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A B S T R A C T   

Metabolite profiles of normal and defective dry, firm and dark (DFD) meat extracts with known ultimate pH 
(pHu) values were determined by Orbitrap Tribrid ID-X untargeted analysis coupled to chemometrics. An 
intelligent MS3 AcquireXTM workflow firstly approached the unambiguous characterization of detected features 
that were subsequently quantified by a complementary MS1 study of biological replicates. Chemometric research 
revealed how threonylphenylalanine (overexpressed in normal meats) together to tetradecadienoyl- and 
hydroxydodecanoyl-carnitines (both overexpressed in DFD meats) appropriately grouped meat groups assayed. 
Robustness of such biomarkers was confirmed through a time-delayed study of a blind set of samples (unknown 
pHu) and evidenced limitations of pHu as an isolated parameter for accurate meat quality differentiation. Other 
acyl-carnitines also characterized DFD samples, suggesting interferences induced by pre-slaughter stress (PSS) on 
lipid catabolism that would explain accumulation of such intermediate metabolites. Results achieved can ease 
understanding of biochemical mechanisms underlying meat quality defects.   

1. Introduction 

After decades of evolution, cattle industry has been oriented towards 
the production of fat reduced and heavier finishing animals with 
improved carcass cutability for the sake of sustainable profitability 
(McNeill et al., 2012). This practice favors the breeding of oversized 
animals with increased susceptibility to stressing conditions (Fiems, 
2012). This may explain the increasing occurrence of meat quality de-
fects in the production chain such as dark, firm and dry (DFD) meats 
with undesirable color/flavor and reduced shelf-life, inflicting impor-
tant economic losses for industry (Holdstock et al., 2014). Occurrence of 
DFD meats is related to depleted reservoirs of muscle glycogen previous 
to slaughter caused by the elevated glycogenolysis induced by pre- 
slaughter stress (PSS) motivated by intrinsic (i.e. sex, age, breed) and 
extrinsic (i.e. transportation, inadequate animal handling practices) 

factors (Ferguson & Warner, 2008). Such metabolic alterations preclude 
generation of lactic acid during conversion of muscle into meat, giving 
rise to abnormally high ultimate pH (pHu) values at the end of the 
maturation process. Easiness of pHu determination (normally at 24 h 
postmortem) made this measurement the standard operation protocol to 
determine the presence of DFD meats in the production chain. Never-
theless, there is no harmonized pHu criterion towards identification of 
DFD meats. According to the Meat Standards Australia (MSA) system, 
meats with pHu values higher than 5.7 can be considered as DFD 
(Loudon et al., 2018). In contrast, different studies establish such 
threshold beyond pH 6.0 considering the noticeable increasing of muscle 
water holding capacity (WHC) and the apparition of both a firm texture 
and off-flavors (Ponnampalam et al., 2017). Furthermore, there was 
argued how detection of DFD meat is not unfailingly related to high pHu 
values (Apaoblaza et al., 2020), thus increasing the need for more 
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accurate predictive approaches in meat quality assessment. 
Recent studies highlighted how alterations on meat proteome 

induced by stress could be successfully addressed by the search of reli-
able biomarkers through proteomic strategies supported by liquid 
chromatography-mass spectrometry (LC-MS) analysis (Marco-Ramell 
et al., 2018). Despite of efficiency shown by traditional gel-based LC-MS 
approaches to unveil PSS protein biomarkers (Fuente-Garcia et al., 
2019, 2020), analytical performance of modern LC-high resolution mass 
spectrometry (LC-HRMS) technology has recently allowed the devel-
opment of straightforward gel-free proteomic pipelines for rapid 
biomarker hunting in meat quality evaluation (Sentandreu et al., 2021). 

It must be emphasized how in current trans-omic era, combination of 
proteomic and metabolomic studies can provide a deeper biological 
understanding about the influence of PSS on meat quality, being also 
possible the integration of additional genetic (intrinsic) and environ-
mental (extrinsic) factors (Kasper et al., 2020). Contrary to existing 
literature about the elucidation of protein/peptide biomarkers linked to 
meat quality affected by PSS, little is known about the search of reliable 
metabolite predictors for early detection of defective meat. Since the 
metabolome informs about the functional state of an organism and it is 
not commonly breed- or species-specific, metabolite research in PSS 
meat can have a great interest mainly for translational studies (Kasper 
et al., 2020). Metabolomic research of PSS was conducted in blood and 
meat mainly through exploratory nuclear magnetic resonance (NMR) 
approaches (Beauclercq et al., 2016; Cônsolo et al., 2021; Muroya et al., 
2020) and, to a lesser extent, by targeted triple-quadrupole (QqQ) LC- 
MS analysis (Batchu et al., 2021). Inherent drawbacks of analytical 
platforms such as limited sensitivity (NMR) and flexibility (QqQ) can 
hinder efficiency in the search of reliable PSS metabolite biomarkers. 
Furthermore, there is a noticeable absence of metabolomic in-
vestigations assisted by modern LC-HRMS technology addressing the 
unveiling of unambiguous meat quality descriptors through untargeted 
approaches. 

This study aimed to develop an effective metabolomic pipeline 
supported by state-of-the-art Orbitrap Tribrid analysis with intelligent 
data acquisition and chemometrics for the search of reliable PSS bio-
markers. Normal and DFD (according to high pHu values) bovine meat 
samples were studied by qualitative Acquire XTM iterative data depen-
dent MS3 (dd-MS3) and quantitative full-MS1 analyses coupled to che-
mometrics that conformed an innovative and efficient untargeted 
metabolomics strategy for data acquisition and interpretation. Effi-
ciency of the methodology proposed was evaluated in terms of sensi-
tivity, accuracy and robustness to provide reliable and unambiguous 
results to differentiate normal from defective meats. Analytical capacity 
provided by this alternative can favor the implementation of break-
through LC-HRMS metabolite research for the creation of new insights 
into the understanding of responsible causes of the apparition of 
defective meats. 

2. Materials and methods 

2.1. Chemicals and reagents 

LC-MS grade methanol (MeOH) and ultrapure water (H2O) were 
from Merck KGaA (Darmstadt, Germany). Glacial acetic acid (HAc) was 
from Panreac (Barcelona, Spain). LC-MS grade formic acid (FA), ethanol 
(EtOH), ethylenediaminetetraacetic acid (EDTA, 99 % purity), Tris 
buffer (99 % purity) and 0.45 μm PVDF filters were from Scharlab 
(Scharlab S. L., Barcelona, Spain). 

Stable isotopically labeled internal standard (SIL-IS) 13C6-butylpar-
aben was supplied by Cambridge Isotope Laboratories (CIL Inc., And-
over, MA, USA), benzophenone-d10 was from Sigma Aldrich (St Louis, 
MO, USA) and AMMA-d3 (N-acetyl-S-(2-carbamoylethyl)-l-cysteine-d3) 
was from Toronto Research Chemicals (Toronto, Canada). All SIL-ISs 
had a minimum chemical and isotope purity of 95 %. A pooled SIL-IS 
mix solution was prepared in MeOH at a stock concentration of 0.25 

μg⋅mL− 1, storing aliquots at − 20 ◦C until use. Certified commercial 
standards (minimum purity of 95 %) terfenadine, Val-Tyr-Val, sulfa-
guanidine, sulfadimethoxine, reserpine, caffeine and acetaminophen 
were from Sigma Aldrich (St. Louis, MO, USA) for assurance/quality 
control (QA/QC) purposes. Individual QA/QC standard solutions 
(around 100 mg⋅L− 1) were prepared in acetone. A QA/QC mix solution 
containing all compounds at around 0.5 mg⋅L− 1 was prepared by mixing 
all individual QA/QC solutions with acetone. Finally, a technical quality 
control standard solution (tQC) was prepared by mixing QA/QC stan-
dard and SIL-IS mix solutions in water:MeOH (80:20, v/v) (resultant 
working concentration of 0.01 and 0.07 μg⋅mL− 1 for QA/QCs and SIL- 
ISs, respectively) which was aliquoted in 1 mL vials to avoid contami-
nation and stored at − 80 ◦C until use. 

Pierce ™ FlexMix ™ solution from Thermo Fished Scientific (Rock-
ford, IL, USA) was used for calibration of the LC-HRMS device in both 
positive and negative ionization modes before the injection of each 
analytical batch. 

2.2. Sample preparation 

A reference sample batch was made up by meat samples from 12 
crossbred animals belonging to different breeds provided by a com-
mercial abattoir in Asturias (Spain). Muscle samples were from Long-
issimus thoracis et lumborum (LTL) of yearling bulls slaughtered at 14–15 
months of age according to EU regulations (Council Regulations (EC) No 
853/2004 and No 1099/2009). Ten grams of LTL muscle were excised 
from the 13th rib at 24 h post-mortem and the epimysium was dissected. 
Meat aliquots were immediately vacuum-packed and stored at − 80 ◦C 
until processed for metabolite extraction. Reference samples were clas-
sified (Table S1A) according to their pHu values as normal (n = 6, pHu 
≤ 6.0) and DFD (n = 6, pHu > 6.0) replicates. Determination of pH was 
performed at the sixth rib of the LTL muscle at 24 h post-mortem. 

A complementary blind (validation) batch (8 replicates, Table S1B) 
was prepared and analyzed with a 3-month delay than its reference 
counterpart. Blind replicates were from different individuals (from 
different breeds) than those considered in the reference set but shared 
the same geographical origin and manipulation procedure, keeping their 
pHu unknown until finishing their chemometric study. 

Fig. S1 illustrates the sampling procedure followed to prepare the 
reference batch (Table S1A). Half a gram of LTL muscle sample was 
homogenized in 4 mL of extraction buffer (10 mM Tris pH 7.6 containing 
0.25 M sucrose, 1 mM EDTA and 25 μL of protease inhibitor cocktail), 
centrifuged at 20,000 g for 20 min at 4 ◦C and the supernatant filtered 
through a 0.45 µm PVDF filter. Seventy microliters of each sample were 
mixed with 300 µL of chilled EtOH (containing 0.15 % FA), vortexed (20 
s), stored at − 20 ◦C for 30 min and centrifuged at 3600 g for 20 min at 
4 ◦C. The pellet (proteins) was discarded and the supernatant was 
completely desiccated in a SPD121P SpeedVac vacuum concentrator 
(Thermo Scientific, San Jose, CA, USA). Samples were re-suspended in 
80 µL of an aqueous 0.1 % FA solution and 30 µL of the SIL-IS stock 
solution (final sample volume and SIL-IS working concentration were 
110 µL and 0.07 µg⋅mL− 1, respectively), vortexed, centrifuged at 20,000 
g for 10 min and finally poured into LC-MS vials. Before isolated vial 
encapsulation of NORMAL and DFD replicates, aliquots of 20 µL from 
each sample were pooled (total volume of 240 µL) to conform the quality 
control sample (QC). Same sampling procedure was applied to the 
validation batch (Table S1B) to prepare the respective biological rep-
licates. Reference and validation batches as well as, QC and tQC aliquots 
were stored at − 80 ◦C until analyzed. 

2.3. UHPLC-HRMS analysis of samples 

A Thermo Vanquish Horizon UHPLC system (ThermoFisher Sci., San 
Jose, CA USA) was interfaced to a Thermo Orbitrap ID-X Tribrid mass 
spectrometer (ThermoFisher Sci., Bremen, Germany), with a heated 
electrospray interface (H-ESI) operating in separate positive and 
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negative ionization modes. An autocalibration source (EASY-IC) was 
embedded in the H-ESI probe to preserve mass accuracy during analyses 
according to infused lock masses (anions and cations from fluoranthene 
reagent). Metabolite separation was achieved in a Thermo Hypersil 
Gold, 150 × 2.1 mm, 1.9 μm particle size column (ThermoFisher Sci., 
San Jose, CA USA) using water and MeOH, both with HAc at 0.1 %, as 
mobile phase A and B, respectively, at a flow rate of 0.3 mL⋅min− 1 under 
the following gradient conditions: initially 10 % B; linear 10–70 % B in 
18 min; linear 70–98 % B in 3.5 min; held for 3.5 min for washing; 10 % 
B in 0.1 min and held for column equilibration for 5 min. The total 
running time was 30.1 min. The injection volume was 2 μL and auto-
sampler and column temperatures were 8 ◦C and 35 ◦C, respectively. 

Mass spectrometry conditions were: H-ESI voltage, 3.5 kV and 3.2 kV 
for positive and negative ionization modes, respectively; sheath gas, 60 
arbitrary units (au); auxiliary gas, 20 au; ion transfer tube and vaporizer 
temperatures 290 ◦C and 330 ◦C, respectively. Samples from the refer-
ence batch (Table S1A) were separately analyzed through AcquireXTM 

dd-MS3 intelligent data acquisition and full-MS1 approaches according 
to untargeted qualitative and quantitative purposes, respectively. Full- 
MS1 analysis considered the 110–1100 m/z range at 120.000 FWHM (m/ 
z 200) resolving power. MS2 analysis was acquired by the Orbitrap 
analyzer at 15.000 FWHM (m/z 200) resolving power with a precursor 
m/z range of 110–1100 and the sequential MS3 fragmentation was 
featured by the Linear Ion Trap (LIT). Further MS acquisition parameters 
are detailed in Table S2. Replicates belonging to the reference and 
validation batches were relatively quantified by full-MS1 analysis. 

2.4. TRIBRID ID-X acquisition workflow for untargeted metabolite 
determination of the reference batch 

Fig. S2 summarizes the qualitative/quantitative data acquisition 
workflow considered in this study to ease understanding of the metab-
olomics pipeline proposed. Analyses were separately performed in 
positive and negative ionization modes. To enhance clarity of nomen-
clature used in this research, the term full-MS1 refers to isolated (non- 
multiplexed) intact molecule quantitative experiments whereas MS1 

corresponds to parent ion assays embedded in multiplexed AcquireXTM 

dd-MS3 qualitative research. 
Fig. S2A gives a general overview of the preliminary untargeted 

qualitative metabolite approach of the QC sample as suggested by Yusà 
et al. (2020) implementing the AcquireXTM intelligent data acquisition 
technology (Thermo Fisher Scientific, San Jose, CA, USA) operating in 
Deep Scan (DS) mode for a detailed dd-MS3 approach. Further Acquir-
eXTM operative details are provided by Fig. S2B indicating how a full- 
MS1 analysis of blank (water/MeOH 90:10) and QC samples initially 
conformed the exclusion and inclusion mass lists, respectively. Briefly, 
two blank injections firstly conditioned the LC-HRMS system whereas 
the third blank conformed the exclusion (background) mass list. Then, 
one single MS1 QC injection was performed to populate the raw inclu-
sion mass list from which it was subtracted previous background masses 
giving rise to the definitive inclusion mass list. The exhaustive dd-MS3 

analysis of such targeted masses was achieved through three iterative 
injections of the QC sample. Features sampled for MSn>1 analyses 
(whose MS1 were initially listed in the definitive inclusion mass list) in a 
considered iteration were automatically moved from the definitive in-
clusion list to the dynamic exclusion list to avoid their analysis in sub-
sequent iterations. 

After AcquireXTM DS dd-MS3 acquisition, biological replicates of the 
reference batch were randomly analyzed in duplicate (n = 24) in both 
positive and negative full-MS1 mode to ensure reliability of the untar-
geted quantitative study (Dudzik et al., 2018). A QC injection was 
intercalated throughout the sample list (total number of QC injections 
was 7). In addition, a tQC was also injected at the beginning and end of 
the reference sample list (n = 2). To test robustness of biomarkers 
initially proposed from the analysis of the reference sample set, same 
full-MS1 quantitative approach was applied to the validation batch 

(Table S1B, n = 8) with a 3-month delay and considering same QC and 
tQC aliquots than before (total number of QC and tQC injections 
throughout the sample list was 3 and 2, respectively). 

2.5. LC-HRMS data processing of quantitative full-MS1 and qualitative 
Acquire XTM DS dd-MS3 approaches 

Raw data files were automatically processed by Thermo Compound 
Discoverer™ v.3.2 (CD3.2 Thermo Fisher Scientific, San Jose, CA, USA). 
Fig. S3 illustrates data analysis workflow followed in this study, finding 
instrumental settings fully detailed at the supplementary file. Briefly, this 
workflow performs peak picking, retention time alignment and peak 
grouping across all samples. Moreover it also predicts the elemental 
composition of all features extracted and enables interrogation of intact 
mass data (for both full-MS1 and MS1 regarding quantitative and qual-
itative assays, respectively) through in-house (embedded in CD3.2 
related to intact mass data) and on-line repositories performing the 
similarity search of dd-MS2 information (from AcquireXTM assay) 
through mzCloud database (https://www.mzcloud.org/). Finally, QC- 
based batch normalization was applied through systematic error 
removal using random forest (SERRF) algorithm and the removal of the 
chemical background using blank samples. 

Identification of unassigned metabolites by CD3.2 was externally 
carried out by MetFrag (https://ipb-halle.github.io/MetFrag/) in silico 
fragmentation tool with subsequent searches loading ChemSpider 
(https://www.chemspider.com/) and PubChem (https://pubchem.ncbi.nlm. 
nih.gov/) databases. In any case, mass tolerance for MS1, MS2 and MS3 

interrogations was set to 5 ppm, 10 ppm and 0.5 Da, respectively. 
Manual assessment of structural MS3 information (from AcquireXTM 

assay) was restricted to only those biomarkers conforming definitive 
discriminant models elucidated. 

2.6. Statistical analysis 

A multivariate analysis was performed on processed quantitative 
full-MS1 data (integrated peak area) from the reference batch 
(Table S1A) aiming at finding discriminative features among meat 
groups assayed (normal vs DFD) using SIMCA 14.1 (Umetrics, Umea, 
Sweden) software. Resultant data matrices with the integrated peak area 
value of signals from peak picking extraction (in both positive and 
negative ionization modes) were log2 transformed and Pareto scaled. 
Thus, a preliminary principal component analysis (PCA) was done on 
raw full-MS1 data to ensure the absence of outliers and to provide a 
general overview about sample replicates clusterization and QC posi-
tioning in the score plot. Features with a corrected relative standard 
deviation (RSD) higher than 20 % on peak area across the QCs were 
removed and subsequently checked to confirm the expected improve-
ment in sample separation and QC positioning. A final PCA was calcu-
lated without QCs and considered the average value of sample replicates 
(analyzed in duplicate). 

To highlight the most discriminant features (potential metabolite 
biomarkers) characterizing NORMAL and DFD samples, an orthogonal 
partial least square discriminant analysis (OPLS-DA) was conducted 
selecting signals with |p[corr]| > 0.80 (positive mode) and > 0.95 
(negative mode) and with a variable influence on projection (VIP) 
higher than 1. Subsequently, univariate t-test analysis with Benjamini- 
Hochberg correction for false discovery rate (FDR) was performed and 
only those features with an adjusted p-value < 0.05 and a fold change 
between groups higher than 10 were finally selected (Benjamini & 
Hochberg, 1995). 

Quality of models was evaluated by the goodness-of-fit test (R2X), the 
proportion of the variance of the response variable that is explained by 
the model (R2Y), the predictive ability parameter (Q2) and significance 
of the model (PCV-ANOVA). A 7-fold cross-validation (CV) and permuta-
tion tests on the responses (500 random permutations) were performed 
to test robustness and possible overfitting. 
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Performance of biomarkers originally proposed by the statistical 
analysis of the reference set (Table S1A) was lately (3-month delay) 
assessed through the validation batch (Table S1B) by checking the fit of 
the observations to the developed models. It must be emphasized that 
pHu of validation replicates was unknown at the time of their LC-HRMS 
and statistical analyses. This ensured the unbiased assessment of the 
discriminant competence of biomarkers proposed by the study of the 
reference batch. 

2.7. Performance assessment of LC-HRMS analysis 

LC-HRMS data quality assessment was conducted in full-MS1 at 
120.000 FWHM resolving power (m/z 200) in positive and negative 
ionization modes according to the following considerations:  

- System contamination was evaluated through the injection of the 
mobile phase at initial chromatographic conditions (water/MeOH 
90:10 with HAc 0.1 %) to detect the presence of polysyloxanes (PSX) 
and poly(ethylene glycol) (PEG) interfering species. Contamination 
was checked before the analysis of reference and validation batches. 
Limit of presence was defined by the mean ± 3⋅SD standard devia-
tion (SD) of registered data from our internal Shewhart chart.  

- A suitability test was carried out before analysis of reference and 
validation batches in both polarity ionization modes. Performance of 
the LC-HRMS device was qualified regarding stability of retention 
time (Rt), signal intensity (integrated full-MS1 peak area) and mass 
accuracy on QA/QC standards according to data and limits (<mean 
± 3⋅SD) from our internal Shewhart chart.  

- Signal drift of the LC-HRMS system by time was assessed according 
to full-MS1 response of analytes populating the tQC sample injected 
at the beginning and end of the reference and validation sample lists. 
Results were expressed as the integrated peak area ratio of each 
isolated standard at end/initial sequence time. There was assumed a 
maximum signal variation of 30 % for each standard as an acceptable 
quality threshold.  

- Run-to-run full-MS1 chromatographic performance, mass accuracy 
and signal variability were also evaluated in positive and negative 
ionization modes for SIL-ISs in QC sample interleaved throughout 
reference and validation sample lists. A maximum Rt shift of ± 0.2 
min and a maximum peak width at FWHM of 0.1 min for individual 
SIL-IS were established as valid constraints for proper data acquisi-
tion. Full-MS1 mass accuracy was thresholded at 5 ppm and a 
maximum signal variability of 30 % expressed in terms of relative 
standard deviation (RSD) from each individual SIL-IS integrated 
peak area were used as acceptability constraints. 

3. Results and discussion 

Experimental LC-HRMS data in mzML format is freely available at 
https://saco.csic.es/index.php/s/BYGGteeCFAjypXo. 

3.1. Performance assessment of the LC-HRMS platform of analysis 

Before data processing of reference and validation batches, a suit-
ability analysis was carried out to certify proper instrumental perfor-
mance for the achievement of reliable results. The system contamination 
test indicated a normal presence (<mean ± 3⋅SD) of PSX and PEG spe-
cies before running reference and validation sample lists. Overall, results 
from the suitability test were between the acceptance limits (Fig. S4A). 
Signal drift associated to heavy-duty LC-HRMS operation was below 30 
% without drop decay evidences in the response of QA/QC standards 
from tQC sample after completing the analysis of the reference (blue 
triangles) and validation (orange squares) sample lists (Fig. S4B). 
Finally, run-to-run control (Fig. S4C) certified the high instrumental 
performance achieved in this study showing a maximum Rt shift of 0.03 
min, a maximum mass error of 4.1 ppm and peak area integration RSDs 

below 12 % regarding SIL-ISs from QCs injected throughout the refer-
ence (blue triangles) and validation (orange squares) sample lists. 

3.2. Qualitative untargeted AcquireXTM metabolite analysis of the 
reference batch 

Fig. S5 shows the updated number of features populating the in-
clusion and exclusion lists across iterations performed by the Acquir-
eXTM dd-MS3 workflow analysis proposed (Fig. S2, described in section 
2.4.) regarding QC sample analyzed in positive and negative ionization 
modes. Total number of MS1 features achieved after the 3-iteration duty 
cycle was about 47,000 and 19,000 in ESI+ and ESI-, respectively, 
obtaining MS3 structural information of 33,278 (ESI+) and 7647 (ESI-) 
among them. After this preliminary qualitative screening, the search of 
efficient meat quality descriptors was approached through the chemo-
metric analysis of full-MS1 data from the quantitative study of the 
reference batch (untargeted quantitative fingerprinting, see below) but 
just considering those aforementioned features with available MS3 in-
formation (coarse discriminant candidates). Thus, unambiguous iden-
tification of full-MS1 features with clear discriminant capabilities 
proposed by the chemometric (quantitative) approach was further 
refined by AcquireXTM DS dd-MS3 qualitative results. 

3.3. Untargeted quantitative fingerprinting of the reference batch: 
Multivariate analysis 

A PCA analysis of the full-MS1 data of coarse discriminant candidates 
was constructed with the reference set to check instrumental repro-
ducibility (Fig. S6A). Then, data from biological replicates (n = 12) and 
QCs (n = 4) was filtered by choosing only those features (filtered coarse 
discriminant candidates) with a corrected RSD lower than 20 % on peak 
area across the QCs which were also present in at least 60 % of QC in-
jections (giving rise to 32,444 and 7475 features in ESI+ and ESI-, 
respectively, Fig. S6B). There was obtained a similar clusterization than 
that exhibited by Fig. S6A with a tight positioning of QCs, certifying run- 
to-run reproducibility of the whole analyte fingerprint of samples 
assayed in the same line than shown by SIL-ISs in the preliminary 
instrumental performance assessment (Fig. S4C). A final PCA of was 
calculated without QC replicates and considering the average value of 
sample duplicates according to ionization modes assayed (averaged PCA 
models). Averaged models (Fig. 1) successfully differentiated, mainly in 
negative mode, NORMAL and DFD meat groups describing the first two 
PC components around 49 % and 53 % of variance in ESI+ and ESI- 

models, respectively. 
Supervised OPLS-DA models were developed from the averaged PCA 

data to maximize differences between meat groups assayed. Most 
discriminant features were highlighted according to the S-Plot in which 
signals located far out on the wings of the S combined high model in-
fluence with high reliability (see Fig. 2A and 2B). As a result, 37 and 5 
features (encircled data points in Fig. 2A and 2B) with |p(corr)| > 0.8 
(>0.95 in ESI-), VIP > 1, adjusted p-value < 0.05 and fold change > 10 
were selected in ESI+ and ESI-, respectively, to generate reliable pre-
dictive models (see Fig. 2C and 2D) whose statistical discriminant ca-
pabilities are summarized in Table S3 and fully characterized in Table 1. 
As we can see, even with acceptable R2X and R2Y values, a poor pre-
dictive capacity was achieved by ESI+ model (37 features) with a very 
low Q2, clearly suggesting a possible model overfitting. In contrast, three 
efficient predictive models were developed in ESI- based on two (model 
A), three (model B) and five (model C) features exhibiting excellent 
discriminant attributes (Table S3) that provided a remarkable differ-
entiation between meat groups assayed. From this, features populating 
ESI- discriminant models achieved the status of potential meat bio-
markers, using such nomenclature from now on throughout the discus-
sion section. 

To test robustness and the absence of possible overfitting of ESI+ and 
ESI- predictive models (Table S3), 7-fold cross-validation and 
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permutation tests on their responses (500 random permutations) were 
performed. Fig. S7 depicts the combined scatter plot of cross-validated 
(CV) and regular score vectors of the OPLS-DA discriminant models. It 
must be highlighted that the scatter plot of CV score vectors (orange 
dots) is analogous to the scatter plot of regular score vectors (blue dots) 
but indicated how sensitive was the discriminant model considering the 
iterative exclusion of an observation in the reference batch. Small dif-
ferences between CV and regular score vectors meant a high model 
stability as shown by A (2 biomarkers) and B (3 biomarkers) ESI- models 
(Figs. S7A and S7B, respectively) perfectly clustering NORMAL (blue 
circle clustering) and DFD (green circle clustering) replicates. In 
contrast, ESI- C and ESI+ predictive alternatives (Figs. S7C and S7D, 
respectively) had a noticeable spreading of sample groups. Thus, only A 
and B ESI- discriminant models (Table S3) were considered for external 
validation through the study of the blind (validation) batch. 

3.4. External validation of predictive A and B ESI- discriminant models 

External validation also aimed at the consideration of biological and 
instrumental variabilities as a source of error for discriminant models 
that could lead to misclassification of samples out of those belonging to 
the reference batch. Deviations in peak area integration were counter-
acted by SERRF normalization based on quality control (QC) correction. 
Briefly, SERRF works with a Random Forest machine learning algorithm 
(Breiman, 2001) which uses QC samples injected throughout reference 
and validation sample lists to build a model that estimates the system-
atical error (batch effect, day-to-day/run-to-run LC-HRMS signal varia-
tion, etc.) that is subsequently considered for signal normalization (Fan 
et al., 2019). Fig. S8 shows PCA of the averaged raw (A) and SERRF 
normalized (B) quantitative full-MS1 data from filtered coarse discrim-
inant candidates (see section 3.3.) in reference and validation batches 

Fig. 1. Averaged PCA biplot (loadings vs features, samples analyzed in duplicate) from ESI+ (left) and ESI- (right) quantitative full-MS1 analysis of the reference 
batch. Variance described by the first two PC components was around 49 % and 53 % in ESI+ and ESI- models, respectively. 

Fig. 2. S-plot obtained from the A) ESI+ and B) ESI- supervised OPLS-DA models from the averaged PCA data achieved by the quantitative multivariate analysis of 
the reference batch. Encircled red dots correspond to discriminant features accomplishing |p(corr)| > 0.8 (>0.95 in ESI-), VIP > 1, adjusted p-value < 0.05 and fold 
change > 10. OPLS-DA biplot (loadings vs features) of individuals and the C) 37 discriminant features from ESI+ and D) 5 from ESI-. 
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analyzed with a 3-month delay. As Fig. S8B evidenced, SERRF 
normalized QC samples (red dots) embedded in both batches assayed 
(same QC distributed throughout the reference and validation sample 
lists giving rise to a total number of 7) were all tightly clustered, 
demonstrating the high quality data acquisition and the proper batch-to- 
batch data correction performed in this research through SERRF 
normalization. 

Accuracy of biomarkers belonging to A and B models (detailed in 
Table 1) was utterly assessed by their application to appropriately 
classify (NORMAL or DFD) samples populating the validation batch. As 
shown in Fig. 3, both models (A, 2 biomarkers and B, 3 biomarkers) gave 
rise to an acceptable classification of all blind replicates with the 
exception of VB1 sample by model B. However, model A predicted VB5 
and VB6 samples outside Hotelling’s T2 ellipse (0.05 significance) limits 
on y-axis (Fig. 3A), which could be related to the limited number of 
samples in the training (reference) set that was not representative 
enough (n = 12). Furthermore, model B plotted all validation (blind) 
samples between the Hotelling’s T2 ellipse (0.05 significance), which 

could be explained by better description of within class variability by 
considering three biomarkers (instead those two from A model). 

According to the traditional classification of meat restricted to only 
pHu measurement, number of correct NORMAL/DFD assignments 
reached by A and B models applied to the validation batch were 7 over 8, 
in both cases. Very interestingly, this apparently “isolated mismatch” 
(VB8 with pHu 6.15, Table S1B) was classified as NORMAL by both 
discriminant models (Fig. 3). This result can be explained according to 
previous studies stating how classification of defective meats (normal vs 
DFD) cannot be entirely addressed just considering pHu values (Fuente- 
García et al., 2021; Sentandreu et al., 2021). This is of special relevance 
in those cases neighboring the pH 6.0 boundary (i. e. VB 1 and 8, 
Table S1B), making feasible the apparition of meats with pHus above 
6.0 exhibiting a normal behavior and vice versa. Similarly, VB1 replicate 
(pHu 5.83) also deserved special attention since its theoretical classifi-
cation ruled by only pHu matched the statistical verdict suggested by 
both discriminant models but it was predicted close to the DFD limit 
(mainly in the case of model B, Fig. 3B), making evident uncertainties 

Table 1 
Main discriminant features highlighted by the S-Plot representation of OPLS-DA models (Fig. S7) from the study of the reference sample batch.  

#Compound Tentative Identificationa Theoretical 
Formula 

Theoretical 
MWb 

ΔMass 
(ppm)c 

RT 
(min) 

Ionization 
mode 

Adj p- 
value 

Fold 
changed 

Predictive 
modele 

1 N/F C15H27N4O12P 486,1362 − 0,22 1,14 (-) 0.0008 130 ESI- C 
2 3,5-dihydroxyphenyl- 

dihydrogenphosphate 
C6H7O6P 205,99802 0 1,27 (+) 0,03 10 ESI+

3 D-myo-inositol-1,2-cyclicphosphate C6H11O8P 242,01917 0,07 1,27 (+) 0,02 16 ESI+

4 N/F C21H35N3O16 585,20187 0,24 1,29 (þ) 0,005 12 ESI+

5 N/F C19H27N6O9P3S 608,07689 − 0,68 1,32 (+) 0,03 26 ESI+

6 L-asparagine C4H8N2O3 132,05348 − 0,11 1,54 (+) 0,0001 44 ESI+

7 L-tyrosine C9H11NO3 181,07385 − 0,23 1,85 (+) 0,007 71 ESI+

8 ala-tyr C12H16N2O4 252,11103 0,08 1,85 (+) 0,004 56 ESI+

9 arg-leu C12H25N5O3 287,19576 0,09 2,59 (+) 0,02 23 ESI+

10 N/F C15H18N4O5 334,12774 0,06 2,67 (+) 0,007 14 ESI+

11 ala-leu-gly C11H21N3O4 259,15327 0,23 2,93 (+) 0,004 41 ESI+

12 phe-ala C12H16N2O3 236,1161 0,05 2,95 (+) 0,01 29 ESI+

13 thr-leu C10H20N2O4 232,14232 0,05 3,12 (+) 0,01 35 ESI+

14 met-tyr C14H20N2O4S 312,11443 0,17 3,19 (+) 0,03 34 ESI+

15 N/F C8H12N2O4S 232,05183 0,24 3,62 (+) 0,004 52 ESI+

16 N/F C8H10N2O3S 214,04125 0,17 3,62 (+) 0,004 16 ESI+

17 asp-val-lys C15H28N4O6 360,20109 0,57 3,70 (+) 0,002 32 ESI+

18 thr-phe C13H18N2O4 266,1264 − 0,98 3,93 (-) 0.02 54 ESI- A, B, C 
thr-phe C13H18N2O4 266,12668 0,1 3,97 (+) 0,04 73 ESI+

19 ile-tyr C15H22N2O4 294,15802 0,23 4,01 (+) 0,02 33 ESI+

20 phe-val C14H20N2O3 264,14743 0,15 4,77 (+) 0,003 27 ESI+

21 leu-ile C12H24N2O3 244,17874 0,17 5,16 (+) 0,0001 26 ESI+

22 leu-tyr C15H22N2O4 294,15804 0,28 5,18 (+) 0,0002 35 ESI+

23 met-leu C11H22N2O3S 262,13513 0,05 5,32 (+) 0,01 16 ESI+

24 val-phe C14H20N2O3 264,14743 0,13 5,64 (+) 0,007 24 ESI+

25 ile-ile-lys C18H36N4O4 372,27381 0,42 5,65 (+) 0,003 37 ESI+

26 leu-leu C12H24N2O3 244,17874 0,18 6,84 (+) 0,002 22 ESI+

27 leu-phe C15H22N2O3 278,16309 0,16 6,99 (+) 0,0008 18 ESI+

28 leu-gly-phe C17H25N3O4 335,18452 0,05 7,55 (+) 0,0006 31 ESI+

29 N/F C12H22N2O4S2 322,10199 − 0,33 7,66 (-) 0.03 60 ESI- C 
30 phe-leu C15H22N2O3 278,16307 0,08 8,19 (+) 0,006 25 ESI+

31 hydroxydodecanoylcarnitine adduct 
(þOAc) 

C21H41NO7 419,28831 0,02 18,02 (-) 0.00002 23 ESI- B, C 

hydroxydodecanoylcarnitine C19H37NO5 359,26729 0,33 18,04 (þ) 0,0004 20 ESI+

32 tetradecadienoic acid C14H24O2 224,17751 ¡0,52 19,76 (-) 0.001 54 ESI- A, B, C 
tetradecadienoylcarnitine C21H37NO4 367,27241 0,41 19,77 (þ) 0,007 71 ESI+

33 hydroxyhexadecadienoylcarnitine C23H45NO5 411,2986 ¡1,37 20,18 (þ) 0,007 19 ESI+

34 hydroxytetradecanoylcarnitine C21H41NO5 387,29864 0,43 20,41 (þ) 0,0005 26 ESI+

35 hydroxyhexadecenoylcarnitine C23H43NO5 413,31432 0,47 20,78 (þ) 0,002 10 ESI+

36 hexadecadienoylcarnitine C23H41NO4 395,3037 0,35 20,94 (þ) 0,04 125 ESI+

37 hydroxyoctadecadienoylcarnitine C25H45NO5 439,32989 ¡1,3 21,22 (þ) 0,02 17 ESI+

38 hydroxyhexadecanoylcarnitine C23H45NO5 415,32987 0,24 21,34 (þ) 0,02 25 ESI+

39 hydroxyoctadecenoylcarnitine C25H47NO5 441,34556 0,32 21,53 (þ) 0,006 33 ESI+

a Tentative assignments from automated Compound Discoverer analysis of MS1 and MS2 data from AcquireXTM assay (see section 2.5). Light and bold typeface are 
referred to assignments exhibiting a higher abundance in NORMAL and DFD meat groups assayed, respectively. 

b Theoretical neutral mass. 
c Mass shift considering theoretical and observed masses. 
d Fold-change calculated as the ratio (higher/lower) of averaged values across replicates of each feature in NORMAL and DFD meat groups assayed. 
e Statistical discriminant capabilities of ESI+ and ESI- models from OPLS-DA analysis are detailed in Table S3. N/F: match not found. 
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about correct classification of meats with pHus around 6.0. 

3.5. Validation of tentative identification of metabolite biomarkers made 
by Acquire XTM DS dd-MS3 analysis 

Metabolomic studies in food certification are mainly discriminative 
and predictive, but appropriate identification of biomarkers is essential 
to understand sample classification (Righetti et al., 2018). In this 
research, there was finally proposed 3 statistically significant ESI- bio-
markers from initial 39 ESI+/ESI- candidates (see Table 1), all tenta-
tively identified by automated CD3.2 analysis of MS1-MS2 data 
according to the five-level identification scale developed by Schymanski 
et al (2014). Tetradecadienoylcarnitine (models A and B), hydrox-
ydodecanoylcarnitine (model B) and threonylphenylalanine (Thr-Phe, 
models A and B) were level 3 identified since their unequivocal 

molecular formula was unambiguously assigned by CD3.2 to biomarker 
candidates according to MS1 mass accuracy (5 ppm mass deviation) 
combined with their respective ESI+/ESI- dd-MS2 spectra. However, 
such spectral information was not enough to differentiate possible po-
sitional isomers of suggested descriptors. Thus, a manual inspection of 
their dd-MS1-3 information was performed to refine their structural 
properties. 

As an example, Fig. 4 depicts ESI+/- extracted ion chromatograms 
and MS2 spectra of tetradecadienoylcarnitine. The [M− H]- of tetrade-
cadienoic acid (mass error of 0.5 ppm) was detected in ESI- (in source 
fragment from the loss of the carnitine residue occurred in negative 
ionization, Fig. 4A) as well as its characteristic, but not specific, MS2 

product ion (Fig. 4B) at m/z- 59.01346 (mass error of 6.6 ppm) 
considering three stepped HCD fragmentation energies. At the same 
retention time than tetradecadienoic acid, there was also present an ion 

Fig. 3. Validation of ESI- OPLS-DA discriminant models proposed (A, two biomarkers; B, three biomarkers) through the combined scatter plot of reference and 
validation batches considering Hotelling’s T2 ellipse with a 0.05 significance. Colors used: NORMAL (blue dots), DFD (green dots) and BLIND (yellow dots). 

Fig. 4. Dd-ms2 spectral information of tetradecadienoylcarnitine from QC sample provided by Acquire XTM analysis (further details in Table S4). A, extracted ion 
chromatogram (XIC) of [M− H]- corresponding to tetradecadienoic acid; B, MS2 ESI- spectra of tetradecadienoic acid; C, XIC of [M + OAc]- from tetradecadie-
noylcarnitine; D, MS2 ESI- spectra of the tetradecadienoylcarnitine acetate adduct; E, XIC of [M + H]+ from tetradecadienoylcarnitine; F; MS2 ESI+ fragmentation 
pattern of tetradecadienoylcarnitine. 
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at m/z- 426.2860 (Fig. 4C) whose 203.1158 mass increase could corre-
spond to an acetate adduct of carnitine (mass error of 0.3 ppm) from the 
incorporation of acetic acid into the mobile phase. The presence of such 
adduct (acylcarnitine-tetradecadienoid acid) was feasible since acyl-
carnitine compounds have an amphoteric character whose quaternary 
amine charge can be neutralized by acetate ions from the mobile phase. 
This hypothesis was supported by MS2 analysis of precursor ion at m/z- 

426.2860 (Fig. 4D) giving rise to the apparition of the product at m/z- 

223.1706 (mass error of 1.1 ppm) corresponding to tetradecadienoic 
acid after the loss of the acylcarnitine moiety (as shown by Fig. 4A). Due 
to the amphoteric character of tetradecadienoylcarnitine and to proper 
ensure its unambiguous characterization, ESI+ data was also checked. 
The [M + H]+ of tetradecadienoylcarnitine (m/z+ at 368.2797, mass 
error of 0.41 ppm) was appropriately aligned to its aforementioned 
negatively charged counterparts (Fig. 4E). Its MS2 breakdown pattern 
(Fig. 4F) revealed the presence of fragments at m/z+ 85.0281, 309.2069, 
207.1738, 189.1638, 144.1020 and 91.0540 (mass shifts below 3 ppm in 

all cases) that were fully compatible to the tetradecadienoylcarnitine 
structure (Table S4). 

The structural characterization procedure all three biomarkers pro-
posed was moved forward to MS3 assay, summarizing Table S4 main 
findings from the manual inspection of their MS1-3 data provided by 
AcquireXTM DS dd-MS3 analysis. It must be emphasized how tentative 
assignments proposed by CD3.2 dd-MS2 data processing (Table 1) were 
comparable to those manually elucidated (Table S4), confirming reli-
ability of automated qualitative analysis performed. 

3.6. Biological significance of elucidated meat quality biomarkers 

Results obtained in this research revealed significant increased levels 
of long chain acyl-carnitines (Table 1) with special statistical relevance 
of tetradecadienoylcarnitine and hydroxydodecanoylcarnitine in DFD 
meats compared to normal meats. Such compounds are metabolic in-
termediates of lipid catabolism whose main role is the transport of acyl 

Fig. 5. Overview of the dysfunctional metabolism of long chain acyl-carnitines occurring in muscle cells of pre-slaughter stressed animals.  
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groups from the cell cytosol into the mitochondrial matrix, so that they 
can enter into the β-oxidation to be broken down to produce energy. 
Their increase in DFD meats would be directly related to the particular 
muscular cell dysfunctional situation occurring in pre-slaughter stressed 
animals as depicted by Fig. 5, finding how affected individuals are 
characterized by a depletion of their glycogen/glucose reserves prior to 
slaughter (Fuente-García et al., 2022). Consequently, glucagon will be 
released which, in turn, will activate cAMP-dependent protein kinase 
(PKA), inactivating acetyl-CoA carboxylase (ACC) through phosphory-
lation (Fig. 5). The increase of AMP/ATP ratio will also allow that AMP- 
activated protein kinase (AMPK) phosphorylates and inactivates ACC, 
thus inhibiting the malonyl-CoA synthesis. This will open the door to 
fatty acid catabolism since activity of carnitine acyl-transferase 1 (CPT1) 
is no longer inhibited by malonyl-CoA. It must be emphasized how CPT1 
enables the conversion of long-chain acyl-CoA into long-chain acyl- 
carnitines, making their transport feasible from the cell cytosol into the 
mitochondrial matrix via acyl-carnitine/carnitine transporter (Nelson & 
Cox, 2017). In the matrix, the acyl group is transferred again to mito-
chondrial CoA, releasing carnitine to return to the outer mitochondrial 
membrane (Makrecka et al., 2014). PSS conditions hinders the oxygen 
supply and promotes a situation of cellular stress in muscle that can 
interrupt the mitochondrial oxidative metabolism and ATP production 
through the Krebs cycle. Failure of mitochondrial respiration will inac-
tivate activity of carnitine acyltransferase 2 (CPT2) in cell matrix, 
blocking the conversion of long-chain acylcarnitines to long-chain acyl- 
Coa whose entrance into β-oxidation pathway would be impaired 
(Dambrova et al., 2021). Final consequence of PSS would be the accu-
mulation of metabolic intermediates such as long chain acyl-carnitines 
(Fig. 5) as evidenced in DFD samples assayed (Table 1). 

Regarding multiple etiology of the third metabolite biomarker 
elucidated in this research (threonylphenylalanine), further research is 
needed to refine our knowledge about biochemical reasons of its under- 
expression in DFD meats studied. In any case, usefulness of such 
dipeptide as a meat quality descriptor was appropriately addressed 
considering results achieved. 

4. Conclusions 

The untargeted metabolomics workflow proposed successfully 
addressed discrimination of normal and DFD beef samples assayed 
through the unveiling of three robust biomarkers. The analysis of a 
validation (blind) batch of samples further confirmed reliability of tet-
radecadienoylcarnitine, hydroxydodecanoylcarnitine and threonylphe-
nylalanine as unambiguous meat quality descriptors, highlighting risks 
associated with the only consideration of pHu as the only parameter to 
detect the presence of true DFD meats (mainly in those cases with pHu 
close to 6). Interestingly, outside tetradecadienoylcarnitine and 
hydroxydodecanoylcarnitine there were also other long chain acyl- 
carnitines species overexpressed in DFD meats, suggesting how accu-
mulation of such metabolite intermediates can be the result of the 
increase induced by PSS on lipid catabolism. 

Future metabolomic investigations considering different bovine 
breeds are needed in the search of reliable meat quality biomarkers that 
have to be unambiguously characterized by rigorous analytical stan-
dards. Results demonstrated that untargeted metabolomic research 
supported by innovative LC-HRMS strategies in conjunction with che-
mometrics, is a powerful tool for accurate beef classification far beyond 
the easy-to-do but inaccurate pH determinations. Moreover, methodol-
ogy proposed can facilitate the understanding of biochemical pathways 
involved in the apparition of defective meats. 
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