
Upside Downgeon: Development of a
videogame based on classic role-playing

board games

Javier Albors Caño

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 29, 2022

Supervised by: Diego José Díaz García

http://creativecommons.org/licenses/by-nc-sa/3.0/

To the crew

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Diego José Díaz
García, for for his advice and help provided during the development.

Thanks to Oscar and Jordi, who, providing the room and guidance, made possible
the dub of the game.

Thank Sergio Barrachina Mir and José Vte. Martí Avilés for their inspiring LaTeX
template for writing the Final Degree Work report, which I have used as a starting point
in writing this report.

Thanks to Sergio, Jose, Boro, Vite, David and my brother for testing the game and
providing some crucial advice and for their always welcomed suggestions.

Also, thank you, Alicia, for giving voice to the female characters and your constant
care during the development.

i

http://lorca.act.uji.es/curso/latex/
http://lorca.act.uji.es/curso/latex/

Abstract

This document represents the Final Degree Work report of Javier Albors Caño in Video
Game Design and Development. Aforesaid work is made up of a PC videogame titled
Upside Downgeon, a videogame inspired by the classic dungeon crawler games.

This videogame seeks to be built as a board game. In this way, the player will find a
new way to play a «board game», finding a better immersion thanks to the automation,
animation and sound that the electronic basis of the videogame provides. This is the
way the project tries to reflect on the relationship, similarities and differences between
board games and its electronic descendants.

The project put special emphasis on the game art, sound and appearance but also
special care on its game design. Every game asset, including specific scripting, 2D and
3D art, sound and music has been specifically developed.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 3

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 9

3 System Analysis and Design 11
3.1 Requirement Analysis . 12
3.2 System Design . 18
3.3 System Architecture . 27
3.4 Interface Design . 27

4 Game Design 33
4.1 Game concept and world building . 33
4.2 Game and mechanics design . 36

5 Work Development and Results 41
5.1 Work Development . 41
5.2 Results . 49

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future work . 54

Bibliography 55

A Diary of Development 57
A.1 Bibliography . 60

B Source code and other considerations 61

v

vi Contents

C Play testing 63

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 3

The work is, indeed, a complete development of a videogame using several free tools.
It was decided that the project would seek to have its own assets specifically developed by
the author, so it could be as accurate to the original design as possible. Also, with this,
the project wanted to emphasise how much multipurpose the character of this Degree is.
The game developed might not be perfect in any discipline of the game developing, but
it can at least just be good at every of them. This is the report of a multidisciplinary
Final Degree Work in an extremely multidisciplinary Degree.

1.1 Work Motivation
Since their appearance, videogames have always been clearly differed from the classic
board games in mechanics, design and, obviously, player interaction. Both, board and
video games, have found huge evolution and reached new levels of complexity.

Modern dungeon crawler [8] board games use new intricate mechanics that usually
suppose the need of saving and modifying the game state and character attributes. This
makes the players have to take into account a lot of game events, do a lot of math and
be extremely careful with what they have on the table in order not to lose or forget what
exactly is going on the party and what to do next.

Implementing videogames technologies should help to avoid these issues. This project
seeks to develop a complete 3D role-playing board game in which the player will use the

1

2 Introduction

UI and the mouse to interact with the game world (that tries to be as similar to physical
board games as possible). The machine will also do the dungeon master’s work, this is,
managing the game events, mechanics, rules and enemies.

1.2 Objectives

The main goal of the project is creating a virtual environment that simulate a board
game party. This virtual environment should exploit every advantage that the tools
usually used on videogame development could offer (such as graphic engines, the scripting
of calculus automation, sound engines, etc.) in order to ease and improve the user’s
experience.

That is why the finish of the game, its appearance, sound and player interaction take
on an important place on the project’s objectives: The players must feel like they are
playing a role-playing board game and, at the same time, they are playing a videogame
with an intuitive tutorial and interface, an entire set of animated characters and a whole
original soundtrack.

All of this, to the extent possible. Since the proposal of the project, I had a clear idea
that every game asset, including 2D and 3D art, sound and music should be specifically
developed for this game. Correctly balancing the time spent in every task was very
important.

Furthermore, there were some more other objectives established:

• User interaction: Board games are played using a physical support. Players use
their hands to pick and move tokens, place tiles, share out tokens, etc. Also they
just lean on the board to see and understand what is going on during the game.
Here is the first challenge. The interaction should be as simple as leaning yourself
over the table and pick and swing a token on a board. While using a computer,
the player can not pick a figurine with their hands unless they are playing a VR
game.

Also, nowadays, most of the software approach its interface from the interaction
with the mouse. It is likely that the player prefers being able to do every single
action in the game only by using the mouse. It is similar to use your own hands
to pick a cardboard game token.

That is why the users should see every action they can do on the interface, so
putting or moving a figurine on a tile is just matter of clicking on the right places
of the screen. Also, the mouse should be used on a simple and intuitive way to
move the point of view of the player during the game.

• Game system:Role-playing board games usually have a board compound by sev-
eral squared tiles. Also, there are usually several different agents or units, that
are placed on a single tile and have definite numeric stats (such as health points,
speed points, etc.). Some agents would work as enemies and some other would be

1.3. Environment and Initial State 3

worn by the players. These agents move around the board spending movement or
speed points that represent the maximum tiles it can move in any direction.
I wanted to include this kind of structure in my game, but I wanted to modify
it so the game would be a new and different experience. I also wanted to keep it
as simple and intuitive as possible. The game system will be later explained with
accuracy.

1.3 Environment and Initial State
The author used to spend countless afternoon playing board games and trading card
games since very young. One of the first ideas for developing a game the author had
before starting his Design and Development Degree, was making a classic RPG board
game with similar features that Upside Downgeon finally had.

Videogames based on board games do already exist, titles like Demeo[2], which has
an original game design, or the Warhammer Blood Bowl[6], being this one an adaptation
from a real board game; but they are very limited in number. The first mentioned one,
Demeo, is an RPG inspired by Dungeons&Dragons[5], just as Upside Downgeon does.
Its game design fits perfectly in the description given in the section 1.2. When the idea
of the project came up and the design and development of Upside Downgeon started,
Demeo was, indeed, a VR only game. The idea of moving a similar design and idea to
a Desktop PC game seemed interesting and exciting.

The coordinator of the project agreed with the game concept and the idea the author
had of specifically developing the whole game. After ending his external practices of the
Degree, the author started the development of the game as a full time job.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 9

This chapter deals with the most technical part of the work. Here the planning and
the resources used during the project are presented and explained.

2.1 Planning

The project has been developed according to an incremental method. This means that
the work has been developed following an iterative process in which every new stage,
reached after every two weeks of work, added new and better features to the game.

During every stage new features had been designed and developed. At the end
of the iteration, the currend version of the game is tested and shown to the project
coordinator. The feedback received would be analyzed and used to design new features
for the videogame or fix the current ones, and thus start the development of a new stage.
Also, the incremental development requires a deep and constant planning of the goals
and subgoals of the project.

Also, every three weeks, a total of two times during the project, a group of real
possible users have tested the videogame, providing deep feedback about new features,
design and possible errors.

Correctly balancing the time spent in every task during the project was very impor-
tant. That is why, at the very beginning of the project, a chart was created in order to

5

6 Planning and resources evaluation

collect, on a very simplified way, every great group of tasks and the time that there was
expected to spend on them (see Figure 2.1).

This basic planning was modified and developed into a more detailed weekly plan
that could be represented using a Gantt chart (see Figure 2.2). There can be seen that,
as explained before, the work has been developed as if it was a full time job. It was
decided that Mondays would be 4 hours working days, so the work could be combined
with 4 hours of classes per week. The rest of the days of the week would be full working
days (working a total of 8 hours per day). There was planned to spend a total of 36
working hours per week.

Having that plan developed, the time spent in every single real task during the
project would be daily recorded using a project diary (see Figure 2.3). This allows to
compare the planning and the real time spent during the project. One of the hardest
tasks in which finally has been spent more time than expected is the 3D art. At first,
it was expected to model high poly characters in order to, later, retopologize them and
paint textures. This was a very time consuming pipeline that ended giving not as good
results as expected. Because of that, the high poly model that had been developed until
I realized that was finally cast aside and every model was done following a low-poly
style. This forced the planning to be changed and reduce the time spend on other tasks.
The task that has been reduced at most was the one dedicated to make concept art of
the characters (finally, only concept art of the monsters have been done). Consult the
whole document in the Appendix A.

Figure 2.1: Planning of the project using a simple task chart

2.1. Planning 7

Figure 2.2: Planning of the project using a weekly Gantt chart

8 Planning and resources evaluation

Figure 2.3: Example of a real recorded week of the project diary document

2.2. Resource Evaluation 9

2.2 Resource Evaluation
In this section are estimated the undertaken costs of the work. The human and equip-
ment costs are quantified so that the work can be assessed and so that, in a real case,
the economic viability of the work could be evaluated. Here is a list of the essential and
helping software and hardware used during project.

1. Hardware valued in a total of 1440€:

• HP Pavilion Gaming 15: Intel Core i7 CPU, 8 GB RAM, Nvidia 1050Ti
GPU, valued in 800€.

• XP-PEN Artist 22 Pro drawing screen: valued in 500€.
• BenQ 27" LED IPS screen: valued in 140€.
• Universitat Jaume I dubbing equipment: Not valuable.

2. Software. Only free software and online tools have been used:

• Unity3D Game Engine: version 2021.3.2f1, free student license.
• Blender: version 3.1.2, modeling, sculpting and texturing software, free open

source software.
• Krita: version 5.0.6, digital painting software, free open source software.
• GitHub Desktop: version 3.0.1, free licensed.
• Overleaf: online LaTex edition tool, free licensed.
• Soundtrap by Spotify: online sound and music creation tool, free trial

subscription (7.99€ per month).

3. Human resources. Most part of the work listed here is done by the author of
this document. Every role and its work time has been estimated and listed using
the development diary document as reference. Every role average salary has been
calculated using Salary finder from Indeed.com[3] data. The salaries found in the
Salary finder are often lower than expected, so some numbers have been modified
in order not to undervalue those activities. Human resources of the project are
valuated in total in 3762€:

• General project manager: Author, 52 hours of work. Earning 15€ per
hour on average, valued in 780€.

• Unity 3D developer and junior programmer: Author, 157 hours of
work. Earning 12€ per hour on average, valued in 1884€.

• 2D artist: Author, 57 hours of work. Earning 12€ per hour on average,
valued in 684€.

• 3D artist: Author, 22 hours of work. Earning 12€ per hour on average,
valued in 264€.

10 Planning and resources evaluation

• Sound designer and composer: Author, 10 hours of work. Earning 12€
per hour on average, valued in 120€.

• Male voice actor: Author, 2 hours of work. Earning 10€ per hour on
average, valued in 20€.

• Female voice actress: Collaborator, 1 hours of work. Earning 10€ per hour
on average.

Lacking the value of the dubbing equipment from the UJI, the whole project can be
valuated in a total of 4313.8€.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 12
3.2 System Design . 18
3.3 System Architecture . 27
3.4 Interface Design . 27

This chapter presents the requirements analysis, design and architecture of the pro-
posed work. It also describes the process of design of the GUI (Graphical User Interface,
see Figure 3.1).

Figure 3.1: Final UI design used in Upside Downgeon

11

12 System Analysis and Design

3.1 Requirement Analysis

Figure 3.2: Navigation diagram of Upside Downgeon

3.1. Requirement Analysis 13

Before enumerating a series of functional requirements, it is convenient to describe
and reflect on how the videogame works and leads the user through the gameplay in a
preliminary analysis of the requirements of the videogame as software.

Upside Downgeon is a videogame which mechanics are fed by classic «role-playing
board games» but implements a point and click user interaction. Also, the target of
the player is «upside down», as they must not explore a dungeon but defend it. This
switches the genre of the game from dungeon crawler or rogue-lite adventure into a TBT
(Turn-based tactics) in which the player can spawn and move several units in order to
expel the explorers (or adventurers as are called i the game).

As the videogame is launched, the main theme of the OST (original soundtrack) can
be heard. Also, the user can see an animation that ends showing the main menu screen,
that is compound by the game logotype and a total of four buttons (see Figure 3.3). Each
one of them says, from top to bottom: «Tutorial», «Start game», «Options» and «Quit».
The starting animation of the menu could hide how the system sets the language of the
game. As it is English by default, it could be automatically set in Spanish if it is the
default language of the computer. Quit button, if selected, would close the game screen
after an animation. Tutorial button would launch a new scene after a fading animation:
the tutorial scene. Start game button would launch the game scene, similarly to the
Tutorial button. This button is not available until the user has, at least, selected the
Tutorial button and entered the tutorial scene.

Figure 3.3: Main menu that can be seen when launching Upside Downgeon

Finally, the Options button would switch the layout of the main menu into the
options layout (see Figure 3.4). The options layout shows a panel that can be used to
switch the language of the game (between English and Spanish), a slider to set the sound
volume at desire of the user and a «Back» button that would set back the menu layout
into the four buttons of the main menu.

14 System Analysis and Design

Figure 3.4: Options menu of Upside Downgeon

As explained at the beginning of this section, Upside Downgeon implements a point
and click user interaction. This means that the user could play just by using the mouse,
pointing with the cursor and clicking on the target. During a normal game (not the
tutorial), the player could move the POV (point of view) by dragging the mouse cursor
to the edges of the game screen. If the cursor is near the upper edge, the POV would
move forwards; if it is close to the lower edge, the POV would move backwards; if it is
close to one of the side edges, the POV would move towards that same side. These are
the classic camera controls that TBT videogames usually implement. The POV can also
be moved by using «W», «A», «S» and «D» keys (using the W key to move forwards, A
to move left, S to move backwards and D to move right). Using these «WASD» camera
controls instead of the previously described is optional and the user can decide which
one of both control systems to use at any moment. Some users can find using the mouse
for every single action during the gameplay as an annoying feature, so using «WASD»
keys as camera controls was a feature added so it could lighten the charge of using the
mouse and cursor for every action. These controls were also added because they are the
most commonly used controls in almost every PC videogame existing.

The player can also click con the buttons of the GUI, which design will be described
and explained in the interface design section (see Section 3.4). This could trigger several
actions: end the player’s turn, show available tiles of the board to spawn monsters1,
pause the game or interact with the tips panel.

Ending player’s turn will give the control of the POV and the enemy units to the
game system, so the player can just observe what the AI is performing. When selecting
a monster (friendly unit) to spawn (create an instance on the board), the player can

1Create instances of units that the player can control on a tile of the game board

3.1. Requirement Analysis 15

select one of the highlighted available tiles where to spawn that unit (see Figure 3.5).
Pausing the game would show an in-game menu (see Figure 3.6), showing four different
buttons: «Resume», that would close the menu and resume the game; «Restart game»,
that would reset the game state; «Main menu», that would return to the main menu
screen (see Figure 3.3) and «Quit», to close the game screen after an animation.

Figure 3.5: Tiles highlighted after clicking on the «Goblin» button

Figure 3.6: In-game menu of Upside Downgeon

Finally, the user can use the arrows on the top-right corner of the screen to close or
open a panel that shows several game tips or navigate through the list of tips.

16 System Analysis and Design

During the player’s turn, if the player has already spawned monsters during past
turns (see Section 4.2), those monsters can be clicked in order to select them. The
system will highlight the available targets where the monster can move or attack. If the
player clicks on any one of those available targets, the system will calculate and highlight
the path, in a different color, that the monster will follow (jumping from one to another
tile of the board) to reach it (see Figure 3.7).

Figure 3.7: Highlighted available tiles where the goblin can move

At the point of having a unit selected and a target for that unit, the player can
decide whether to move the unit towards that target by clicking again on it, to select a
different target by clicking on it, to deselect the unit by clicking on it or to select one
different unit.

All the described actions are required so that the player can interact with the
videogame system, and so, play it. Now let’s proceed to enumerate the functional and
non-functional requirements.

3.1.1 Functional Requirements

• R1. The player can play the tutorial.

• R2. The player can play a new game.

• R3. The player can enter the options menu.

• R4. The player can decide the language of the game.

• R5. The player can decide the general sound volume of the game.

• R6. The player can go back to the main menu.

3.1. Requirement Analysis 17

• R7. The player can quit and close the game.

• R8. The player can move its point of view.

• R9. The player can select a unit to place on the game board.

• R10. The player can select a tile where to place a unit.

• R11. The player can end their turn.

• R12. The player can select a friendly unit on the game board.

• R13. The player can select a target for the selected unit.

• R14. The player can move the selected unit.

• R15. The player can deselect the unit.

• R16. The player can open an in-game menu.

• R17. The player can reset the game state.

• R18. The player can close the in-game menu and resume the game.

• R19. The player can hide or show the tips panel.

• R20. The player can set the next or previous tip on the tips panel.

• R21. The system can move the player’s point of view.

• R22. The system can select enemy units.

• R23. The system can select a target for the selected unit.

• R24. The system can move the selected unit.

• R25. The system can end its turn.

3.1.2 Non-functional Requirements

• R26. The main mechanics can be learnt during the tutorial.

• R27. The game will be playable using just the mouse on a computer.

• R28. There must be different unit types of both sides (friendly and enemy sides).

• R29. Any unit’s side must be clear at a glance.

• R30. There must be different tile types in the board.

• R31. The board must, at least, be compound of four different rooms.

• R32. The music will change depending on which side (the player or the system)
is performing its turn.

18 System Analysis and Design

3.2 System Design
This section presents the logical design carried out by the videogame system. To rep-
resent the logical design on a visual way, it was created a cases of use diagram (see
Figure 3.8). Every case of use represented in the diagram is explained in the charts
below (see Charts 3.1 to 3.20).

Figure 3.8: Cases of use diagram (Made using Dia)

3.2. System Design 19

Requirement: R1
Actor: Player
Description: The player starts the tutorial by clicking on the Tutorial but-

ton on the main menu.
Preconditions: 1. The player is on the main menu.
Normal sequence: 1. The player clicks on the the Tutorial button on the main

menu.
2. The tutorial scene starts after an animation.

Alt. sequence: None.

Table 3.1: Case of use «CU01. Play the tutorial»

Requirement: R2
Actor: Player
Description: The player starts a normal game by clicking on the New game

button on the main menu.
Preconditions: 1. The player is on the main menu.
Normal sequence: 1. The player clicks on the the New game button on the main

menu.
2. The game scene starts after an animation.

Alt. sequence: None.

Table 3.2: Case of use «CU02. Play the game»

20 System Analysis and Design

Requirement: R3
Actor: Player
Description: The player enters the options menu by clicking on the Options

button on the main menu.
Preconditions: 1. The player is on the main menu.
Normal sequence: 1. The player clicks on the the Options button on the main

menu.
2. The main menu buttons are hidden and the option panels
are shown after an animation.

Alt. sequence: None.

Table 3.3: Case of use «CU03. Enter options menu»

Requirement: R4
Actor: Player
Description: The player sets the language of the game using the Language

panel of the options menu.
Preconditions: 1. CU03 - Enter options menu.
Normal sequence: 1. The player clicks on the Language panel to switch it from

one to the other. (there is only English and Spanish available).
Alt. sequence: None.

Table 3.4: Case of use «CU04. Set the language»

Requirement: R5
Actor: Player
Description: The player sets the general volume of the game using the

Volume slider of the options menu.
Preconditions: 1. CU03 - Enter options menu.
Normal sequence: 1. The player clicks and slides the handler to the desired level

of volume.
Alt. sequence: None.

Table 3.5: Case of use «CU05. Set the sound volume»

3.2. System Design 21

Requirement: R6
Actor: Player
Description: The player enters the main menu by clicking the associated

button.
Preconditions: 1. CU03 (the player uses the options menu Back button) or

CU15 (the player uses the in-game menu Main menu button).
Normal sequence: 1. The player clicks on the Back button of the options menu.
Alt. sequence: 1. The player clicks on the Main menu button of the in-game

menu.

Table 3.6: Case of use «CU06. Go back to the main menu»

Requirement: R7
Actor: Player
Description: The player closes the game window by clicking on a Quit but-

ton.
Preconditions: 1. CU03 (the player uses the main menu) or CU15 (the player

uses the in-game menu).
Normal sequence: 1. The player clicks on the Quit button of the options menu.
Alt. sequence: 1. The player clicks on the Quit button of the in-game menu.

Table 3.7: Case of use «CU07. Quit the game»

Requirement: R08
Actor: Player
Description: The player moves the POV towards a direction.
Preconditions: 1. CU01 or CU02.
Normal sequence: 1. The player drags the mouse cursor to a corner of the screen.

2. The system moves the game camera towards the associated
game world cardinal.

Alt. sequence: 1. The player presses «W», «A», «S» or «D» keys.
2. The system moves the game camera towards the associated
game world cardinal.

Table 3.8: Case of use «CU08. Move the camera»

22 System Analysis and Design

Requirement: R09
Actor: Player
Description: The player clicks on a spawn button (with the name of a

monster) to trigger spawning sequence.
Preconditions: 1. CU01 or CU02.
Normal sequence: 1. The player chooses a monster type to spawn and clicks on

its button.
2. The system highlights the available tiles.

Alt. sequence: None.

Table 3.9: Case of use «CU09. Select a unit type to spawn»

Requirement: R10
Actor: Player
Description: The player clicks on a highlighted tile to spawn the previously

selected monster type.
Preconditions: 1. CU09 - Select a unit type to spawn.
Normal sequence: 1. The player clicks on the desired highlighted tile.

2. The system creates an instance of the unit on the selected
tile.

Alt. sequence: None.

Table 3.10: Case of use «CU10. Select a tile to spawn a unit on it»

3.2. System Design 23

Requirement: R11
Actor: Player
Description: The player clicks on the Turn button to end their turn and

start the enemies’ turn
Preconditions: 1. CU01 or CU02.

2. The game is waiting for the player to perform their turn
(the game is not ended and the system is not performing the
enemies’ turn).

Normal sequence: 1. The player clicks on the Turn button.
2. The system performs the enemies’ turn (AI).

Alt. sequence: None.

Table 3.11: Case of use «CU11. End turn»

Requirement: R12
Actor: Player
Description: The player selects a friendly unit (monster) by clicking on it
Preconditions: 1. The player is on a game scene.
Normal sequence: 1. The player clicks on the desired unit.

2. A sound and an animation plays. The system highlights
the available targets.

Alt. sequence: None.

Table 3.12: Case of use «CU12. Select a unit»

Requirement: R13
Actor: Player
Description: The player selects a highlighted enemy unit (adventurer) or

tile by clicking on it.
Preconditions: 1. CU12 - Select a unit.
Normal sequence: 1. The player clicks on the desired highlighted foe or tile.

2. The system highlights the tiles of the path that the friendly
unit selected during CU12 would follow towards the selected
target on a different color.

Alt. sequence: None.

Table 3.13: Case of use «CU13. Select a target»

24 System Analysis and Design

Requirement: R14
Actor: Player
Description: The player clicks on a previously selected tile by clicking on it.

This will trigger the move of the selected unit. If the selected
target is an enemy unit, the selected friendly unit will move
towards it and attack.

Preconditions: 1. CU13 - Select a target.
Normal sequence: 1. The player clicks on tile on which clicked during CU13.

2. The system moves the friendly unit selected during CU12
towards the target.

Alt. sequence: 1. The player clicks on the foe on which clicked during CU13
(target tile or foe).
2. The system moves the friendly unit selected during CU12
towards the a neighbour tile and perform an attack (a sound
and an animation would be played).

Table 3.14: Case of use «CU14. Move a unit»

Requirement: R15
Actor: Player
Description: The player clicks on a previously selected friendly unit by

clicking on it. This will deselect that unit and reset the high-
lighted tiles.

Preconditions: 1. CU12 - Select a unit.
Normal sequence: 1. The player clicks on the friendly unit selected during CU12.

2. The system resets the tiles so the highlighted tiles return
to its normal appearance.

Alt. sequence: None.

Table 3.15: Case of use «CU15. Deselect a unit»

3.2. System Design 25

Requirement: R16
Actor: Player
Description: The player clicks on the Pause button of the GUI. This will

show the in-game menu and its several options
Preconditions: 1. CU01 or CU02.
Normal sequence: 1. The player clicks on the Pause button.

2. The system shows the in-game menu and its several options.
Alt. sequence: None.

Table 3.16: Case of use «CU16. Open the in-game menu»

Requirement: R17
Actor: Player
Description: The player clicks on the Restart button of the in-game menu.

This will reload the game scene so the game state will be reset
Preconditions: 1. CU16 - Open the in-game menu.
Normal sequence: 1. The player clicks on the Restart button.

2. The system reloads the game scene so the game state would
be reset.

Alt. sequence: None.

Table 3.17: Case of use «CU17. Restart the game»

Requirement: R18
Actor: Player
Description: The player clicks on the Resume button of the in-game menu.

This will hide the in-game menu and resume the game
Preconditions: 1. CU16 - Open the in-game menu.
Normal sequence: 1. The player clicks on the Resume button.

2. The system hides the in-game menu.
Alt. sequence: None.

Table 3.18: Case of use «CU18. Resume the game»

26 System Analysis and Design

Requirement: R19
Actor: Player
Description: The player clicks on a button of the tips panel on the GUI.

This will toggle (show if hidden or hide if visible) the tips
panel

Preconditions: 1. CU01 or CU02.
Normal sequence: 1. The player clicks on the hide/show button of the tips panel.

2. If the tips panel is hidden, the system animates the tips
panel to hide it.

Alt. sequence: 1. The player clicks on the hide/show button of the tips panel.
2. If the tips panel is hidden, the system animates the tips
panel to show it.

Table 3.19: Case of use «CU19. Toggle tips panel»

Requirement: R20
Actor: Player
Description: The player clicks on the Next or the Previous button of the

tips panel on the GUI. This will change the tip shown on the
tips panel.

Preconditions: 1. CU01 or CU02.
2. The tips panel is visible.

Normal sequence: 1. The player clicks on the Next button of the tips panel.
2. The system animates the tip panel and correctly switches
the tip shown on it.

Alt. sequence: 1. The player clicks on the Previous button of the tips panel.
2. The system animates the tip panel and correctly switches
the tip shown on it.

Table 3.20: Case of use «CU20. Switch tip»

3.3. System Architecture 27

3.3 System Architecture
The minimum requirements to play the build of the project are:

• Operative System: Windows 7, Windows 10 or Windows 11.

• CPU: x86 or x64 architecture with SSE2 instruction set support.

• GPU: nvidia 940MX.

• Memory on disk: 200 Mb.

• Peripherals: mouse or touch panel.

For a better comfort, it is advisable to use mouse and keyboard.

3.4 Interface Design
The Since there has been made a total of two playtest, having collaborated a total of 10
players and the answers about the UI distribution have always been good, the original
GUI design of Upside Downgeon has almost kept the same structure from the beginning
of the project (see Figure 3.9).

Figure 3.9: First complete GUI framework of Upside Downgeon

Bearing in mind the design of the game (see Section 4.2), there were some essential
elements that must be taken into account at the time of designing the GUI framework.
Those elements were: the «Mana panel», a tip box to show game tips for the player
as banners, a button to end the player’s turn and a button to show an in-game menu.
Also, an essential feature of the game is a tool-tip box that shows info whenever the
player drags the cursor over a unit (enemy or not). This last element has encountered
the biggest change since its first design.

28 System Analysis and Design

The Mana panel (top left corner) shows info about the actions related with the game
rules that the player can take. This panel shows the Mana Points of the player to spend
when spawning friendly units and a group of buttons. These are the Spawn buttons.
Each of those buttons contain a name (the name of the unit to spawn) and a number
(its cost in Mana Points). It was not necessary for the player to know a lot about the
units at the beginning of the game, as a lot of players could find it interesting to explore
their possibilities on their own.

The Mana panel takes up a lot of screen space. This could make some users uncom-
fortable. It was decided that, as Spawning buttons are not used during some stages of
the game (during tutorials or enemy turn) it should be hidden with its proper animation.
Even so, the current Mana Points of the player can still be important information during
all the game, that is why it was decided to keep it during enemies’ turn (see Figure 3.10).

Figure 3.10: Final GUI design during the enemies’ turn

Ending the turn is also an action related with the game rules, that is why, on the first
design of the GUI, the End turn button was under the Mana panel. Mainly for artistic
reasons, that button ended leaving its original position. On a middle stage, it was placed
at the lower center of the screen (see Figure 3.11). Some users found this annoying, as
they clicked on it by accident when spawning monsters on the board. Top center of the
screen seemed the best option, as the top part of the screen contains less game world
information due to the point of view of the player, so that is its final position.

As it can be seen on the original GUI framework (see Figure 3.9), the tool-tip box
shows info about units on a textual way. Later, it was decided that the stats of the units
must be shown as icons with their numeric value (see Figure 3.12). Also, every skill
of the units should be represented with an icon. It was important that the icons had
different shapes and colors so it could help users identify every stat or skill at a glance.

3.4. Interface Design 29

Figure 3.11: GUI of a middle stage of Upside Downgeon development

Figure 3.12: Detail of the tool-tip box used in Upside Downgeon

30 System Analysis and Design

Finally, every tutorial stage has its original and specific designed minimal GUI. Al-
most every stage hides the usual GUI of the game and show a text on the most convenient
part of the screen for the item or mechanic it is showing (see Figure 3.13). Some stages
can also show different parts of the usual GUI (see Figure 3.14) or some icons (see Fig-
ure 3.15). At any moment of the tutorial, the player can skip it and continue with the
game normally by clicking on the «Skip» button. This button is shown in the usual po-
sition of the End turn button. The player will navigate through the tutorial by clicking
on any part of the screen or following the instructions that the stage could be giving.

Figure 3.13: Layout of the tutorial showing highlighted tiles

Figure 3.14: Layout of the tutorial showing the Spawning buttons

3.4. Interface Design 31

Figure 3.15: Layout of the tutorial showing an icon

C
h

a
p

t
e

r

4
Game Design

Contents
4.1 Game concept and world building . 33
4.2 Game and mechanics design . 36

In this chapter is presented the game design. During the following sections, the game
concept, the character and level design, the agents and the mechanics that implement
the videogame are detailed and explained.

4.1 Game concept and world building

Upside Downgeon is a role playing turn-based board game. The game will take place in
2D boards composed of hexagon-shaped tiles. Its aesthetic and design will be based on
the classic dungeon crawler board games. These games are usually set in a dark fantasy
medieval world inspired by Tolkien’s work of literature and the theme of Dungeons &
Dragons.

The game world in which Upside Downgeon is set is a classic fantasy world, full of
fantastic creatures, curses, evil warlocks and intrepid adventurers. The only issue is that
the objective in this adventure is not «crawling the dungeon» but trying to keep it shut
tight. The player will not embody any warrior, archer, wizard nor rogue, but its role
will be the one of the evil sorcerer that leads the wicked horde of creatures that scrape
by in the darkness of the dungeon.

The game will take place in an ominous underground dungeon in which latest cham-
ber rests the treasure of the malignant unmentionable Warlock, known as Gorthrone.
There, the evil sorcerer keeps countless magical artifacts and materials, cursed weapons

33

34 Game Design

and his ancient and magnificent mana font. Before reaching the bottom of the dungeon,
any adventurer who dares trespassing its doors will have to survive countless battles
against the army of darkness that dwell in its dreadful chambers.

4.1.1 Characters

Figure 4.1: Detail of the Adventurers in
game

The rogue is an old bounty hunter that
once upon a time led a pirate crew. He is
an extremely nimble man for his age that
joined the other two adventurers presum-
ably just to claim his part of the loot. But
if things get messed up during the raid
into the dungeon, he could surprise his
mates with an extreme sense of honor and
give his best and risk his own life in order
to complete the mission safe and sound.
Is it that he is truly willing to protect his
new crew or he just thinks that the success
depends on the entirety of the group?

The warrior is a true adventurer. She
is a young woman who has been raised as
the first-born son of a feudal lord. Her

heavy armor made of iron, leather and brass, as well as her delicate manners, make clear
her noble ancestry. The coat of arms on her breastplate has been totally uprooted. She
had lost her right to the throne after escaping from the lands of her father. What could
make her take that decision? Is she just following her own way of life or is there a darker
reason for her to decide she would follow her own path?

The bard is like the most enthusiastic of the bards. She thinks that she does not
need his part of the loot because her experience during their adventures will make her
write the best songs of the Human Realms. She is old, slow, heavy and weak, but even
an old pirate and a renegade noble can appreciate how her good music vibes during the
battle. She wants to know everything about her mates in search of inspiration, but she
is so quiet about her own story. . . Just don’t think too much about it, she is just a good
bard.

They might seem interesting and friendly characters but don’t forget that they are
the enemy. The three of them want to steal the warlock’s treasure and destroy his Mana
font. The player will play as the Warlock, leading the monsters in order to make the
adventurers desire to have never tried to enter the dungeon.

Goblins are little wicked greenish humanoids. They have huge ears compared to their
emaciated bodies. They are weak, but light, silent and nimble so they are extremely
harmful when using the element of surprise.

Trolls are extremely heavy and strong creatures. They also stand on two feet but
you can hardly say they are man-shaped. Their massive arms, pointy fangs and hollow

4.1. Game concept and world building 35

eyes would make anybody who ventures into the dungeon in search of wealth just run
as far as their feet allow.

Figure 4.2: Detail of a Goblin and a Troll in game

The spiders in the dungeon are just inexplicably huge. Their sting could paralyze
the robustest of the warriors. Similarly, the enormous and sick rats, with their filthy fur
and nauseating pustules could easily make sick and poison any of the adventurers.

Figure 4.3: Detail of a Goblin and a Troll in game

36 Game Design

4.2 Game and mechanics design

4.2.1 Level design

Dungeon Keepers is a role playing turn-based board video game. There is a single
playable adventure and a tutorial (with a simplified board and weaker enemies). The
player will fight against the Adventurers that are trying to raid the dungeon across a
series of 2D boards composed of hexagon-shaped tiles (see Figure 4.4).

Figure 4.4: Screenshot of the board of the game with some agents on

The boards will represent the floor of the dungeon. The shape of the level must be
irregular, finding different rooms and corridors separated by walls or void. The board of
each level (tutorial and normal game) will be specifically designed. The player will see
and know the shape of the board, where every agent is placed and where is the way to
the next room at every moment of the party.

The space in which the game takes place can be hierarchically divided: boards are
composed of rooms; rooms are a series of tiles isolated from other rooms by void and
connected by doors.

At the beginning of every party, the dungeon is clear of monsters and the adventurers
are placed on the entrance tiles. There is also an ending door (to the next level or the
end of the game) and a key. Each one of these elements are on a single different tile
somewhere in the board of the level of the dungeon.

4.2.2 Agents of the game

There are three big types of agents: the adventurers, the monsters and the nests. There is
also an item: the key, and a special tile: the door. There are three different adventurers:
the rogue, the warrior and the bard. There are four different types of monsters: the

4.2. Game and mechanics design 37

troll, the goblin, the rat and the spider. There are two different types of nest: spider
nest and rat nest. We will see their attributes and actions in detail.

Attributes

There will be three kinds of adventurers and four kinds of monster that represent every
of the characters described in the Characters section (see Section 4.1.1). Every unit
will have five attributes with different values depending on the character: position,
orientation, speed, health, melee damage and action points.

• The position will be the tile of the board where the adventurer is on.

• The agents will be always looking (orientation) to the center of a side of the tile
in which they are. The orientation is defined by the opposite orientation (180°) of
the one looking to the center of the side which the agent came from to the current
tile during its last move (see Main mechanics section).

• The speed is an integer from one to four that means the number of times the
adventurer can jump from a tile to another during its turn.

• Every agent will have a defined number of health points (HP). Whenever an
agent has lost enough HP by receiving damage (see Main mechanics section), it
will disappear and free the tile which was placed on.

• The melee damage is low value integer that, normally, indicates how much HP
will lose the target of an attack of this agent.

• Every agent have a total of two action points. These are spent in moving,
attacking or moving and attacking (using one single action point).

Actions and skills

Every unit can move, perform an attack and pick the key. They also might have a
passive skill.

As explained, an agent can move as far as its speed attribute allows. If an enemy
is on a tile in the range of movement of that agent or on a neighbour tile of a tile in
range, this agent could be selected as objective of an attack. This will move the unit
and attack using a single action point. On the other hand, the agent could be placed on
a neighbour tile to that enemy in range and, after that, select that enemy as objective of
an attack. This would be considered as two different actions, and so, spend two action
points.

The effects of an attack from one to another agent could vary depending on the
passive skill of the unit attacking. Units with high HP usually do not have any passive
skill (such as the Warrior and Trolls). This units perform normal attacks, that just
decreases target’s HP in the same quantity of the melee damage value of the attacker.

38 Game Design

Figure 4.5: Icons for skills and stats used in the game

Some other weaker units have passive skills in order to add diversity of effects to the
gameplay.

These skills are:

• Paralyse: Spiders have this skill that, using a chance of 50/50, similar to a coin
flip, can apply an effect that makes the target of the attack unable to move to
a different tile during the next turn (as if its speed was null). Units affected by
paralyse can still attack neighbour enemies.

• Poison: Rats have this skill that, using a chance of 50/50, similar to a coin flip,
can apply an effect that makes the target of the attack lose 1 HP during the next
two turn shifts. If the affected unit is at 1 HP, this effect will not be applied (no
unit can be killed by poisoning).

4.2. Game and mechanics design 39

• Stab: Rogue, Bard and Goblin have this skill. A unit with this skill will apply
twice the damage to its target if the attack is performed «from the back». A unit
has three front sides and three back sides. Every unit has a front side indicated by
a glowing triangle on its base. It is considered that an attack has been performed
from the back if the attacker is looking at one of its target’s back sides (the opposite
side to the front side or its adjacent sides).

Special agents

In every board, there is a key and a door to the next level. The key is an agent placed on
a tile on the board. This agent can not perform any action. To end the level (and so the
player would lose), one of the adventurers must «open the end door». Opening the door
means placing on the End door tile bearing the key. In this way, there is an action more
to add to possible actions that a unit can do: picking-up an item (key). Monsters can
also pick-up the key, but they can only carry it (it would not make sense if the monsters
would open that door for the adventurers). Once the key has been picked-up by any
unit, it will leave the board for the rest of the game. Any time that a unit with the key
is killed, the key possession would be transferred to its killer.

4.2.3 Game mechanics

The game will start at the entrance of the dungeon, starting with the turn of the player.
The adventurers will start on the entrance tiles (always three different adventurers, one
per type). The player will start with a total of 20 Mana points and the dungeon will be
clear of monsters.

The player’s turn

The player can spawn as many monster as their Mana points quantity allow. Every
spawning action creates a single friendly unit on the board. Every spawning action,
called spell, has a “mana” cost. The player will start the party with 20 Mana points. 5
Mana points will be restored at the beginning of the next player’s turn. After the first
player’s turn, the player can stack up to 10 Mana points. The possible effects of the
spells are the following:

• Summon spider: Creates a spider on a desired tile. The mana cost is the lowest
(2).

• Summon goblin: Creates a goblin on a desired tile. The mana cost is low (3).

• Summon rat: Creates a rat on a desired tile. The mana cost is medium (4).

• Summon rat: Creates a rat on a desired tile. The mana cost is high (5).

40 Game Design

Figure 4.6: Detail of the GUI used to spawn
monsters in the game

These summoning spells can be cast at
any time during the player’s turn. Also,
they only can be cast on a tile in an
empty room. That means that there is
no adventurer in that room. Rooms are
a series of tiles isolated from the others
by void (see Level Characteristics). Also,
as Door tiles connect several rooms, the
player can not spawn monsters on the nor
their neighbours.

During the player’s turn, the player
can also move the monsters once. This
means that the monster can move as far as
its speed attribute indicates. If the speed
attribute is 1, the monster can just move
to an adjacent tile; if it is 10, it could jump
up to ten tiles far.The player must move
the monsters to attack the adventurers in
order to kill every of them. The player
will win the game at any moment that the
board is clear of adventurers.

Whenever the player is over with their
moves and spells, can end the turn. Then,
between turn events (poison) might occur
and the adventurers’ turn will start.

The adventurers’ turn

Adventurers are led by the computer. Their turn is similar to the player’s turn, but they
can only move and attack. The AI will just take into account the elements in the room
the adventurer is in and do not know where the Key nor the End door is. The objective
of the AI is to explore the dungeon in search of the key and the door to open it as soon
as possible.

C
h

a
p

t
e

r

5
Work Development and Results

Contents
5.1 Work Development . 41
5.2 Results . 49

This chapter presents the developed work and the obtained results. Also, the devia-
tions from the initial design are detailed and justified.

5.1 Work Development
This section explains the development of the project in chronological order. The devel-
opment has been done by two-week long sprints. During sprints, group of tasks from the
original planning were developed. For information about the specific tasks and the time
spent in every of them, the diary of development can be consulted (see Appendix A).

5.1.1 First sprint

In this section is described the work done during the first two weeks. During this first
sprint, the whole basic game system was developed. It can be said that during the first
sprint, most part of the technical development was done.

First, the Unity3D project was created. At first, the game was titled Dungeon Keep-
ers, as the objective of the player during the adventure is not “crawling the dungeon”
but trying to keep it shut tight. It is, indeed, a very similar title to the one of an existing
videogame by Electronic Arts[1]. This is an old and famous title, so, later, the author
would decide to change the title of the game to Upside Downgeon, which is a fun word
game that seems not yet exist as a videogame title.

41

42 Work Development and Results

During this sprint, it was also created the first detailed project planning (see Fig-
ure 2.2), the Unity3D project that was used to develop the game and the code repository
on GitHub. There were also created the first 3D models of the game. They were a simple
hexagonal tile, a hexagonal figure used as units (see Figure 3.9) and a simple key. Each
different type of tile and unit was differed by its color. Every of them were used as
placeholders, so none of them ended being used in the final version of the game. The
key model would be later be improved and is currently being used.

The first interaction events were created, such as detecting clicks on tiles. Shader
graphs were created in order to make the tiles glow and give visual feedback to the user
(see Figure 5.1). Those shader graphs are the ones that are still being used to highlight
the tiles. After that, it was decided to upgrade the project into the Unity DH render
pipeline, but the shaders stopped working and spending time in learning how to remake
them with the new render pipeline, i decided to go back to Universal Render Pipeline.
That is the pipeline that is still being used on the final version (with some features
added).

Figure 5.1: Highlight Shader Graph used on Upside Downgeon

5.1. Work Development 43

As explained during the last chapter, the game uses an hexagonal grid as board.
A simple board was created, and, also, a system that automatically transformed the
3D world position of every tile into its hexagonal grid coordinates.There were created
agents that could be moved by the board tiles by the a user. The user interaction system
of moving units is the same moving system that is currently being used in the game.
Agents use a path finding algorithm based on a Breath First Search.

Also the first game rules were implemented. As a turn-based tactics game, units of
both sides were created. Using a simple GUI, the user could switch from the turn of one
of the sides to the other’s turn. During each turn, the proper agents could be moved.
Adventurers could pick the key and the game could be won by stepping on the End door
using an Adventurer prototype during Adventurer’s turn. If, a Monster killed every
of the foes, the game could be won during Monster ’s turn. To achieve this, a picking
system that replaced the key by a normal tile was done. Also, the system turned the
End door tile into walkable or not depending on the unit selected. An unit could step
on the End door only if it is an Adventurer carrying the key.

During the second week of the development, it was created the first GUI layout
and a system to allow the player spawn several Monsters during Monster’s turn on the
available tiles (see Section 4.2.3). Also the mana system was implemented, the tool-tip
box system was created (see Section 3.4) and a system to allow the player move the POV
using the mouse cursor position on the screen was done. The new Unity Input System[7]
was used to allow the player move the POV also using keyboard (see Figure 5.2).

Figure 5.2: Player actions on the new Unity Input System

44 Work Development and Results

Artificial intelligence of the Adventurers

It also started the work on the adventurers AI. Until that moment, the player could move
both, Monster and Adventurer units, during the proper turns. Now, a Unit Managing
agent would manage the Adventurers during their turn.

Every adventurer has a brain that preforms an action whenever the Unit Manager
asks for it. For the AI, performing an action means executing a Binary Decision Tree
(see Figure 5.3) that ended spending an action point. It was decided to use this kind of
behavior representation because it was not necessary to use a more complicated method,
as the game is a very simple TBT game. Both, Unit Manager and the Adventurer’s brain,
implement coroutines in order to make the player see what is going on during the enemy
turn.

Using this AI, the enemies must explore the dungeon in search of the key and the end
tile while trying to survive to the actions of the player. To achieve this on a quick way,
every Adventurer «remembers» (saves data about) the rooms that has already visited
and its content. This was implemented in order to create the illusion that they remember
where the End door tile is if they have already visited the room where it is, but have
not the key in their possession yet.

Figure 5.3: Diagram of the binary decision tree executed by the Adventurers’ AI

The Adventurers’ behavior had several methods implemented as actions of the Binary
Decision Tree. Those are:

• Attack(anyMonster) (Attack any monster): Selects a randomly chosen monster
from the reachable.

5.1. Work Development 45

• GoTo(Target) (Go towards a target): Tries to find the path towards the target
using the path finding algorithm. If the path is found but the target is out of range,
the system goes backwards through it until finds a tile in the range of movement
of the Adventurer. If the target is in range and available, it simply selects it as
target of its action.

• Attack(Monster) (Attack a given monster): This is the equivalent to GoTo(Target)
but using an enemy unit as target. This is defined and named like this for better
understanding.

• Explore() (Looks for a Door tile to go to): Whenever an Adventurer steps on a
Door, it is considered that the unit is on every room that the Door connects at the
same time. This mechanic is constantly being used by the AI to quickly discover
and save in the Adventurer’s brain the rooms of the dungeon and its content.
Whenever an Adventurer decides to «explore», tries to choose a Door which leads
into an unexplored (not yet saved or «remembered») room. If it does not find any
unexplored Door, it chooses one of the available doors randomly. The target Door
will be the target of the GoTo(Target) action.

These actions were specifically designed in order to make the adventurers use the
same methods of interaction with the game world as the player does. In this way, the
Adventurers are independent agents working on the game world using the same exact
mechanisms that the player does. It was that the AI would work like this in order to
make the game scalable, as it could be interesting to develop some multiplayer features
in the future.

5.1.2 Second sprint

Work done during the third and fourth weeks of work. The first version of the tutorial
was made. This tutorial explained the main mechanics of the game, but did not show to
the player how to use them implying the player during it, as tit does the current version
of the tutorial. It was also prepared the first playtest. For this, a Google Forms test was
made (see Appendix C) and some game rules and bugs of the game were fixed in order
to have a build done for the testers.

After that, a logo for the game was created (see Figure 5.6). During this sprint, the
artistic work was started. Some concept arts for the monsters were made (see Figure 5.4-
5.5) using Krita (see Section 2.2). The 2D art of the GUI currently used in the game
(see Section 3.4) was also done during this and the next sprint.

Finally, the currently used 3D model for a board tile on the game was done.

46 Work Development and Results

Figure 5.4: Concept art for the Rat and the Spider

Figure 5.5: Concept art for the Goblin and Troll

5.1. Work Development 47

Figure 5.6: Upside Dungeon logotype

5.1.3 Third sprint

Work done during the fifth and sixth weeks of work. A post-processing layer was created
and added. Also made some other visual improvements to the tool-tip box (GUI ele-
ment), adding the stats icons. Particles that show the amount of damage applied after
an attack were created. Also, a system that showed the cost to step on every highlighted
tile while selecting a monster was done. Finally, during this sprint, the 3D models for
every unit of the game (see Figure 5.7-5.8) were done using Blender (see Section 2.2).

48 Work Development and Results

Figure 5.7: Detail of the Monsters’ models

Figure 5.8: Detail of the Adventurers’ models

5.2. Results 49

5.1.4 Fourth sprint

Work done during the last weeks of the development of the project. Also, during this
sprint, all the sound of the game was done. The OST was developed and the voices of
the Adventurers and Monsters were recorded.

The OST was developed using Soundtrap (see Section 2.2) and has tree themes
inspired by the Dead Cells OST[4]. One main theme can be listened on the main menu
of the game. There is also a theme for each side (Adventurers and Monsters). Every
theme of the OST uses the same motif, with main variances on the instruments used.
Adventurers’ theme is brighter so it uses a Celtic Harp as main instrument. Monsters’
theme should be darker and ominous so it uses a pizzicato double bass and a tuba.

The author counted with the collaboration of Alicia Montoya Peramo in order to
perform the female voices of the game. Every adventurer has a total of four lines to be
played randomly when being selected; four more to be played when attacking, four more
for receiving damage and one death line. Monsters have four different attacking sounds,
four different death and receiving damage sounds, four sounds for selection and four
sounds for spawning. Every of these were recorded at the LABCOM1. Every of them
were edited and trimmed using Soundtrap. There were also done, using Soundtrap, four
strike sounds and an SFX for the key when it is being picked-up.

Also, an original cursor for the game that glows when selecting a unit or spawning
was done.

Finally, a set of animations was done for every unit modeled during the previous
sprint. Every unit has an idle animation, an animation to play when being selected, one
more to play when being attacked and a last one to play when attacking.

With all of this done, the second play test was prepared and a new version of the
game launched. This version is very similar to the final one, as the technical and artistic
development is done.

During the last week, the new version of the tutorial was done. Also were added the
options features to change the general volume of the game and the language. Finally, in
order to show that the game system is easily scalable, a second level was done (different
to the tutorial level).

5.2 Results

As a result of the work, the objectives described during previous chapters have been
accomplished: the development of a turn-based tactics game based on classic role-playing
board games is done. The project was indeed designed to bear some kind of changes
in mind. The content described in the first design of the game was an ideal case of
the development of the project. The maximum level of content that the project could
comprise was compounded of three levels, three different enemies, four kinds of monsters
and two kinds of nests, every game agent with its respective actions. A minimum version
of the project would include one single scenario/level, one single enemy character with a

1Laboratory of communication sciences, Universitat Jaume I of Castellon

50 Work Development and Results

Figure 5.9: Screenshot of the final version of the game

single action and a single kind of monster. As expected, in this way, the level of content
of the game has been restrained. This was about simplifying the structure of levels and
agents, not about having a simpler art style or finish touch.

There were some troubles with the implementation of the AI. Its design was, at first,
much more complicated than the final one. The project was supposed to focus on other
aspects, so I did not have too much time to implement a complicated AI. Also, the
binary decision tree was going to be implemented as a real binary node tree, but the
communication between nodes required a design which there was no time for. Finally, it
was decided that the whole AI would be programmed using an «if-else» structure using
a single script.

Units were going to be able to perform two different actions, such as «throw a dagger»
and «stab». The bard was going to be able to perform an action that would have her
partners healed. This was complicating the AI design and the user interaction too much,
so those game rules were finally modified.

On its first design, the game had three levels and the Adventurers had several health
bars (and so much more health points). Whenever an adventurer would have lost enough
HP by receiving damage, it would lose the current health bar and its level would increase
in one unit and start a new health bar. The higher the adventurer’s level, the higher its
attributes (health and speed). If the last health bar is consumed, the adventurer would
die for the rest of the party and drop the key. This was thought in order to have three
different levels with an interesting difficulty curve. As expected, there was no time to
spend on it, so it was decided that the gameplay time would be decreased.

The game developed is uploaded on a code repository using GitHub (see Appendix B).
There is also a playable build of the game that can be accessed using the next link: https:

//drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=sharing.

https://drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=sharing
https://drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=sharing

5.2. Results 51

Of course, the game could get a better finish and more advanced features that will
be explained during the next chapter.

C
h

a
p

t
e

r

6
Conclusions and Future Work

Contents
6.1 Conclusions . 53
6.2 Future work . 54

6.1 Conclusions

I have always thought that the Final Degree Work was specially important in this degree.
As the students get a very multidisciplinary and generalist experience during the degree,
I think it is very interesting to put these in common when facing the Final Degree Work.
I thought a lot about what kind of game I would do for this project and I got several
different ideas during the degree for this. Finally, I went back to basics.

Almost the very first idea I had was to just take an interesting board game and
bringing it into a videogame. Why would I do that? Board games are getting more
and more complicated, with several tokens, marks and rules. Placing every item from
the game’s box on a table, spending one hundred and sixty minutes on a single game
and gather the game tokens and boards up back into their box sometimes feels pretty
exhausting. All of this if you have time enough to end the game. If the game gets too
long, you might see yourself forced to cut it off and lose your progress.

Of course I am just talking about the issues of board games, but they have many other
interesting aspects, don’t blame me. What I am trying to say is that videogames can
solve this kind of problems. You can play just by turning the computer on and clicking
on the game icon. The game is getting too long? Do not worry, most videogames include
a feature to automatically save the game state; just close the game window if you have

53

54 Conclusions and Future Work

some other productive activities to fulfill. Also, the calculus is much quicker, figures can
move in awesome animations and an AI can bear the enemies’ behaviour, everything
sounds cool!

Some of my friends have already enjoyed the features of Upside Downgeon. They
want me to continue developing this game. I find the project very interesting, as I felt
free to almost do whatever I wanted with it during its development. My objective was
that they could have a good time playing a game that reflected my thoughts about
board-videogames. I spent some fun (and sometimes not so fun) time developing it.

6.2 Future work
Upside Downgeon is designed to be scalable. I wish I can continue its development in
the future. For now, I will probably keep its development as a hobby. I will probably
work on its multiplayer capability. As explained previously, the AI works using the same
methods that the user inputs does. Implementing a feature to hide the content of the
hidden rooms of the board for the players bearing the adventurers and a peer-to-peer
online multiplayer structure would extend a lot the capabilities of the game.

Furthermore, it would be interesting to create several new kind of monsters and
adventurers, with different stats, skills and kinds of attack; more interesting boards with
new types of tile, with different costs and effects... definitively, several new game rules,
agents and levels.

If it seems that the work should or could be continued, it is convenient to include
this section to indicate how and in which ways. It should also be indicated if the student
itself plans to do so in the future.

Bibliography

[1] Electronic Arts. Dungeon Keeper. https : / / www . ea . com / es-es / games /

dungeon-keeper.

[2] Resolution Games. Demeo. https://www.resolutiongames.com/demeo.

[3] Indeed.com. Salary finder. https://es.indeed.com/career/salaries?from=

gnav-title-webapp.

[4] Yoann Laulan. Dead cells ost. https://music.youtube.com/playlist?list=OLAK5uy_

ntMfBbru_jNuI-lB5UvpUQ00TQxo8nSwE.

[5] Wizards of the coast. Dungeons & Dragons. https://dnd.wizards.com.

[6] Cyanide Studio. Blood Bowl 3. http://www.cyanide-studio.com/blood-bowl-3.

[7] Unity. New input system. https://docs.unity3d.com/Packages/com.unity.

inputsystem@1.0/manual/QuickStartGuide.html.

[8] Wikipedia. Dungeon crawl games. https://en.wikipedia.org/wiki/Dungeon_crawl.

55

https://www.ea.com/es-es/games/dungeon-keeper
https://www.ea.com/es-es/games/dungeon-keeper
https://www.resolutiongames.com/demeo
https://es.indeed.com/career/salaries?from=gnav-title-webapp
https://es.indeed.com/career/salaries?from=gnav-title-webapp
https://music.youtube.com/playlist?list=OLAK5uy_ntMfBbru_jNuI-lB5UvpUQ00TQxo8nSwE
https://music.youtube.com/playlist?list=OLAK5uy_ntMfBbru_jNuI-lB5UvpUQ00TQxo8nSwE
https://dnd.wizards.com
http://www.cyanide-studio.com/blood-bowl-3
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/QuickStartGuide.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/QuickStartGuide.html
https://en.wikipedia.org/wiki/Dungeon_crawl

A
p

p
e

n
d

ix A
Diary of Development

Here is the whole document of the diary of development. This chart shows the time
spent in every single real task during the development of the project. This information
has been daily recorded.

57

58 Diary of Development

Diary of Development 59

60 Diary of Development

A.1 Bibliography
Javier Albors Caño. Diary of Development. https://docs.google.com/spreadsheets/d/

1cag0ROhMM2HI4AXSEvrg-8YU725lMOpGdSAGsd-xSi0/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1cag0ROhMM2HI4AXSEvrg-8YU725lMOpGdSAGsd-xSi0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1cag0ROhMM2HI4AXSEvrg-8YU725lMOpGdSAGsd-xSi0/edit?usp=sharing

A
p

p
e

n
d

ix B
Source code and other considerations

The videogame developed for this Final Work Degree is composed by several scripts.
I used GitHub as a tool of version control, so the Unity project and every script is
uploaded to a code repository that can be checked using the next link:

https://github.com/javiwagh/UpsideDowngeon-TFG.
Also, a playable build of the videogame can be downloaded using the next link:
https://drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=

sharing.
Finally, there have been made two videos using the build that can be downloaded

using the previous link. One of them is a trailer used to present the videogame. The
other is a commented gameplay that shows the flow of the game. Check them using the
next link:

• Trailer: https://drive.google.com/file/d/1JZEbuKTqGhPEk0U5d_oe_iaBalRss43k/

view?usp=sharing.

• Gameplay: https://drive.google.com/file/d/1QnqUTug4vHSBwvOYVQCOL4Ie2XiRDrGS/
view?usp=sharing.

61

https://github.com/javiwagh/UpsideDowngeon-TFG
https://drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=sharing
https://drive.google.com/file/d/1WsJn1qIeCxQ0UoDOtpIXtIfhVseDnEL2/view?usp=sharing
https://drive.google.com/file/d/1JZEbuKTqGhPEk0U5d_oe_iaBalRss43k/view?usp=sharing
https://drive.google.com/file/d/1JZEbuKTqGhPEk0U5d_oe_iaBalRss43k/view?usp=sharing
https://drive.google.com/file/d/1QnqUTug4vHSBwvOYVQCOL4Ie2XiRDrGS/view?usp=sharing
https://drive.google.com/file/d/1QnqUTug4vHSBwvOYVQCOL4Ie2XiRDrGS/view?usp=sharing

A
p

p
e

n
d

ix C
Play testing

Dugning the project, two play tests were made in order to show the videogame to possible
real players. By coincidence, these all were twenty to thirty years-old-men. To check the
tests and the builds used on them, check the next links:

https://forms.gle/w3BnQU34mZzVw3ys7.
https://forms.gle/iBEHKUee4KR1aWxP6.
To consult the answers of the second playtest, the next link can be checked:
https://docs.google.com/spreadsheets/d/1GP7KFfGXYpqj7YYPMzPh9UZJQvAOBvho0euNh30FBuQ/

edit?usp=sharing.

63

https://forms.gle/w3BnQU34mZzVw3ys7
https://forms.gle/iBEHKUee4KR1aWxP6
https://docs.google.com/spreadsheets/d/1GP7KFfGXYpqj7YYPMzPh9UZJQvAOBvho0euNh30FBuQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1GP7KFfGXYpqj7YYPMzPh9UZJQvAOBvho0euNh30FBuQ/edit?usp=sharing

64 Play testing

Play testing 65

66 Play testing

Play testing 67

68 Play testing

Play testing 69

70 Play testing

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Game Design
	Game concept and world building
	Game and mechanics design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Diary of Development
	Bibliography

	Source code and other considerations
	Play testing

