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Supplementary Note 1: 

Ion diffusion coefficient and T80 data  

In this note we explain in detail the data used to generate Fig. 2c since the reported Dion and T80 

values are highly dispersed. For this reason, the reported Dion values in Fig. 2c of the main text 

need to be taken as a qualitative indicator. 

 

For one given perovskite composition, the reported Dion may differ about 1 order of magnitude (or 

more) depending on the preparation conditions of the perovskite and the analytical technique used 

to characterize the material as shown in Table SI1. See for example reported values for MAPbI3. 

Several techniques like those that provide chemical information such as Nuclear magnetic 

resonance (NMR) experiments or Time-of-flight (ToF) spectroscopies have been used for this 

purpose. Alternatively, in-situ techniques such as Photoluminescence (PL) quenching methods or 

electrical measurements have also been used. Each technique has its own advantages and 

limitations. For example, destructive techniques benefit from chemical information but may lack 

reliability as they need to compare several identical samples. Since sample-to-sample 

reproducibility is one of the major limiting factors, comparing identical samples is challenging. 

Alternatively, in-situ and non-destructive measurements do not have the required chemical 

information, and rely on models to extract relevant information. In addition, the reported Dion also 

depends on the history of the samples, testing conditions (i.e. dark/light, relative humidity or 

temperature). In any case, the observed trends with cation ion size are consistent across all the 

techniques and small cations show large values of Dion and large cations lead to small Dion. It is 

also important to note that due to the infinite number of variations in perovskite formulations, for 

many of them, Dion has not been measured directly for the stability experiments described next. 

For this reason, formulations have been arranged in groups and a Dion value has been assigned in 

the range of the closest formulation for which the data is available.  
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Table S1: Reported Dion measured in the dark for different perovskite materials  

 Perovskite composition 
Dion / cm2 s-

1  

Measurement 

technique 
Reference 

MAPbBr3  1.8×10-8 
Impedance 

Spectroscopy 
1 

MAPbI3 6.0×10-8 Current transients 2 

MAPbI3 2×10-9  NMR experiments 3 

MAPbI3  5 ×10-9 
PL quenching and 

current transient 
4 

MAPbI3 2.4×10-8 DC polarization  5 

FAPbI3 8.0×10-9 DC polarization   

CsPbI3 6.1×10-10 DC polarization   

MAPbI3 2.2×10-8 
PL quenching and 

current transient 6 

(FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 8.47×10-9 
 PL quenching and 

current transient 
 

(NMA0.66FA0.33)PbI3 2.2×10-10 
PL quenching and 

current transient 
 

(FAPbI3)0.875(CsPbBr3)0.125  8.4×10-9 
PL quenching and 

current transient 
7 

(PEA)2(MA)2Pb3Br10     (n=3) 8.0×10-11 PL quenching 
 

(PEA)2(MA)2Pb3I10        (n=3) 8.0×10-12 PL quenching 8 

(PEA)2(MA) 1Pb2Br7     (n=2) 1.0×10-12 PL quenching 

 

(PEA)2(MA) 1Pb2I7        (n=2) 2.0×10-15 PL quenching 

 

(PEA)2PbBr4                (2D, n=1) 2.0×10-15  PL quenching  

(PEA)2PbI4                   (2D, n=1) 5.0×10-16  PL quenching 
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Reports for T80 are also quite dispersed in the literature. The main reason in this case is that 

standardized degradation protocols have not been followed in the literature. Only recently, the 

research community have started to agree on how to report stabilities for perovskite solar cells9. 

For this reason, the T80 values selected in this manuscript and summarized in Table SI2 aim to 

provide experimental conditions that are comparable: degradation at 1 sun illumination at 

maximum power point with a controlled atmosphere of nitrogen or use of efficient encapsulant 

(parylene). Unless otherwise stated, all cells show initial PCE >18 %.  The control sample 

configuration is based either on FTO/TiO2/perovskite/Spiro-OMeTAD/Au (n-i-p) or 

FTO/PEDOT:PSS/Perovskite/PCBM/Ag (p-i-n). Here, modification of the extraction layers, 

contacts or encapsulation is considered a contacts improvement as opposed to improvements 

related to the bulk properties of the perovskite. 

  

Table S2: Reported T80 for different materials.  

 Perovskite composition 
Improvement Dion / cm2 s-1  

(estimated) 
T80 / h Reference 

MAPbI3 
Control sample 2×10-8 30 10 

MAPbI3 
Control sample 2×10-8 12 11 

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  
Control sample 2×10-9 10 12 

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  Control sample 2×10-9 30 13 

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  Addition of EDTAK to the 

ETL 

2×10-9 
125  

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  Addition of EDTAK to the 

ETL and addition of EAMA 

to Perovskite 

2×10-9 

300  

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  ETL+EDTAK and 

Perovskite + EAMA and 

mixed Spiro and P3HT 

2×10-9 

2450  

Cs5(FA83MA17)95Pb(I83Br17)3 
Control sample 5×10-11 90 14 

Rb0.05(Cs0.05MAFA)Pb(I0.83Br0.17)3  
Control sample 5×10-10 2000 14 
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Rb0.05Cs0.1FA0.85PbI3  
Use of PMMA in contacts 5×10-10 10000 15 

(FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 
Control sample with Spiro 1×10-10 5 10 

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3  
Control sample with Spiro 1×10-10 300 

10 

(MA0.15Cs0.09FA0.76)0.97PbI2.97  
Improved HTL (EH44) 5×10-11 1600 16 

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Contacts improvement (Use 

of CuSCN) 
5×10-11 5000 

17 

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Control sample 5×10-11 50 18 

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Extensive contacts 

improvement 
5×10-11 10000 

 

(MA0.15Cs0.09FA0.76)0.97PbI2.97  
Contact improvement 

(MoOx) 
5×10-11 340 

19 

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Contact improvement (VOx) 1×10-11 750  

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Use of BMIMBF4 and 

contacts improvement 
1×10-11 4100 

20 

MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
Piperidinium salt and 

contacts improvement 
1×10-11 4800 

21 

(FAPbI3)0.875(CsPbBr3)0.125 
Control sample 4×10-9 250 7 

(FAPbI3)0.875(CsPbBr3)0.125   
KI doped 4×10-9 >500  

(BA)2(MA)4Pb5I16 
Control sample BA+(n=5) 5×10-12 50 

22 

(MTEA)2(MA)4Pb5I16 
Improvement large cation 

Low dimensional (n=5) 
5×10-12 

1000 

 

(BA)2(MA)3Pb4I13  
Low dimensional n=4 

PCEinitial= 12 % 
1×10-12 >2500 

11 

 (GA)2MA4Pb5I16  
Reference 2D perovskite 5×10-15 750 23 

(GA)2MA4Pb5I16  
GA on top of perovskite 5×10-15 3000  

 

 



S6 

 

Supplementary Note 2: 

 

Figure S1. Evolution of electroluminescence spectra during pulsed operation of a 

ITO/PEDOT:PSS/polyTPD/CsPbBr3/B3PYMPM/TPBi/LiF/Al LED. This device is biased at a 

Vbase of 3 V to purposefully polarize the device before application of Vpulse of 4 V to turn on the 

LED. The pulse duration used is 200 ms with 20 sec intervals between pulses. 

 

Figure S2. Change of normalized electroluminescence upon switching of Vbias from 0 to 2.75 V. 
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The normalization was done by dividing the EL values by the value of the EL measured at the first 

point (~0 sec) 

 

Supplementary Note 3: 

 

 

Figure S3. Dark current density-time dependance of a hard radiation detector based on CsPbBr3 

SC at different temperatures. 

 

Supplementary Note 4: 

Due to the many possible configurations and compositions of halide perovskite memristors, it is 

possible that the different devices show rather different internal mechanisms of operation, and a 

general picture is far from being obtained. However, we propose a generic description according 

to the available information. The memristor is characterized by a large rise of the current when a 

certain voltage threshold is surpassed, showing the transition to a low resistance state (LRS). But 

the response is dynamic, depending on the kinetic effects as seen by a change of the effective onset 

voltage as a function of the scan rate. In the reverse scan, the system shows intense hysteresis, as 

the return pathway stays on the LRS up to reverse voltages that resets the device to a high resistance 
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state (HRS). These features correspond to complex dynamics that is the combination of several 

factors: (1) an underlying dc current that defines the HRS, (2) a transition mechanism that forms 

the LRS. This may consist of the formation of a conductive filament (CF), or the reaction of ions 

at the interface that removes a Schottky barrier and multiplies the electronic conductivity. This 

activation necessitates a minimum voltage, in the type of an electrochemical redox potential, to 

obtain a successful configuration for high conduction. However, this last mechanism necessitates 

the supply of ions. Hence (3) is an ion displacement that activates the physical transformation 

leading to LRS. In summary, the memristor behaviour is not univocally controlled by ion 

migration. This is a necessary component in most cases but is a requisite for a transformational 

kinetic effect. Understanding the interplay for these factors will be critical for designing 

memristors of required performance. For example, if the kinetics of the transformation state is 

slow then one can stop the process and obtain a persistent state of intermediate conductivity, as is 

required for analog synapses. If the transformation is abrupt, one will obtain instead a binary 

system. In addition, modulating the ion supply provides a route to control the kinetics of the 

transformation. 
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