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A B S T R A C T

Untargeted metabolomics with the combination of ion mobility separation coupled to high resolution mass spec-
trometry (IMS-HRMS) was applied to investigate the impact of resveratrol and pterostilbene supplementation on
the metabolic fingerprint of the Wistar rats liver with induced liver steatosis. RP-LC and HILIC in both ionisation
modes were employed to analyse the liver samples (n = 40) from Wistar rats fed with a high-fat and high-
fructose diet, supplemented or not with resveratrol and pterostilbene. After univariate and multivariate statisti-
cal analysis, 34 metabolites were highlighted in the different diets and elucidated. Despite the structural similar-
ity, different alterations in liver metabolism were observed by the supplementations. Resveratrol treatment was
characterised by the alteration in metabolism of 17 lysophospholipids, while pterostilbene affected some vita-
mins and derivatives, among others. IMS has demonstrated great potential in the elucidation process thanks to
the additional structural descriptor the CCS (Å2), providing more confidence in the identification.

1. Introduction

Foodomics is a relatively new discipline that has arisen as a result of
the application of advanced analytical techniques (omics tools) and
bioinformatics to nutritional and food research (Cifuentes, 2009, 2013).
Among the omics tools, untargeted metabolomics (or metabolomic fin-
gerprinting) aim to compare patterns or fingerprints of metabolites that
change a biological system or state in response to endogenous (genetics,
disease…) or exogenous (environment, diet…) phenomena or condition
(Dettmer et al., 2007; Wolfender et al., 2015). This approach is useful to
seek new biomarkers in different fields. Thus, it can provide biomarkers
of diagnosis in several diseases highly prevalent in our society, such he-
patic steatosis (Karu et al., 2018), characterised by the accumulation of
triglycerides in the liver (Madatali Abuwani et al., 2021), biomarkers of
prognosis to identify the progress of some diseases (Wang et al., 2011)
like the evolution of liver steatosis to steatohepatitis or cirrhosis
(Lewinska et al., 2021; Pirola & Sookoian, 2018), as well as biomarkers
to characterise the effects of treatments (i.e. diet, drugs,).

Regarding treatments, an emerging working area is the study of
bioactive compounds with beneficial effects on health, which are either
naturally present in foodstuffs or artificially added, as in the case of
functional foods. In this context, the beneficial properties of phenolic
compounds, present in fruits and vegetables, have been extensively
studied. Resveratrol (3,5,4′-trihydroxystilbene) is one of the most stud-
ied natural polyphenols with reported antioxidant and anti-
inflammatory effects (Gimeno-Mallench et al., 2019). Nevertheless, it
shows a low bioavailability due to the strong phase II metabolism that it
suffers. In turn, pterostilbene is a dimethoxy derivative of resveratrol,
also showing antioxidant and anti-inflammatory effects, but higher
bioavailability (Kapetanovic et al., 2011; Koh et al., 2021).

A key issue of untargeted metabolomics is the characterisation of
the large variety of compounds that may be involved in the subject of
study in complex and diverse biological matrices (Wolfender et al.,
2015). This issue can only be addressed with sufficiently sensitive and
selective instruments, emphasising the hyphenation of chromato-
graphic separations with high resolution mass spectrometry. The avail-
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ability of compound libraries for metabolite identification, and tools
and knowledge for data analysis and interpretation are also necessary
(Vivanco et al., 2011).

Liquid chromatography coupled to high resolution mass spectrome-
try (LC-HRMS) has been applied for untargeted metabolomics ap-
proaches in the nutrition area, for instance to reveal the metabolic
changes caused by the consumption of certain foods or bioactive com-
pounds (Fu et al., 2022; Lacalle-Bergeron et al., 2020). Firstly, liquid
chromatography (LC) allows applying a wide range of separation mech-
anisms because of the large variety of stationary phases available. In ad-
dition, it is highly appropriate for biological matrices due to their aque-
ous composition, requiring less complex sample preparations for analy-
sis than other chromatographic techniques such as gas chromatography
(Segers et al., 2019). Secondly, high resolution mass spectrometry
(HRMS) is the most suitable option for the detection and identification
of small metabolites owing to its high sensitivity and selectivity as well
as the acquisition of accurate-mass full-spectrum data (Castro-Puyana
et al., 2017). Moreover, the continuous improvements in instrumenta-
tion has allowed the incorporation of ion mobility separation (IMS) to
HRMS, providing an additional structural information and improving
the identification process and characterisation of the biomarkers
(Celma et al., 2020; Segers et al., 2019). This technique provides the
collision cross section value (CCS, Å2) of each ion, an additional charac-
terisation parameter, based on the measurement of drift time (DT),
which is dependent of the individual size, shape and charge of each ion
(Mairinger et al., 2018). In addition, IMS cell layout prior to hybrid
HRMS analysers allows High Definition MSE acquisition (HDMSE). In
conventional MSE, where accurate-mass full-spectrum at low collision
energy (LE) and high collision energy (HE) are acquired simultane-
ously, information about the precursor ion and ion products is provided
in a single injection. The incorporation of IMS data opens up the possi-
bility to obtain cleaner fragmentation spectra without co-eluting ion
fragments by filtering with the DT, as it is recorded for the precursor ion
of the LE spectra and linked to its product ions in the HE spectra (Gil-
Solsona et al., 2021; Paglia & Astarita, 2017).

The present work’s aim was to apply an untargeted metabolomics
approach, using UHPLC-IMS-HRMS, to perform a comparative study of
the effects of pterostilbene and resveratrol on liver metabolome in rats
suffering liver steatosis induced by a diet rich in saturated fat and fruc-
tose, as well as to explore the capabilities that the IMS brings to conven-
tional LC-HRMS in the identification of biomarkers.

2. Materials and methods

2.1. Chemicals and reagents

The solvents methanol and acetonitrile at LC-MS grade were pur-
chased from Scharlab (Barcelona, Spain), as well as the eluent additive
formic acid for LC-MS and reagent grade ammonium acetate. HPLC-
grade water was obtained with Milli-Q water purification system (Milli-
pore Ltd., Bedford, MA, USA). Leucine-enkephalin HPLC-grade (mass-
axis recalibration) and analytical standards of riboflavin, cytidine, 1-
methylnicotinamide, xanthosine, asymmetric dimethylarginine and do-
cosahexaenoic acid were purchased werewas purchased from Sigma-
Aldrich (Saint Louis, MO, USA).

2.2. Animals and study Design

The experiments and animal protocols were approved by the Ethical
Committee of University of the Basque Country (document reference
M20_2015_245 CUEID), following the European regulations (European
Convention-Strasburg 1986, Directive 2003/65/EC and Recommenda-
tion 2007/526/EC).

The study design is extensively described in Gómez-Zorita et al.,
2020 (Gómez-Zorita et al., 2020). For this purpose, fifty male Wistar

rats (6-week-old, 140–150 g) were housed in pairs in polycarbonate
cages, after a 6-day adaptation period, under controlled conditions of
temperature (22 ± 2 °C) and 12 h light–dark cycle. The rats were ran-
domly assigned to five groups (n = 10/group): the control group (CC)
was fed with a healthy balanced diet (commercial standard diet AIN-
93G, OpenSource Diets, Gentofte, Denmark, D10012G); the high-fat
and high-fructose group (HF) was fed with a diet containing 40 % of
lipids and 22 % of fructose (OpenSource Diets, Gentofte, Denmark,
D09100301), the PT15 and PT30 groups were fed with the same high-
fat and high-fructose diet supplemented with pterostilbene in the
amounts needed to provide doses of 15 mg/kg body weight/d (PT15
group) or 30 mg/kg body weight/d (PT30 group), and the RSV30 group
was fed with the same high-fat and high-sucrose diet supplemented
with resveratrol in the amount needed to provide 30 mg/kg body
weight/d. During the experiment, all animals had ad libitum access to
food and water. Food intake and body weight were recorded on a daily
basis.

After the 8 weeks of experimental period, the animals underwent
12 h fasting and were sacrificed by cardiac exsanguination under
anaesthesia (chloral hydrate).

2.3. Liver sampling and sample treatment

After exsanguination, livers were weighted and dissected into lobes
that were individually stored at −80 °C until analysis. For this analysis,
the same lobe of each liver was used.

For sample treatment, 0.5 mL of cold water:methanol (1:1) was
added to ∼100 mg of liver sample and manually triturated under cold
conditions. Then, 0.5 mL of cold water:methanol (1:1) were added
again and mixed with a Vortex for 45 min. After another 45 min in a
cold ultrasound bath and centrifuging at 12,000 × rpm and a radius of
5.5 cm, 8855 g (RCF), for 30 min at 4 °C, the supernatant was divided
into 3 aliquots: two vials of 300 µL were stored at −30 °C, one vial of
200 µL was stored at −80 °C. Moreover, the Quality Control sample
(QC) was generated by pooling and mixing 50 µL of each sample ex-
tract.

Samples were randomly injected into the UHPLC-IMS-QTOF MS sys-
tem in order to avoid the potential instrumental drift effect over the re-
sults. Assuming that QC is a representative average sample formed by a
pool equivalent aliquot of all final sample extracts, it was used for both
column stabilisation purposes (by 10 QC injections at the beginning of
each sample batch for RP-LC and 15 for HILIC) and, following by the in-
jection every 10 samples, to control possible instrumental drift through-
out the sequence.

2.4. Instrumentation

Samples were analysed using ultra-high performance liquid chro-
matography (UHPLC) with a Waters ACQUITY UHPLC I-Class system
(Waters, Milford, MA, USA) coupled to a VION® IMS QTof (Waters,
Manchester, UK), using an electrospray ionisation interface operating
in positive (ESI+) and negative (ESI−) mode. Equipment control and
data acquisition and processing were performed using UNIFI software
(V.1.9.2, Waters, Manchester, UK).

Two chromatographic separations were employed to cover a wider
range of compound polarities. Reversed Phase Liquid chromatography
(RP-LC) was used with a CORTECS® C18 fused-core 2.7 μm particle
size analytical column 100 × 2.1 mm (Waters), whereas a CORTECS®
HILIC fused-core 2.7 μm particle size analytical column 100 × 2.1 mm
(Waters) was employed for Hydrophilic Interaction Liquid Chromatog-
raphy (HILIC). For both types of liquid chromatography and both ioni-
sation modes, gradients elution were performed at 0.3 mL/min flow
rate, 40 °C column oven temperature and 1 μL sample injection volume
were selected for.
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The RP-LC gradient elution was performed using water (A) and
methanol (B) as mobile phases, both with 0.01% of formic acid, chang-
ing as follows: 10% B at 0 min to 90% B at 14 min, 90% B at 16 min,
and 10% B at 16.01 min, with a total run time of 18 min. The same gra-
dient was employed for both ionisation modes.

For HILIC separation, mobile phases acetonitrile:water (95:5, v/v)
(A) and water (B), both with 0.01 % formic acid and 10 mM ammonium
acetate, were employed. The gradient started with 2 % B until 1 min, 60
% B at 10 min, 60 % B at 12 min and finally 2 % B at 12.01 min, with a
total run time of 15 min. This gradient was the same for both ionisation
modes.

The ESI operated at a capillary voltage of 0.7 kV and 2.00 kV for
positive (ESI+) and negative (ESI−) electrospray ionisation mode, re-
spectively. In both cases the cone voltage was 30 V, source temperature
was set to 120 °C and desolvation gas to 550 °C with a flow rate of 1000
L/h. Nitrogen was used as the desolvation gas, nebulising gas, drift gas
and collision gas. The mass spectrometer was operated in ion mobility
(HDMSE) mode for acquisition in both polarities over an m/z range of
50–1000 Da and a scan time of 0.3 s. In HDMSE experiments, two acqui-
sition functions were acquired simultaneously: low-energy function
(LE), with a fixed collision energy of 6 eV, and high-energy function
(HE) with a collision energy ramp from 28 to 56 eV.

Calibrations of mass axis and DT were performed monthly with the
“Major Mix IMS/T of calibration kit” supplied by the vendor (Waters)
and Leucine-Enkephalin solution (100 µg/L acetonitrile:water (50:50,
v/v) containing 0.01% formic acid) was employed for continuous recal-
ibration of the mass axis and ensure the robust accurate mass measure-
ment along chromatographic runs.

2.5. Data processing and statistical analysis

The raw data (.uep, UNIFI, Waters) were imported to Progenesis QI
(V.2.5, Nonlinear Dynamics, Newcastle, UK) for baseline filter, peak
alignment and other data analysis. The software automatically per-
forms 4D peak picking (based on the intensity, m/z, retention time and
DT), retention time alignment using QC replicates as reference (except
for the first 9 QC injections used for column stabilisation in RP-LC or
first 14 QC injection for HILIC); and response normalisation. The peak
picking conditions were set as follows: all runs, limits (automatic), sen-
sitivity (automatic, level 2), chromatographic peak width (minimum
peak width of 0.1 min), and retention time limits (0.3 to 17 min and 0.3
to 12 min, for RP and HILIC respectively). To apply the deconvolution
tool, the selected adducts ions forms [M + H]+, [M + Na]+,
[M + K]+, [M−H2O + H]+, [2 M + H]+ and [2 M + Na]+ were se-
lected for positive ionisation analysis; and [M−H]−, [M−H2O−H]−,
[M + Cl]−, [M + FA-H]− and [2 M−H]− for negative ionisation analy-
sis. Samples were originally divided into 5 groups (CC, HF, RSV, PT15
and PT30) in the “Experimental Design Setup”, following the “Between-
subject Design” comparison (samples from a given subject appear in
only one condition). The software will then perform a One-way ANOVA
calculation assuming the independence of each sample followed by a
false discovery rate (FDR) optimisation approach; to test the differences
among the experimental groups. The levels of statistical significance
were set at 95 % level (q-value less than 0.05, adjusted p-values using
the FDR approach).

The processed data were then directly exported to EZinfo (V.3.03,
Umetrics, Sweden) for multivariate statistical analysis. Firstly, Principal
Component Analysis (PCA), an unsupervised analysis, was applied to
ensure the correct grouping of the QC replicates samples in the centre of
the plot after normalisation and the absence of outliers. Then, Partial
Least Square–Discriminant Analysis (PLS-DA) was conducted to max-
imise the separation between the groups and the validation of the
model was performed by leaving-1/7-out cross-validation approach. Ul-
timately, an Orthogonal PLS-DA (OPLS-DA) was carried out to highlight

the most robust markers (threshold p(corr) ≥ |0.6| and p[1] loading ≥
|0.1|).

2.6. Elucidation workflow

The most significant markers highlighted in the OPLS-DA were ten-
tatively elucidated based on their accurate masses, DT aligned HE spec-
tra information and CCS (Å2). The search in reliable mass spectra data
bases as Metlin, HMDB and Lipid Maps allowed the annotation of
metabolites, comparing the HE spectra to the available ones or to in-
silico fragmentation spectra. In addition, CCS libraries were also em-
ployed. The final identity could only be confirmed by comparing the re-
tention time, fragmentation and CCS with a commercially available ref-
erence standard. When the standard was not available, CCS values were
predicted by means of our CCS prediction model (Bijlsma et al., 2017;
Celma et al., 2022) aimed at providing additional identification confi-
dence. Different levels of confidence in metabolite identification were
employed according to Schymanski et al. (2014) classification
(Schymanski et al., 2014), which was recently updated including ion
mobility separation as an additional parameter for more reliable identi-
fication (Celma et al., 2020).

3. Results and discusion

3.1. Sample treatment

Regarding the sample treatment, a special care has to be taken in the
pre-treatment, homogenisation and metabolite extraction stages from a
tissue, in comparison with the analysis of biological fluids matrices.
Firstly, to avoid metabolome changes due to temperature and enzy-
matic activity, more probable in tissues, the storage and transport of
liver samples were kept at −80 °C until analysis. The sample treatment
was performed under low temperatures as much as possible, using pre-
viously cooled solvents and employing instrumentation able to work
under low temperature condition. In comparison to biological fluids as
plasma or saliva, longer stages of vortex and ultrasound sonication were
employed to maximise the homogenisation and to perform and exhaus-
tive solvent-extraction of the metabolites.

A mixture of water:methanol (50:50, v/v) allowed to widen the po-
larity coverage of the metabolites, and the use of methanol in the mix-
ture eliminated macromolecules (nucleic acids and proteins) present in
the sample by deproteinisation and, thereby, allowed to focus the pro-
cedure on the low-weight molecules (metabolites). After the centrifuga-
tion to eliminate the solid residues and precipitated proteins, the result-
ing extract was directly injected under both LC separations (RP and
HILIC) without the need for additional evaporation and redissolution in
other solvents. This was possible due to the low injection volume
needed (1 µL) as a consequence of the high sensitivity of the UHPLC-
IMS-QTOF MS instrument. Two different LC separations were employed
to detect as many compounds as possible, in positive (pos) and negative
(neg) ionisation modes. RP (with a C18 column) is suited for nonpolar
hydrophobic metabolites and HILIC (silica based column) for polar hy-
drophilic compounds. Therefore, four sample batches were performed:
RP pos, RP neg, HILIC pos and HILIC neg. To avoid bias during analysis,
the sample extracts were randomly injected and QC samples were in-
jected every 10 samples for instrumental drift control and normalisa-
tion.

The data were all acquired in HDMSE, where the ion mobility DT
(ms) measurements are combined with the information from the LE and
HE spectra acquired simultaneously, obtaining information on the pre-
cursor ion and on full-scan accurate mass fragmentation, respectively.
Therefore, a 4D data was obtained at the end of the analysis, allowing
to characterise each feature by the retention time from the chromato-
graphic separation, the CCS calculated from the DT, the accurate mass
and fragmentation spectra; and intensity. As the ion mobility separation
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is prior to the fragmentation, the “precursor” ion shares the same DT
than its fragments on the three-dimensional plots, allowing to align the
feature with its fragments and to reduce the interference of co-eluting
ions. Therefore, DT is useful not only as characterisation parameter but
also to obtain cleaner HE spectra of near MS/MS quality, as it allows to
show only the fragments that have been generated from a “precursor”
ion with a given DT, and therefore, enhancing the structural elucidation
(Gil-Solsona et al., 2021).

3.2. Data processing and statistical analysis

After the data import, processing with Progenesis QI starts with re-
tention time alignment, peak picking and normalisation. All the sam-
ples were successfully aligned with a score greater than 85 % and the
normalisation was performed using all compounds. The deconvolution
tool allowed to group the features coming from the same compound, ac-
cording to the adducts specified in the processing, and annotate them
under the same label. The peak picking of the four data sets RP pos, RP
neg, HILIC pos and HILIC neg resulted in the detection of 4683, 2800,
4228 and 2137 features, respectively (Supplementary data_2). Those
data set were reduced to 3298, 2468, 2439 and 1437 respectively, after
the removal of compounds that exhibit a poor stability with a relative
standard deviation (RSD %) above 30 % within the QCs.

Multivariate unsupervised analysis PCA was then applied to each
data set as exploratory visualisation of the results in order to observe

trends, groupings and/or outliers. Firstly, QC replicates injected after
every 10 samples (n = 9 per data set) should be clustering in the centre
of the PCA score plots. Because they are a pool of all analysed samples
extracts, they should act as an “average” sample and thus demonstrate
by centring that the difference between the groups are not caused by in-
strumental drift, and therefore, indicate the correct acquisition of the
data The presence of outliers was studied based on the 95 % of confi-
dence limit of the Hotelling’s T2 Range, ruling out two samples. Fig. 1
shows the PCA score plot obtained for the four data sets, where the cor-
rect clustering of QC replicates is evident in all of them, proving the
proper performance of the analytical system along all, four runs. As it
can be observed there is also a clear differentiation of the liver samples
of rats that had been given a standard diet (CC) from those that were
fed with high-fat high-fructose diet, supplemented or not with the com-
pounds under study. This is a predictable result given that these sam-
ples were already differentiated at naked eye in the sample treatment.
Given that the objective of this study was the metabolic differentiation
between the livers of NAFLD-induced rats whose diets have been sup-
plemented with pterostilbene and resveratrol, the group of CC samples
were discarded for the following statistical analysis. In addition, it can
be observed that PCA does not manage to clearly differentiate between
resveratrol and pterostilbene supplementation from the non-
supplemented samples (HF), and that the inherent differences of these
samples are still too great to approach the healthy liver samples. With
the 2282, 1410, 1237 and 550 statistically significant features with q-

Fig. 1. PCA score plot component 1 vs component 2 for liver metabolic profiles in the four different analysis modes. The QC samples (QC ■) are grouped and centred
in the plot. Five groups of liver samples from Wistar rats fed with different diets were analysed: standard diet (CC ■), high-fat and high-fructose diet (HF ■), and
high-fat and high-fructose diet enhanced with 15 mg/kg/day or 30 mg/kg/day of pterostilbene (PT15 ■ and PT30 ■) or 30 mg/kg/day of resveratrol (RSV30 ■).
The variance explained 79 %, 89 %, 75 % and 80 % for RP pos, RP neg, HILIC pos and HILIC neg, respectively.
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value greater than 0.05 for RP pos, RP neg, HILIC pos and HILIC neg,
respectively, a second PCA analysis was employed to interrogate the
data. Fig. S1 shows the PCA score plot of the first two components ob-
tained comparing the four groups HF, PT15, PT30 and RSV30. As it can
be observed, the inherent differentiation obtained by this unsupervised
analysis seems to be not significant enough to clearly separate the
groups, although it can be seen already a trend in the separation of
RSV30 group from the others and the positioning of the HF group ap-
proximately in the centre of the graph.

Then, supervised multivariate statistical PLS-DA modelling was ap-
plied to highlight the differences between the experimental groups
based on the statistically significant features. Fig. S2 shows the PLS-DA
score plot in the plane of the first two latent variables for the four data
sets. The separations achieved were not ideal, obtaining coefficients for
variance explained (R2Y) from 36 to 51 % and coefficients for variance
predicted (Q2) from 18 to 40 % (Table 1). These results are close and
even lower than the accepted limit of 50 % for variance explained and
40 % for predicted for biological models (Worley & Powers, 2012). This
is primarily due to the low differentiation between the two dosages of
pterostilbene (PT15 and PT30), demonstrating that the different
dosages concentrations with pterostilbene apparently do not imply a
significant variation at metabolic level. Then, it was attempted the PLS-
DA differentiation considering the two dosages of pterostilbene as a sin-
gle group. For the discrimination between the three resultant groups,
2457, 1388, 1325 and 557 statistically significant features were ob-
tained for RP pos, RP neg, HILIC pos and HILIC neg, respectively. Fig. 2
shows the PLS-DA score plots obtained for the four data sets, where the
differentiation has been considerably improved, obtaining R2Y from 70
to 86 %, and Q2 from 54 to 66 % (Table 1), resulting in 95 %, 89 %, 84
% and 84 % of the samples classified correctly for RP pos, RP neg, HILIC
pos and HILIC neg, respectively. In all data sets, the first latent variable
separates the two diets supplemented with pterostilbene or resveratrol
(PT and RSV30); while the second component differentiated the supple-
mented diets from the HF group.

In order to highlight the primary features for the discrimination be-
tween the groups, an Orthogonal PLS-DA (OPLS-DA) was finally em-
ployed, where only two groups can be faced. Therefore, to highlight the
most significant features three classifications were attempted by this
method: HF vs RSV, HF vs PT and RSV vs PT. For all the facing, a vari-
ance explained (R2Y) above 78 % and a variance predicted (Q2) above
74 % were obtained, except for PT vs RSV facing in HILICpos where it
was founded a Q2 = 58 % (Table 2). S-Plots were generated from each
OPLS-DA, allowing an easiest visualisation of the markers with higher

Table 1
Parameters of the PLS-DA models.
Statistical
model /
Characteristics

PLS-DA model diagnostics

RP pos RP neg HILIC pos HILIC neg

Groups 4
groups
PT15,
PT30,
RSV
and
HF

3
groups
PT,
RSV
and
HF

4
groups
PT15,
PT30,
RSV
and
HF

3
groups
PT,
RSV
and
HF

4
groups
PT15,
PT30,
RSV
and
HF

3
groups
PT,
RSV
and
HF

4
groups
PT15,
PT30,
RSV
and
HF

3
groups
PT,
RSV
and
HF

Components 2 4 3 4 2 3 2 4
Variance

explained
R2Y (cum)

48 % 86 % 51 % 79 % 45 % 70 % 36 % 78 %

Variance
predicted
Q2 (cum)

40 % 66 % 33 % 55 % 37 % 54 % 18 % 60 %

R2 - fit how model fits the data and Q2 – predictive ability, by seven-round inter-
nal cross-validation as default option of EZinfo software (Umetrics, Sweden).

discrimination power between the two-faced groups. From the S-plot,
the most relevant ones were the features closer to p(corr) 1 or −1. To se-
lect the most relevant features a cut-off p(corr) ≥ |0.6| and p[1] loadings
≥ |0.1| were employed, obtaining a sum up of 117 features between the
four data sets. Nevertheless, the list of possible markers was reduced
still further to 34 for different reasons. For example, some of the com-
pounds were detected more than once with the different chromato-
graphic separation or even different polarities (e.g. feature HILIC-
pos_2.05_376.1390n and RPpos_4.00_376.1388n both with the same
CCS of 186 Å2, in addition, this compound was also present in RP neg as
RPneg_3.99_376.1386n). In other cases, some types of adducts or in-
source fragments had not been specified in the deconvolution step of
Progenesis QI, and therefore they had not been clustered and appeared
as an independent feature. Finally, those features with poor signal or
bad peak shape that cast doubt on their validity as markers were dis-
carded.

3.3. Elucidation process

A total of 34 markers were selected for further identification. Exper-
imental data are recorded in Table S1 and statistical relevance is shown
in Table 3 and Figs. S5, S6 and S7. In order to accomplish the elucida-
tion of those compounds, the first step was to annotate the candidates
thanks to Progenesis QI identification tool, which performs a combina-
tion of neutral mass, MS/MS and CCS (if available) based searches by
comparison with the HDMSE spectra and CCS data of each putative
marker. The annotation of each marker was carefully reviewed based
on mass accuracy and both parents and fragment ions and CCS from
UNIFI raw data. Following the criteria of our laboratory and the identi-
fication level system described by Celma et al. (2020) (Celma et al.,
2020), the different identification levels were given to the markers ac-
cording to the data available for each of them.

Marker 1 has been selected as an illustrative example of the elucida-
tion process followed in the present work (Fig. 3). This marker was
found in HILIC pos (HILICpos_2.05_376.1390n) as marker of pterostil-
bene supplementation in PT vs HF (p(corr) 0.85) and PT vs RSV (p(corr)
−0.74); in RP pos analysis (RPpos_4.00_376.1388n, marker of PT in PT
vs HF, p(corr) 0.73). This maker was also present in negative mode in
both RP neg (RPneg_3.99_376.1386n, marker of PT in HF vs PT) and
HILIC neg with a p(corr) of 0.54, although below the p(corr) threshold
applied for the selection in the latter. It is worth noticing the fact that
ion mobility separation takes place prior to the fragmentation, which
implies that both the parent and the fragment ions have associated the
same DT. Hence, it is possible the obtaining of cleaner mass spectra
without co-eluting/interfering ions when it is aligned by the DT of the
parent ion. This is observed in Fig. 3B and C (DT filter 5.55 ± 0.22 ms,
data form HILIC pos) in comparison with the unaligned ones (Fig. 3D
and E). Therefore, it is obtained a quasi-MS2 spectrum with composite
of “product” ions obtained at different collision energies (HE energy
ramp from 28 to 56 eV) pure enough and with a lot of information,
which avoid the re-injection of the samples. The aligned spectra ob-
tained from the analysis of the same ionisation modes were mostly
identical (RP pos versus HILIC pos, and RP neg versus HILIC neg). Nev-
ertheless, the unaligned spectra may give also useful information. Since
the adducts are formed in the ion source previous to the ion mobility
separation, [M + Na]+, [M + K]+ and [M−H2O + H]+ adducts DT
was different enough to the protonated molecule to be aligned by DT
and they can only be observed in the unaligned LE spectra (Fig. 3D).
These adducts were all successfully deconvoluted by Progenesis QI and
assigned as the same compound.

The most likely elemental composition for this marker was found to
be C17H20N4O6 (error: +0.2, −0.01 and + 0.8 mDa in HILIC pos, RP
pos and RP neg, respectively). The mean retention time across the sam-
ples in HILIC was 2.00 min and 4.00 min in RP, with a CCS of 186 Å2

for the protonated and 190 Å2 for the deprotonated molecule. Fig. S3
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Fig. 2. PLS-DA score plot latent variable 1 vs latent variable 2 for liver metabolic profiles in the four different analysis modes. Three groups of liver samples from
Wistar rats fed with different diets were analysed: high-fat and high-fructose diet (HF ■), and high-fat and high-fructose diet enhanced with 15 mg/kg/day or
30 mg/kg/day of pterostilbene (PT ■) or 30 mg/kg/day of resveratrol (RSV30 ■). Being R2 is coefficient for variance explained and Q2 is coefficient for variance
predicted, the following results were obtained: R2Y = 86 % and Q2 = 66 % for RP pos, R2Y = 79 % and Q2 = 55% for RP neg, R2Y = 70 % and Q2 = 54 % for
HILIC pos and R2Y = 78 % and Q2 = 60 % for HILIC neg.

Table 2
Parameters of the OPLS-DA models.
Statistical model /
Characteristics

OPLS-DA model diagnostics

RP pos RP neg HILIC pos HILIC neg

PT vs HF RSV vs HF PT vs HF RSV vs HF PT vs HF RSV vs HF PT vs HF RSV vs HF PT vs RSV PT vs HF RSV vs HF PT vs RSV

n = 20 vs
10

n = 10 vs
10

n = 20 vs
10

n = 10 vs
10

n = 20 vs
10

n = 10 vs
10

n = 20 vs
10

n = 10 vs
10

n = 20 vs
10

n = 20 vs
10

n = 10 vs
10

n = 20 vs
10

Components 4 6 4 6 4 6 2 4 2 3 3 2
Goodness-of-fit

parameter - R2X
77 % 90 % 77 % 90 % 77 % 90 % 60 % 87 % 59 % 89 % 64 % 54 %

Variance explained R2Y
(cum)

96 % 99 % 96 % 99 % 96 % 99 % 86 % 99 % 78 % 88 % 99 % 83 %

Variance predicted Q2

(cum)
87 % 88 % 87 % 88 % 87 % 88 % 79 % 97 % 58 % 79 % 94 % 74 %

R2 - fit how model fits the data and Q2 – predictive ability, by seven-round internal cross-validation as default option of EZinfo software (Umetrics, Sweden).

shows the LE and HE DT-aligned spectra from deprotonated molecule
obtained in RP neg analysis where complementary information of the
elucidated structure was obtained. A proposed structure fragmentation
was raised for both ionisation modes, and it was supported with the ex-
perimental spectra from METLIN with a fragmentation match over 60
% in Riboflavin (vitamin B2). Moreover, due to the availability of ex-

perimental CCS databases, this compound obtained a match with the
available Metabolic Profiling CCS Library for Progenesis QI, with a delta
error of +0.23 % (maximum CCS tolerance 2 %), increasing consider-
ably the confidence in the Riboflavin identification.

Among the list of markers, related compounds showed similar frag-
mentation. Marker 9 was found in HILIC pos analysis (HILIC-
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Table 3
Statistical values for the 34 markers tentatively identified.
N° Compound Elemental

composition
p
(corr)

Marker
of

Chromatography ESI

1 Riboflavin (Vitamin
B2)

C17H20N4O6 0.85 PT, in
HF vs
PT

HILIC pos

−0.74 PT, in
RSV vs
PT

0.73 PT, in
HF vs
PT

RP pos

0.74 PT, in
HF vs
PT

RP neg

2 Allopurinol C5H4N4O 0.77 PT, in
HF vs
PT

HILIC pos

3 Cytidine C9H13N3O5 −0.75 HF, in
HF vs
RSV

HILIC pos

4 Methylnicotinamide C7H8N2O −0.67 HF, in
HF vs
PT

HILIC pos

−0.62 HF, in
HF vs
RSV

5 Nicotinamide
Mononucleotide

C11H15N2O8P 0.70 PT, in
HF vs
PT

HILIC pos

0.67 RSV,
in HF
vs RSV

6 Xanthosine C10H12N4O6 −0.70 PT, in
PT vs
RSV

RP neg

7 Indoleacrylic acid C11H9NO2 −0.61 HF, in
HF vs
PT

RP pos

−0.84 HF, in
HF vs
RSV

8 4,5-didehydro-5-
deoxyadenosine

C10H11N5O3 0.64 PT, in
HF vs
PT

HILIC pos

−0.65 PT, in
RSV vs
PT

9 1-(a-ribofuranosyl)-
lumichrome

C17H18N4O6 −0.76 HF, in
HF vs
RSV

HILIC pos

10 Adenosine-5′-(O-
methylphosphate)

C11H16N5O7P 0.62 RSV,
in HF
vs RSV

HILIC pos

0.73 RSV,
in HF
vs RSV

HILIC neg

0.86 PT, in
HF vs
PT

0.82 PT, in
HF vs
PT

RP pos

0.77 RSV,
in HF
vs RSV

RP neg

0.89 PT, in
HF vs
PT

11 Adenosylmethionine C15H22N6O5S 0.67 PT, in
HF vs
PT

HILIC pos

Table 3 (continued)
N° Compound Elemental

composition
p
(corr)

Marker
of

Chromatography ESI

12 ADMA (asymmetric
dimethylarginine)

C8H18N4O2 −0.77 HF, in
HF vs
PT

HILIC pos

13 Oxidised
Glutathione

C20H32N6O12S2 0.70 PT, in
HF vs
PT

HILIC pos

−0.62 PT, in
RSV vs
PT

−0.83 PT, in
RSV vs
PT

HILIC neg

−0.70 PT, in
RSV vs
PT

RP pos

−0.92 PT, in
RSV vs
PT

RP neg

14 Resveratrol-O-
sulfate

C14H12O6S 0.82 RSV,
in HF
vs RSV

HILIC neg

0.85 RSV,
in RSV
vs PT

15 Pterostilbene-4′-O-
sulfate

C16H16O6S 0.63 PT, in
HF vs
PT

HILIC neg

−0.70 PT, in
RSV vs
PT

16 Docosahexaenoic
acid (DHA)

C22H32O2 0.84 RSV,
in HF
vs RSV

HILIC neg

0.71 PT, in
HF vs
PT

0.82 RSV,
in HF
vs RSV

RP pos

0.92 RSV,
in HF
vs RSV

RP neg

0.64 PT, in
HF vs
PT

17 Docosapentaenoic
acid (DPA)

C22H34O2 0.80 RSV,
in HF
vs RSV

HILIC neg

0.62 PT, in
HF vs
PT

0.85 RSV,
in HF
vs RSV

RP neg

0.66 PT, in
HF vs
PT

18 LysoPE(16:0) C21H44NO7P 0.72 RSV,
in HF
vs RSV

RP neg

19 LysoPE (18:0) C23H48NO7P 0.81 RSV,
in HF
vs RSV

RP neg

20 LysoPE(18:1) C23H46NO7P 0.71 RSV,
in HF
vs RSV

HILIC pos

0.69 RSV,
in HF
vs RSV

HILIC neg

(continued on next page)
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Table 3 (continued)
N° Compound Elemental

composition
p
(corr)

Marker
of

Chromatography ESI

21 LysoPE(18:2) C23H44NO7P 0.71 RSV,
in HF
vs RSV

HILIC neg

22 LysoPE(20:4) C25H44NO7P 0.86 RSV,
in HF
vs RSV

HILIC pos

0.88 RSV,
in PT
vs RSV

0.69 RSV,
in HF
vs RSV

HILIC neg

0.69 RSV,
in PT
vs RSV

RP neg

23 LysoPE(22:6) C27H44NO7P 0.88 RSV,
in HF
vs RSV

HILIC pos

0.72 RSV,
in HF
vs RSV

HILIC neg

24 LysoPC(16:0) C24H50NO7P 0.84 RSV,
in HF
vs RSV

HILIC pos

0.92 RSV,
in PT
vs RSV

0.74 RSV,
in HF
vs RSV

RP pos

25 LysoPC(18:1)
isomer 1

C26H52NO7P 0.88 RSV,
in PT
vs RSV

HILIC pos

26 LysoPC(18:1)
isomer 2

C26H52NO7P 0.82 RSV,
in HF
vs RSV

HILIC pos

0.92 RSV,
in PT
vs RSV

27 LysoPC(18:3) C26H48NO7P 0.78 RSV,
in HF
vs RSV

HILIC pos

0.88 RSV,
in PT
vs RSV

28 LysoPC(20:4)
isomer 1

C28H50NO7P 0.75 RSV,
in PT
vs RSV

HILIC pos

29 LysoPC(20:4)
isomer 2

C28H50NO7P 0.72 RSV,
in PT
vs RSV

HILIC pos

30 LysoPC(22:6) C30H50NO7P 0.74 RSV,
in PT
vs RSV

HILIC pos

31 LysoPI(20:4) C29H49O12P 0.81 RSV,
in HF
vs RSV

HILIC neg

32 LysoPS(20:4) C26H44NO9P 0.91 RSV,
in HF
vs RSV

HILIC neg

33 LysoPS (21:0) C27H54NO9P 0.87 RSV,
in HF
vs RSV

RP neg

34 LysoPS (2-OMe-18:
0)

C25H52NO9P 0.78 RSV,
in HF
vs RSV

RP neg

0.90 RSV,
in HF
vs RSV

pos_1.28_375.1304 m/z) as marker of high-fructose high-fat diet (HF
group) in RSV vs HF (p(corr) −0.76), obtaining a level 3 tentative eluci-
dation as 1-(a-ribofuranosyl)-lumichrome with molecular formula
C17H18N4O6 (see marker structure in Fig. S4). This marker shared with
riboflavin the non-specific water loss (m/z 357.1182, −1.69 mDa), and
fragments m/z 243.0882 ([C12H11N4O2]+, −0.0 mDa), m/z 198.0664
([C11H8N3O]+, −0.3 mDa) and m/z 172.0868 ([C10H10N3O]+, −0.7
mDa) observed in the DT aligned HE spectra of riboflavin (Fig. 3C),
which shows that they share in their structure the nitrogenous base
flavin.

Markers 8, 10 and 11, tentatively elucidated as 4,5-didehydro-5-
deoxyadenosine, adenosine-5′-(O-methylphosphate) and adenosylme-
thionine, respectively, shared the same fragment m/z 136.0619
([C5H6N5O]+, −0.5 mDa) in positive ionisation mode, corresponding to
the adenosine base shared by all of them.

But the clearest example of similar behaviour in fragmentation oc-
curs in 17 lysophospholipids tentatively elucidated. This type of com-
pounds is made up of a glycerol molecule to which a fatty acid and
phosphate group are bind. Phosphate is attached via phosphodiester
bond to other molecules, such as ethanolamine (LysoPE), choline
(LysoPC), inositol (LysoPI) or serine (LysoPS). Due to the large number
of isomers in this type of molecules (because of the double bond posi-
tion, position of fatty acid attachment to the glycerol molecule or num-
ber of unsaturations) it is troublesome to give a definitive identification
with the data acquired for most of them. It is also difficult to obtain
fragments that give clues about the unsaturation position in the fatty
acid chain. Hence, the elucidation is mostly based on the common frag-
mentation spectra for the different types of lysophospholipids as well as
the molecular formula to define the number of carbons and the unsatu-
rations of the attached fatty acid. LysoPE can be observed in both posi-
tive and negative ionisation, and the fragmentation is characterised by
neutral loss of phosphoethalonamine group (Δm/z 141. 0191) in posi-
tive ionisation mode and fragments m/z 196.0375 and m/z 140.0119 in
negative ionisation mode. LysoPC are typically observed in positive ion-
isation mode and shared fragments m/z 184.0740 and m/z 104.1075
corresponding phosphocholine and choline fragments. Regarding
LysoPI and LysoPS, they were mainly observed in negative ionisation
mode. In DT aligned HE spectrum of marker 31 LysoPI(20:4) it 4 typical
ions recorded for this class of phospholipids were observed: m/z
152.9949 ([C3H6O5P]-, −0.4 mDa) and m/z 241.0108 ([C6H10O8P]-,
−0.5 mDa) coming from the phosphoinositol group, as well as the frag-
ments coming from the fatty acid attached m/z 259.2419 ([C19H31]-,
−0.7 mDa) and m/z 303.2315 ([C20H31O2]-, −0.4 mDa). Finally, LysoPS
presented the neutral loss of serine group (Δm/z 87.0320). For 7 of the
lysophospholipids, a match with CCS experimental data base were ob-
tained, with a delta error of + 2.3 %, +1.3 %, +1.6 % for de-
protonated molecules of LysoPE(16:0), LysoPE(20:4) and LysoPE(22:6)
respectively; and + 0.1 % and −2.4 % for protonated molecules of both
isomers of LysoPC (18:1) and both isomers of LysoPC(20:4) respec-
tively.

In order to achieve more confidence in tentative identification, it
was employed a CCS predictor model based on Multiple Adaptative Re-
gression Splines (MARS) developed for Travelling Wave Ion mobility in-
strument (TWIMS) (VION®, Waters) (Celma et al., 2022). The relative
errors obtained with this prediction tool were below ±4.05 % for pro-
tonated ion and ±5.86 % for deprotonated molecules for 95% of all
CCS values tested. This predictor was applied from marker 1 to 17 with-
out a match with experimental CCS (see Table S1). For markers from 1
to 13 and fatty acids markers 16 and 17 without match with experimen-
tal CCS library, delta CCS errors ranging from 0.1 to 1.5 % for proto-
nated ion and 0.1 to 1.9 % for deprotonated ion, increased the confi-
dence of the identification. The only exception was docosahexaenoic
acid with a delta error of −3.9 % for protonated molecule, while the
data for deprotonated molecule was less than 1 %.
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Fig. 3. Elucidation of marker 1 Riboflavin (vitamin B2) based in chromatograms and HDMSE spectra obtained from HILIC pos analysis: A) Extracted ion chro-
matograms of adducts found, along with the experimental m/z and CCS, B) DT aligned LE spectrum, C) DT aligned HE spectrum, D) LE spectrum and E) HE spec-
trum. A structure fragmentation is proposed.

The higher delta error obtained for phase II sulphate conjugated
metabolites (-4.5 % and −7.9 % for sulphated metabolite form resvera-
trol and pterostilbene, respectively) can be explained by the absence of
these family of compounds during the building of the CCS prediction
model. The low commercial availability of pure analytical standards of
these compounds makes difficult to obtain experimental CCS informa-
tion to be included in the building of the prediction tool.

For phospholipids, a more specialised prediction tool was employed:
LipidCCS CCS prediction model Zhou et al. (2017). This prediction
model achieved median relative errors (MRE) of ∼1%, from the CCS in-
formation obtained from a large set of lipids measured with Drift Tube
Ion Mobility instruments (DTIMS). For, Travelling Wave Ion Mobility
instruments (TWIMS) as VION® employing polyAla calibrants are used
the MRE increased to ∼4%. Actually, if these error outputs (MRE = 50
% confidence interval) are given within a confidence interval of 95 %,
the errors for DTIMS instruments will be closer to ±3 % and higher for
TWIMS instruments with polyAla calibrants. PolyAla calibrants has
been shown to have a considerable impact in lipids CCS errors (George
et al., 2022; Hines et al., 2016), unfortunately the instrument employed
do not allowed us to employ a more specialised calibrant. Nevertheless,
it was employed this Lipid CCS instead of the in-house prediction model
due to the lack of phospholipids experimental data in its building.

For markers from 18 to 34 without a match with experimental CCS
library, predicted CCS with delta errors ranging from 0.6 to 5.4 % for

protonated ions and 1.7 to 8.3 % for deprotonated ions were obtained.
The lysoPS markers led to a poor prediction, with delta error from 5.1
to 8.3 % for their deprotonated ions. Moreover, due to the difficulty to
find pure standards for isomeric lipid to train the model, LipidCCS
could not accurately differentiate between isomers. Although, trans
lipids are not usually observed as endogenous lipids, and therefor it is
not a big issue that LipidCCS can not differentiate between position
geometry (cis/trans). Therefore, a more precise identity of these com-
pounds could not be reached with the information obtained.

All the work described so far, shows the interesting information that
ion mobility separation offers to untargeted metabolomics studies, im-
proving the time-consuming identification step, still the main bottle-
neck in the metabolomics workflow. CCS is an additional structural de-
scriptor highly reproducible and mostly transversal between instru-
ments, opposite to retention time, which depends on chromatographic
separation and can be heavily influenced by sample matrix. For this rea-
son, there is a trend to include CCS values among the experimental data
in compound databases and, in turn, predictive tools of great interest
are increasingly being created and implemented.

The unequivocally confirmation of the identity of the markers (iden-
tification level 1) can only be reached by comparison with a reference
standard. This level could be obtained for six markers: marker 1 ri-
boflavin, marker 3 cytidine, marker 4 methylnicotinamide, marker 6
xanthosine, marker 12 ADMA, marker 13 oxidised glutathione and
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marker 16 docosahexaenoic acid. For marker 2, two potential isomeric
compounds were plausible, hypoxanthine and allopurinol. The stan-
dard of hypoxanthine was purchased but it did not match with in terms
of retention time. Therefore, hypoxanthine was discarded, and allopuri-
nol was assumed as tentative identification for this marker (level 2b)
until definitive confirmation with its corresponding analytical stan-
dard.

3.4. Changes in liver metabolome

The untargeted analysis performed showed three clearly differenti-
ated metabolome profiles: 1) rats fed with the high-fat and high-
fructose diet (HF group), 2) rats fed with the same diet and treated with
pterostilbene, and 3) rats fed with the same diet and treated with
resveratrol. This confirms that the methodology applied was appropri-
ate to seek biomarkers of treatment and to characterise the effects of
the two phenolic compounds used in the present study. In Figs. 4, 5
and 6, the mean abundances of the highlighted markers in PT vs HF,
RSV vs HF and PT vs RSV are shown, respectively. These figures allow
to observe the differences in intensity for each marker between the two
groups compared. Since the markers were detected in different analysis
and with different ionisation modes, the intensities obtained are not
comparable between markers (i.e. a greater intensity of a marker does
not necessarily imply higher concentration than another marker with
lower intensity). For those markers detected in different analysis, the
figures show the normalised abundance coming from the analysis with
higher statistical relevance. Supplementary Figs. S5–S8 show in detail
the variation in the intensity obtained across the groups of samples for
each marker.

Resveratrol is a polyphenol, belonging to the group of stilbenes and
pterostilbene is its dimethoxy derivative. The present study shows a
clear different effect of pterostilbene and resveratrol on hepatic
metabolite profile, despite of their similarity in terms of chemical struc-
ture. Firstly, although the phase II sulphated metabolites of each com-
pound were found as marker of their respective groups, a considerable
difference could be observed between the supplementation of 15 mg/
kg/d and 30 mg/kg/d of pterostilbene for pterostilbene-4-O-sulfate
(Fig. S6). When the rats fed with the high-fat and high-fructose diet
were treated with pterostilbene (Fig. 3), significant changes were ob-
served in three vitamins and derivatives (marker 1 riboflavin, marker 4
methylnicotinamide and marker 5 nicotinamide mononucleotide), four
nucleotides/nucleosides (marker 2 allopurinol, marker 6 xanthosine,
marker 8 4,5-didehydro-5-deoxyadenosine and marker 10 adenosine-
5′-(o-methylphosfate)), three peptides/amino acids (marker 11 adeno-
sylmethionine, marker 12 asymmetric dimethylarginine and marker 13
oxidised glutathione), and three organic acids (marker 16 docosa-
hexaenoic acid, marker 17 docosapentaenoic acid and marker 7 in-
doleacrylic acid). On the other hand, for rats treated with resveratrol
(Fig. 4), the changes affected to vitamin-related compound (increased
levels of marker 5 nicotinamide mononucleotide and decreased level of
marker 9 1-(a-ribofuranosyl)-lumichrome and marker 4 methylnicoti-
namide), nucleotides/nucleosides ratio (higher level of marker 10
adenosine-5′-(o-methylphosfate) and lower of marker 3 cytidine), three
organic acids (marker 16 docosahexaenoic acid, marker 17 docosapen-
taenoic acid and marker 7 indoleacrylic acid) and seventeen phospho-
lipids. In a reduced number of cases, both phenolic compounds induced
similar changes in the same metabolites in comparison with HF group:
decreased levels of cytidine, methylnicotinamide and indoleacrylic
acid, and increased levels in nicotinamide mononucleotide, adenosine-
5′-(o-methylphosphate), docosapentaenoic acid (DPA) and docosa-
hexaenoic acid (DHA). The positive effects in different liver-related dis-
eases have been already reported with regard to the presence/increase
of DPA and DHA (Enguita et al., 2019) as well as, nicotinamide
mononucleotide (Zong et al., 2021).

Regarding the rats treated with pterostilbene, it was interesting the
decrease in asymmetric dimethylarginine (ADMA) and the increase in s-
adenosylmethionine (SAM), in comparison to the group without sup-
plementation (HF). ADMA, an endogenous inhibitor of nitric oxide syn-
thase, is formed by methylation of arginine residues in proteins. In this
process, SAM, which is mainly synthesised and consumed in the liver, is
the methyl donor. ADMA mediates its adverse vascular effects by im-
pairing endothelial, nitric oxide-dependent function, which leads to de-
creased vasodilatation, increased smooth muscle cell proliferation,
platelet dysfunction and increased monocyte adhesion (Maas, 2005).
Moreover, it has been reported that SAM is able to ameliorate lipid ac-
cumulation and oxidative stress in hepatic cells, mainly through pro-
moting mitochondrial fatty acid entry for β-oxidation and external
triglyceride release (Vergani et al., 2020). These results on the positive
effect of supplementation with pterostilbene are encouraging, since the
reduction in ADMA values are associated with various clinical settings
as coronary heart disease, hypertension and diabetes among others, and
at the same time it is increased the presence of SAM and its possible
protection against the free radical toxicity.

In the case of the rats treated with resveratrol, the main changes
took place in phospholipids. These molecules can be precursors of lipid
mediators, which play important roles in external and internal commu-
nication and modulate cellular responses. Previous studies have demon-
strated a reduction in phosphatidylcholine (PC) among other phospho-
lipids in non-alcoholic fatty liver disease (NAFLD) patients (Piras et al.,
2021), therefore it is promising that resveratrol supplementation in-
creases the levels of these compounds.

The present study may help to generate new hypothesis about the
preventive effects of pterostilbene and its parent compound, by indicat-
ing potential pathways to be addressed in an ongoing study.

4. Conclusions

The great potential of the inclusion of IMS into the conventional LC-
HRMS for untargeted metabolomic studies has been demonstrated with
the tentative elucidation of 34 markers related to the treatment with
resveratrol and pterostilbene to rats with liver showing steatosis. Mark-
ers identified were 2 phase II sulphated metabolites, 17 lysophospho-
lipids, 3 fatty acids, 4 vitamin and related compounds, 5 nucleosides/
nucleotides and 3 peptide/amino acids related compounds. The imple-
mentation of CCS as additional molecular descriptor and the tools cre-
ated around this parameter facilitated the compound identification,
helping to solve the bottleneck that the elucidation process represents
in untargeted metabolomics. Significantly different results have been
obtained for the two types of supplementation despite the similarity be-
tween both phenolic compounds (resveratrol and pterostilbene).

Currently, a parallel work focused on the markers found in this work
is being carried out. The objective is to investigate the implication of
the highlighted metabolites in stopping the progression of liver steato-
sis to more severe pathologies and evaluate the metabolic pathways al-
tered.

CRediT authorship contribution statement

Leticia Lacalle-Bergeron : Conceptualization, Methodol-
ogy, Software, Validation, Formal analysis, Investigation, Re-
sources, Data curation, Writing – original draft, Writing – re-
view & editing, Visualization. David Izquierdo-Sandoval : Con-
ceptualization, Methodology, Software, Validation, Formal analy-
sis, Investigation, Resources, Data curation, Writing – review &
editing. Alfredo Fernández-Quintela : Conceptualization, Inves-
tigation, Resources, Writing – review & editing, Supervi-
sion, Project administration, Funding acquisition. María P. Por-
tillo : Conceptualization, Investigation, Resources, Writing – re-
view & editing, Supervision, Project administration, Funding ac-

10



CO
RR

EC
TE

D
PR

OO
F

L. Lacalle-Bergeron et al. Food Research International xxx (xxxx) 112376

quisition. Juan Vicente Sancho : Conceptualization, Methodol-
ogy, Validation, Investigation, Resources, Data curation, Writing
– review & editing, Visualization, Supervision, Project adminis-
tration, Funding acquisition. Félix Hernández : Conceptualiza-
tion, Methodology, Investigation, Resources, Writing – review &
editing, Supervision, Project administration, Funding acquisi-
tion. Tania Portolés : Conceptualization, Methodology, Soft-
ware, Validation, Investigation, Resources, Data curation, Writ-
ing – review & editing, Visualization, Supervision, Project ad-
ministration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

L Lacalle-Bergeron acknowledges the financial support of Universi-
tat Jaume I, Spain for his pre-doctoral grant (UJI 19I001/03). D.
Izquierdo-Sandoval acknowledges the Ministry of Science, Innovation
and Universities of Spain for funding his research through the FPU pre-
doctoral program (FPU19/ 01839). T. Portoles acknowledges Ramon y
Cajal Program from the Ministry of Economy and Competitiveness,
Spain (RYC-2017-22525) for funding her research. The Research Insti-
tute for Pesticides and Water (IUPA) authors acknowledge the financial
support of Generalitat Valenciana, as research group of excellence
PROMETEO/2019/040 and Universitat Jaume I de Castelló (UJI-
B2020-25 and UJI-B2020-37). The Nutrition and Obesity Group ac-
knowledge the financial support of the University of the Basque Coun-
try, as a research group of excellence (GIU 18/173), the Ministerio de
Economía y Competitividad-Fondo Europeo de Desarrollo Regional, grant
number AGL-2015-65719-R MINECO/FEDER, UE) and CIBERobn,
grant number CB12/03/30007.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2022.112376.

References

Bijlsma, L., Bade, R., Celma, A., Mullin, L., Cleland, G., Stead, S., … Sancho, J.V.
(2017). Prediction of collision cross-section values for small molecules: Application to
pesticide residue analysis. Analytical Chemistry, 89(12), 6583–6589. https://doi.org/
10.1021/acs.analchem.7b00741.

Castro-Puyana, M., Pérez-Míguez, R., Montero, L., & Herrero, M. (2017). Application of
mass spectrometry-based metabolomics approaches for food safety, quality and
traceability. TrAC Trends in Analytical Chemistry, 93, 102–118. https://doi.org/
10.1016/j.trac.2017.05.004.

Celma, A., Bade, R., Sancho, J.V., Hernandez, F., Humphries, M., & Bijlsma, L. (2022).
Prediction of retention time and collision cross section (CCS H+, CCS H–, and CCS Na+)
of emerging contaminants using multiple adaptive regression splines. Journal of Chemical
Information and Modeling, 1–16. https://doi.org/10.1021/acs.jcim.2c00847.

Celma, A., Sancho, J.V., Schymanski, E.L., Fabregat-Safont, D., Ibáñez, M., Goshawk,
J., … Bijlsma, L. (2020). Improving target and suspect screening high-resolution mass
spectrometry workflows in environmental analysis by ion mobility separation.
Environmental Science and Technology. https://doi.org/10.1021/acs.est.0c05713.

Cifuentes, A. (2009). Food analysis and foodomics. Journal of Chromatography A, 1216(43),
7109. https://doi.org/10.1016/j.chroma.2009.09.018.

Cifuentes, A. (2013). Foodomics: principles and applications. In A. Cifuentes (Ed.),
Foodomics: advanced mass spectrometry in modern food sciences and nutrition (p. 580).
John Wiley & Sons, Inc. <https://www.wiley.com/en-us/Foodomics%3A+
Advanced+Mass+Spectrometry+in+Modern+Food+Science+and+Nutrition-p-
9781118169452>.

Dettmer, K., Aronov, P.A., & Hammock, B.D. (2007). Mass spectrometry-based
metabolomics. Mass Spectrometry Reviews, 26(1), 51–78. https://doi.org/10.1002/
mas.20108.

Enguita, M., Razquin, N., Pamplona, R., Quiroga, J., Prieto, J., & Fortes, P. (2019). The
cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-κB and
TGFβ pathways in hepatic stellate cells. Cell Death & Disease, 10(1), 14. https://doi.org/
10.1038/s41419-018-1243-0.

Fu, J., Zhang, L.-L., Li, W., Zhang, Y., Zhang, Y., Liu, F., & Zou, L. (2022). Application of
metabolomics for revealing the interventional effects of functional foods on metabolic
diseases. Food Chemistry, 367(April 2021), 130697. https://doi.org/10.1016/
j.foodchem.2021.130697.

George, A.C., Schmitz-Afonso, I., Marie, V., Colsch, B., Fenaille, F., Afonso, C., &
Loutelier-Bourhis, C. (2022). A re-calibration procedure for interoperable lipid collision
cross section values measured by traveling wave ion mobility spectrometry. Analytica
Chimica Acta, 1226(July), 340236. https://doi.org/10.1016/j.aca.2022.340236.

Gil-Solsona, R., Sancho, J.V., Gassner, A., Weyermann, C., Hernández, F., Delémont,
O., & Bijlsma, L. (2021). Use of ion mobility-high resolution mass spectrometry in
metabolomics studies to provide near MS/MS quality data in a single injection. Journal of
Mass Spectrometry, 56(5). https://doi.org/10.1002/jms.4718.

Gimeno-Mallench, L., Mas-Bargues, C., Inglés, M., Olaso, G., Borras, C., Gambini, J., &
Vina, J. (2019). Resveratrol shifts energy metabolism to increase lipid oxidation in healthy
old mice. Biomedicine & Pharmacotherapy, 118(March), 109130. https://doi.org/
10.1016/j.biopha.2019.109130.

Gómez-Zorita, S., González-Arceo, M., Trepiana, J., Aguirre, L., Crujeiras, A.B., Irles,
E., … Portillo, M.P. (2020). Comparative effects of pterostilbene and its parent compound
resveratrol on oxidative stress and inflammation in steatohepatitis induced by high-fat high-
fructose feeding. Antioxidants, 9(11), 1042. https://doi.org/10.3390/antiox9111042.

Hines, K.M., May, J.C., McLean, J.A., & Xu, L. (2016). Evaluation of collision cross section
calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry.
Analytical Chemistry, 88(14), 7329–7336. https://doi.org/10.1021/
acs.analchem.6b01728.

Kapetanovic, I.M., Muzzio, M., Huang, Z., Thompson, T.N., & McCormick, D.L. (2011).
Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its
dimethylether analog, pterostilbene, in rats. Cancer Chemotherapy and Pharmacology, 68
(3), 593–601. https://doi.org/10.1007/s00280-010-1525-4.

Karu, N., Deng, L., Slae, M., Guo, A.C., Sajed, T., Huynh, H., … Wishart, D.S. (2018). A
review on human fecal metabolomics: Methods, applications and the human fecal
metabolome database. Analytica Chimica Acta, 1030, 1–24. https://doi.org/10.1016/
j.aca.2018.05.031.

Koh, Y.-C., Ho, C.-T., & Pan, M.-H. (2021). Recent Advances in Health Benefits of
Stilbenoids. Journal of Agricultural and Food Chemistry, 69(35), 10036–10057. https://
doi.org/10.1021/acs.jafc.1c03699.

Lacalle-Bergeron, L., Portolés, T., López, F.J., Sancho, J.V., Ortega-Azorín, C., Asensio,
E.M., … Corella, D. (2020). Ultra-Performance Liquid Chromatography-Ion Mobility
Separation-Quadruple Time-of-Flight MS (UHPLC-IMS-QTOF MS) metabolomics for short-
term biomarker discovery of orange intake: A randomized, controlled crossover study.
Nutrients, 12(7), 1916. https://doi.org/10.3390/nu12071916.

Lewinska, M., Santos-Laso, A., Arretxe, E., Alonso, C., Zhuravleva, E., Jimenez-Agüero,
R., … Andersen, J.B. (2021). The altered serum lipidome and its diagnostic potential for
Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma. EBioMedicine, 73,
103661. https://doi.org/10.1016/j.ebiom.2021.103661.

Maas, R. (2005). Pharmacotherapies and their influence on asymmetric dimethylargine
(ADMA). Vascular Medicine, 10(2_suppl), S49–S57. https://doi.org/10.1191/
1358863x05vm605oa.

Madatali Abuwani, A., Priyadarshini Dash, S., Ganesan, R., Renu, K., Vellingiri, B.,
Kandasamy, S., C.R., S. R., & Valsala Gopalakrishnan, A. (2021). Gut microbiome and
metabolic response in non-alcoholic fatty liver disease. Clinica Chimica Acta, 523
(October), 304–314. doi:10.1016/j.cca.2021.10.014.

Mairinger, T., Causon, T.J., & Hann, S. (2018). The potential of ion mobility–mass
spectrometry for non-targeted metabolomics. Current Opinion in Chemical Biology: Vol.
42 (pp. 9–15). Elsevier Ltd. https://doi.org/10.1016/j.cbpa.2017.10.015.

Paglia, G., & Astarita, G. (2017). Metabolomics and lipidomics using traveling-wave ion
mobility mass spectrometry. Nature Protocols, 12(4), 797–813. https://doi.org/
10.1038/nprot.2017.013.

Piras, C., Noto, A., Ibba, L., Deidda, M., Fanos, V., Muntoni, S., … Atzori, L. (2021).
Contribution of metabolomics to the understanding of NAFLD and NASH syndromes: A
systematic review. Metabolites, 11(10), 694. https://doi.org/10.3390/
metabo11100694.

Pirola, C.J., & Sookoian, S. (2018). Multiomics biomarkers for the prediction of nonalcoholic
fatty liver disease severity. World Journal of Gastroenterology, 24(15), 1601–1615.
https://doi.org/10.3748/wjg.v24.i15.1601.

Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., & Hollender, J.
(2014). Identifying small molecules via high resolution mass spectrometry: Communicating
confidence. Environmental Science & Technology, 48(4), 2097–2098. https://doi.org/
10.1021/es5002105.

Segers, K., Declerck, S., Mangelings, D., Heyden, Y.V., & Eeckhaut, A.V. (2019).
Analytical techniques for metabolomic studies: A review. Bioanalysis, 11(24), 2297–2318.
https://doi.org/10.4155/bio-2019-0014.

Vergani, L., Baldini, F., Khalil, M., Voci, A., Putignano, P., & Miraglia, N. (2020). New
perspectives of S-adenosylmethionine (SAMe) applications to attenuate fatty acid-induced
steatosis and oxidative stress in hepatic and endothelial cells. Molecules, 25(18), 4237.
https://doi.org/10.3390/molecules25184237.

Vivanco, F., Barderas, M. G., Laborde, C. M., Posada, M., De La Cuesta, F., Zubiri, I., &
Alvarez-Llamas, G. (2011). Metabolomic profiling for identification of novel potential
biomarkers in cardiovascular diseases. Journal of Biomedicine and Biotechnology (Vol.
2011, pp. 1–9). doi:10.1155/2011/790132.

Wang, T.J., Larson, M.G., Vasan, R.S., Cheng, S., Rhee, E.P., McCabe, E., … Gerszten,
R.E. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17
(4), 448–453. https://doi.org/10.1038/nm.2307.

Wolfender, J.-L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and
challenges for the metabolite profiling of complex natural extracts. Journal of
Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091.

Worley, B., & Powers, R. (2012). Multivariate analysis in metabolomics. Current

11

https://doi.org/10.1016/j.foodres.2022.112376
https://doi.org/10.1016/j.foodres.2022.112376
https://doi.org/10.1021/acs.analchem.7b00741
https://doi.org/10.1021/acs.analchem.7b00741
https://doi.org/10.1016/j.trac.2017.05.004
https://doi.org/10.1016/j.trac.2017.05.004
https://doi.org/10.1021/acs.jcim.2c00847
https://doi.org/10.1021/acs.est.0c05713
https://doi.org/10.1016/j.chroma.2009.09.018
https://doi.org/10.1002/mas.20108
https://doi.org/10.1002/mas.20108
https://doi.org/10.1038/s41419-018-1243-0
https://doi.org/10.1038/s41419-018-1243-0
https://doi.org/10.1016/j.foodchem.2021.130697
https://doi.org/10.1016/j.foodchem.2021.130697
https://doi.org/10.1016/j.aca.2022.340236
https://doi.org/10.1002/jms.4718
https://doi.org/10.1016/j.biopha.2019.109130
https://doi.org/10.1016/j.biopha.2019.109130
https://doi.org/10.3390/antiox9111042
https://doi.org/10.1021/acs.analchem.6b01728
https://doi.org/10.1021/acs.analchem.6b01728
https://doi.org/10.1007/s00280-010-1525-4
https://doi.org/10.1016/j.aca.2018.05.031
https://doi.org/10.1016/j.aca.2018.05.031
https://doi.org/10.1021/acs.jafc.1c03699
https://doi.org/10.1021/acs.jafc.1c03699
https://doi.org/10.3390/nu12071916
https://doi.org/10.1016/j.ebiom.2021.103661
https://doi.org/10.1191/1358863x05vm605oa
https://doi.org/10.1191/1358863x05vm605oa
https://doi.org/10.1016/j.cbpa.2017.10.015
https://doi.org/10.1038/nprot.2017.013
https://doi.org/10.1038/nprot.2017.013
https://doi.org/10.3390/metabo11100694
https://doi.org/10.3390/metabo11100694
https://doi.org/10.3748/wjg.v24.i15.1601
https://doi.org/10.1021/es5002105
https://doi.org/10.1021/es5002105
https://doi.org/10.4155/bio-2019-0014
https://doi.org/10.3390/molecules25184237
https://doi.org/10.1038/nm.2307
https://doi.org/10.1016/j.chroma.2014.10.091


CO
RR

EC
TE

D
PR

OO
F

L. Lacalle-Bergeron et al. Food Research International xxx (xxxx) 112376

Metabolomics, 1(1), 92–107. https://doi.org/10.2174/2213235X130108.
Zhou, Z., Tu, J., Xiong, X., Shen, X., & Zhu, Z.-J. (2017). LipidCCS: Prediction of collision

cross-section values for lipids with high precision to support ion mobility–mass
spectrometry-based lipidomics. Analytical Chemistry, 89(17), 9559–9566. https://
doi.org/10.1021/acs.analchem.7b02625.

Zong, Z., Liu, J., Wang, N., Yang, C., Wang, Q., Zhang, W., … Deng, H. (2021).

Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis
via promoting PGE2 degradation. Free Radical Biology and Medicine, 162(November
2020), 571–581. https://doi.org/10.1016/j.freeradbiomed.2020.11.014.

12

https://doi.org/10.2174/2213235X130108
https://doi.org/10.1021/acs.analchem.7b02625
https://doi.org/10.1021/acs.analchem.7b02625
https://doi.org/10.1016/j.freeradbiomed.2020.11.014

	LC-IMS-HRMS for identification of biomarkers in untargeted metabolomics: The effects of pterostilbene and resveratrol consumption in liver steatosis, animal model
	1. Introduction
	2. Materials and methods
	2.1. Chemicals and reagents
	2.2. Animals and study Design
	2.3. Liver sampling and sample treatment
	2.4. Instrumentation
	2.5. Data processing and statistical analysis
	2.6. Elucidation workflow

	3. Results and discusion
	3.1. Sample treatment
	3.2. Data processing and statistical analysis
	3.3. Elucidation process
	3.4. Changes in liver metabolome

	4. Conclusions
	
	Acknowledgements
	References


	fld74: 
	fld75: 
	fld118: 
	fld143: 
	fld159: 


