analysis and design
	Requirements analysis
	System design
	System architecture
	User Interface Design

	Work development and results
	Work development
	Results

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Source Code

