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Abstract. We consider flags E• = {X ⊃ E ⊃ {q}}, where E is an exceptional
divisor defining a non-positive at infinity divisorial valuation νE of a Hirzebruch
surface Fδ, q a point in E and X the surface given by νE , and determine an
analogue of the Seshadri constant for pairs (νE , D), D being a big divisor on
Fδ. The main result is an explicit computation of the vertices of the Newton-
Okounkov bodies of pairs (E•, D) as above, showing that they are quadrilaterals
or triangles and distinguishing one case from another.

1. Introduction

Let L be a big line bundle on a normal complex projective variety X. Consider
a real valuation ν of X, that is a valuation of the function field of X centered
at the local ring of a closed point in X. Assume H0(L) 6= 0 and set µ̂L(ν) =
limm→∞m

−1amax(mL, ν), where amax(mL, ν) is the last value of the vanishing
sequence of H0(mL) along ν [5]. The value µ̂L(ν) contains, for valuations, similar
information as the Seshadri constant for points; then we consider it as a Seshadri-
type constant for the pair (L, ν). Seshadri constants were used in [11] for studying
the Fujita conjecture and other Seshadri-type constants were introduced in [9] for
ideal sheaves. The bound µ̂L(ν) ≥

√
L2/vol(ν), where vol(ν) means volume of

the valuation ν, is proved in [5] but the exact value of µ̂L(ν) is, in general, very
hard to compute.

A flag of subvarieties of a smooth irreducible complex projective variety X (of
dimension n) is a sequence of smooth irreducible subvarieties Yj, 0 ≤ j ≤ n,

Y• := {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn},

where each Yj has codimension j in X. Y• defines a rank n valuation νY• of the
function field K(X) and the Newton-Okounkov body ∆νY•

(D) of a big divisor D
on X with respect to νY• (or Y•) is the closed convex hull of the set⋃

m≥1

{
νY•(f)

m
| f ∈ H0(X,OX(mD)) \ {0}

}
.
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Newton-Okounkov bodies were introduced by Okounkov [26, 27, 28] and after-
wards developed by Lazarsfeld and Mustaţă [24] and Kaveh and Khovanskii [20].
These bodies allow us to study linear systems defined by the involved divisor and
valuation. As in the case of µ̂L(ν), an explicit computation of these bodies is also
very difficult.

Recently there have been some advances in the study of flags E• = {Z ⊃
E ⊃ {q}}, where Z is the rational surface given by a divisorial valuation νE
of the complex projective plane P2 = P2

C, E is the defining divisor of νE and q
a (closed) point in E. The valuation νE is centered at OP2,p, p ∈ P2. In this
case, the rank two valuation νE• is an exceptional curve valuation of P2, also
centered at OP2,p. Exceptional curve valuations constitute one of the five classes
in the Spivakovsky classification of valuations of function fields of surfaces [29]
and its denomination comes from [14]. In [19] (see also [8]) the Newton-Okounkov
body of a divisor associated to the pull-back of the line bundle L = OP2(1)
with respect to νE• has been described, being the Seshadri-type constant µ̂L(νE)
an important ingredient. This constant has been found useful to treat other
important problems. Indeed, νE is called minimal when µ̂L(νE) =

√
1/vol(νE),

and there is a valuative conjecture, strongly involving the above concept, which
implies the Nagata conjecture [18] (see also [12]). Reference [18] also contains
results in the direction of the above valuative conjecture. Non-positive at infinity
valuations of P2, νE, constitute an interesting class of divisorial valuations. Lately,
valuations in this last class have been studied and used in several contexts [6, 15,
25]. Among their important properties, one can mention that they determine
those surfaces given by divisorial valuations of P2 whose cone of curves is finitely
generated and its extremal rays are as few as possible [16]; µ̂L(νE) can be explicitly
obtained [18]; and the vertices of the Newton-Okounkov body with respect to any
valuation νE• as above, can also be explicitly computed [19].

In this paper, we leave P2 as a background surface and focus on the δth (com-
plex) Hirzebruch surface Fδ, for δ ≥ 0. This is a novel setting in this context
allowing us to obtain new results. Then, in analogy to the case of P2, we intro-
duce the concept of non-positive at infinity divisorial valuation of Fδ (centered
at OFδ,p, p ∈ Fδ). This concept depends on the value of δ, the position of the
point p and certain linear systems (see Definitions 2.4 and 2.5). As for P2, these
valuations determine those rational surfaces Z defined by divisorial valuations of
Hirzebruch surfaces such that the number of generators of their cones of curves
are reduced to the minimum possible [17]. Notice that although the valuations
of Fδ do no differ from those of P2 (when they are considered as local objects),
the classes of non-positive at infinity valuations of P2 and Fδ are different [17,
Remark 3.10].

The goals of this paper are two fold:

(1) To introduce a concept of minimality for divisorial valuations of Fδ (Defi-
nition 2.2) and to compute the value µ̂D(ν) for non-positive at infinity
divisorial valuations ν of Fδ and big divisors D on Fδ (Theorem 2.6).
Notice that, in our context,

µ̂D(ν) = sup
{
t > 0 | D∗ − tEr is big on Z

}
,

where D∗ is the pull-back of D on Z and E the defining divisor of ν.
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(2) To explicitly determine the vertices of the Newton-Okounkov bodies (of
pull-backs) of big divisors D on Fδ with respect to flags E• = {Z ⊃ E ⊃
{q}}, where Z is the surface defined by a non-positive at infinity divisorial
valuation νE of Fδ, E the defining divisor of νE and q a (closed) point in
E.

Our main results are Theorems 3.4, 3.10, 3.12, 3.13, 3.20 and 3.22. We prove
that the vertices of the above mentioned Newton-Okounkov bodies depend only
on the expression of D, the volume of ν and the values of the germs at p of the
fibre and sections on Fδ whose strict transforms on Z (together with those of the
exceptional divisors) span the cone of curves. These values are with respect to
the two divisorial valuations involved in the exceptional curve valuation νE• (see
the paragraph before Definition 3.1).

This paper is structured as follows. Section 2 introduces the concepts consid-
ered in the paper: special and non-special, minimal and non-positive at infinity
divisorial valuations. These concepts will be extended to exceptional curve valu-
ations ν in Section 3. Moreover, Section 2 is devoted to determine Seshadri-type
constants, while Section 3 computes Newton-Okounkov bodies. We show, in
Theorem 3.4, that minimal with respect to a big divisor D exceptional curve
valuations ν of Fδ are those whose Newton-Okounkov body ∆ν(D) is a specific
triangle T . T is the truncated convex cone of the (x, y)-plane generated by the
value semigroup of ν and bounded by the line x = µ̂D(νr), νr being the divisorial
valuation defined by the first projection of ν. This fact also happens for valuations
of P2. When νr is not minimal, in our case (νr is non-positive at infinity), ∆ν(D)
is either a quadrilateral or a triangle. This last case only happens under certain
conditions which depend on the divisor D and the valuation νr. Seshadri-type
constants and Newton-Okounkov bodies with respect to non-positive at infinity
valuations of P2 can be obtained as a particular case of the results in Sections 2
and 3. We conclude by saying that, in Subsection 3.3, we give two tables summa-
rizing the different cases, considered in Subsections 3.1 and 3.2, corresponding to
non-minimal valuations. Our tables provide the specific vertices of the Newton-
Okounkov bodies in each case.

2. Seshadri-type constants for non-positive at infinity valuations
of Hirzebruch surfaces

2.1. Hirzebruch surfaces and valuations of Hirzebruch surfaces. Let P1 =
P1
C be the projective line over the complex field C and δ a non-negative integer.

The δth Hirzebruch surface is the projective ruled surface over P1, Fδ := P(OP1⊕
OP1(−δ)), together with the projection morphism pr : Fδ → P1. The Picard
group Pic(Fδ) of Fδ is isomorphic to Z ⊕ Z and admits as generators the class
of a fiber F of pr and that of a section M of pr linearly equivalent to δF + M0

satisfying that M ∩M0 = ∅, where M0 denotes, if δ > 0 (respectively, δ = 0) the
unique section on Fδ with negative self-intersection (respectively, a section); see
for instance [4, Proposition IV.1]. It holds that F 2 = 0, F ·M = 1 and M2 = δ.

In the case δ > 0, the section M0 is called special, and a point p of Fδ is special
if p ∈M0 and general otherwise. A nef (respectively, big) divisor on Fδ is linearly
equivalent to aF + bM , where a and b are non-negative integers (respectively, a
and b are integers such that b > 0 and a > −δb (see [23, Remark 2.2.27]).
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Let (R,m) be a two-dimensional local regular ring and K its quotient field. A
valuation of K is a surjective map ν : K∗(= K \ {0})→ G, where G is a totally
ordered commutative group, such that, for f, g ∈ K∗, it satisfies

ν(f + g) ≥ min{ν(f), ν(g)} and ν(fg) = ν(f) + ν(g).

The local ring Rν = {f ∈ K | ν(f) ≥ 0}∪{0}, whose maximal ideal is mν = {f ∈
K | ν(f) > 0} ∪ {0}, is called the valuation ring of ν. When R ∩ mν = m, one
says that ν is centered at R.

Valuations of K centered at R correspond one-to-one to simple sequences of
point blowups

π : · · · → Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0 = SpecR, (2.1)

where the first blowup π1 is centered at the point p := p1 corresponding to the
maximal ideal m and the blowup πi+1 is centered at the unique closed point pi+1

which belongs to the exceptional divisor created by πi and such that the valuation
is centered at OZi,pi+1

. The set Cν = {p = p1, p2, . . .} is called the configuration of
infinitely near points of ν. Denote by Ei the exceptional divisor on Zi obtained
by blowing up pi. A point pi is proximate to pj, denoted by pi → pj, when pi
belongs to the strict transform of Ej on Zi−1. The point pi is called satellite when
it is proximate to pj, for some j < i − 1; otherwise, it is named free. Given a
divisor D on Zi, abusing the notation, we will denote by D̃ and D∗ the strict and
total transforms of D on any surface Zj for j ≥ i; also the strict transforms of
the exceptional divisors Ei will be written simply Ei.

The previous valuations were studied by Zariski and Abhyankar (see [1, 2,
30, 31]). Spivakovsky, in [29], classified them in five types according to their
dual graphs. These dual graphs are trees whose vertices correspond 1-1 to the
exceptional divisors associated with the sequence (2.1) and two vertices are joined
by an edge if the corresponding exceptional divisors intersect. Each vertex of the
dual graph is labelled with a positive integer i which represents Ei. We say that
two vertices i and j satisfy i 4 j if the path in the dual graph joining 1 and j
goes through i.

We are only interested in divisorial and exceptional curve valuations, which are
two of the types in Spivakovsky’s classification. A valuation is divisorial when
Cν is finite and it is exceptional curve (in the terminology of [14]) if Cν is infinite
and there exists a point pr ∈ Cν such that pi → pr for all i > r. The group G
is isomorphic to Z with the usual ordering (respectively, Z2 with lexicographical
ordering) when the valuation is divisorial (respectively, exceptional curve).

Let ν be a divisorial or exceptional curve valuation of K centered at R and
Cν = {pi}i≥1 its configuration of infinitely near points. For each i ≥ 1, denote by
mi the maximal ideal of the local ring Ri = OZi,pi and set ν(mi) := min{ν(x) | x ∈
mi\{0}}. These values satisfy the proximity equalities [7, Theorem 8.1.7]: ν(mi) =∑

pj→pi ν(mj), i ≥ 1, whenever the set {pj ∈ Cν | pj → pi} is not empty. When
ν is exceptional curve and pi → pr for every i > r, then ν(mr) = (a, b) and
ν(mi) = (0, c), for some a, b, c ∈ Z, a, c > 0 [10].

Divisorial and exceptional curve valuations admit sets of invariants that help
to study them, as the sequence of maximal contact values {βj(ν)}g+1

j=0 [10, (1.5.3)]
and the sequence of Puiseux exponents {β′j(ν)}g+1

j=0. Notice that both sequences
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can be obtained one from other [10, Theorem 1.11]. The set {βj(ν)}g+1
j=0 generates

the semigroup of values of ν, Sν := ν(R \ {0}) ∪ {0}. It is a minimal generating
set when ν is an exceptional curve valuation, otherwise it suffices {βj(ν)}gj=0 to
generate Sν , but βg+1(ν) ∈ Sν . The continued fraction expansions of the values
{β′j(ν)}g+1

j=0 determine (and are determined by) the dual graph of ν.
We are interested in geometric results concerning Hirzebruch surfaces and for

this reason, from now on, R will be the local regular ring OFδ,p, where Fδ is a
Hirzebruch surface over complex field C and p a closed point of Fδ. Along the
paper, we denote by ϕC the germ at p of a curve C on Fδ and by ϕi an analytically
irreducible germ at p of a curve whose strict transform on Zi is transversal to Ei
at a non-singular point of the exceptional locus. In this case, valuations of K
centered at R will be called valuations of Fδ.

2.2. Seshadri-type constants for non-positive at infinity valuations of
Hirzebruch surfaces. In [5], the authors consider a vanishing sequence attached
to a pair (L, ν), where L is a big line bundle on a normal projective variety X and
ν is a real valuation of X, that is, a real valuation of K(X) centered at the local
ring of a closed point of X. The value limm→∞m

−1amax(mL, ν), amax(mL, ν)
being the last value of the above mentioned vanishing sequence, is denoted by
µ̂L(ν). When X = P2, this value encodes for valuations similar information as
Seshadri constant for points and we say that µ̂L(ν) is the Seshadri-type constant
for the pair (L, ν). The explicit computation of these constants is a hard work.
We devote this subsection to give some details on them when X is a Hirzebruch
surface Fδ and ν a divisorial valuation, and to provide its exact value for a large
family of divisorial valuations and any big divisor on Fδ.

Let Fδ be a Hirzebruch surface and p a closed point of Fδ. Let νn be a divisorial
valuation of Fδ defined by a sequence as (2.1) which finishes at Zn. That is, νn
is the valuation of the quotient field of R := OFδ,p centered at R defined by
the exceptional divisor En. Consider the surface Z = Zn defined by (2.1) when
Z0 = Fδ. According to [13], the volume of νn can be defined as

vol(νn) = lim
α→∞

dimC(R/Pα)

α2/2
,

where Pα = {f ∈ R | νn(f) ≥ α} ∪ {0}. In this case 1/vol(νn) coincides with
the last value βg+1(νn) of the sequence of maximal contact values of νn (see [19,
Remark 2.3]).

Now consider a pseudoeffective divisor D∼aF + bM on Fδ, where ∼ denotes
linear equivalence. D admits a Zariski decomposition D = PD + ND, where PD
and ND denote, respectively, the positive and the negative part ofD [23, Theorem
2.3.19]. When D is nef, then ND = 0; if δ > 0 and D is big but not nef, then
PD ∼ (b+a/δ)M and ND ∼ (−a/δ)M0, where b > 0 and −bδ < a < 0. Moreover,
the volume of D is defined as

vol(D) = volFδ(D) := lim sup
m→∞

h0(Fδ,mD)

m2/2
,

and D is a big divisor if and only if vol(D) > 0. By [23, Corollary 2.3.22], it holds
that vol(D) = P 2

D.
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Definition 2.1. Let νn be a divisorial valuation of Fδ and D a big divisor on Fδ.
Following [5] and [12], we define the values µD(νn) and µ̂D(νn) as

µD(νn) := max{νn(ϕD′) | D′ ∈ |D|} and µ̂D(νn) := lim
m→∞

µmD(νn)

m
,

where ϕD′ is the germ of D′ at p.

By Proposition 2.9 in [5], it holds that

µ̂D(νn) ≥

√
vol(D)

vol(νn)
. (2.2)

Definition 2.2. Let νn be a divisorial valuation of Fδ and D a big divisor on Fδ.
The valuation νn is minimal with respect to D if µ̂D(νn) =

√
vol(D)/vol(νn).

Remark 2.3. Let νn be a divisorial valuation of Fδ and denote by Z the surface
that it defines. Assume that D is a big divisor on Fδ. Then, by Theorem 6.4 of
[24], it holds the equality

µ̂D(νn) = sup{t ∈ Q+ | D∗ − tEn is big on Z},

where Q+ is the set of non-negative rational numbers.

Our next definition divides divisorial valuations νn of Fδ in two types accor-
ding to the value δ and the point p where νn is centered. This classification was
introduced in [17].

Definition 2.4. Let νn be a valuation of the quotient field of OFδ,p centered at
OFδ,p. The valuation νn is named to be special (with respect to Fδ and p) when
one of the following conditions holds:

(1) δ = 0.
(2) δ > 0 and p is a special point.
(3) δ > 0, p is a general point and there is no integral curve in the complete

linear system |M |, given by the section M , whose strict transform on Z
has negative self-intersection.

The remaining valuations νn will be called non-special.

Let νn be a divisorial valuation of Fδ. We denote by F1 the fiber which goes
through the point p and, when νn is non-special, by M1 the unique integral curve
in |M | whose strict transform on Z has negative self-intersection.

Next we introduce the so-called non-positive at infinity valuations of Fδ. For
valuations in this family, we will be able to compute the value µ̂D(νn) for any big
divisor D.

Definition 2.5. Let νn be a special (respectively, non-special) divisorial valuation
of Fδ. The valuation νn is called non-positive at infinity whenever νn(h) ≤ 0 for
all h ∈ OFδ(Fδ \ (F1 ∪M0)) (respectively, h ∈ OFδ(Fδ \ (F1 ∪M1))).

As a consequence of [17, Theorem 3.6] (respectively, [17, Theorem 4.8]), it
suffices to check the condition 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)

2 ≥ vol−1(νn) (respec-
tively, 2νn(ϕM1)νn(ϕF1) −δνn(ϕF1)

2 ≥ vol−1(νn)) to decide whether a special
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(respectively, non-special) divisorial valuation νn of Fδ is non-positive at infin-
ity. Moreover, under this assumption, the cone of curves of the surface Z de-
fined by νn is generated by the classes of the strict transforms of the divisors
F1,M0, E1, . . . , En (respectively, F1,M0,M1, E1, . . . , En).

To conclude this section, we determine the mentioned Seshadri-type constant
for any non-positive at infinity divisorial valuation and big divisor of a Hirzebruch
surface Fδ. We also extract some consequences of this result.

Theorem 2.6. Let νn be a non-positive at infinity divisorial valuation of the
quotient field of OFδ,p centered at OFδ,p, and D ∼ aF + bM a big divisor on Fδ.
Then,

(a) If νn is special, then it holds that µ̂D(νn) = (a+ bδ)νn(ϕF1) + bνn(ϕM0).
(b) Otherwise, µ̂D(νn) = aνn(ϕF1) + bνn(ϕM1).

Proof. For proving Statement (a) we assume that p is a special point. When p is
a point of F0 (respectively, p is a general point), the proof is analogous by setting
δ = 0 (respectively, νn(ϕM0) = 0). Let C be a curve on Fδ such that C ∈ |mD|,
where m is a positive integer, and denote by C̃ its strict transform on Z. By [17,
Theorem 3.6], it holds that Λn = νn(ϕM0)F

∗ + νn(ϕF1)M
∗ −

∑n
i=1 νn(mi)E

∗
i is a

nef divisor and then Λn · C̃ ≥ 0. This means that

(a+ bδ)νn(ϕF1) + bνn(ϕM0) ≥
νn(ϕC)

m

and, so, we have found an upper bound for νn(ϕC)/m, where C ∈ |mD| and m
is a positive integer. Now, consider the curve C1 = m(a+ δb)F1 +mbM0, then

C1 ∈ |mD| and
νn(ϕC1)

m
= (a+ δb)νn(ϕF1) + bνn(ϕM0),

which proves that the bound can be reached and Statement (a) holds.
The proof of Statement (b) follows analogously by taking the divisor

∆n = (νn(ϕM1)− δνn(ϕF1))F
∗ + νn(ϕF1)M

∗ −
n∑
i=1

νn(mi)E
∗
i ,

which is nef by [17, Theorem 4.8], and the curve C1 = maF1 +mbM1. �

Corollary 2.7. Let νn be a non-positive at infinity divisorial valuation of Fδ and
D ∼ aF + bM a big and nef divisor on Fδ. Then,

(a) When νn is special, it is minimal with respect to D if and only if

2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)
2 = vol(νn)−1

and a = bνn(ϕM0)/νn(ϕF1).
(b) Otherwise, νn is minimal with respect to D if and only if

2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)
2 = vol(νn)−1

and a = b(νn(ϕM1)− δνn(ϕF1))/νn(ϕF1).

Proof. We will prove Item (a) in the case when p1 is a special point; when p1 ∈ F0

(respectively, p1 is a general point) the proof is analogous and follows from taking
δ = 0 (respectively, νn(ϕM0) = 0). A proof for Item (b) also runs similarly.
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For a start, we are going to prove the minimality of ν under the conditions of the
statement. Taking into account that 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)

2 = vol(νn)−1,
one obtains that
vol(D)

vol(νn)
=(2ab+ b2δ)δνn(ϕF1)

2 + 2b(a+ bδ)νn(ϕF1)νn(ϕM0) + 2abνn(ϕF1)νn(ϕM0)

=(a+ bδ)2νn(ϕF1)
2 + 2b(a+ bδ)νn(ϕF1)νn(ϕM0) + b2νn(ϕM0)

2

=µ̂D(νn)2,

where the second equality holds since (aνn(ϕF1) − bνn(ϕM0))
2 = 0. This proves

that νn is minimal with respect to D.
Now assume that νn is minimal with respect to D. Then, by Theorem 2.6, it

holds that

((a+ bδ)νn(ϕF1) + bνn(ϕM0))
2 = b(2a+ δb)vol(νn)−1. (2.3)

On the other hand, one has the equality

((a+ bδ)νn(ϕF1) + bνn(ϕM0))
2 = (aνn(ϕF1)− bνn(ϕM0))

2

+ b(2a+ δb)(2νn(ϕF1)νn(ϕM0) + δνn(ϕF1)
2),

which, together with Equality (2.3), gives rise to

(aνn(ϕF1)−bνn(ϕM0))
2+b(2a+δb)(2νn(ϕF1)νn(ϕM0)+δνn(ϕF1)

2−vol(νn)−1) = 0.

Both addends of the above expression are not negative, so they must vanish. This
completes the proof.

�

Corollary 2.8. Let νn be a non-positive at infinity divisorial valuation of Fδ.
Then, νn is non-minimal with respect to any big divisor D on Fδ whenever some
of the following conditions holds:

(a) νn is special and 2νn(ϕM0)νn(ϕF1) + δνn(ϕF1)
2 > vol(νn)−1.

(b) νn is non-special and 2νn(ϕM1)νn(ϕF1)− δνn(ϕF1)
2 > vol(νn)−1.

Proof. We begin by proving Item (a). We only need to show that

µ̂D(νn)2/P 2
D > βg+1(νn)

holds for any big divisor D ∼ aF + bM , PD being its positive part in the Zariski
decomposition. Firstly, assume that δ > 0. Let q : (−δ,∞) ∩ Q → Q+ be the
map

q(x) :=


((x+ δ)νn(ϕF1) + νn(ϕM0))

2

((1/δ)x+ 1)2δ
if x ∈ (−δ, 0) ∩Q,

((x+ δ)νn(ϕF1) + νn(ϕM0))
2

2x+ δ
if x ∈ [0,∞) ∩Q.

Notice that q has an absolute minimum at the point (x1, q(x1)), where x1 =
νn(ϕM0)/νn(ϕF1) and

q(x1) = 2νn(ϕM0)νn(ϕF1) + νn(ϕF1)
2δ.

Since q(a/b) = µ̂D(νn)2/P 2
D (by Theorem 2.6) we have that

µ̂D(νn)2/P 2
D ≥ 2νn(ϕM0)νn(ϕF1) + νn(ϕF1)

2δ > vol(νn)−1 = βg+1(νn).
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If δ = 0, by Theorem 2.6 it holds that

µ̂D(νn)2/P 2
D − 2νn(ϕM0)νn(ϕF1) = (aνn(ϕF1)− bνn(ϕM0))

2/P 2
D ≥ 0.

Hence µ̂D(νn)2/P 2
D ≥ 2νn(ϕM0)νn(ϕF1) > vol(νn)−1 = βg+1(νn).

To conclude, we notice that Item (b) can be proved following the same reasoning
of the proof of Item (a), but considering the map q1 : (−δ,∞) ∩Q→ Q+,

q1(x) :=


(νn(ϕF1)x+ νn(ϕM1))

2

((1/δ)x+ 1)2δ
if x ∈ (−δ, 0) ∩Q,

(νn(ϕF1)x+ νn(ϕM1))
2

2x+ δ
if x ∈ [0,∞) ∩Q,

instead of q. �

3. Newton-Okounkov bodies of non-positive at infinity valuations

Let X be a smooth complex projective surface. A sequence

C• := {X ⊃ C ⊃ {q}},
where C is a smooth irreducible curve on X and q a closed point of C, is called
a flag of X. The point q is the center of C•.

In this section, we study the Newton-Okounkov bodies with respect to a flag

E• := {Z = Zr ⊃ Er ⊃ {pr+1}}, (3.1)

where Z = Zr is the surface defined by a finite simple sequence of blowups as in
(2.1) with Z0 = Fδ and Er the last exceptional divisor created. We denote by
pr+1 the center of E•.

Flags of smooth varieties (not only surfaces) define and are defined by discrete
valuations whose rank coincides with the dimension of the variety. In our case,
they correspond one-to-one to exceptional curve valuations ν (up to equivalence).
The configuration of infinitely near points Cν = {pi}∞i=1 of ν satisfies that the
points {pi}ri=1 are given by the divisorial valuation νr defined by Er and the
remaining points pi, for i > r, are proximate to pr. If the point pr+1 is satellite,
then there exists an exceptional divisor Eη such that η 6= r and pr+1 ∈ Eη.

According to [19, Section 3.2], the flag valuation ν := νE• , defined by E•,
satisfies that, for f ∈ R = OFδ,p, νE•(f) = (υ1(f), υ2(f)) with υ1(f) = νr(f) and
υ2(f) := νη(f) +

∑
pi→pr multpi(f), where νη is the divisorial valuation defined by

Eη. Up to equivalence of valuations, the value group of ν is Z2 and ν(mr) = (1, 0)
and ν(mr+1) = (0, 1).

Definition 3.1. Let ν be an exceptional curve valuation of Fδ and D a big divisor
on Fδ. The valuation ν is minimal with respect to D whenever its first component
νr is minimal with respect to D. The valuation ν is called special (respectively,
non-special) when its first component νr is a special (respectively, non-special)
divisorial valuation of Fδ. Analogously, ν is non-positive at infinity whenever νr
is non-positive at infinity.

Newton-Okounkov bodies are non-empty convex and compact objects attached
to flags and give very interesting geometric information [24, 20, 5]. The goal of this
section is to explicitly compute the Newton-Okounkov bodies ∆νE•

(D∗), where
E• is a flag as in (3.1) corresponding to a non-positive at infinity exceptional
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curve valuation νE• and D∗ is the pull-back on Z of a big divisor D on Fδ. We
start by defining the Newton-Okounkov body in our case.

Definition 3.2. Let ν be an exceptional curve valuation of Fδ and D a big divisor
on Fδ. The Newton-Okounkov body of D with respect to ν is defined as

∆ν(D) :=
⋃
m≥1

{
ν(f)

m
| f ∈ H0(Fδ,mD) \ {0}

}
,

where the upper line means the closed convex hull in R2.

Notice that, if E• is a flag as in (3.1) and ν = νE• , then ∆ν(D) = ∆νE•
(D∗).

Moreover, the Newton-Okounkov body is a polygon (see [22]) and

vol(D) = volZ(D∗) = 2 volR2(∆ν(D)),

where volR2 means Euclidean area (see [24]).
Set g + 1 (respectively, g∗ + 1) the minimal number of generators of the semi-

group of values of the divisorial valuation νr (respectively, exceptional curve val-
uation ν). It holds that g∗ = g when pr and pr+1 are satellite points. Otherwise,
g∗ = g + 1. Denote by Sν the semigroup of values of ν, that is, the monoid

Sν := {ν(f) | f ∈ R \ {0}} ∪ {0} ⊆ Z2,

endowed with the lexicographical ordering. As mentioned, the set Sν is gene-
rated by the set of pairs {βi(ν)}g

∗

i=0 (respectively, {βi(ν)}g+1
i=0 ), where βi(ν) =

(βi(νr), βi(νη)) (respectively, βi(ν) = (βi(νr), 0) and βg+1(ν) = (βg+1(νr), 1)),
whenever pr+1 is a satellite (respectively, free) point.

Let C(ν) be the convex cone of R2 spanned by Sν and HD(ν) the half-plane
{(x, y) ∈ R2 | x ≤ µ̂D(νr)}. Then, the next result follows from Definitions 3.2
and 2.1 and [19, Proposition 3.6].

Proposition 3.3. The set C(ν)∩HD(ν) is a triangle, which contains the Newton-
Okounkov body ∆ν(D), and whose vertices are:

(0, 0),

(
µ̂D(νr),

µ̂D(νr)β0(νη)

β0(νr)

)
and

(
µ̂D(νr),

µ̂D(νr)βg∗(νη)

βg∗(νr)

)
whenever q = pr+1 is the satellite point Er ∩ Eη (with η 6= r); and

(0, 0), (µ̂D(νr), 0) and

(
µ̂D(νr),

µ̂D(νr)

βg+1(νr)

)
,

otherwise.

Our next result determines the Newton-Okounkov bodies of the minimal ex-
ceptional curve valuations of Hirzebruch surfaces.

Theorem 3.4. Let ν be an exceptional curve valuation of a Hirzebruch surface
Fδ and D a big divisor on Fδ. Then, the Newton-Okounkov body ∆ν(D) coincides
with the triangle C(ν) ∩ HD(ν) if and only if ν is minimal with respect to D.

Proof. Proposition 3.3 and [19, Lemma 3.9] prove that the Newton-Okounkov
body ∆ν(D) is contained in the triangle C(ν) ∩ HD(ν) whose area is

µ̂D(νr)
2/2βg+1(νr).
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Taking into account that
µ̂D(νr)

2

2βg+1(νr)
≥ vol(D)

2

by inequality (2.2), it holds that the triangle C(ν)∩HD(ν) will coincide with the
Newton-Okounkov body ∆ν(D) when both figures have the same area, which is
true only when ν is minimal with respect to D. �

From now on, suppose that ν is an exceptional curve valuation of Fδ which is
not minimal (or, non-minimal) with respect to a big divisor D ∼ aF + bM .

When δ = 0, D is also nef. Otherwise (δ 6= 0), D∗ may be big but not nef. In
this last case, the positive and negative parts of the Zariski decomposition of D∗
are

PD∗ ∼
(
b+

a

δ

)
M∗ and ND∗ =

−a
δ
M̃0 +

iM0∑
i=0

−aνi(ϕM0)

δ
Ei,

where iM0 indicates the last point in Cν through which the strict transform ofM0

passes. Then we distinguish two cases.
Case 1. pr+1 belongs to the support, supp(ND∗), of the negative part ND∗ of the

Zariski decomposition of the divisor D∗. This fact holds if and only if g∗ = 1, p1
is a special point, all the points in {pi}r+1

i=1 are free, iM0 = r + 1 and D is big and
not nef.

Case 2. pr+1 6∈ supp(ND∗). In this case, to compute ∆ν(D) we can assume that
D is nef because this assumption does not produce loss of generality. Indeed,
if the divisor D is big but not nef, then b > 0 and −bδ < a < 0, and, as
pr+1 6∈ supp(ND∗), by [21, Lemma 1.10], it holds that

∆ν(D) = ∆ν(PD) =
(
b+

a

δ

)
∆ν(M).

Notice that, vol(D) = D2 and Inequality (2.2) can be written as

µ̂D(νr) ≥
√
D2βg+1(νr) (3.2)

if pr+1 6∈ supp(ND∗). Otherwise, we will replace D by PD.

In the following subsections, we will explicitly get the Newton-Okounkov bodies
of big divisors D with respect to non-positive at infinity valuations ν. We start
with special valuations, where the case pr+1 ∈ supp(ND∗) might happen.

3.1. Newton-Okounkov bodies with respect to non-positive at infinity
special valuations. Along this section D ∼ aF + bM is a big divisor on Fδ and
ν a non-positive at infinity special exceptional curve valuation of Fδ whose first
component is νr. Recall that ν is not minimal with respect to D.

The symbol θr1(D) stands for aνr(ϕF1)− bνr(ϕM0), where F1 is the fiber which
passes through p andM0 the special section. When θr1(D) = 0, it holds that either
a = bνr(ϕM0)/νr(ϕF1), or νr(ϕM0) = 0 and a = 0. Notice that, in the second case,
some objects that we will introduce are not defined and we will avoid using them.
Moreover, if pr+1 ∈ supp(ND∗), then θr1(D) is always negative.

We start by stating two lemmas which allow us to compute the Zariski decom-
position of some key divisors.
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Lemma 3.5. Let νr be a non-positive at infinity special divisorial valuation of Fδ
and D a big and nef divisor on Fδ. Let also θr1(D) be as in the above paragraphs.
Then, the divisor

D1 = D∗− b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

(
respectively, D2 = D∗ − a

νr(ϕM0)

r∑
i=1

νr(mi)E
∗
i

)
is nef when θr1(D) ≥ 0 (respectively, θr1(D) < 0).

Proof. We are going to prove that D1 is nef. A proof for D2 runs similarly. As b
is a positive integer, one can deduce that

D1 = D∗ − b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

∼ b

νr(ϕF1)

(
aνr(ϕF1)

b
F ∗ + νr(ϕF1)M

∗ −
r∑
i=1

ν(mi)E
∗
i

)

=
b

νr(ϕF1)

(
θr1(D)

b
F ∗ + Λr

)
,

where Λr = νr(ϕM0)F
∗ + νr(ϕF1)M

∗ −
∑r

i=1 νr(mi)E
∗
i . The divisors F ∗ and Λr

are nef by [17, Theorem 3.6] and then D1 is also a nef divisor since θr1(D) is
non-negative. �

Lemma 3.6. Let νr be a non-positive at infinity special divisorial valuation of Fδ
and Z the surface that it defines. Consider a big and nef divisor D ∼ aF + bM
and recall that θr1(D) = aνr(ϕF1) − bνr(ϕM0). Then, the following four rational
numbers:

t1 =
b

νr(ϕF1)
βg+1(νr), t2 =

b

νr(ϕF1)
βg+1(νr) + θr1(D),

t3 =
a

νr(ϕM0)
βg+1(νr) and t4 =

(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)

satisfy that t1 and t2 (respectively, t3 and t4) belong to the set

TD,νr := {t ∈ Q | 0 ≤ t ≤ µ̂D(νr)}
when θr1(D) ≥ 0 (respectively, θr1(D) < 0). In addition, if pr+1 ∈ supp(ND∗), then
−aνr(ϕM0)/δ < t4 ≤ µ̂D(νr).

Proof. We show that t1, t2 ≤ µ̂D(νr). A proof for the other cases runs similarly.
Let us prove that t1 ≤ µ̂D(νr) when θr1(D) ≥ 0. By Lemma 3.5, it holds

that the divisor D1 = D∗ − b
νr(ϕF1 )

∑r
i=1 νr(mi)E

∗
i is nef and then, for any curve

C ∈ |mD|, m being a positive integer, one has that

m(2ab+ b2δ)− b

νr(ϕF1)
νr(ϕC) = D1 · C̃ ≥ 0,

where C̃ is the strict transform of C under the birational map defined by νr. This
shows that

2ab+ b2δ ≥ b

νr(ϕF1)
µ̂D(νr),
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which, together with Inequality (3.2), allow us to deduce the inequalities

µ̂D(νr) ≥
D2βg+1(νr)

µ̂D(νr)
=

(2ab+ b2δ)βg+1(νr)

µ̂D(νr)
≥
bβg+1(νr)

νr(ϕF1)
.

This proves our statement.
To finish the proof, we are going to see that t2 ≤ µ̂D(νr) when θr1(D) ≥ 0. By

Theorem 2.6, it suffices to prove the inequality

b(2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)
2) ≥ bβg+1(νr),

which holds by [17, Theorem 3.6] after noticing that b is a positive integer. �

Remark 3.7. Theorem 2.6 and Corollary 2.7 prove that

µ̂D(νr) = bβg+1(νr)/νr(ϕF1) = t1 = t2 (= t3 = t4, when νr(ϕM0) 6= 0),

whenever the valuation νr is minimal with respect to D.
Otherwise, Lemma 3.6 provides two values, t1 and t2 (respectively, t3 and t4)

when θr1(D) ≥ 0 (respectively, θr1(D) < 0) and D is big and nef. If θr1(D) = 0,
then µ̂D(νr) > t1 = t2 (= t3 = t4, when νr(ϕM0) 6= 0), and when δ > 0, a = 0
and θr1(D) < 0, then t3 = 0. Moreover, if 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)

2 = βg+1(νr)
holds, we obtain that t2 = µ̂D(νr) (respectively, t4 = µ̂D(νr)) whenever θr1(D) > 0
(respectively, θr1(D) < 0). Finally, if pr+1 ∈ supp(ND∗), the value t4 defined in
Lemma 3.6 satisfies t4 = µ̂D(νr) when 2νr(ϕM0)νr(ϕF1) + δνr(ϕF1)

2 = βg+1(νr).

Lemma 3.8. Let νr be a special divisorial valuation of Fδ and D a big and
nef divisor on Fδ. Suppose also that νr is non-minimal with respect to D. Let
νi be the divisorial valuation defined by the exceptional divisor Ei, 1 ≤ i ≤
r − 1. Then, the intersection matrices determined by the families of divisors
{F̃1, E1, . . . , Er−1} and {M̃0, E1, . . . , Er−1} are negative definite. In addition,
when pr+1 ∈ supp(ND∗), {M̃0, E1, . . . , Er−1} also determines a negative definite
intersection matrix. Notice that in this last case, D is big and not nef.

Proof. Consider the divisor D1 defined in Lemma 3.5. We showed that it is nef,
let us see that it is also big. Indeed,

D2
1 = D2 −

b2βg+1(νr)

νr(ϕF1)
2
≥ D2 − bµ̂D(νr)

νr(ϕF1)

(
D2βg+1(νr)

µ̂D(νr)2

)
> D2 − bµ̂D(νr)

νr(ϕF1)
≥ 0,

where the second inequality holds since νr is non-minimal with respect to D and
the last one by the proof of Lemma 3.6. So, D1 is a big divisor by [23, Theorem
2.2.16]. Finally, the facts that D1 · F̃1 = 0 and D1 ·Ei = 0 for 1 ≤ i ≤ r− 1 prove
our statement for {F̃1, E1, . . . , Er−1} by Lemma 4.3 of [3]. The remaining cases
can be proved analogously either with the divisor D2 in Lemma 3.5 or with the
nef and big divisor (b+ a/δ)M∗. �

Our next result gives the positive part and the negative part of the Zariski
decomposition of certain divisors which will be useful.

Proposition 3.9. Let νr be a non-positive at infinity special divisorial valuation
of Fδ, Z the surface defined by νr and νi the divisorial valuation defined by the
exceptional divisor Ei, 1 ≤ i ≤ r − 1. Set D ∼ aF + bM a big and nef divisor
on Fδ and suppose that νr is non-minimal with respect to D. As above, write
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θr1(D) = aνr(ϕF1)−bνr(ϕM0) and Λr = νr(ϕM0)F
∗+νr(ϕF1)M

∗−
∑r

i=1 νr(mi)E
∗
i .

Consider the divisors D1 and D2 in Lemma 3.5 and the rational numbers t1, t2, t3
and t4 given in Lemma 3.6. Then,

(a) Assuming θr1(D) ≥ 0, the positive and negative parts of the Zariski decom-
position of the divisors Dt1 := D∗ − t1Er, and Dt2 := D∗ − t2Er are:

PDt1 ∼ D1 and NDt1
=

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei,

and PDt2 ∼
b

νr(ϕF1)
Λr and

NDt2
=

θr1(D)

νr(ϕF1)
F̃1 +

r−1∑
i=1

bνr(ϕi) + θr1(D)νi(ϕF1)

νr(ϕF1)
Ei.

(b) When θr1(D) < 0, the positive and negative parts of the Zariski decompo-
sition of Dt3 := D∗ − t3Er, and Dt4 := D∗ − t4Er are:

PDt3 ∼ D2 and NDt3
=

a

νr(ϕM0)

r−1∑
i=1

νr(ϕi)Ei,

and PDt4 ∼
a+ bδ

νr(ϕM0) + δνr(ϕF1)
Λr and

NDt4
=

(
−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
M̃0

+
r−1∑
i=1

(a+ bδ)νr(ϕi)− θr1(D)νi(ϕM0)

νr(ϕM0) + δνr(ϕF1)
Ei.

Moreover, if pr+1 ∈ supp(ND∗), then the positive and negative parts of Dt4 are
the divisors PDt4 and NDt4

described before.

Proof. We only prove Statement (a) since a similar proof can be given for the
remaining cases. Let us start with the decomposition of Dt1 . It is clear that
PDt1 + NDt1

∼ Dt1 . Also PDt1 is nef, by Lemma 3.5, and orthogonal to each
component of NDt1

, by the proximity equalities. This concludes the proof after
taking into account that the components of NDt1

determine an intersection matrix
which is negative definite.

Finally, we prove the claim for the divisor Dt2 . By [17, Proposition 3.3 and
Theorem 3.6], PDt2 is nef and orthogonal to each component of NDt2

. As well, it
follows from Lemma 3.8 that the intersection matrix determined by the compo-
nents of NDt2

is negative definite. To conclude, adding the following two expres-
sions:

D − b

νr(ϕF1)
βg+1(νr)Er ∼

b

νr(ϕF1)
Λr +

θr1(D)

νr(ϕF1)
F ∗ +

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei

and

−θr1(D)Er =
θr1(D)

νr(ϕF1)

 r−1∑
i=1

νi(ϕF1)Ei −
iF1∑
i=1

E∗i

 ,
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and taking into account that F̃1 ∼ F ∗ −
∑iF1

i=1E
∗
i , where iF1 indicates the last

point in the configuration of infinitely near points Cνr of the valuation νr through
which the strict transform of F1 goes, we get Dt2 ∼ PDt2 +NDt2

. This completes
the proof. �

Next, we are going to state the main results in this subsection. Recall that ν
is a special exceptional curve valuation whose first component is νr. Moreover,
ν is non-positive at infinity and non-minimal with respect to a big divisor D ∼
aF + bM .

Our results determine the coordinates of the vertices of the Newton-Okounkov
bodies ∆ν(D). We divide our study in three cases.

Case A: Either g∗ > 1, or g∗ = 1, ν(ϕF1) 6= β1(ν) and ν(ϕM0) 6= β1(ν).
Case B: The value g∗ equals 1 and ν(ϕF1) = β1(ν).
Case C: The value g∗ equals 1 and ν(ϕM0) = β1(ν).

We start with Case A. Here we can assume thatD is also nef (see the paragraph
below Theorem 3.4). According with [24, Theorem 6.4], by Remark 2.3, the
Newton-Okounkov body ∆ν(D) coincides with the set

{(t, y) ∈ R2 | 0 ≤ t ≤ µ̂D(νr) and α(t) ≤ y ≤ β(t)},

where, for all t ∈ [0, µ̂D(νr)], α(t) := ordpr+1(NDt |Er) and β(t) := α(t) + PDt ·Er;
here PDt and NDt are, respectively, the positive and negative parts of the divisor
Dt = D∗ − tEr. As a consequence, by Proposition 3.9, the points

Q1 =

(
bβg+1(νr)

νr(ϕF1)
,
bνr(ϕη)

νr(ϕF1)

)(
respectively, Q1 =

(
bβg+1(νr)

νr(ϕF1)
, 0

))
,

Q2 = Q1 +

(
0,

b

νr(ϕF1)

)
,

Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D),

bνr(ϕη) + θr1(D)νη(ϕF1)

νr(ϕF1)

)
(
respectively, Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D), 0

))
and Q4 = Q3 +

(
0,

b

νr(ϕF1)

)
are in ∆ν(D) whenever θr1(D) ≥ 0 and the point pr+1 is satellite (respectively,
free). When θr1(D) < 0 and the point pr+1 is satellite (respectively, free), the
points are

Q5 =

(
aβg+1(νr)

νr(ϕM0)
,
aνr(ϕη)

νr(ϕM0)

)(
respectively, Q5 =

(
aβg+1(νr)

νr(ϕM0)
, 0

))
,

Q6 = Q5 +

(
0,

a

νr(ϕM0)

)
,

Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,
(a+ bδ)νr(ϕη)− θr1(D)νη(ϕM0)

νr(ϕM0) + δνr(ϕF1)

)
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respectively, Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
, 0

))
and Q8 = Q7 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

)
.

Notice that, as mentioned at the beginning of Section 3, pr+1 is the intersection
point Eη ∩Er when it is satellite. Moreover, Q5 and Q6 may not be well-defined
when θr1(D) = 0, in fact this happens if a = 0 = νr(ϕM0).

By definition, it also holds that the point Q9 = (µ̂D(νr), µ̂D(νη)) (respectively,
Q9 = (µ̂D(νr), 0)) when pr+1 is satellite (respectively, free) belongs to ∆ν(D). By
Theorem 2.6, we are able to compute explicitly this point. Now, we state our
first main result where we use the symbol 4 defined in Section 2.1.

Theorem 3.10. Let ν be a valuation in Case A. With the notation as in the
previous two paragraphs, the Newton-Okounkov body ∆ν(D) of D with respect to
ν is a quadrilateral if and only if a 6= 0 and θr1(D) 6= 0. Otherwise, it is a triangle.

The vertices of the quadrilateral are:
(a) (0, 0), Q1, Q3 (respectively, Q5, Q7) and Q9 when θr1(D) > 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 64 η.
(b) (0, 0), Q2, Q4 (respectively, Q6, Q8) and Q9 when θr1(D) > 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 4 η.
(c) (0, 0), Q2, Q4 (respectively, Q6, Q8) and Q9 when θr1(D) > 0 (respectively,

θr1(D) < 0) and pr+1 is a free point.
When δ > 0, a = 0 and θr1(D) < 0, Q5 = Q6 = (0, 0) and the vertices of the

triangle ∆ν(D) are as described in items (a), (b) and (c).
Finally, replacing θr1(D) > 0 (or θr1(D) < 0) with θr1(D) = 0 in items (a),

(b) and (c), we obtain the vertices of the triangle ∆ν(D). This is because Q1 =
Q3 (= Q5 = Q7, when ν(ϕM0) 6= 0) in Case (a) and Q2 = Q4 (= Q6 = Q8,
when ν(ϕM0) 6= 0) otherwise.

Proof. First we show that D2/2 is the area of the convex sets ∆ and ∆′ defined,
respectively, by the sets of points {(0, 0), Q1, Q2, Q3, Q4, Q9} and {(0, 0), Q5, Q6,
Q7, Q8, Q9}.

Let us start with ∆. The area of the triangle (0, 0), Q1 and Q2 (respectively,
Q3, Q4 and Q9) is

b2βg+1(νr)

2νr(ϕF1)
2

(
respectively,

b

2νr(ϕF1)

(
µ̂D(νr)−

( b

νr(ϕF1)
βg+1(νr) + θr1(D)

)))
.

The area of the parallelogram Q1, Q2, Q3 and Q4 is b
νr(ϕF1 )

θr1(D). Thus, the area
of ∆ will be the sum of the above areas, which is

2ab+ b2δ

2
=
D2

2
.

With respect to ∆′, we have to add the area of the triangles with vertices
(0, 0), Q5 and Q6, and Q7, Q8 and Q9, to the area of a trapezium whose vertices
are Q5, Q6, Q7 and Q8. The areas of the triangles are equal to a2

2νr(ϕM0
)2
βg+1(νr)
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and

a+ bδ

2(νr(ϕM0) + δνr(ϕF1))

(
µ̂D(νr)−

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)

))
.

The length of the parallel sides of the trapezium and the distance between them
are

a

νr(ϕM0)
,

a+ bδ

νr(ϕM0) + δνr(ϕF1)
and

−θr1(D)(δβg+1(νr) + νr(ϕM0)
2)

νr(ϕM0)(νr(ϕM0)− δνr(ϕF1))
,

and the area is
−θr1(D) ((2a+ bδ)νr(ϕM0) + aδνr(ϕF1)) (δβg+1(νr) + νr(ϕM0)

2)

2νr(ϕM0)
2(νr(ϕM0) + δνr(ϕF1))

2
.

When adding, the coefficients of βg+1(νr) are cancelled. Therefore, we only have
to add the following fractions

(a+ bδ)µ̂D(νr)

2(νr(ϕM0) + δνr(ϕF1))
,
θr1(D)(a+ bδ)νr(ϕM0)

2(νr(ϕM0) + δνr(ϕF1))
2
and

−θr1(D)νr(ϕM0)
2((2a+ bδb)νr(ϕM0) + aδνr(ϕF1))

2νr(ϕM0)
2(νr(ϕM0) + δνr(ϕF1))

2
,

giving rise to the desired value D2/2.
Let us show that the defining points of ∆ and ∆′ that do not appear in the

items (a), (b) and (c) belong to the line L which goes through (0, 0) and Q9. It is
clear that (0, 0), Q1, Q3 (respectively, Q5 and Q7) and Q9 are in L when θr1(D) ≥ 0
(respectively, θr1(D) < 0) and pr+1 is a free point. This corresponds to Item (c).

Now we suppose that pr+1 is satellite and r 4 η. Then, pr is also a satellite
point, g∗ = g and, by [19, Proposition 2.5], one obtains that

νr(ϕη) = eg−1(νη)βg(νr) = eg−1(νr)βg(νr)
β0(νη)

β0(νr)
= βg+1(νr)

β0(νη)

β0(νr)
,

where eg−1(νi) = gcd(β0(νi), β1(νi), . . . , βg−1(νi)), for i = r or η. Moreover, by
the proof of Lemma 3.9 in [19], it holds that eg−1(νη)βg(νr)−eg−1(νr)βg(νη) = −1
and then

νr(ϕη) + 1 = eg−1(νr)βg(νη) = βg+1(νr)
βg(νη)

βg(νr)
.

Also, we have that

νη(ϕF1) =
β0(νη)

β0(νr)
νr(ϕF1) and νη(ϕM0) =

β0(νη)

β0(νr)
νr(ϕM0).

As a result, it is easy to check that the points (0, 0) and Q1, Q3 (respectively,
Q5, Q7) and Q9 are in the line L ≡ β0(νr)y = β0(νη)x when θr1(D) ≥ 0 (respec-
tively, θr1(D) < 0), which corresponds to Item (b).

A similar reasoning can be applied to the case when pr+1 is satellite and r 64 η.
Notice that, in this case, Q2, Q4 (respectively, Q6, Q8) and Q9 are in the line L
when θr1(D) ≥ 0 (respectively, θr1(D) < 0).
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As a consequence of our reasoning ∆ν(D) is a quadrilateral or a triangle. To
conclude the proof, we show that ∆ν(D) is a triangle if and only if the conditions
in the last two paragraphs of the statement hold. Otherwise, ∆ν(D) will be a
quadrilateral.

Assume, for instance, that pr+1 is a satellite point and r 4 η. Suppose also that
θr1(D) ≥ 0. In this case, ∆ν(D) is a triangle if and only if one of the following
conditions is satisfied: Q4 belongs to the line with equation βg(νη)x = βg(νr)y,
or Q4 belongs to the line which goes through Q2 and Q9. These two conditions
happen if and only if θr1(D) = 0, which proves our statement. Now assume that
θr1(D) < 0. Here, ∆ν(D) is a triangle if and only if one of the next conditions
holds: Q8 belongs to the line with equation βg(νη)x = βg(νr)y; Q8 belongs to the
line which goes through Q6 and Q9; or Q6 = (0, 0) = Q5. The first and second
conditions are true if and only if θr1(D) = 0, which is a contradiction because we
have supposed that θr1(D) is negative. The third one happens if and only if δ > 0
and a = 0. This completes the proof after noticing that the remaining cases can
be proved analogously. �

An example that corresponds to Statement (a) of the above theorem is the
next one.

Example 3.11. Let p be a special point of the Hirzebruch surface F2 and νr a
special divisorial valuation centered at OF2,p whose sequence of maximal contact
values is {βi(νr)}3i=0 = {20, 28, 153, 612}. Let Cνr = {pi}12i=1 (with p = p1) its
configuration of infinitely near points and set F1 the fiber which passes through
p. Suppose that the strict transform ofM0 passes through p2. Then, νr(ϕF1) = 20,
νr(ϕM0) = 28 and 2νr(ϕF1)νr(ϕM0) + νr(ϕF1)

2δ = 1920 > 612 = βg+1(νr). So, νr
is non-positive at infinity by [17, Theorem 3.6].

Let ν = νE• be the valuation defined by the flag E• = {Z = Z12 ⊃ E12 ⊃
{p13}}, where p13 is the intersection point E8 ∩E12. According to Theorem 3.10,
∆ν(F + 2M) is a quadrilateral with vertices

(0, 0), Q5 =

(
612

28
,
152

28

)
, Q7 =

(
4068

68
,
1012

68

)
and Q9 = (156, 39) ,

since νr is non-minimal with respect to F +2M by Corollary 2.8, θr1(F +2M) < 0
and 12 64 8. Figure 1 shows the Newton-Okounkov body ∆ν(F + 2M) (in dark)
and the triangle C(ν) ∩ HF+2M(ν) given in Proposition 3.3.

Now we are going to determine the Newton-Okounkov ∆ν(D) for valuations ν
as in Case B introduced before Theorem 3.10. That is, we assume that g∗ = 1
and ν(ϕF1) = β1(ν). Note that, in this case, it could happen that ν(ϕM0) = (0, 0)
and then θr1(D) = aνr(ϕF1) ≥ 0. In addition, we can assume that D is a big and
nef divisor because when D is big and not nef, ∆ν(D) can be computed as we
explained in the paragraph under Theorem 3.4. Following [24, Theorem 6.4] and
Proposition 3.9, if pr+1 is the satellite point Er ∩Eη and θr1(D) ≥ 0 (respectively,
θr1(D) < 0), then the points Q1, Q2, Q3, Q4 (respectively, Q5, Q6, Q7, Q8) and Q9,
described before Theorem 3.10 for the satellite case, belong to ∆ν(D). Otherwise
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0 t1 t2 µ̂D(νr)

Q6

Q8

Q9

Q7

Q5

Figure 1. ∆ν(F + 2M) and C(ν) ∩ HF+2M(ν) in Example 3.11.

(pr+1 is free), the points

Q1 =

(
bβg+1(νr)

νr(ϕF1)
, 0

)
, Q2 = Q1 +

(
0,

b

νr(ϕF1)

)
,

Q3 =

(
bβg+1(νr)

νr(ϕF1)
+ θr1(D),

θr1(D)

νr(ϕF1)

)
and Q4 = Q3 +

(
0,

b

νr(ϕF1)

) (3.3)

(respectively, Q5, Q6, Q7, Q8 given before Theorem 3.10 for the free case) and
Q9 = (µ̂D(νr), a+ bδ)

are in ∆ν(D) if θr1(D) ≥ 0 (respectively, θr1(D) < 0).

Theorem 3.12. Let ν be a valuation in Case B. With the notation as in the
previous paragraph, the Newton-Okounkov body ∆ν(D) of D with respect to ν is
a quadrilateral if and only if a 6= 0. Otherwise, it is a triangle.

(a) When ν(ϕM0) = (0, 0), the vertices of the quadrilateral are:
(a.1) (0, 0), Q2, Q4 (respectively, Q1, Q3) and Q9 if pr+1 is the satellite point

Eη ∩ Er and r 64 η, (respectively, r 4 η).
(a.2) (0, 0), Q1, Q3 and Q9 whenever pr+1 is a free point.

In addition, if δ > 0 and a = 0, then the vertices of the triangle ∆ν(D)
are the above ones, where Q1 = Q3 and Q2 = Q4.

(b) When ν(ϕM0) 6= (0, 0), the vertices of the quadrilateral are:
(b.1) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 64 η.
(b.2) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 4 η.
(b.3) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0) and pr+1 is a free point.
Moreover, if δ > 0 and a = 0, the vertices of the triangle ∆ν(D) are the

above ones where Q5 = (0, 0) = Q6.

Proof. Consider the convex sets defined by the points {(0, 0), Q1, Q2, Q3, Q4, Q9}
and {(0, 0), Q5, Q6, Q7, Q8, Q9}. Reasoning as in the proof of Theorem 3.10, we
deduce that the area of both sets is D2/2.
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To prove items (a.1) and (a.2), it suffices to check that the points defining
∆ν(D) that do not appear in the statement belong to the line L that passes
through (0, 0) and Q9. L is defined by the equation L ≡ βg∗(νr)y = βg∗(νη)x

(respectively, L ≡ y = x/βg+1(νr)) when pr+1 is a satellite point (respectively,
pr+1 is a free point). This is because

νη(ϕF1) = νr(ϕF1)
βg∗(νη)

βg∗(νr)

(
respectively, νr(ϕF1) = βg+1(νr)

)
(3.4)

if pr+1 is a satellite point (respectively, pr+1 is a free point). To verify the point
alignment we can use [19, Proposition 2.5 and Lemma 3.9], which proves that

νr(ϕη) = βg+1(νr)
βg∗(νη)

βg∗(νr)

(
respectively, νr(ϕη) + 1 = βg+1(νr)

βg∗(νη)

βg∗(νr)

)
(3.5)

if r 64 η (respectively, r 4 η).
To conclude the proof, we only show Item (b.1) since the remaining items (b.2)

and (b.3) run similarly. First, we suppose that θr1(D) ≥ 0. By (3.4) and (3.5),
the points (0, 0), Q1 and Q3 belong to the line with equation βg∗(νr)y = βg∗(νη)x.
Moreover, it is easily seen that Q4 belongs to the line which goes through Q2

and Q9. Finally, the point Q9 does not belong neither to the line with equation
β0(νr)y = β0(νη)x nor to that with equation βg∗(νr)y = βg∗(νη)x, which finishes
the proof in this case where θr1(D) ≥ 0.

It only remains to assume that θr1(D) < 0, then

νη(ϕM0) = νr(ϕM0)
β0(νη)

β0(νr)
and νr(ϕη) + 1 = βg+1(νr)

β0(νη)

β0(νr)
.

Therefore, (0, 0), Q6 and Q8 belong to the line with equation β0(νr)y = β0(νη)x.
Moreover Q7 is in the line which goes through Q5 and Q9, which completes the
proof. �

We finish this section by describing the Newton-Okounkov bodies ∆ν(D) in
Case C introduced before Theorem 3.10. Then, suppose that g∗ = 1 and ν(ϕM0) =
β1(ν). Here, we can assume that D is a big and nef divisor except for the case
when all the points {pi}r+1

i=1 are free. In this last situation, pr+1 ∈ supp(ND∗) if
and only if D is big and not nef.

First assume that D is big and nef. According to [24, Theorem 6.4] and Propo-
sition 3.9, when pr+1 is the satellite point Er ∩ Eη and θr1(D) ≥ 0 (respectively,
θr1(D) < 0), the points Q1, Q2, Q3, Q4 (respectively, Q5, Q6, Q7, Q8) and Q9, de-
scribed before Theorem 3.10 for the satellite case, are in ∆ν(D).

When pr+1 is free, the points

Q5 =

(
aβg+1(νr)

νr(ϕM0)
, 0

)
, Q6 = Q5 +

(
0,

a

νr(ϕM0)

)
,

Q7 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,

−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
,

Q8 = Q7 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

) (3.6)
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(respectively, Q1, Q2, Q3, Q4 provided before Theorem 3.10 for the free case) and
Q9 = (µ̂D(νr), b) belong to ∆ν(D) if θr1(D) < 0 (respectively, θr1(D) ≥ 0).

Finally, assume that D is big and not nef and all the points in {pi}r+1
i=1 are free.

Recall that these assumptions are equivalent to the fact that pr+1 ∈ supp(ND∗)
(see the paragraph after Theorem 3.4). Then, the points

P1 =

(
−aνr(ϕM0)

δ
,
−a
δ

)
,

P2 =

(
(a+ bδ)βg+1(νr)− θr1(D)νr(ϕM0)

νr(ϕM0) + δνr(ϕF1)
,

−θr1(D)

νr(ϕM0) + δνr(ϕF1)

)
,

P3 = P2 +

(
0,

a+ bδ

νr(ϕM0) + δνr(ϕF1)

)
and P4 = (µ̂D(νr), b)

are in ∆ν(D).
Next, we state our result for Case C, where, as mentioned, D is big and nef

except when pr+1 ∈ supp(ND∗). We recall that the Newton-Okounkov bodies
∆ν(D) for the remaining cases where D is big but not nef can be reduced to the
big and nef situation (see the paragraph below Theorem 3.4).

Theorem 3.13. Let ν be a valuation in Case C. Under the above assumptions
and notation, the Newton-Okounkov body ∆ν(D) of D with respect to ν is a
quadrilateral if and only if a 6= 0 and D is nef. Otherwise, it is a triangle.

(a) When D is a big and nef divisor, the vertices of the quadrilateral are:
(a.1) (0, 0), Q1, Q4 (respectively, Q6, Q7) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 64 η.
(a.2) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 4 η.
(a.3) (0, 0), Q2, Q3 (respectively, Q5, Q8) and Q9 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0) and pr+1 is a free point.
Moreover, if δ > 0 and a = 0, the vertices of the triangle ∆ν(D) are the
above ones where Q5 = (0, 0) = Q6.

(b) If D is big but not nef and all the points in {pi}r+1
i=1 are free, the vertices

of the triangle ∆ν(D) are P1, P3 and P4.

Proof. Item (a) follows as in Theorem 3.12 (b) after considering that

νη(ϕM0)βg∗(νr) = νr(ϕM0)βg∗(νη) and νη(ϕF1)β0(νr) = νr(ϕF1)β0(νη).

Now we are going to prove Item (b). For a start, the area of the convex set ∆
generated by P1, P2, P3 and P4 is P 2

D∗/2. Indeed, the area of the triangle generated
by P1, P2 and P3 (respectively, P2, P3 and P4) is

(a+ bδ)
(

(a+bδ)βg+1(νr)−θr1(D)νr(ϕM0
)

νr(ϕM0
)+δνr(ϕF1 )

− −aνr(ϕM0
)

δ

)
2(νr(ϕM0) + δνr(ϕF1))respectively,

(a+ bδ)
(
µ̂D(νr)−

(a+bδ)βg+1(νr)−θr1(D)νr(ϕM0
)

νr(ϕM0
)+δνr(ϕF1 )

)
2(νr(ϕM0) + δνr(ϕF1))

 .



22 C. GALINDO, F. MONSERRAT, AND C.-J. MORENO-ÁVILA

Therefore, the area of ∆ is the sum of the two above areas, which is

(a+ bδ)
(
µ̂D(νr)−

−aνr(ϕM0
)

δ

)
2(νr(ϕM0) + δνr(ϕF1))

=
(a+ bδ)

(
b+ a

δ

)
(νr(ϕM0) + δνr(ϕF1))

2(νr(ϕM0) + δνr(ϕF1))

=

((
b+ a

δ

)
M∗)2

2
=
P 2
D∗

2
.

Finally, P2 belongs to the line which goes through P1 and P4, and P4 is not in
the line with equation βg+1(νr)y = x, which completes the proof of Item (b). �

Remark 3.14. The forthcoming Table 1 (Subsection 3.3) summarizes Theorems
3.10, 3.12 and 3.13. Moreover, the particular cases δ = 1, a = 0 and θr1(D) < 0 in
those theorems provide the Newton-Okounkov bodies described in [19, Corollary
5.2]. This holds because F1 is the blowup of the projective plane P2 at a point,
and the special section, in this case, is the exceptional divisor.

3.2. Newton-Okounkov bodies with respect to non-positive at infinity
non-special valuations. In this last subsection, we complete Subsection 3.1 by
considering non-special valuations. Denote by ν a non-positive at infinity non-
special exceptional curve valuation whose first component is νr. Also, assume
that D ∼ aF + bM is a big and nef divisor on Fδ (since p1 is a general point
by Definition 2.4). We will use the notation θr2(D) for the value aνr(ϕF1) −
b
(
νr(ϕM1)− δνr(ϕF1)

)
, where F1 and M1 are as defined below Definition 2.4. The

following results translate to the non-special case what happens in Subsection 3.1
for the special one.

Lemma 3.15. Let νr be a non-positive at infinity non-special divisorial valuation
of Fδ. Set D and θr2(D) as above. Then, the divisor

D3 = D∗− b

νr(ϕF1)

r∑
i=1

νr(mi)E
∗
i

(
respectively, D4 = D∗ − a+ bδ

νr(ϕM1)

r∑
i=1

νr(mi)E
∗
i

)
is nef when θr2(D) ≥ 0 (respectively, θr2(D) < 0).

Proof. We are going to show that D4 is nef when θr2(D) < 0. The fact that the
divisor D3 is nef follows from a similar reasoning as that used in Lemma 3.5.

Write

∆r := (νr(ϕM1)− δνr(ϕF1))F
∗ + νr(ϕF1)M

∗ −
r∑
i=1

νr(mi)E
∗
i and

Γr := νr(ϕM1)M
∗ − δ

r∑
i=1

νr(mi)E
∗
i .

Both divisors are nef by [17, Theorem 4.8] and this concludes the proof since

D4 ∼
a

νr(ϕM1)− δνr(ϕF1)
∆r +

−θr2(D)

νr(ϕM1)− δνr(ϕF1)
Γr

and −θr2(D) > 0. �
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The following result can be proved reasoning as in the proof of Lemma 3.6. No-
tice that we are considering a non-special divisorial valuation whose non-positivity
at infinity can be checked with the inequality below Definition 2.5. Recall that
we are considering a big and nef divisor D ∼ aF + bM on Fδ. We will also use
the value θr2(D).

Lemma 3.16. Let νr be a non-positive at infinity non-special divisorial valuation
of Fδ. Then, the rational numbers

t5 =
b

νr(ϕF1)
βg+1(νr) and t6 =

b

νr(ϕF1)
βg+1(νr) + θr2(D)

(
respectively, t7 =

a+ bδ

νr(ϕM1)
βg+1(νr) and t8 =

aβg+1(νr)− νr(ϕM1)θ
r
2(D)

νr(ϕM1)− δνr(ϕF1)

)

belong to the set TD,νr := {t ∈ Q | 0 ≤ t ≤ µ̂D(νr)} when θr2(D) ≥ 0 (respectively,
θr2(D) < 0).

Remark 3.17. As in the special divisorial valuations case, if νr is minimal with
respect to D, by Theorem 2.6 and Corollary 2.7, one gets

µ̂D(νr) = bβg+1(νr)/νr(ϕF1) = t5 = t6 = t7 = t8.

Otherwise, Lemma 3.16 provides two values, t5 and t6 (respectively, t7 and t8)
when θr2(D) ≥ 0 (respectively, θr2(D) < 0). When θr2(D) = 0, one has that
µ̂D(νr) > t5 = t6 = t7 = t8, and if a = 0 and θr2(D) < 0, then t8 = µ̂D(νr).
Moreover, if the equality 2νr(ϕM1)νr(ϕF1)−δνr(ϕF1)

2 = βg+1(νr) holds, we deduce
that t6 = µ̂D(νr) (respectively, t8 = µ̂D(νr)) whenever θr2(D) > 0 (respectively,
θr2(D) < 0).

Reasoning as in Lemma 3.8, one proves that the divisors D3 and D4 in Lemma
3.15 are big. Moreover, D3 · F̃1 = 0, D4 · M̃1 = 0, and D3 ·Ei = 0 and D4 ·Ei = 0,
for 1 ≤ i ≤ r − 1. As a consequence, one gets the following result.

Lemma 3.18. Let νr be a divisorial valuation and D a divisor as in Lemma
3.15. Assume also that νr is non-minimal with respect to D. The intersec-
tion matrix determined by the set of divisors {F̃1, E1, . . . , Er−1} (respectively,
{M̃1, E1, . . . , Er−1}) is negative definite.

Our upcoming proposition considers a valuation νr and a divisor D as stated
before Lemma 3.15 and determines the Zariski decomposition of the divisors
D∗ − tiEr, 5 ≤ i ≤ 8, where ti are the rational numbers defined in Lemma
3.16. We will use the above defined value θr2(D) and the divisors D3, D4 and
∆r = (νr(ϕM1)− δνr(ϕF1))F

∗+νr(ϕF1)M
∗−
∑r

i=1 νr(mi)E
∗
i given in Lemma 3.15

and its proof.

Proposition 3.19. The following statements hold.
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(a) The positive and negative parts of the Zariski decomposition of the divisor
Dt5 = D∗ − t5Er (respectively, Dt6 = D∗ − t6Er) are

PDt5 ∼ D3 and NDt5
=

b

νr(ϕF1)

r−1∑
i=1

νr(ϕi)Ei(
respectively, PDt6 ∼

b

νr(ϕF1)
∆r and

NDt6
=

θr2(D)

νr(ϕF1)
F̃ +

r−1∑
i=1

bνr(ϕi) + θr2(D)νi(ϕF1)

νr(ϕF1)
Ei

)
,

when θr2(D) ≥ 0.
(b) The positive and negative parts of the Zariski decomposition of Dt7 =

D∗ − t7Er (respectively, Dt8 = D∗ − t8Er) are

PDt7 ∼ D4 and NDt7
=

a+ bδ

νr(ϕM1)

r−1∑
i=1

νr(ϕi)Ei(
respectively, PDt8 ∼

a

νr(ϕM1)− δνr(ϕF1)
∆r and

NDt8
=

−θr2(D)

νr(ϕM1)− δνr(ϕF1)
M̃1 +

r−1∑
i=1

aνr(ϕi)− θr2(D)νi(ϕM1)

νr(ϕM1)− δνr(ϕF1)
Ei

)
,

when θr2(D) < 0.

Proof. We are going to prove Statement (b). A proof for (a) runs similarly. On
the one hand, the components of the divisor NDt7

determine a negative definite
intersection matrix. On the other hand, the divisor PDt7 is nef by Lemma 3.15 and
orthogonal to each component ofNDt7

by the proximity equalities. So, PDt7 +NDt7
gives the Zariski decomposition of Dt7 .

Let us show the claim for Dt8 . By Lemma 3.18, the components of NDt8
de-

termine a negative definite intersection matrix and, by [17, Proposition 4.1 and
Theorem 4.8], the divisor PDt8 is nef and orthogonal to each component of NDt8

.
Finally, we are going to see that PDt8 + NDt8

∼ Dt8 , which completes the proof.
Indeed, let piM1

be the last point in the configuration of infinitely near points
Cνr of the valuation νr through which the strict transform of M1 goes. Since
M̃1 ∼M∗ −

∑iM1
i=1 E

∗
i , it holds that

a(∆r +
∑r−1

i=1 νr(ϕi)Ei) + θr2(D)M∗

νr(ϕM1)− δνr(ϕF1)
∼ D −

aβg+1(νr)

νr(ϕM1)− δνr(ϕF1)
Er.

In addition,

−θr2(D)

νr(ϕM1)− δνr(ϕM1)

 r−1∑
i=1

νi(ϕM1)Ei −
iM1∑
i=1

E∗i

 =
−θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
Er,

and the result follows after adding both expressions. �

We conclude our paper by determining the vertices of the Newton-Okounkov
bodies ∆ν(D), where D and ν are as in the paragraph before Lemma 3.15. Recall
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that νr is the first component of ν. We again divide our description of ∆ν(D) in
two cases:

Case D: Either g∗ > 1 or g∗ = 1 and ν(ϕM1) 6= β1(ν).
Case E: The value g∗ equals 1 and ν(ϕM1) = β1(ν).

Let us start with the case D. Arguing as before Theorem 3.10, the points

Q10 =

(
bβg+1(νr)

νr(ϕF1)
,
bνr(ϕη)

νr(ϕF1)

)(
respectively, Q10 =

(
bβg+1(νr)

νr(ϕF1)
, 0

))
,

Q11 = Q10 +

(
0,

b

νr(ϕF1)

)
,

Q12 =

(
bβg+1(νr)

νr(ϕF1)
+ θr2(D),

bνr(ϕη) + θr2(D)νη(ϕF1)

νr(ϕF1)

)
(
respectively Q12 =

(
bβg+1(νr)

νr(ϕF1)
+ θr2(D), 0

))
and Q13 = Q12 +

(
0,

b

νr(ϕF1)

)
(3.7)

belong to ∆ν(D) when θr2(D) ≥ 0 and the point pr+1 is satellite (respectively,
free). When θr2(D) < 0 and the point pr+1 is satellite (respectively, free)), the
points in ∆ν(D) are:

Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
,
(a+ bδ)νr(ϕη)

νr(ϕM1)

)
(
respectively, Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
, 0

))
, Q15 = Q14 +

(
0,

a+ bδ

νr(ϕM1)

)
,

Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
,
aνr(ϕη)− θr2(D)νη(ϕM1)

νr(ϕM1)− δνr(ϕF1)

)
(
respectively, Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
, 0

))
and Q17 = Q16 +

(
0,

a

νr(ϕM1)− δνr(ϕF1)

)
.

(3.8)
Also, when pr+1 is satellite (respectively, free), the pointQ18 = (µ̂D(νr), µ̂D(νη))

(respectively, Q18 = (µ̂D(νr), 0)) belongs to ∆ν(D) by Theorem 2.6.

Theorem 3.20. Let ν be a valuation in Case D. With the notation as in the
previous paragraphs, the Newton-Okounkov body ∆ν(D) of D with respect to ν is
a quadrilateral if and only if a 6= 0 and θr2(D) 6= 0. Otherwise, it is a triangle.

The vertices of the quadrilateral are:
(a) (0, 0), Q10, Q12 (respectively, Q14, Q16) and Q18 when θr2(D) > 0 (respec-

tively, θr2(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 64 η.
(b) (0, 0), Q11, Q13 (respectively, Q15, Q17) and Q18 when θr2(D) > 0 (respec-

tively, θr2(D) < 0), pr+1 is the satellite point Eη ∩ Er and r 4 η.
(c) (0, 0), Q11, Q13 (respectively, Q15, Q17) and Q18 when θr2(D) > 0 (respec-

tively, θr2(D) < 0) and pr+1 is a free point.
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When a = 0 and θr2(D) < 0, Q16 = Q18 = Q17 and the vertices of the triangle
∆ν(D) are as described in items (a), (b) and (c).

Finally, replacing θr2(D) > 0 or θr2(D) < 0 with θr2(D) = 0 in items (a), (b) and
(c) we obtain the vertices of the triangle ∆ν(D) because Q10 = Q12 = Q14 = Q16

in Case (a) and Q11 = Q13 = Q15 = Q17 otherwise.

Proof. We are going to show that D2/2 is the area of the convex set ∆ generated
by the points (0, 0), Q14, Q15, Q16, Q17 and Q18. The case concerning the points
(0, 0), Q10, Q11, Q12, Q13 and Q18 and the fact of being a quadrilateral or a triangle
follow as in the proof of Theorem 3.10.

The area of the triangle with vertices (0, 0), Q14 and Q15 (respectively, Q16, Q17

and Q18) is

(a+ bδ)2

2νr(ϕM1)
2
βg+1(νr)

(
respectively,

a

2(νr(ϕM1)− δνr(ϕF1))

(
µ̂D(νr)−

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)

)))
.

The area of the trapezium given by Q14, Q15, Q16 and Q17 is

−θr2(D) ((a+ bδ)(νr(ϕM1)− δνr(ϕF1)) + aνr(ϕF1)) (νr(ϕM0)
2 − δβg+1(νr))

2νr(ϕM1)
2(νr(ϕM1)− δνr(ϕF1))

2
.

Adding the above three areas, we notice that the coefficient of βg+1(νr) vanishes
and it suffices to add the following three fractions:

aµ̂D(νr)

2(νr(ϕM1)− δνr(ϕF1))
,

aθr2(D)νr(ϕM1)

2(νr(ϕM1)− δνr(ϕF1))
2
and

−θr2(D)νr(ϕM1)
2((a+ bδ)(νr(ϕM1)− δνr(ϕF1)) + aνr(ϕF1))

2νr(ϕM1)
2(νr(ϕM1)− δνr(ϕF1))

2
.

After computing, one gets (2ab+ δb2)/2, which concludes the proof. �

Example 3.21. Let p be a general point of the Hirzebruch surface F2 and νr
a non-special divisorial valuation centered at OF2,p, whose sequence of maximal
contact values is {βi(νr)}3i=0 = {15, 51, 262, 786}. Let Cνr = {pi}12i=1 (with p = p1)
be its configuration of infinitely near points, F1 the fiber which passes through
p, and M1 the irreducible section linearly equivalent to M that passes through p
and whose strict transform passes through p2 and p3. Notice that this means that
the self-intersection of M̃1 is negative. Then, νr(ϕF1) = 15 and νr(ϕM1) = 45 and
so 2νr(ϕF1)νr(ϕM1)− νr(ϕF1)

2δ = 900 > 786 = βg+1(νr). As a consequence, νr is
non-positive at infinity by [17, Theorem 4.8].

Let ν = νE• be the valuation defined by the flag

E• = {Z = Z12 ⊃ E12 ⊃ {p13}},

where p13 is the intersection point E9 ∩ E12. By Theorem 3.20, the coordinates
of the vertices of the Newton-Okounkov body ∆ν(2F + 5M) are

(0, 0), Q14 =

(
9432

45
,
3132

45

)
, Q16 =

(
3597

15
,
1197

15

)
and Q18 = (255, 85) ,
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since νr is non-minimal with respect to 2F +5M by Corollary 2.8, θr2(D) < 0 and
12 = r 64 η = 9.

Finally, assume that ν is in Case E. By [24, Theorem 6.4] and Proposition 3.19,
if pr+1 is the satellite point Er ∩ Eη and θr2(D) ≥ 0 (respectively, θr2(D) < 0),
the points Q10, Q11, Q12, Q13 (respectively, Q14, Q15, Q16, Q17) and Q18 provided
before Theorem 3.20 for the satellite case belong to ∆ν(D). When pr+1 is a free
point and θr2(D) < 0 (respectively, θr2(D) ≥ 0), the points

Q14 =

(
(a+ bδ)βg+1(νr)

νr(ϕM1)
, 0

)
, Q15 = Q14 +

(
0,

a+ bδ

νr(ϕM1)

)
,

Q16 =

(
aβg+1(νr)− θr2(D)νr(ϕM1)

νr(ϕM1)− δνr(ϕF1)
,

−θr2(D)

νr(ϕM1)− δνr(ϕF1)

)
,

Q17 = Q16 +

(
0,

a

νr(ϕM1)− δνr(ϕF1)

) (3.9)

(respectively, Q10, Q11, Q12, Q13 given before Theorem 3.20 for the free case) and
Q18 = (µ̂D(νr)), b) are in ∆ν(D).

Theorem 3.22. Let ν be a valuation in Case E. Under the above assumptions
and notation, the Newton-Okounkov body ∆ν(D) of D with respect to ν is a
quadrilateral if and only if a 6= 0. Otherwise, it is a triangle.

The vertices of the quadrilateral are:
(a) (0, 0), Q10, Q13 (respectively, Q15, Q16) and Q18 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Er ∩ Eη and r 64 η.
(b) (0, 0), Q11, Q12 (respectively, Q14, Q17) and Q18 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0), pr+1 is the satellite point Er ∩ Eη and r 4 η.
(c) (0, 0), Q11, Q12 (respectively, Q14, Q17) and Q18 if θr1(D) ≥ 0 (respectively,

θr1(D) < 0) and pr+1 is a free point.
In addition, if a = 0, then the vertices of the triangle ∆ν(D) are the previous
ones where Q16 = Q18 = Q17.

Proof. It follows reasoning as in the proof of Theorem 3.20 to compute the area
of the convex sets generated by the points given in the statement, and arguing
as in Theorem 3.4 (b), after taking into account the equalities

νη(ϕM1)βg∗(νr) = νr(ϕM1)βg∗(νη) and νη(ϕF1)β0(νr) = νr(ϕF1)β0(νη).

�

Table 2 in the next subsection summarizes Theorem 3.20 and Theorem 3.22.

3.3. Tables. In this subsection, and for the reader’s convenience, we provide two
tables summarizing the results of our main theorems on Newton-Okounkov bodies
with respect to non-minimal exceptional curve valuations of Hirzebruch surfaces
(the minimal case is described in Theorem 3.4). Thus, Table 1 summarizes The-
orems 3.10, 3.12 and 3.13 given in Subsection 3.1, while Table 2 summarizes
Theorems 3.20 and 3.22, which appear in Subsection 3.2.

Next, we give some additional information to ease the reading of the tables.
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Conditions

Theorems Theorem 3.10

(Case A)

Theorem 3.12

(Case B)

Theorem 3.13

(Case C)

θr1(D) > 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q1, Q3, Q9

(0, 0), Q2, Q4, Q9
(0, 0), Q1, Q4, Q9

(0, 0), Q2, Q3, Q9

θr1(D) = 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q1 = Q3, Q9

(0, 0), Q2 = Q4, Q9
(0, 0), Q1, Q4, Q9

(0, 0), Q2, Q3, Q9

θr1(D) < 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q5, Q7, Q9 (0, 0), Q6, Q7, Q9

(0, 0), Q5, Q8, Q9

θr1(D) > 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q2, Q4, Q9

(0, 0), Q1, Q3, Q9
(0, 0), Q2, Q3, Q9

(0, 0), Q1, Q4, Q9

θr1(D) = 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q2 = Q4, Q9

(0, 0), Q1 = Q3, Q9
(0, 0), Q2, Q3, Q9

(0, 0), Q1, Q4, Q9

θr1(D) < 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q6, Q8, Q9 (0, 0), Q5, Q8, Q9

(0, 0), Q6, Q7, Q9

θr1(D) > 0 and pr+1 is

a free point
(0, 0), Q2, Q4, Q9

(0, 0), Q1, Q3, Q9
(0, 0), Q2, Q3, Q9

(0, 0), Q1, Q4, Q9

θr1(D) = 0 and pr+1 is

a free point
(0, 0), Q2 = Q4, Q9

(0, 0), Q1 = Q3, Q9
(0, 0), Q2, Q3, Q9

(0, 0), Q1, Q4, Q9

θr1(D) < 0 and pr+1 is

a free point
(0, 0), Q6, Q8, Q9 (0, 0), Q5, Q8, Q9

(0, 0), Q6, Q7, Q9

δ > 0, a = 0, θr1(D) ≤ 0,

pr+1 is the satellite point

Eη ∩ Er and r 64 η

(0, 0) = Q5, Q7, Q9

(0, 0), Q2 = Q4, Q9

(0, 0) = Q6, Q7, Q9
(0, 0) = Q5, Q8, Q9

δ > 0, a = 0, θr1(D) ≤ 0,

pr+1 is the satellite point

Eη ∩ Er and r 4 η

(0, 0) = Q6, Q8, Q9

(0, 0), Q1 = Q3, Q9

(0, 0) = Q5, Q8, Q9
(0, 0) = Q6, Q7, Q9

δ > 0, a = 0, θr1(D) ≤ 0,

and pr+1 is a free point
(0, 0) = Q6, Q8, Q9

(0, 0), Q1 = Q3, Q9
(0, 0) = Q5, Q8, Q9

(0, 0) = Q6, Q7, Q9

Table 1. Vertices of the Newton-Okounkov bodies described in
Subsection 3.1.

The tables show the vertices of the Newton-Okounkov bodies ∆ν(D), intro-
duced in Definition 3.2, of big and nef divisors D = aF+bM on surfaces Fδ, δ ≥ 0
(see Subsection 2.1 for the definition of F and M). These Newton-Okounkov
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Conditions

Theorems Theorem 3.20

(Case D)

Theorem 3.22

(Case E)

θr2(D) > 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q10, Q12, Q18 (0, 0), Q10, Q13, Q18

θr2(D) = 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q10 = Q12 = Q14 = Q16, Q18 (0, 0), Q10, Q13, Q18

θr2(D) < 0, pr+1 is the sate-

llite point Eη ∩ Er and r 64 η
(0, 0), Q14, Q16, Q18 (0, 0), Q15, Q16, Q18

θr2(D) > 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q11, Q13, Q18 (0, 0), Q11, Q12, Q18

θr2(D) = 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q11 = Q13 = Q15 = Q17, Q18 (0, 0), Q11, Q12, Q18

θr2(D) < 0, pr+1 is the sate-

llite point Eη ∩ Er and r 4 η
(0, 0), Q15, Q17, Q18 (0, 0), Q14, Q17, Q18

θr2(D) > 0 and pr+1 is

a free point
(0, 0), Q11, Q13, Q18 (0, 0), Q11, Q12, Q18

θr2(D) = 0 and pr+1 is

a free point
(0, 0), Q11 = Q13 = Q15 = Q17, Q18 (0, 0), Q11, Q12, Q18

θr2(D) < 0 and pr+1 is

a free point
(0, 0), Q15, Q17, Q18 (0, 0), Q14, Q17, Q18

a = 0, θr2(D) < 0, pr+1 is the

satellite point Eη ∩ Er

and r 64 η

(0, 0), Q14, Q16 = Q18 (0, 0), Q15, Q16 = Q18

a = 0, θr2(D) < 0, pr+1 is the

satellite point Eη ∩ Er

and r 4 η

(0, 0), Q15, Q17 = Q18 (0, 0), Q14, Q17 = Q18

a = 0, θr2(D) < 0,

and pr+1 is a free point
(0, 0), Q15, Q17 = Q18 (0, 0), Q14, Q17 = Q18

Table 2. Vertices of the Newton-Okounkov bodies described in
Subsection 3.2.

bodies are with respect to non-minimal (Definition 2.2) non-positive at infinity
(Definition 2.5) valuations ν of Fδ. Table 1 considers the cases where ν is special
and Table 2 those where ν is non-special.
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With respect to the notation in our tables, divisors Er, Eη defining the diviso-
rial valuations νr and νη, respectively, and the point pr+1 are introduced at the
beginning of Section 3. The concepts of satellite and free point and the ordering
4 on the set of vertices of the dual graph of a valuation are given in Subsection
2.1.

The definition of the value θr1(D) (respectively, θr2(D)) can be found at the
beginning of Subsection 3.1 (respectively, Subsection 3.2). The conditions to
distinguish cases A, B and C (respectively, D and E) are given after the proof of
Proposition 3.9 (respectively, Proposition 3.19). The points Qi appearing in our
tables can be found after stating the above mentioned cases.

Finally, the data to understand which are the above cases and the coordinates
of the points are in Subsection 2.1 (maximal contact values {βj}g+1

j=0 and germs
ϕC of curves C), and before Proposition 3.3 for the value g∗.
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