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The increasing availability of remote sensing data allows dealing with spatial-spectral limitations by
means of pan-sharpening methods. However, fusing inter-sensor data poses important challenges, in
terms of resolution differences, sensor-dependent deformations and ground-truth data availability, that
demand more accurate pan-sharpening solutions. In response, this paper proposes a novel deep learning-
based pan-sharpening model which is termed as the double-U network for self-supervised pan-
sharpening (W-NetPan). In more details, the proposed architecture adopts an innovative W-shape that
integrates two U-Net segments which sequentially work for spatially matching and fusing inter-sensor
multi-modal data. In this way, a synergic effect is produced where the first segment resolves inter-
sensor deviations while stimulating the second one to achieve a more accurate data fusion.
Additionally, a joint loss formulation is proposed for effectively training the proposed model without
external data supervision. The experimental comparison, conducted over four coupled Sentinel-2 and
Sentinel-3 datasets, reveals the advantages of W-NetPan with respect to several of the most important
state-of-the-art pan-sharpening methods available in the literature. The codes related to this paper will
be available at https://github.com/rufernan/WNetPan.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development of image acquisition technologies, spa-
tial resolution plays a fundamental role in many important remote
sensing (RS) applications, including land-cover mapping [1–3],
environmental management [4–6], scenery recognition [7–9] and
material analysis [10–12]. Nonetheless, designing multi-spectral
(MS) instruments with a very high spatial resolution often
becomes an infeasible task due to the diffraction effects of the
incoming light as well as the high cost and complexity of this type
of technology [13]. Consequently, many of the existing Earth
Observation (EO) programmes, like Copernicus [14], try to relieve
these limitations by including multiple specialized satellites that
cover particular spatial-spectral needs. Within Copernicus,
Sentinel-2 (S2) and Sentinel-3 (S3) constellations exemplify this
trend. On the one hand, S2 satellites [15] carry the Multi-Spectral
Instrument (MSI) which captures 13 spectral bands (B01-B12) in
the wavelength range 443–2190 nm, using an spatial resolution
between 10 m and 60 m. On the other hand, S3 counterparts
[16] incorporate the Ocean and Land Colour Instrument (OLCI)
which provides 21 bands (Oa01-Oa21) in the 390–1040 nm spec-
tral range, with a fix spatial resolution of 300 m. In this scenario,
MSI images generally become more suitable for land-cover charac-
terization tasks, whereas OLCI products are more focused on the
spectral features of oceans, inland waterways and coastal areas
due to their limited spatial resolution [17]. Nevertheless, the
unprecedented availability of inter-sensor Sentinel data brings us
the opportunity of dealing with this kind of constraints from image
processing and machine learning-based perspectives.

Over the past decade, extensive efforts have been done to spa-
tially enhance RS images by means of the so-called pan-
sharpening methods [18]. Specifically, pan-sharpening is a field,
which could be considered a particular case of image super-
resolution [19], where two given high-resolution (HR) panchro-
matic (PAN) and low-resolution (LR) MS images are combined to
generate a HR version of the MS data. In this way, the final target
of pan-sharpening consists in fusing two images that cover the
same area over the Earth surface into a joint representation which
gathers the finest spatial-spectral details of the input data.

From traditional algorithms [20], to more recent deep learning
(DL) models [21], a wide variety of pan-sharpening methods have
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been proposed in the literature. Among the traditional group, one
of the most popular trends is component substitution (CS). In CS,
the spatial component of MS is replaced with its corresponding
HR counterpart, which is extracted from PAN using a particular
transformation model, such as, principal component analysis
(PCA) [22] or intensity-hue-saturation (IHS) [23]. Another popular
trend is multi-resolution analysis (MRA), which pursues to
progressively inject the spatial information of PAN into the MS
domain following a multi-resolution decomposition scheme, as in
[24,25].

More recently, DL has attracted significant attention due to the
excellent capabilities of convolutional neural networks (CNN) to
extract highly relevant features from optical data. In more details,
DL-based pan-sharpening methods are typically based on training
CNN models to map the input data (i.e., HR PAN and LR MS) onto
the target HR MS domain. In this way, different architectures, such
as [26–28], have shown prominent results while setting the cur-
rent state-of-the-art performance in the field.

Despite the positive results achieved by these and other rele-
vant methods, there still are some essential open-ended prob-
lems when it comes to highly heterogeneous inter-sensor
scenarios, such as S2/S3. In this case, fusing operational MSI
and OLCI data poses additional challenges in terms of resolution
differences, sensor-dependent deformations and missing ground-
truth data, that are generally beyond pan-sharpening algorithms
and need to be jointly addressed to provide more accurate solu-
tions. Let us illustrate these problems by means of a visual exam-
ple. Fig. 1 displays a sample S2 MSI image (a), its S3 OLCI
counterpart (b) and their corresponding overlap (c) where OLCI
pixels are colored in green and MSI pixels in purple. Although
both S2/S3 image products are logically corrected to fit the same
area over the Earth surface, the substantially bigger size of OLCI
pixels does not allow accurately fitting MSI shapes since it has a
much better resolution. In this situation, the deep spectral fea-
tures uncovered from OLCI are always expected to contain some
spatial distortions that can negatively affect the corresponding
pan-sharpened result, specially with very deep networks. In
response, this paper presents a new pan-sharpening network
focused on three key aspects that take on special relevance with
inter-sensor Sentinel data:

� First, the resolution differences between S2 and S3 may produce
significant receptive field changes as the network depth
increases. This effect may logically affect the final spatial quality
of the pan-sharpened output.
Fig. 1. Spatial resolution differences between a sample S2 MSI product (a), its S3 OLCI c
colored in green and MSI pixels in purple. As it is possible to see, the substantially bigger
affect the extracted spectral features and distort the fused result.
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� Second, the inter-platform nature of the data may generate the
propagation of geolocation errors across sensors. This fact may
eventually result in important spatial deviations at the output
HR scale.

� Third, the use of operational S2/S3 imagery restricts the avail-
ability of ground-truth data for training. This situation may con-
strain pan-sharpening learning protocols to a reduced-reference
strategy where inter-sensor resolution problems can be magni-
fied.To cope with these challenges, we propose a novel DL-
based pan-sharpening model, named the double-U network
for self-supervised pan-sharpening (W-NetPan), which has been
specifically designed for effectively managing data from differ-
ent platforms, such as S2/S3. Unlike other methods available
in the literature, the proposed architecture defines an innova-
tive W-shape that integrates two sequential U-Net segments
which simultaneously work for spatially matching and fusing
inter-sensor data. Additionally, a new loss formulation is pro-
posed to train the model from an end-to-end perspective with-
out using neither external data supervision nor reduced-
reference protocols. First, the considered U-Net backbone
shapes allows our W-NetPan model to propagate receptive
fields across layers with the objective of alleviating spatial res-
olution differences. Second, the two proposed U-Net segments
aim at resolving inter-sensor spatial deviations while fusing
the data, which generates a synergic effect where the first U-
Net stimulates the second to find a more optimal solution.
Third, the proposed loss has been formulated to only require
operational input data by integrating three terms that work at
different resolution levels: inter-sensor spatial matching, MS
spectral consistency and PAN spatial consistency. In short, the
main contributions of this work can be summarized as follows:

1. A new DL architecture (W-NetPan) is proposed for pan-
sharpening inter-sensor data.

2. A novel joint loss formulation is defined for training the pro-
posed network under a self-supervised scheme.

3. The performance of multiple state-of-the-art pan-sharpening
methods is analyzed when fusing S3 OLCI and S2 MSI opera-
tional data.

4. The higher suitability of the proposed model is proven to
resolve inter-sensor Sentinel data.The rest of this paper is orga-
nized as follows. section 2 introduces some related works while
describing their main limitations with Sentinel data. section 3
defines the proposed pan-sharpening model, including its novel
network topology and its joint loss formulation. section 4 pre-
ounterpart (b) and their corresponding overlap (c). Note that in (c), OLCI pixels are
size of OLCI pixels does not allow accurately fitting MSI shapes which can logically
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sents the experiments, considering several datasets and state-
of-the-art methods, and section 5 discusses the corresponding
results. Finally, section 6 concludes the paper with some future
research lines.

2. Related Work

Depending on their nature, pan-sharpening algorithms can be
grossly divided into four major groups [20,29,21]: (1)
component-substitution (CS), (2) multi-resolution analysis
(MRA), (3) sparse factorization (SF) and (4) deep learning-based
(DL). In this case, CS and MRA are typically identified as traditional
methods, whereas SF and, above all, DL certainly represent more
recent approaches. Let us provide a quick overview of these cate-
gories along the following lines.

In general, CS methods start from the assumption that LR MS
can be separated into spatial and spectral components following
a particular transformation model. Then, PAN can be a good substi-
tution for the spatial component to generate HR MS via the corre-
sponding inverse projection. Logically, each CS-based pan-
sharpening method defines such transformation in a different
way. For instance, Gillespie et al. [30] proposed using the Brovey
transformation, which simply multiplies each re-sampled MS band
by the intensity ratio between PAN and MS. In [22,31], the authors
made use of the PCA for isolating the spatial information of MS into
the first principal component. Analogously, Carper et al. [23] took
advantage of the IHS transformation for extracting the spatial
information as the intensity channel. Aiazzi et al. [32] used a mod-
ified version of the Gram-Schmidt (GS) orthogonalization for de-
correlating MS bands using a simulated PAN, which is finally
replaced by the actual PAN. In spite of their simplicity, the difficul-
ties in completely isolating the spatial information from MS gener-
ally make CS-based methods prone to introduce spectral
distortions.

To relieve these problems, MRA techniques opt to perform the
spatial filtering into the HR domain. In this way, the high-
frequency details are extracted from PAN, and then they can be
injected into each interpolated MS band to produce the final HR
MS result. For instance, Liu et al. [24] presented the smoothing
filter-based intensity modulation (SFIM), which computes the dif-
ference between PAN and its low-pass filtered version for applying
an additive injection of such spatial differences. In [33], the authors
proposed using a discrete wavelet transform over PAN for obtain-
ing the spatial details following a multi-resolution decomposition
scheme. To further improve the filtering process, other authors
exploited the modulation transfer function (MTF) of the instru-
ment. As in [25], where Aiazzi et al. adopted the MTF of the sensor
for building a generalized Laplacian pyramid (GLP), with the possi-
bility of considering several injection models, such as, uniform
weights (MTF-GLP) or high-pass modulation (MTF-GLP-HPM).
Despite their advantages, MRA-based methods may still have
important spatial limitations due to the own low-pass filtering
process. In response, alternative factorization pan-sharpening
mechanisms have also been developed in the literature. For exam-
ple, it is the case of Yokoya et al. [34] who defined the coupled non-
negative matrix factorization (CNMF) model. Specifically, CNMF
factorizes the input data into their corresponding spectral signa-
tures and fractional abundances. Then, MS signatures and PAN
abundances are combined to obtain the target HR MS output.

Despite the remarkable performance achieved by these para-
digms, DL is certainly one of the most emerging pan-sharpening
trends due to its enormous success in many different related fields,
e.g. [35–38]. In particular, the rationale behind DL-based pan-
sharpening consists in learning a mapping function from the input
MS/PAN data to the corresponding HR MS domain, in a similar
fashion to super-resolution techniques [39]. For instance, it is the
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case of Masi et al. [26] who presented the pan-sharpening convo-
lutional neural network (PNN). In PNN, the input MS data is first
interpolated to the target resolution and concatenated to PAN.
Then, these data are projected onto the target HR MS space using
three convolutional layers. Extending this idea, Yang et al. [27] pro-
posed the PanNet model which takes advantage of residual con-
nections for propagating the input spectral information to the
pan-sharpened output. In [40], Scarpa et al. further fine-tune the
PNN by means of pre-training and a target-adaptive tuning phase.
In addition to these architectures, other authors suggest alternative
network designs. For example, it is the case of Xu et al. [28] who
created the gradient projection pan-sharpening neural network
(GPPNN). In details, GPPNN formulates two generative models,
one for PAN and the other for MS, which are both regularized by
deep image priors [41]. In this scenario, the gradient projection
method [42] is used for obtaining the corresponding update rules.
Then, two neural blocks are designed to embed these generative
models and their updates into a CNN which is eventually opti-
mized to produce the final pan-sharpened output. In [43], Uezato
et al. also defined the guided deep decoder (GDD) which takes
advantage of a two-stream network. On the one hand, an
encoder-decoder CNN is used for uncovering multi-scale features
from the input MS and PAN data. On the other hand, a generative
decoder, guided by the previous network, is employed to produce
the fused result. In another recent work, Ozcelik et al. [44] pro-
posed the PanColorGANmodel which exploits generative adversar-
ial networks (GANs) for self-supervised pan-sharpening. In
contrast to other approaches, PanColorGAN deals with the data
fusion problem from a colorization perspective, where a U-Net
[45] with color injection is used as generator and a conditional
patch-GAN [46] as discriminator.

Without any doubt, DL models set a new path for learning pan-
sharpening projections in a very effective way. However, the task
of fusing highly heterogeneous inter-sensor data still raises some
important challenges to pan-sharpening [18,21]. In general, DL-
based methods start by concatenating LR MS and HR PAN features
to project the input data onto the target HR MS domain. Although
both LR MS and HR PAN images are logically captured to cover the
same area over the Earth surface, their spatial resolution differ-
ences make not possible to perfectly match both sensors at a
pixel-level since HR PAN have a better resolution. In this scenario,
the spatial deviations inherent to the resolution change between
LR and HR pixels can negatively affect the output result. Unlike
other DL-based solutions that learn a direct pan-sharpening pro-
jection from the input data [26–28,44], this paper proposes a novel
double-U topology to dynamically alleviate the spatial deviations
of the input as the refined features are projected to the target HR
MS domain. Specifically, this is the case of operational S2/S3 imag-
ing data products where spatial differences, sensor-dependent
deformations and the lack of actual ground-truth data can certainly
affect the performance of the existing methods. The significant
spatial resolution differences between S2 and S3 may produce a
substantial widening of the convolutional receptive fields, which
may eventually result in a blurring effect. Besides, S2/S3 inter-
platform errors could also be propagated across sensors generating
additional deviations in the output. What is more, the lack of actual
ground-truth S2/S3 fused data may also limit the training protocol
and the precision DL-based approaches. To address all these chal-
lenges, this article presents the W-NetPan model.
3. Methodology

This section describes the proposedW-NetPan model which has
been specially designed for conducting self-supervised pan-
sharpening from an inter-sensor perspective. In the following lines,
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we formulate the pan-sharpening problem across different sensors
based on the proposed CNN-based model while defining the con-
sidered loss functions and other implementation details. Nonethe-
less, let us first describe the notation considered in this work. Let
IMS 2 R XL�YL�Bð Þ be a LR MS image with B bands and a XL � YLð Þ spa-
tial size. Let IPAN 2 R XH�YH�1ð Þ represent a HR panchromatic image
with a spatial size of XH � YHð Þ that covers the same extent as IMS

over the Earth surface. Let R identify the scaling ratio between both
sensors such that XH ¼ XLR and YH ¼ YLR. In this sense, it is impor-
tant to highlight that, with respect to the RS field, we assume in
this work a Level-4 processing data nature, that is, both IMS and
IPAN images are acquired by different instruments and platforms
which logically introduce different error types and tolerances in
each case. Additionally, let IHR 2 R XH�YH�Bð Þ be the corresponding
HR ground-truth image which contains the spatial resolution of
IPAN and the spectral information of IMS.

In this context, the proposed network pursues to approximate a
function of the form F IMS; IPANð Þ ¼ IHR following a self-supervised
fashion, that is, without involving any ground-truth data. To
achieve this goal, we define the W-NetPan architecture which is
able to take advantage of the higher resolution of IPAN for relieving
inter-sensor deformations while projecting the input data onto the
target HR MS domain. Table 1 provides a brief summary of the
main notation considered in this section.
3.1. W-NetPan: Double-U Network for Pan-sharpening

Deeper CNNs can certainly extract higher level image features
that may offer a better visual understanding for pan-sharpening.
However, the deeper the network the higher the corresponding
receptive fields which may eventually cause counterproductive
effects in the spatial details of the output results [21]. In response,
we adopt an U-shaped backbone architecture for propagating
receptive fields across layers. Specifically, the U-Net architecture
[45] is typically made of a symmetric encoder/decoder path where
feature maps are subsequently down-sampled until a bottleneck
layer (at the bottom of the U-Net) from which sequential up-
samplings and concatenations are applied in order to propagate
context information to higher resolution layers. In this way, feature
maps corresponding to different scales can simultaneously be used
to enhance spatial accuracy and abstraction ability in pan-
sharpening [47]. Nonetheless, the standard U-Net architecture still
has some important constraints when it comes to inter-sensor self-
supervised pan-sharpening. On the one hand, the inter-sensor facet
of the problem may introduce spatial deviations and uncertainties
when fusing the information coming from two rather different
Table 1
Summary of the considered notation.

Term Description

IMS Input LR MS image
IPAN Input HR PAN image
IHR Output HR MS imageeIMS

Up-sampled MS image (generated from IMS)eIPAN Simulated PAN image (generated from eIMS)bIMS Spatially transformed MS image (generated from eIMS)bIPAN Spatially transformed PAN image (generated from eIPAN)
I�MS Simulated output MS image (generated from IHR)
I�MS Simulated output PAN image (generated from IHR)
U Deformation field between IPAN and eIPAN
S1 First U-Net segment of the proposed architecture
S2 Second U-Net segment of the proposed architecture
L1 Spatial matching loss
L2 Spectral consistency loss
L3 Spatial consistency loss
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instruments. Note that pan-sharpening techniques only make
sense when there are important spatial differences between IMS

and IPAN images, and in this circumstances, even small geolocation
errors in IMS may produce important deviations in the HR domain
[48]. On the other hand, the lack of actual ground-truth HR data
makes necessary to use a reduced-reference protocol for training
CNN-based models, which may eventually exacerbate the inter-
sensor resolution problem while substantially reducing the avail-
able training data.

To overcome these challenges, we propose the W-NetPan archi-
tecture which is depicted in Fig. 2. Note that, the proposed model
adopts an innovative W-shape that integrates two sequential U-
Net segments which jointly work for spatially matching and fusing
inter-sensor data. Now, let us provide a detailed description of
each one of the considered segments, which are identified by S1
and S2 in the figure. First, S1 aims at matching the spatial informa-
tion coming from the two input optical sources that operate at dif-
ferent resolutions. For this purpose, three different building blocks

are used in this segment: Sh1 (head), Sb1 (body) and St1 (tail). The

objective of Sh1 is based processing the input data to generate a uni-
form data cube focused on the spatial information. Hence, it con-
tains the following layers: (1) up-sampling (Up), (2) pooling
(Pool) and (3) concatenation (Cat). In (1), we employ a regular
up-sampling layer with a bi-cubic filter for spatially up-scaling

IMS to the target resolution (ratio R�) as eIMS. Then, an spectral aver-

age pooling is used to simulate its panchromatic counterpart (eIPAN)
which is finally stacked onto the input IPAN image. The body block

(Sb1) pursues to project these data on a two-dimensional deforma-
tion field which describes the vertical and horizontal displace-

ments of each pixel in eIPAN (simulated PAN generated from eIMS)
with respect to IPAN (input PAN image). Specifically, it is made of
a standard U-Net with four encoding/decoding layers and two final
convolutions.

Fig. 3 shows the considered U-Net backbone architecture,
where K IN represents the number of input bands, K1;2 are the num-
ber of 3� 3 filters, S1;2 are the corresponding pixel-strides and KOUT

is the number of output bands. In the case of Sb1, we set
K IN ¼ 2;K1 ¼ 16;K2 ¼ 32; S1 ¼ 2; S2 ¼ 1 and KOUT ¼ 2 to generate
the corresponding deformation field U. Regarding the tail block

(St1), it is directed to apply the estimated deformation over eIMS

and eIPAN (as bIMS and bIPAN, respectively) to be used in the subsequent
stages. To achieve this goal, we build a differentiable spatial trans-
formation block based on the so-called spatial transformer net-

works [49]. Specifically, for each i pixel in eIMS, we compute its

corresponding sub-pixel location in bIMS as j ¼ iþU ið Þ. Since image
locations are logically only defined at integer positions, we linearly
interpolate each transformed location using its eight-pixel neigh-
borhood as Eq. 1 shows. In this expression, Z jð Þ represents the
pixel neighbors of j and d iterates over width (X) and height (Y)
spatial dimensions, being jd and qd the coordinates on each dimen-
sion for j and qd, respectively.

bIMS ið Þ ¼
X

q2Z jð Þ

eIMS qð Þ
Y

d2 X;Yf g
1� jjd � qdjð Þ ð1Þ

As it is possible to see, the value of bIMS at a given pixel position i can
be obtained by means of the following process. First, the trans-
formed sub-pixel location j is calculated as j ¼ iþU ið Þ. Then, for
each pixel q within the 8-pixel neighborhood of j, the value of eIMS

at q (i.e., eIMS qð Þ) is multiplied by its corresponding bi-linear re-
sampling term, which is based on the distance between j and q, con-
sidering X and Y spatial dimensions. Finally, the weighted sum over
the considered neighborhood produces the final re-sampled value



Fig. 2. W-NetPan: proposed double-U network for inter-sensor self-supervised pan-sharpening.

Fig. 3. U-Net backbone architecture considered within the proposed W-NetPan model.
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bIMS ið Þ. Note that this process corresponds to the bi-linear interpola-

tion that can be found in [49]. In a similar fashion, bIPAN can be

obtained from eIPAN and U according to Eq. 2.

bIPAN ið Þ ¼
X

q2Z jð Þ

eIPAN qð Þ
Y

d2 X;Yf g
1� jjd � qdjð Þ ð2Þ

Once applied the uncovered deformation, the last segment of the
proposed architecture is in charge of mapping the generated data
onto the target HR space. In particular, three different blocks can

be identified in S2 : Sh2 (head), Sb2 (body) and St2 (tail). First, the head

block prepares the input data cube by concatenating bIMS and IPAN
using a single Cat layer. Second, the body block (Sb2) projects these
data to the final HR MS image IHR, which gathers the spatial details
of IHR and the spectral information of IMS. To this end, we follow the

same U-Net backbone architecture used in Sb1 with the objective of
designing the proposed model with two symmetric U-shaped seg-
ments. Note that these types of topological symmetries have shown
to be effective for obtaining better CNN-based feature representa-
tions with limited data [50], which is precisely the case in the con-
sidered self-supervised pan-sharpening scenario. Hence, we set in

Sb2 K IN ¼ Bþ 1;K1 ¼ 16;K2 ¼ 32; S1 ¼ 2; S2 ¼ 1 and KOUT ¼ B. Addi-

tionally, we also make use of a final skip connection to bIMS for driv-
ing the second U-Net towards the learning of spatial details not
present in the low-spatial resolution domain. Finally, the tail block
(St2) is targeted at processing the generated HR output for allowing
the use of an unsupervised training scheme based on the input IMS
129
and IPAN images. Specifically, an spectral average Pool layer is used
to simulate a panchromatic version of IHR as I�PAN, whereas an R� R
spatial average Pool is applied to generate the simulated LR MS
image (i.e., I�MS).

3.2. Proposed Joint Loss Formulation

In this section, we describe the joint loss formulation proposed
for training our W-NetPan architecture in a self-supervised man-
ner. To that extent, it is important to highlight that the presented
model only needs the input data volumes IMS and IPAN for training.
As Fig. 2 shows, we consider a total three different loss functions:
(a) spatial matching (L1), (b) spectral consistency (L2) and (c)
spatial consistency (L3). Let us now describe them in more details:

(a) L1: The first loss is focused on the optimization of the initial
segment of W-NetPan (i.e., S1) in order to guarantee a good
spatial matching between the two input optical sensors.
For this purpose, L1 takes into account two different com-
ponents LLNCC and LGRAD. On the one hand, LLNCC is a

multi-modal reconstruction term between bIPAN and IPAN to
spatially match the transformed version of the simulated
panchromatic and the original panchromatic image. Note
that, at this point, inherent intensity variations are expected
between both images due to the multi-modal nature of the
data. Consequently, we make use of the Local Normalized
Cross Correlation (LNCC) loss [51] as an efficient metric for
quantifying the degree of alignment between two multi-
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modal images. On the other hand, LGRAD corresponds to a
gradient-based regularization term for encouraging the gen-
eration of smooth deformation fields as well as spatially con-
sistent local displacements. In this case, we employ a
diffusion regularizer [52] on the spatial gradients of U. Eq.
3, 4,5 show the mathematical expressions for L1, being a
a weighting hyper-parameter, X the 2D pixel grid of the
image domain (given by X-Y spatial axis) andZ �ð Þ the neigh-
boring operator extracting an (n� n) output size.
1 https://scihub.copernicus.eu/
L1 IPAN;bIPAN;U� �
¼ LLNCC IPAN;bIPAN� �

þ aLGRAD Uð Þ ð3Þ

LLNCC I1; I2ð Þ ¼

�
X
p2X

X
q2Z pð Þ

I1 qð Þ �
X

qi2Z pð Þ

I1 qið Þ
n2

 !
I2 qð Þ �

X
qi2Z pð Þ

I2 qið Þ
n2

 ! !2

X
q2Z pð Þ

I1 qð Þ �
X

qi2Z pð Þ

I1 qið Þ
n2

 !2 X
q2Z pð Þ

I2 qð Þ �
X

qi2Z pð Þ

I2 qið Þ
n2

 !2

ð4Þ

LGRAD Uð Þ ¼
X
p2X

jjrU pð Þjj ¼ jj @U pð Þ
@X

;
@U pð Þ
@Y

� �
jj ð5Þ

(b) L2: The objective of the second loss consists in ensur-
ing the spectral consistency between the output result
(i.e., IHR) and the input MS image (i.e., IMS). To achieve
this goal, L2 takes advantage of the simulated LR ver-
sion of the output (i.e., I�MS) in order to compute the
mean squared error (MSE) with respect to IMS. Eq. 6
and 7 show the corresponding expressions, where
jXj represents the total number of pixels of the image
domain. It is important to note that, since our
approach is a self-supervised model, this loss needs
to work with the signal captured by the MS sensor.
In this way, it is possible to fit the network output
to the original MS data without using any ground
truth information. This spectral consistency is com-
puted at the low-level spatial resolution of IMS to
avoid the undesirable blurring effects generated when
up-sampling the MS instrument to the target resolu-
tion. Otherwise, the considered MSE-based fit could
compromise the sharpness of the solution.

L2 IMS; I
�
MS

� � ¼ LMSE IMS; I
�
MS

� � ð6Þ

LMSE I1; I2ð Þ ¼ 1
jXj
X
p2X

I1 pð Þ � I2 pð Þð Þ2 ð7Þ

(c) L3: The third loss is aimed at guaranteeing the spatial
consistency between IHR and the input panchromatic
image. For this purpose, L3 computes the similarity
between the simulated panchromatic version of the
network output (i.e., I�PAN) and IPAN by means of two
different figures of merit: MSE and LNCC. Eq. 8 shows
the considered loss expression, being b a weighting
hyper-parameter. On the one hand, MSE quantifies
the average squared differences between the simu-
lated I�PAN and the original IPAN with the objective of
ensuring that the generated HR result does not have
outlier predictions with huge spatial deviations. On
the other hand, LNCC measures the relative local dis-
placements between I�PAN and IPAN in order to reduce
the sensitivity to possible dynamic range changes
between simulated and real panchromatic data. In
this regard, it is important to highlight that we use
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an spectral pooling for simulating I�PAN and this process
could introduce some artificial linear changes in the
simulated panchromatic signal which may negatively
affect MSE computations. In response, we add an
LNCC-based term in L3 for making the spatial consis-
tency loss more robust to some signal amplitude
perturbations.

L3 IPAN; I
�
PAN

� � ¼ LMSE IPAN; I
�
PAN

� �þ bLLNCC IPAN; I
�
PAN

� � ð8Þ
Finally, the proposed joint loss function for training W-
NetPan can be formulated as follows,
LWNetPan ¼ L1 IPAN;bIPAN;U� �
þL2 IMS; I

�
MS

� �þL3 IPAN; I
�
PAN

� � ð9Þ
4. Experiments

This section comprises the experimental part of the work,
including the description of the considered datasets (section 4.1),
the experimental settings (section 4.2) and the obtained results
(section 4.3). Additional experiments are also included to provide
a deeper understanding of the proposed model performance based
on parameter sensitivity (section 4.4), ablation study (section 4.5)
and trade-off analysis (section 4.6).

4.1. Datasets

This work includes four different datasets which are made of cou-
pled S2 MSI and S3 OLCI products that cover several areas of interest
across Europe. Table 2 summarizes the selected scenes as well as
their acquisition dates and locations. Besides, Fig. 4 displays the cor-
responding images. The considered datasets are all cloud free Level-
1C products that were downloaded from the Copernicus Open Access
Hub1 and processed via the Sentinel Application Platform (SNAP). In
the case of S2, MSI images were atmospherically corrected using the
Sen2Cor processor (with its default settings) and spatially re-
sampled to 20 m for generating uniform data cubes. In the case of
S3, OLCI images were corrected using the available Radiance to Reflec-
tance processor. In addition, they were re-projected onto their associ-
ated S2 tiles to subset the overlapping areas between both sensors.
With all these steps, we generated coupled images that represent the
same extent over the Earth surface with an spatial-spectral size of
5490� 5490� 13 in S2 and 366� 366� 21 in S3. Now, let us define
what are the input and output images of the considered inter-sensor
pan-sharpening scheme, i.e. input LR MS (IMS), input HR panchromatic
(IPAN) and output HR MS (IHR).

To relieve the lack of actual ground-truth data for a quantitative
assessment, we make use of the following relaxations. First, we
only consider those MSI and OLCI bands that are centered at the
same wavelength, that is red (R), green (G), blue (B) and near
infra-red (IR) bands, which are centered at 665;560;490 and
865 nm, respectively. In this way, we define
IMS ¼ Oa04;Oa06;Oa08;Oa17f g. Second, we generate IPAN by aver-
aging MSI bands and resizing its spatial size to R� OLCI’s resolu-
tion. Finally, we characterize IHR by resizing MSI RGB-IR bands to
IPAN resolution and equalizing them to their corresponding OLCI’s
counterparts via an uniform mapping [53].

4.2. Experimental Settings

For validating the proposed inter-sensor self-supervised pan-
sharpening model, we compare its performance to the one



2 https://github.com/rufernan/WNetPan

Table 2
Description of the considered datasets.

Name Scene Location Sensing dates Tile (Ref. S2)

S3 S2

AN Natural park Andujar (Spain) 10/03/2017 10/03/2017 30SVH
MA Southern Europe Madrid (Spain) 10/04/2017 09/04/2017 30TVK
MI Mountain range Milan (Italy) 28/12/2016 07/01/2017 32TNR
UT Northern Europe Utrecht (Netherlands) 27/12/2016 27/12/2016 31UFT

Fig. 4. Visualization of the considered datasets made of coupled S3 OLCI (a) and S2 MSI scenes (b).
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obtained by several of the most popular pan-sharpening methods
available in the literature, including Brovey [30], PCA [22], GFPCA
[31], IHS [23], SFIM [24], GS [32], GSA [32], Wavelet [33], MTF-
GLP [25], MTF-GLP-HPM [25], CNMF [34], PNN [26], PanNet [27],
GPPNN [28] and PanColorGAN [44]. Additionally, we consider the
bi-cubic kernel as up-scaling baseline. Regarding the inter-sensor
spatial difference, we consider in this work a scaling ratio of
R ¼ 4 between IMS and IPAN images.

Under this scheme, we run all the considered pan-sharpening
methods with their corresponding default settings a total of five
Monte Carlo runs, reporting the corresponding average results. In
the case of PNN, PanNet, GPPNN and PanColorGAN, it is important
to note that we adopt a reduced-reference self-supervised training
protocol to avoid requiring any HR ground-truth data for training
(likewise the proposed network). Besides, all CNN models were
trained via the ADAM optimizer for 200 epochs with 32� 32ð Þ
non-overlapping patches, 1e�3 learning rate and 16 batch size.
Since the proposed architecture has been designed to process
full-sized single images (not in a batch mode), we use in this case
a total of 20000 iterations for the convergence of the model with
n ¼ 9;a ¼ 0:5 and b ¼ 1 hyper-parameters. Note these hyper-
parameters are set beforehand and the two segments of W-
NetPan are simultaneously updated over the self-training process.

Regarding the assessment protocol, we use a total of six differ-
ent metrics for quantitatively evaluating the obtained results [21]:
mean squared error (MSE), peak signal to noise ratio (PSNR), struc-
tural similarity index measure (SSIM), spectral angle mapper
(SAM), globale adimensionnelle de synthese (ERGAS) and spatial
correlation coefficient (sCC). Note that MSE, PSNR, SSIM and ERGAS
quantify global spatio-spectral deviations with respect to the
ground-truth, whereas SAM and sCC are particularly focused on
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spectral and spatial variations, respectively. Additionally, different
visual results are also considered for validating the methods from a
qualitative perspective. In this work, we employed a computer
with Intel(R) Core(TM) i7-6850 K, NVIDIA GeForce GTX 1080 Ti,
64 Gb of DDR4 RAM, Ubuntu 20.04 �64 and Pytorch 1.6.0 with
CUDA 10.1. The codes of this paper will be made available online2.
4.3. Results

Table 3–6 provide the quantitative results obtained over the
four considered datasets (i.e., Experiment 1: AN, Experiment 2:
MA, Experiment 3: MI and Experiment 4: UT). Note that each table
presents the assessment of a different image scene and Table 7 dis-
plays the overall average results. As it is possible to see, all the
tables have been organized with the selected pan-sharpening
methods in rows and the considered metrics in columns. Addition-
ally, the two best results for each metric are highlighted in bold
and the best result in gray shading font. In this case, the optimal
values of the reported metrics are: MSE (0), PSNR (þ1), SSIM (1),
SAM (0), ERGAS (0) and sCC (1). For qualitative evaluation pur-
poses, Fig. 5 also displays the pan-sharpened results obtained by
the best performing methods (together with the bi-cubic baseline)
when considering the AN dataset.
4.4. Parameter Sensitivity Analysis

Within the proposed model formulation, it is possible to find
three main hyper-parameters: the window size (n� n) for the



Table 3
Experiment 1: Quantitative results for AN dataset.

Methods MSE PSNR SSIM SAM ERGAS sCC

Bicubic 0.0211 16.7625 0.1732 0.1784 10.3340 0.8081
Brovey [30] 0.0066 21.7718 0.8077 0.1836 5.1776 0.9386
PCA [22] 0.0111 19.5441 0.7783 0.3158 6.6860 0.9349

GFPCA [31] 0.0147 18.3289 0.3704 0.1663 8.5591 0.8551
IHS [23] 0.0062 22.0769 0.8216 0.1823 4.9716 0.9390
SFIM [24] 0.0152 18.1847 0.6531 0.2131 8.8011 0.8720
GS [32] 0.0063 22.0264 0.8087 0.1882 4.9966 0.9374
GSA [32] 0.0084 20.7560 0.7692 0.2259 6.0125 0.9391

Wavelet [33] 0.0130 18.8732 0.6724 0.1894 7.8306 0.8855
MTF-GLP [25] 0.0091 20.4329 0.7790 0.1956 6.2962 0.9227

MTF-GLP-HPM [25] 0.0110 19.5812 0.7328 0.2114 7.2994 0.9084
CNMF [34] 0.0081 20.9507 0.7393 0.2084 5.8798 0.9316
PNN [26] 0.0054 22.6657 0.8257 0.1666 4.7083 0.9450

PanNet [27] 0.0053 22.7447 0.8220 0.1701 4.7129 0.9466
GPPNN [28] 0.0051 22.9654 0.8313 0.1615 4.5063 0.9494

PanColorGAN [44] 0.0060 22.2660 0.8174 0.1720 5.0259 0.9439
W-NetPan (ours) 0.0040 23.9985 0.8612 0.1491 4.0157 0.9625

Table 4
Experiment 2: Quantitative results for MA dataset.

Methods MSE PSNR SSIM SAM ERGAS sCC

Bicubic 0.0260 15.8555 0.1760 0.2007 9.6313 0.7066
Brovey [30] 0.0114 19.4475 0.7504 0.2037 6.2663 0.8853
PCA [22] 0.0108 19.6717 0.7734 0.2432 6.2521 0.9068

GFPCA [31] 0.0183 17.3831 0.3940 0.1886 8.0489 0.7669
IHS [23] 0.0098 20.0801 0.7815 0.1944 5.8073 0.8989
SFIM [24] 0.0187 17.2833 0.6599 0.2236 8.1544 0.8295
GS [32] 0.0091 20.3947 0.7845 0.1887 5.6163 0.9046
GSA [32] 0.0148 18.3064 0.7271 0.2528 7.1827 0.9063

Wavelet [33] 0.0172 17.6449 0.6459 0.2088 7.7859 0.8278
MTF-GLP [25] 0.0149 18.2661 0.7355 0.2232 7.2190 0.8770

MTF-GLP-HPM [25] 0.0168 17.7487 0.7009 0.2258 7.6999 0.8606
CNMF [34] 0.0147 18.3856 0.7007 0.2199 7.1437 0.8837
PNN [26] 0.0082 20.8794 0.7552 0.1747 5.3066 0.9056

PanNet [27] 0.0082 20.8795 0.7675 0.1755 5.3131 0.9059
GPPNN [28] 0.0082 20.8855 0.7802 0.1673 5.2980 0.9110

PanColorGAN [44] 0.0083 20.8098 0.7752 0.1717 5.3472 0.9093
W-NetPan (ours) 0.0077 21.1287 0.8064 0.1700 5.1459 0.9228

Table 5
Experiment 3: Quantitative results for MI dataset.

Methods MSE PSNR SSIM SAM ERGAS sCC

Bicubic 0.0108 19.6586 0.4249 0.1214 8.0707 0.7298
Brovey [30] 0.0018 27.4786 0.8371 0.1212 3.1910 0.9590
PCA [22] 0.0036 24.4422 0.8178 0.2272 5.0267 0.9576

GFPCA [31] 0.0065 21.8861 0.5939 0.1242 6.2008 0.8311
IHS [23] 0.0018 27.5314 0.8341 0.1269 3.1738 0.9594
SFIM [24] 0.0067 21.7411 0.7532 0.1281 6.3917 0.8491
GS [32] 0.0018 27.4309 0.8335 0.1284 3.2228 0.9582
GSA [32] 0.0034 24.6565 0.7829 0.2024 4.4592 0.9482

Wavelet [33] 0.0066 21.8025 0.7299 0.1389 6.2764 0.8461
MTF-GLP [25] 0.0040 24.0095 0.8013 0.1461 4.8522 0.9158

MTF-GLP-HPM [25] 0.0044 23.5878 0.7956 0.1273 5.1113 0.9084
CNMF [34] 0.0039 24.1212 0.7618 0.1601 4.6986 0.9358
PNN [26] 0.0019 27.2581 0.8065 0.1276 3.2884 0.9566

PanNet [27] 0.0017 27.6669 0.8352 0.1190 3.1413 0.9607
GPPNN [28] 0.0017 27.7110 0.8297 0.1198 3.1933 0.9614

PanColorGAN [44] 0.0031 25.4021 0.8183 0.1212 4.1898 0.9334
W-NetPan (ours) 0.0016 27.8355 0.8441 0.1292 3.0596 0.9643
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neighboring operator (Z) in LLNCC, the a weighting parameter in
L1, and the b weighting parameter in L3.

Regarding the window size n� nð Þ, this value indicates the
amount of spatial context that is taken into account when comput-
ing the LNCC metric. Note that, in contrast to its global version,
LNCC uses an sliding window to locally compute the cross correla-
tion between both input images while accumulating such results.
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Considering the experimental configuration described in section
4.2, we test a single run of W-NetPan with the following window
sizes n ¼ 3;5;7;9;11;13;15f g. The corresponding PSNR-based
results are reported in Table 8. As it is possible to observe, window
values below 7� 7ð Þ are generally unable to provide satisfactory
results since mean and variance local computations become rather
biased estimations since too few pixel values are involved in such



Table 6
Experiment 4: Quantitative results for UT dataset.

Methods MSE PSNR SSIM SAM ERGAS sCC

Bicubic 0.0187 17.2902 0.2750 0.1704 7.7327 0.7580
Brovey [30] 0.0080 20.9633 0.7443 0.1712 5.1166 0.9052
PCA [22] 0.0085 20.7058 0.7458 0.1865 5.2848 0.9077

GFPCA [31] 0.0136 18.6540 0.4675 0.1643 6.6450 0.8022
IHS [23] 0.0075 21.2371 0.7580 0.1647 4.9602 0.9080
SFIM [24] 0.0142 18.4630 0.6890 0.2034 6.8040 0.8603
GS [32] 0.0074 21.2996 0.7549 0.1624 4.9282 0.9082
GSA [32] 0.0105 19.7884 0.7200 0.1932 5.8310 0.9132

Wavelet [33] 0.0124 19.0577 0.6604 0.1765 6.3439 0.8551
MTF-GLP [25] 0.0112 19.4952 0.7321 0.1849 6.0563 0.8975

MTF-GLP-HPM [25] 0.0135 18.7023 0.7157 0.2090 6.6358 0.8832
CNMF [34] 0.0126 19.0175 0.6813 0.2151 6.3801 0.8892
PNN [26] 0.0082 20.8584 0.7141 0.1555 5.1705 0.9092

PanNet [27] 0.0076 21.1722 0.7386 0.1476 5.0017 0.9181
GPPNN [28] 0.0075 21.2743 0.7473 0.1388 4.9143 0.9232

PanColorGAN [44] 0.0084 20.7471 0.7277 0.1536 5.2232 0.9128
W-NetPan (ours) 0.0069 21.6326 0.7751 0.1556 4.7461 0.9195

Table 7
Average quantitative results for all the considered datasets.

Methods MSE PSNR SSIM SAM ERGAS sCC

Bicubic 0.0191 17.3917 0.2622 0.1677 8.9421 0.7506
Brovey [30] 0.0070 22.4153 0.7849 0.1699 4.9379 0.9220
PCA [22] 0.0085 21.0909 0.7788 0.2432 5.8124 0.9267

GFPCA [31] 0.0133 19.0630 0.4565 0.1608 7.3635 0.8138
IHS [23] 0.0063 22.7314 0.7988 0.1671 4.7283 0.9263
SFIM [24] 0.0137 18.9180 0.6888 0.1920 7.5378 0.8527
GS [32] 0.0062 22.7879 0.7954 0.1669 4.6910 0.9271
GSA [32] 0.0093 20.8768 0.7498 0.2186 5.8713 0.9267

Wavelet [33] 0.0123 19.3446 0.6772 0.1784 7.0592 0.8536
MTF-GLP [25] 0.0098 20.5509 0.7620 0.1875 6.1059 0.9032

MTF-GLP-HPM [25] 0.0114 19.9050 0.7363 0.1934 6.6866 0.8901
CNMF [34] 0.0098 20.6188 0.7208 0.2009 6.0255 0.9101
PNN [26] 0.0059 22.9154 0.7754 0.1561 4.6185 0.9291

PanNet [27] 0.0057 23.1158 0.7908 0.1530 4.5423 0.9328
GPPNN [28] 0.0056 23.2090 0.7971 0.1468 4.4780 0.9362

PanColorGAN [44] 0.0064 22.3063 0.7846 0.1546 4.9466 0.9248
W-NetPan (ours) 0.0051 23.6488 0.8217 0.1510 4.2418 0.9423
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operations. Additionally, using a window size beyond 11� 11ð Þ
leads to saturate the performance (or even slightly worsen it
depending on the input image) because considering too large areas
may logically affect the capability of detecting local image varia-
tions. For the sake of generality, we set a default window size of
9� 9ð Þ as in [51].

In the case of a, this hyper-parameter weights the diffusion reg-
ularization of the deformation field uncovered by the first U-Net
segment of the proposed architecture. More specifically, it modu-
lates the gradient variations of the deformations that are internally
used to correct the low spatial resolution image. Table 9 presents
the corresponding PSNR-based evaluation when testing W-
NetPan with a ¼ 0:0;0:1;0:3;0:5;0:7;0:9;1:0f g and fixing the other
hyper-parameters to their default values. According to the
reported results, the performance becomes quite stable for values
higher than 0:1. In this way, we use an intermediate a of 0:5 as
default value. (See Table 10).

Finally, b is another weighting hyper-parameter that aims at
balancing the spatial consistency loss (L3) in the second U-Net
segment of the proposed model. To analyze the impact of this
hyper-parameter on the final performance, we test the following
values b ¼ 0:0;0:1;0:3;0:5;0:7;0:9;1:0f g likewise in the previous
case. Table 9 contains the obtained results, where values larger
than 0:5 provide similar performances. For the sake of simplicity,
we set b ¼ 1 as default value.
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4.5. Ablation Study

Another important point that deserve to be analyzed is the con-
tribution of each one of the U-Net segments that constitute the
proposed architecture. To achieve this goal, this section includes
an ablation study to compare W-NetPan to a simplified version
that removes the first U-Net segment (we name this variant as sin-
gle U-Net). In this way, it will be possible to see the contribution of
the proposed W-shape with respect to the standard U-shape when
using the same elemental configuration. Table 11 presents the
results of this ablation study based on a single run and all the con-
sidered metrics. According to the results, it is possible to see that
the proposed approach achieves consistent performance improve-
ments with respect to its simplified version (single U-Net) over all
the considered datasets. On average, W-NetPan provides gains of
0:45 in PSNR, 0:0112 in SSIM and �0:0072 in SAM, which reveals
the spatial-spectral contribution of our newly designed W-
shaped architecture.
4.6. Trade-off Analysis

The presented joint loss Eq. 9 is formulated according to three
terms, i.e., spatial matching (L1), spectral consistency (L2) and
spatial consistency (L3). This section provides a deeper analysis
of the impact of each one of these terms into the final performance



Fig. 5. Qualitative results for Experiment 1 (PSNR values in brackets): (a) Bicubic (16.76 dB), (b) Brovey (21.77 dB), (c) PCA (19.54 dB), (d) IHS (22.08 dB), (e) GS (22.03 dB), (f)
CNMF (20.95 dB), (g) PNN (22.57 dB), (h) PanNet (22.71 dB), (i) GPPNN (23.07 dB), (j) PanColorGAN (22.42 dB), (k) W-NetPan (24.01 dB) and (l) ground-truth.
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Table 8
Analysis of the window size (n� n) for the neighboring operator (Z) in LLNCC according to the PSNR (dB) metric.

Dataset n ¼ 3 n ¼ 5 n ¼ 7 n ¼ 9 n ¼ 11 n ¼ 13 n ¼ 15

AN 22.6254 23.9348 23.9258 23.9943 23.9829 23.9787 24.0027
MA 20.5611 21.0569 21.0719 21.0829 21.1317 21.1447 21.1646
MI 18.8067 24.8755 27.5464 28.0231 28.1468 28.1595 28.2241
UT 20.3981 21.5831 21.6127 21.6256 21.6637 21.6518 21.6423
Avg. 20.5978 22.8626 23.5392 23.6815 23.7313 23.7337 23.7585

Table 9
Analysis of the a hyper-parameter in L1 according to the PSNR (dB) metric.

Dataset a ¼ 0:0 a ¼ 0:1 a ¼ 0:3 a ¼ 0:5 a ¼ 0:7 a ¼ 0:9 a ¼ 1:0

AN 23.7690 23.9608 23.9857 23.9908 23.9715 23.9756 24.0071
MA 20.8683 21.0249 21.0905 21.0917 21.1074 21.0984 21.1099
MI 28.0059 28.0555 28.0250 28.0468 28.0485 28.0234 28.0411
UT 21.5226 21.6159 21.6396 21.6186 21.6228 21.6306 21.6007
Avg. 23.5414 23.6643 23.6852 23.6870 23.6875 23.6820 23.6897

Table 10
Analysis of the b hyper-parameter in L3 according to the PSNR (dB) metric.

Dataset b ¼ 0:0 b ¼ 0:1 b ¼ 0:3 b ¼ 0:5 b ¼ 0:7 b ¼ 0:9 b ¼ 1:0

AN 23.5114 23.8995 23.9603 23.9497 23.9649 23.9735 23.9760
MA 20.6989 20.9772 21.0659 21.0703 21.0664 21.1064 21.0873
MI 27.3351 27.9742 28.0293 28.0450 28.0407 28.0292 28.0040
UT 21.1960 21.5280 21.5832 21.6091 21.6161 21.6244 21.6166
Avg. 23.1853 23.5947 23.6597 23.6685 23.6721 23.6834 23.6710

Table 11
Ablation study to compare the performance of the proposed architecture (W-NetPan) with respect to its simplified version with a single U-Net block (single U-Net).

Dataset Methods MSE PSNR SSIM SAM ERGAS sCC

AN Ablation (single U-Net) 0.0047 23.3084 0.8509 0.1555 4.3705 0.9566
Proposed (W-NetPan) 0.0040 23.9816 0.8606 0.1497 4.0232 0.9623

MA Ablation (single U-Net) 0.0091 20.3861 0.7869 0.1824 5.6043 0.9115
Proposed (W-NetPan) 0.0077 21.1072 0.8061 0.1700 5.1581 0.9227

MI Ablation (single U-Net) 0.0016 27.9006 0.8311 0.1263 3.0317 0.9585
Proposed (W-NetPan) 0.0016 28.0522 0.8351 0.1216 2.9741 0.9594

UT Ablation (single U-Net) 0.0073 21.3872 0.7636 0.1609 4.8775 0.9149
Proposed (W-NetPan) 0.0069 21.6408 0.7754 0.1551 4.7411 0.9198

Avg. Ablation (single U-Net) 0.0057 23.2456 0.8081 0.1563 4.4710 0.9354
Proposed (W-NetPan) 0.0050 23.6955 0.8193 0.1491 4.2241 0.9410
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of the proposed pan-sharpening method. To this aim, we define
three trade-off parameters (i.e., L1; L2 and L3) to weight the three
considered loss terms (i.e., L1;L2 and L3, respectively). Then,
we test the effect of setting each trade-off parameter to 0:0 (null-
activation of the corresponding loss term), 0:5 (half-activation)
and 1:0 (full-activation). Note that this configuration leads to 27
permutations per dataset and a total of 108 experiments. Fig. 6
presents the average results based on the PSNR metric. As it is pos-
sible to observe, the best results are always achieved when activat-
ing all three components which indicates the advantages of the
proposed joint loss formulation with respect to other alternatives.
5. Discussion

When analyzing the obtained results, it is possible to note sev-
eral important points that deserve to be mentioned. The first one is
related to the global performance of the considered pan-
sharpening techniques. In general, we can see that all the methods
are able to outperform the bi-cubic baseline by a wide margin
based on their average spatial-spectral metric assessments. This
fact certainly indicates the high suitability of the pan-sharpening
technology even when dealing with images coming from different
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platforms. In this sense, the exploitation of inter-platform data
allows pan-sharpening algorithms to take better advantage of
panchromatic images for alleviating some spatial deviations that
do not need to be resolved in an intra-sensor scenario. Regarding
the nature of the considered methods, we can also find remarkable
performance differences between traditional and DL-based pan-
sharpening techniques. In the case of traditional models, Brovey,
IHS and GS have shown to be the three best traditional methods
since they achieve the best average results from the perspective
of MSE, PSNR, SSIM and ERGAS metrics. Nonetheless, their CS-
based nature still makes them rather prone to generate spectral
distortions as SAM reveals. In the case of DL methods, they are able
to achieve a better spatial-spectral effectiveness, being PNN, Pan-
Net and GPPNN the three best overall competitors and the pro-
posed W-NetPan model certainly the best performing method.

Focusing on the nature of the considered metrics, a more
detailed performance discussion can be made. In particular, four
different analyses are possible based on the considered types of fig-
ures of merit: (1) error-based, (2) spatial, (3) spectral and (4)
spatial-spectral. The first type (1), including MSE, PSNR and ERGAS,
aims at computing average differences to globally measure the
quality of the pan-sharpening results. Considering the PSNR metric
as reference, we can see how W-NetPan clearly obtains the best



Fig. 6. Trade-off analysis of the considered loss terms. The horizontal axis displays the weighting values forL1 (L1),L2 (L2) andL3 (L3) terms, respectively. The vertical axis
shows the PSNR (dB) results averaged over the considered datasets.
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average value (23:65 dB), followed by GPPNN (23:21 dB), PanNet
(23:12 dB), PNN (22:92 dB), GS (22:79 dB) and IHS (22:73 dB).
Regarding MSE and ERGAS, analogous improvements can also be
found in Table 7, which reveals the consistent error reductions pro-
vided by the proposed model. The second group (2), made of sCC,
pursues to quantify the spatial correlations between pan-
sharpened and ground-truth images. In this case, W-NetPan pro-
vides the best result followed by GPPNN, PanNet and PNN.
Nonetheless, it is important to note that GS and IHS suffer a rele-
vant sCC decrease, which indicates the lower spatial performance
achieved by traditional methods. Regarding the third group (3),
covering SAM, it is specially focused on the isolated computation
of spectral differences. As it is possible to see in Table 7, the two
best performing methods are GPPNN and W-NetPan followed by
PanNet and PNN. Traditional pan-sharpening methods fail in this
case since they are often unable to outperform the bi-cubic base-
line. Although the proposed approach does not achieve the best
average result, it is among the two best alternatives reaching
state-of-the-art spectral performances in the conducted experi-
ments. Finally, the forth group (4), composed of SSIM, makes a
spatial-spectral assessment where correlation, luminance and con-
trast distortions are jointly taken into account for generating a
complete image quality evaluation. According to Table 7, W-
NetPan obtains the best quantitative result by a wide margin, fol-
lowed by IHS, GPPNN, GS and PanNet. The displayed qualitative
results also support these observations. As Fig. 4 shows, DL-
based methods are generally able to produce better visual results
than traditional ones, especially from an structural perspective.
In more details, the proposed W-NetPan model certainly provides
the most similar output with respect to the corresponding
ground-truth. Considering both quantitative and qualitative per-
formances, it is possible to see the significance of the achieved
improvements with respect to those from other state-of-the-art
models.

As an overall observation, the performed experimental compar-
ison validates the higher suitability of W-NetPan for conducting
inter-sensor pan-sharpening between S2 and S3 satellites. Unlike
other instruments, OLCI has a particularly coarse spatial resolution
(i.e., 300 m) that makes the straightforward up-scaling process
rather uninformative from a data fusion perspective. As it is possi-
ble to observe in Fig. 4. (a), the use of a bi-cubic interpolation over
S3 provides a very blurred result that makes difficult to identify
136
even the most basic image regions and shapes. In this way, many
of the existing DL-based pan-sharpening methods struggle at rec-
ognizing which spatial regions in S2 may correspond to which
spectral data in S3 (see Fig. 4. (g)-(h) as an example). In contrast,
the proposed network tries to relieve this effect by means of its
W-shaped architecture. Specifically, the first U-Net segment pur-
sues to identify the main spatial regions in S3 while adjusting
and matching their boundaries to the corresponding S2 content.
Note that these kinds of inter-sensor adjustments are highly con-
venient since MSI is logically more spatially reliable than OLCI.
Then, the second segment takes advantage of these corrected data
to generate the final pan-sharpened output. In this fashion, both U-
Nets can provide feedback one another during training to achieve
better fusion results from an end-to-end perspective.

6. Conclusions and Future Work

This paper has presented a new DL-based inter-sensor pan-
sharpening model (W-NetPan), which has been specifically
designed to deal with S2 and S3 data. In particular, the proposed
architecture defines an innovative W-shape which jointly works
for spatially matching and fusing inter-sensor data. Besides, the
proposed loss formulation allows training the model without any
external data supervision. The conducted experimental compar-
ison, including several datasets and state-of-the-art pan-
sharpening methods, reveals the competitive performance pro-
vided by the proposed approach.

One of the most important conclusions that can be extracted
from this work is the high complexity of fusing rather heteroge-
neous data, such as in the case of S2 and S3 optical products.
Specifically, the particularly low spatial resolution of OLCI together
with the inherent inter-platform deviations often make state-of-
the-art pan-sharpening models unable to obtain satisfactory
results when projecting S3 spectral and S2 spatial information onto
the corresponding fused space. In this sense, adopting a W-shaped
network together with a self-supervised loss has shown to provide
competitive advantages with respect several of the most important
traditional and DL-based methods available in the literature.
Although the obtained results are certainly promising, there is still
room for further improvements. As future work, we plan to extend
this research towards the following directions: 1) extending the
proposed network to other inter-sensor platforms, and 2) expand-
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ing this research to single-frame super-resolution. How to exploit
the proposed model in other pixel-level vision tasks (e.g. [54–
57]) certainly is another interesting research line that deserve to
be mentioned.
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