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Abstract

Let H be an ultraspherical hypergroup and let A(H) be the Fourier algebra associated with H. In this
paper, we study the dual and the double dual of A(H). We prove among other things that the subspace
of all uniformly continuous functionals on A(H) forms a C∗-algebra. We also prove that the double dual
A(H)∗∗ is neither commutative nor semisimple with respect to the Arens product, unless the underlying
hypergroup H is finite. Finally, we study the unit elements of A(H)∗∗.
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1. Introduction

Let G be a locally compact group and let A(G) be the Fourier algebra associated with
G. In 1973, Dunkl and Ramirez [9] introduced the notion of weakly almost periodic
functionals on A(G) extending the classical notion of weakly almost periodic functions
on locally compact abelian groups. In 1974, the space of uniformly continuous
functionals was introduced by Granirer [13], extending yet another classical notion
of uniformly continuous functions. These spaces and their duals were well studied by
many authors.

Let H be an ultraspherical hypergroup associated with a locally compact group G
and a spherical projector π. Let A(H) denote the Fourier algebra corresponding to the
ultraspherical hypergroup H. Also, let VN(H) denote the hypergroup von Neumann
algebra of H. The algebra A(H), although introduced a decade ago, has not received
much attention. For some of the recent contributions to A(H), see for example, [7, 10,
11, 23]. This paper is a continuation of the series of results obtained by the first and the
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second authors. The modest aim of this note is to contribute to the study of the dual
and the bidual of A(H).

The notion of weakly almost periodic functionals and uniformly continuous
functionals on A(H) has been studied in a recent paper [11]. In Section 3 of this paper,
we show that the space of all uniformly continuous functionals forms a C*-algebra.
This is Theorem 3.4. For the case of locally compact groups, the main ingredient
in the proof of this is the fact that singletons are sets of spectral synthesis. In 2014,
Degenfeld-Schonburg et al. [7] produced examples of ultraspherical hypergroups for
which singletons need not be sets of spectral synthesis for the corresponding Fourier
algebra. Our idea is to show that the space of uniformly continuous functionals is the
image of a C*-algebra under a C*-homomorphism.

In Section 4, we study the dual of VN(H). We characterize the existence of left
and right identities for the dual of VN(H). We also characterize when the algebra
VN(H)∗ is semisimple. Then we take up the dual of the space of uniformly continuous
functionals.

One of the classical results of Richard F. Arens says that if G is an infinite locally
compact group, then the group algebra L1(G) cannot be Arens regular. This result has
been generalized to the Fourier algebra of a locally compact group by Lau [17] under
the assumption that the group G is amenable. In Theorem 4.3, we prove that the Fourier
algebra of an ultraspherical hypergroup is Arens regular if and only if H is finite under
the assumption that A(H) has a bounded approximate identity.

Finally, in Section 5, we study unit elements in VN(H)∗. Our main aim in this section
is to characterize when an element of A(H)∗∗ is also an element of A(H) in terms of
the unit elements.

2. Preliminaries

2.1. Hypergroups. We first recall the definition of a hypergroup. In [15], Jewett
calls a hypergroup a convo.

DEFINITION 2.1. A nonempty locally compact Hausdorff space H is said to be
a hypergroup if there exists a binary operation ∗ on M(H), the space of all
complex-valued bounded Radon measures on H, satisfying the following conditions.

(i) (M(H), ∗) is an algebra.
(ii) For every x, y ∈ H, δx ∗ δy is a probability measure and the mapping (x, y) �→

δx ∗ δy is continuous from H × H to M1(H).
(iii) There exists a unique element e ∈ H such that for all x ∈ H, δx ∗ δe = δe ∗

δx = δx.
(iv) There exists a unique homeomorphism x �→ x− of H such that the following hold.

(a) (x−)− = x for all x ∈ H.
(b) If μ̂ is defined by

∫
H f (x) dμ̂(x) =

∫
H f (x−) dμ(x) for all f ∈ Cc(H), then

δ̂x ∗ δy = δy− ∗ δx− for all x, y ∈ H.
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(c) For every x, y ∈ H, supp(δx ∗ δy) is compact. Further, the mapping
(x, y) �→ supp(δx ∗ δy) is continuous from H × H to K(H), where K(H)
denotes the space of all nonempty compact subsets of H equipped with the
‘Michael Topology’. See [21].

The following lemma is well known in the context of locally compact groups. As
we cannot find any reference, we are providing a proof here.

LEMMA 2.2. Let H be a hypergroup. If every σ-compact open subhypergroup of H is
compact, then H is compact.

PROOF. The proof is by contradiction. Suppose that H is noncompact. Let H0 be the
subhypergroup of H generated by a compact symmetric neighborhood of e. Then H0
is open and σ-compact and so under our hypothesis, H0 is compact. Choose x1 in H
that is not in H0. Then the union of H0 and {x1, (x1)−} is again a compact symmetric
neighborhood of e. Let H1 be the subhypergroup that it generates. Again, H1 is open
and σ-compact and hence compact. Choose x2 in H that is not in H1 and let H2 be
the subghypergroup generated by the union of H1 and {x2, (x2)−}. As said earlier, H2
is compact. We can keep doing this infinitely, thereby obtaining a sequence xn of
elements from H and an increasing sequence Hn of open, compact subgroups with xn

in Hn but not in Hn−1. Let H′ be the union of all the Hn. Then, once again, H′ is an open
σ-compact subhypergroup of H and hence is compact. So the sequence {xn}must have
a cluster point y in H′. But if y is in H, it is in Hk for some k, so Hk is a neighborhood
of y that does not contain xn for any n > k, which is a contradiction. �

We now define the notion of a spherical projector on a locally compact group G
[22, Definition 2.1].

DEFINITION 2.3. A map π : Cc(G)→ Cc(G) is called a spherical projector if it is
linear and satisfies the following for all f , g ∈ Cc(G).

(i) (a) π2 = π and π is positivity preserving;
(b) π(π( f )g) = π( f )π(g);
(c) 〈π( f ), g〉 = 〈 f , π(g)〉;
(d)

∫
G π( f )(x) dx =

∫
G f (x) d.

(ii) π(π( f ) ∗ π(g)) = π( f ) ∗ π(g).
(iii) Let π∗ : M(G)→ M(G) denote the transpose of π and let Ox = supp(π∗(δx)),

x ∈ G. Then for all x, y ∈ G :

(a) either Ox ∩ Oy = ∅ or Ox = Oy;
(b) if x ∈ Oy then x−1 ∈ Oy−1 ;
(c) if Oxy = Oe then Oy = Ox−1 ;
(d) the map x �→ Ox from G to K(G) is continuous.

Note that π extends to a norm decreasing linear map on various function spaces,
including Lp(G), 1 ≤ p ≤ ∞. A function f is called π-radial if π( f ) = f and similarly,
a measure μ is called π-radial if π∗( μ) = μ.
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Let H = {ẋ = Ox : x ∈ G}, equipped with the natural quotient topology under the
quotient map p : G→ H. We identify M(H) with the space of all π∗-radial measures
in M(G), with the product defined by δẋ ∗ δẏ = π

∗(π∗(δx ∗ δy)) for all x, y ∈ G. With this
structure, H becomes a locally compact hypergroup, called a spherical hypergroup [22,
Theorem 2.12]. A spherical hypergroup is further called an ultraspherical hypergroup
if the modular function on G is π-radial.

The most common example of an ultraspherical hypergroup is the double coset
hypergroup. Let G be a locally compact group containing a compact subgroup K.
Define π : Cc(G)→ Cc(G) as

π( f )(x) =
∫

K

∫
K

f (k′xk) dk dk′.

Then π defines a spherical projector and the resulting hypergroup is an ultraspherical
hypergroup. Another interesting class of examples for ultraspherical hypergroups in
the context of Lie groups is due to Damek and Ricci [6]. The spherical projector was
called an average projector in [6].

A left Haar measure on a hypergroup H is a nonzero regular Borel measure m
such that px ∗ m = m for all x ∈ H. In this note, by a Haar measure, we mean a left
Haar measure. It is well known that commutative (or compact or discrete) hypergroups
admit a Haar measure. In fact, a Haar measure on a hypergroup (if it exists) is unique
up to a scalar multiple [15]. It remains an open question whether every locally compact
hypergroup admits a Haar measure. It is shown in [22] that a Haar measure exists on
an ultraspherical hypergroup.

2.2. Fourier algebra. Let G be a locally compact group with a fixed Haar measure
denoted by dx. Let A(G) and B(G) denote the Fourier and Fourier–Stieltjes algebras,
respectively, introduced by Eymard [12] in his seminal paper. Let H be an ultraspher-
ical hypergroup associated to a locally compact group G and a spherical projector π.
The map π extends to be a norm decreasing contraction on A(G).

The Fourier algebra of an ultraspherical hypergroup is defined as the range of π
inside A(G). The algebra A(H) is commutative, semisimple, regular and Tauberian,
and the character space Δ(A(H)) of A(H) can be canonically identified with H. The
Fourier–Stieltjes algebra of H is defined as the algebra of all π-radial functions in
B(G). For more details on these algebras, see [22].

Let λ denote the left regular representation of H on L2(H) given by

λ(ẋ)( f )(ẏ) = f (ẋ− ∗ ẏ) (ẋ, ẏ ∈ H, f ∈ L2(H)).

This can be extended to L1(H) by λ( f )(g) = f ∗ g for all f ∈ L1(H) and g ∈ L2(H).
Let C∗λ(H) denote the completion of λ(L1(H)) in B(L2(H)) which is called the reduced
C∗-algebra of H. The von Neumann algebra generated by {λ(ẋ) : ẋ ∈ H} is called the
von Neumann algebra of H, and is denoted by VN(H). Note that VN(H) is isometrically
isomorphic to the dual of A(H). Moreover, A(H) can be considered as an ideal of
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Bλ(H), where Bλ(H) is the dual of C∗λ(H). We denote by 〈·, ·〉0 the duality between
C∗λ(H) and Bλ(H).

Let q : C∗λ(H) −→ C∗λ(H)∗∗ be the canonical embedding and i : C∗λ(H) −→ VN(H)
be the inclusion map. Then, by [8, Proposition 12.1.5], there exists an ultraweakly
continuous ∗-homomorphism ĩ from C∗λ(H)∗∗ onto VN(H) such that

ĩq(T) = i(T) = T (T ∈ C∗λ(H)).

The following lemma is a simple and useful observation, which is a consequence of
[8, 12.1.5] and [8, 12.1.3(ii)].

LEMMA 2.4. If T ∈ C∗λ(H) and u ∈ A(H), then 〈T , u〉0 = 〈u, ĩ(T)〉.
Let K be a subhypergroup of an ultraspherical hypergroup H and let L = p−1(K).

Then L is a closed subgroup of G and the pair (L, π|L) defines the ultraspherical
hypergroup K. It follows from [22, Theorem 3.10] that A(H) and A(K) can be identified
with Aπ(G) and Aπ|L (L) as Banach spaces, respectively.

2.3. Arens product. Let A be a commutative Banach algebra. For any a ∈ A, let
ρa : A −→ A be the mapping defined by ρa(b) = ba for b ∈ A. An element a ∈ A is
called weakly completely continuous if ρa is a weakly compact operator onA andA is
called weakly completely continuous if every a ∈ A is weakly completely continuous.

The Arens products on A∗∗ are defined by the following three steps. For u, v ∈ A,
T ∈ A∗ and m, n ∈ A∗∗, we define T · u, u · T , m · T , T · m ∈ A∗ and m�n, m♦n ∈ A∗∗
as follows:

〈T · u, v〉 = 〈T , uv〉, 〈u · T , v〉 = 〈T , uv〉
〈m · T , u〉 = 〈m, T · u〉, 〈T · m, u〉 = 〈m, u · T〉
〈mn, T〉 = 〈m , n · T〉, 〈m♦n, T〉 = 〈n, T · m〉.

A is said to be Arens regular if � and ♦ coincide onA∗∗.
Let X be a closed topologically invariant subspace of VN(H) containing λ(ė). A

linear functional m ∈ X∗ is called a topologically invariant mean on X if

‖m‖ = 〈m, λ(ė)〉 = 1 and 〈m, u · T〉 = u(ė)〈m, T〉

for every T ∈ X, u ∈ A(H). We denote by TIM(Ĥ) the set of all topologically invariant
means on VN(H). It is shown in [23] that VN(H) always admits a topologically
invariant mean.

Throughout this paper, G will denote a locally compact group, π a spherical
projector and H an ultraspherical hypergroup associated with G and π.

3. Uniformly continuous functionals

In this section, we study the space of all uniformly continuous functionals on A(H).
We first show that this space is a C∗-algebra. The results of this section, corresponding
to locally compact groups, can be found in [14]. We begin with a simple lemma. This
is motivated by [22, Theorem 3.9].
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LEMMA 3.1. The mapping π∗ is a weak∗–weak∗-continuous isomorphism from VN(H)
onto VNπ(G).

PROOF. Let ψ : VNπ(G)→ VN(H) be defined as ψ(T) = T |L2(H). It is shown by
Muruganandam [22] that ψ is a *-isomorphism and therefore ψ−1 is also a
*-isomorphism. Thus, to prove this lemma, it would be enough to show that π∗ = ψ−1.
Since {λH( f ) : f ∈ Cc(H)} is weak∗-dense in VN(H), it would suffice to show that
π∗(λH( f )) = ψ−1(λH( f )) for all f ∈ Cc(H).

Let f ∈ Cc(H). Then there exists a unique radial element f̃ ∈ Cc(G) such that
π( f̃ ) = f . Further, ψ(λG( f̃ )) = λH( f ). Hence, for u ∈ A(G), we have

〈u, π∗(λH( f ))〉 = 〈π(u), λH( f )〉 =
∫

H
π(u)(ẋ) f (ẋ) dẋ

=

∫
G
π(u)(x) f̃ (x) dx =

∫
G

u(x)π( f̃ )(x) dx

=

∫
G

u(x) f̃ (x) dx = 〈u, λG( f̃ )〉 = 〈u,ψ−1(λH)( f )〉.

Hence, the lemma is proved. �

DEFINITION 3.2. Let T ∈ VN(H). Then the support of T , denoted supp(T), is the
closed set consisting of all elements x ∈ H such that for every neighbourhood Ux of
x, there exists v ∈ A(H) with supp(v) ⊆ Ux and 〈T , v〉 � 0.

Let UCB(Ĥ) denote the closed linear span of {u · T : u ∈ A(H), T ∈ VN(H)}. The
elements in UCB(Ĥ) are called uniformly continuous functionals on A(H). Let

UCc(Ĥ) = {T ∈ VN(H) : supp(T) is compact}.

REMARK 3.3. It can be shown as in the group case that if T ∈ UCc(Ĥ), then there
exists u ∈ A(H) such that supp(u) is compact and u · T = T . Thus, it follows that
UCc(Ĥ) is dense in UCB(Ĥ).

Here is our first main result. This is an analogue of [14, Proposition 2]. In this proof,
ι will denote the canonical inclusion of A(H) inside A(G).

THEOREM 3.4. The space UCB(Ĥ) is a C∗-subalgebra of VN(H).

PROOF. Our first claim is π∗(UCc(Ĥ)) = UCc(Ĝ) ∩ VNπ(G).
Let T ∈ UCc(Ĥ). Then, by Remark 3.3, there exists u ∈ A(H) ∩ Cc(H) such that

u · T = T . Let ũ ∈ A(G) ∩ Cc(G) with π( ũ ) = u. Then, for w ∈ A(G), we have

〈w, π∗(T)〉 = 〈w, π∗(u · T)〉 = 〈π(w), u · T〉
= 〈π(w) · u, T〉 = 〈π(w) · π( ũ ), T〉
= 〈π(w · π( ũ )), T〉 = 〈w · ι(π( ũ )), π∗(T)〉
= 〈w, ι(π( ũ )) · π∗(T)〉.

Therefore, π∗(T) = ι(π( ũ )) · π∗(T) ∈ UCc(Ĝ) ∩ VNπ(G).
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We now prove the other inclusion. Let T̃ ∈ UCc(Ĝ) ∩ VNπ(G). By Lemma 3.1, there
is a unique T ∈ VN(H) such that π∗(T) = T̃ . Choose v ∈ Aπ(G) such that supp(v) is
compact and v ≡ 1 on some open set containing supp(T̃). It is clear that v.T̃ = T̃ and
π(v).T ∈ UCc(Ĥ). Now, for any w ∈ A(G), we have

〈w, π∗(π(v) · T)〉 = 〈π(w), π(v) · T〉 = 〈π(v) · π(w), T〉
= 〈π(π(v) · w), T〉 = 〈π(v) · w, π∗(T)〉
= 〈w, π(v) · π∗(T)〉 = 〈w, v · T̃〉 = 〈w, T̃〉.

Therefore, π∗(π(v) · T) = T̃ . Since π(v) · T ∈ UCc(Ĥ), the converse follows.
Our second claim is π∗(UCB(Ĥ)) = UCB(Ĝ) ∩ VNπ(G).
Let ψ be the map defined in Lemma 3.1. As π∗ is a *-isomorphism between VN(H)

and VNπ(G), it follows that π∗ is a closed map. Hence, by the first claim, π∗(UCB(Ĥ)) is
a closed subspace of VNπ(G) containing UCc(Ĝ) ∩ VNπ(G). Since UCc(Ĝ) ∩ VNπ(G)
is dense in UCB(Ĝ) ∩ VNπ(G), it follows that π∗(UCB(Ĥ)) = UCB(Ĝ) ∩ VNπ(G).

Thus, we have ψ(UCB(Ĝ) ∩ VNπ(G)) = UCB(Ĥ). Since UCB(Ĝ) and VNπ(G)
are C*-algebras and also as ψ is a *-isomorphism, it follows that UCB(Ĥ) is a
C*-algebra. �

REMARK 3.5. The above theorem of course extends [14, Proposition 2]. However, our
proof makes use of the same method.

For an ultraspherical hypergroup H, let

C(Ĥ) = {T ∈ VN(H) : TC∗λ(H) ∪ C∗λ(H)T ⊆ C∗λ(H)}.

Our next result says that the space C(Ĥ) is a C∗-algebra. For the case of locally compact
groups, see [14]. As the proof of Proposition 3.6 follows the same lines as in [14], we
omit the proof.

PROPOSITION 3.6. Let H be an ultraspherical hypergroup. Then C(Ĥ) is a
C∗-subalgebra of VN(H) containing UCB(Ĥ).

Before we proceed to the next result, here is some notation. LetA be a C∗-algebra.
We let w∼ denote the topology onA∗ such that w∼ − limα fα = f inA∗ means:

(i) 〈 fα, a〉 −→ 〈 f , a〉 for each a ∈ A;
(ii) ‖ fα‖ −→ ‖ f ‖.

We write

M
(A) = {m ∈ A∗∗ : mA ⊆ A},
Mr(A) = {m ∈ A∗∗ : Am ⊆ A},

M
+r(A) = M
(A) +Mr(A).
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Our next result gives a characterization of when the algebras C(Ĥ) and VN(H) are
equal under the assumption that the underlying group is amenable. The proof of this is
an adaptation of the proof given in [14] for the case of locally compact groups.

THEOREM 3.7. Let H be an ultraspherical hypergroup on an amenable locally
compact group G. Then C(Ĥ) = VN(H) if and only if H is compact.

PROOF. If H is compact, then 1 ∈ A(H) and therefore VN(H) = 1 · VN(H) ⊆ UCB(Ĥ).
Hence, by Proposition 3.6, C(Ĥ) = VN(H).

Suppose that C(Ĥ) = VN(H). To show that H is compact, by Lemma 2.2, it is
enough to show that each σ-compact open subhypergroup K of H is compact.

Let K be a σ-compact open subhypergroup of H. It follows from [22, Definition 2.1]
and [15, Lemma 13.1C] that the set L = p−1(K) is a noncompact σ-compact subgroup
of G. Since G is amenable, it follows that L is amenable and hence by [7, Lemma
3.7], A(K) possesses a bounded approximate identity (en)n∈N ⊆ P(K) ∩ Cc(K) bounded
by 1. Now, by [23, Lemma 5.1], we can assume that (en)n ⊆ A(H). Note that since
G is amenable, by [10, Theorem 3.4], 1K ∈ Bλ(H). It is easy to see that en −→ 1K

uniformly on compacta on H and since (en)n is bounded, we conclude that en −→ 1K

in σ(Bλ(H), C∗λ(H)). Note that

‖en‖ −→ 1 = 1K(ė) = ‖1K‖

and so en −→ 1K in the w∼-topology on Bλ(H) = C∗λ(H)∗. Hence, it follows from [1,
Proposition 2] that

〈m, en〉 −→ 〈m, 1K〉, (m ∈ M
+r(C∗λ(H))).

Now, using the fact that C(Ĥ) = VN(H), it can be shown as in [14] that
ĩ(M
+r(C∗λ(H))) = VN(H). As a consequence, it follows from Lemma 2.4 that the
sequence {en} is a weak Cauchy sequence in A(H). Since A(H) is the predual of the
von Neumann algebra VN(H), it is weakly sequentially complete and hence there exists
u ∈ A(H) such that en → u in the weak topology. As en → 1K uniformly on compacta,
it follows that 1K ∈ A(H). Thus, K is compact. �

4. The dual of VN(H) and UCB(̂H)

In this section, we study the dual of VN(H). Our first two results generalize [17,
Proposition 3.2].

PROPOSITION 4.1. Let H be an ultraspherical hypergroup on a locally compact
group G. Then VN(H)∗ has a right identity if and only if G is amenable.

PROOF. Note that, by [7, Lemma 3.7], amenability of G implies the existence of a
bounded approximate identity in A(H), which is further equivalent to the existence of
a right identity in VN(H)∗ by [3, Proposition III.28.7, page 146].
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For the converse, let E be a right identity in VN(H)∗. Then, by Goldstine’s theorem,
there is a net (eα)α∈I in A(H) with ‖eα‖ ≤ ‖E‖ such that

weak∗- lim
α

eα = E.

Thus, for every a ∈ A(H), T ∈ VN(H), we have

〈a, T〉 = 〈E�a, T〉 = lim
α
〈eαa, T〉.

Hence, (eα)α∈I is a bounded weak approximate identity for A(H). Thus, by [3,
Proposition I.11.4, page 58], A(H) has a bounded approximate identity. Therefore, G is
amenable, by [2, Theorem 4.4]. �

PROPOSITION 4.2. Let H be an ultraspherical hypergroup on an amenable locally
compact group G. Then VN(H)∗ has a left identity if and only if H is compact.

PROOF. If H is compact, then 1 ∈ A(H). Therefore, A(H) has an identity. Now, since
A(H) is in the centre of VN(H)∗ and Arens multiplication (�) is weak∗ continuous
from the left, it follows that the identity of A(H) is also the identity for VN(H)∗.
Conversely, if H is not compact, then UCB(Ĥ) is a closed proper subspace of VN(H),
by Proposition 3.6 and Theorem 3.7. Hence, by the Hahn–Banach theorem, there exists
a nonzero m ∈ VN(H)∗ such that m = 0 on UCB(Ĥ). So, m�T = 0 for each T ∈ VN(H).
It follows that n�m = 0 for each n ∈ VN(H)∗. Therefore, VN(H)∗ cannot have a left
identity. �

Our next result characterizes Arens regularity of A(H) when the underlying group
is amenable. For the corresponding on locally compact groups, see [17, Proposition
3.3]. We denote by W(Ĥ) the set of all T in VN(H) such that the map u −→ u · T from
A(H) into VN(H) is weakly compact.

THEOREM 4.3. Let H be an ultraspherical hypergroup for which A(H) has a bounded
approximate identity. Then A(H) is Arens regular if and only if H is finite.

PROOF. Let A(H) be Arens regular. Then, it follows from [5, Theorem 3.14] that
W(Ĥ) = VN(H) and hence VN(H) has a unique topologically invariant mean. There-
fore, H is discrete by [23, Theorem 1.7]. Now, since A(H) is the predual of the von
Neumann algebra VN(H), it is weakly sequentially complete. Finally, [4, Theorem
2.9.39] implies that A(H) is unital, and thus H must be finite.

Conversely, if H is finite, then A(H) is finite dimensional. In particular, A(H) is
reflexive. It then follows that VN(H)∗ is a commutative Banach algebra, which is
equivalent to saying that A(H) is Arens regular. �

In the next result, we characterize semisimplicity of the algebra VN(H)∗ assuming
that the locally compact group G is amenable. See [17, Theorem 3.4] for the case of
locally compact groups.

PROPOSITION 4.4. The Banach algebra VN(H)∗ is semisimple if and only if H is finite.
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PROOF. Suppose that VN(H)∗ is semisimple. Let

I = {m ∈ VN(H)∗ : 〈m, λ(ė)〉 = 0 and m�v = v(ė)m for each v ∈ A(H)}.

We first claim that I is an ideal in VN(H)∗. Indeed, let m ∈ I and n ∈ VN(H)∗. Then,

〈n�m, λ(ė)〉 = 〈n, m�λ(ė)〉 = 〈n, 〈m, λ(ė)〉λ(ė)〉 = 〈n, λ(ė)〉〈m, λ(ė)〉 = 0.

Similarly, 〈m�n, λ(ė)〉 = 0. Now, let v ∈ A(H). Then,

(n�m)�v = n�(m�v) = v(ė)(n�m).

Using the fact that A(H) is in the centre of VN(H)∗, one can show that

(m�n)�v = v(ė)(m�n).

Thus, I is an ideal in VN(H)∗.
Let m, n ∈ I. Then, for each T ∈ VN(H), we have

〈m�n, T〉 = 〈m, n · T〉 = 〈m, λ(ė)〉〈n, T〉 = 0,

that is, m�n = 0. In particular, I is nil and hence, by [4, Proposition 1.5.6],
I ⊆ Rad(VN(H)∗). If m1 and m2 are any two distinct elements of TIM(Ĥ), then it
is clear that m1 − m2 ∈ I. In particular, I � ∅, which forces us to conclude that
VN(H)∗ is not semisimple, which is a contradiction. Therefore, TIM(Ĥ) is a singleton
and hence, by [24, Theorem 1.7], H is discrete.

We finally claim that H is finite. We show this by contradiction. Suppose that H is
not finite. Let I denote the annihilator of UCB(Ĥ) in VN(H)∗. Then, as earlier, one can
show that I is a nonzero ideal contained in Rad(VN(H)∗), which will again force us to
conclude that VN(H)∗ is not semisimple.

For the converse, if H is finite, then A(H) is reflexive and hence VN(H)∗ is
semisimple. �

For a Banach algebraA, we denote by Rad(A) the radical ofA. Let

C∗λ(H)⊥ = {m ∈ VN(H)∗ : 〈m, T〉 = 0 for each T ∈ C∗λ(H)}.

PROPOSITION 4.5. The space C∗λ(H)⊥ is a weak*-closed ideal in VN(H)∗ containing
Rad(VN(H)∗). Furthermore, the Banach algebra VN(H)∗/C∗λ(H)⊥ is isometrically
isomorphic to Bλ(H).

PROOF. Let n ∈ VN(H)∗ and let T ∈ C∗λ(H). Then, n�T ∈ C∗λ(H) by [10, Proposition
4.6]. Hence, for each m ∈ C∗λ(H)⊥ and T ∈ C∗λ(H), we have

〈m�n, T〉 = 〈m, n�T〉 = 0.

This implies that C∗λ(H)⊥ is a right ideal. Since C∗λ(H)⊥ is weak*-closed by [19,
Proposition 2.6.6], a simple weak∗ approximation argument gives that C∗λ(H)⊥ is an
ideal.
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Let P : VN(H)∗/C∗λ(H)⊥ −→ Bλ(H) be defined by

P(m + C∗λ(H)⊥)(T) = 〈ψ, T〉 (T ∈ C∗λ(H)),

where ψ ∈ Bλ(H) is the restriction of m on C∗λ(H). Then, since Bλ(H) = C∗λ(H)∗, the
map P is an isometric isomorphism by [19, Theorem 1.10.16]. Since the Arens product
on Bλ(H) agrees with the pointwise multiplication [10, Proposition 4.12], it follows
that P is an algebra isomorphism.

Finally, as P is an epimorphism of the Banach algebra VN(H)∗/C∗λ(H)⊥ onto the
semisimple Banach algebra Bλ(H), it follows from [3, Proposition III. 25.10, page 131]
that Rad(VN(H)∗) ⊆ C∗λ(H)⊥. �

PROPOSITION 4.6. The spaces C∗λ(H)⊥ and Rad(VN(H)∗) are equal if and only if the
ultraspherical hypergroup H is discrete.

PROOF. If H is discrete, then C∗λ(H) = UCB(Ĥ) by [10, Proposition 4.4]. Now let
m, n ∈ C∗λ(H)⊥ and let (vα) be a net in A(H) such that weak∗-limα vα = m. Then we
have

〈m�n, T〉 = lim
α
〈vα�n, T〉 = lim

α
〈n, vα · T〉 = 0 (T ∈ VN(H)),

and hence (C∗λ(H)⊥)2 = {0}, which implies that C∗λ(H)⊥ ⊆ Rad(VN(H)∗). It then fol-
lows from Proposition 4.5 that C∗λ(H)⊥ = Rad(VN(H)∗).

For the converse, suppose that H is not discrete. Then λ(ė) � C∗λ(H) by [10,
Corollary 4.8]. Now choose m ∈ VN(H)∗ such that 〈m, λ(ė)〉 � 0 and 〈m, T〉 = 0 for
each T ∈ C∗λ(H). If C∗λ(H)⊥ = Rad(VN(H)∗), then 0 � m ∈ Rad(VN(H)∗), which is
impossible since Rad(VN(H)∗) ⊆ kerλ(ė). �

We finish this section with an analogue of Proposition 4.4 for UCB(Ĥ)∗. For the
corresponding result for the case of locally compact groups, see [18, Theorem 5.6].

PROPOSITION 4.7. The Banach algebra UCB(Ĥ)∗ is semisimple if and only if H is
discrete.

PROOF. If H is discrete, then UCB(Ĥ) = C∗λ(H) by [10, Proposition 4.6] and hence
UCB(Ĥ)∗ = Bλ(H) which is semisimple.

For the converse, let

I = {m ∈ UCB(Ĥ)∗ : 〈m, λ(ė)〉 = 0 and m�v = v(ė)m for each v ∈ A(H)}.

By repeating the arguments as in the proof of Proposition 4.4, one can deduce that
I is a closed ideal of UCB(Ĥ)∗ and is contained in Rad(UCB(Ĥ)∗). However then,
I = 0 by semisimplicity of UCB(Ĥ)∗. By [10, Lemma 4.5], the set of topologically
invariant means on UCB(Ĥ) is nonempty. Further, as the difference of any two
topologically invariant means on UCB(Ĥ) lies in I, we conclude that UCB(Ĥ)
has a unique topologically invariant mean. Hence, by [10, Proposition 4.6], H is
discrete. �
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5. Unit elements

In this section, we study the unit elements in VN(H)∗ in the spirit of [20]. The proofs
given are modifications of the proofs given in [20]. Our main aim in this section is to
characterize when an element of the double dual of A(H) belongs to A(H).

Let H be an ultraspherical hypergroup on a locally compact group G. Let K be an
open and closed subhypergroup of H. Then, by [23, Lemma 5.1], the restriction map
u −→ u|K is a norm decreasing algebra homomorphism from A(H) onto A(K), denoted
by PK .

Let H be an ultraspherical hypergroup on an amenable locally compact group G, let
E = E(A(H)) denote the set of all right identities of the Banach algebra A(H)∗∗ that are
the cluster points of all approximate identities in A(H) bounded by 1.

REMARK 5.1. If X is a Banach space and if P is a bounded projection, then P∗ is a
projection and P∗(X∗) is identified by P(X)∗.

DEFINITION 5.2. Let B be a closed subalgebra of a Banach algebra A and let
P : A −→ B be a bounded projection. Let E be a right unit of B∗∗ inA∗∗. A right unit
Ẽ ofA∗∗ is called an extension of E if 〈Ẽ, P∗( f )〉 = 〈E, P∗( f )〉 holds for all f ∈ A∗.
LEMMA 5.3. Let H be an ultraspherical hypergroup on an amenable locally compact
group G. Let K be an open subhypergroup of H. Then every right unit of A(K)∗∗ in
A(H)∗∗ can be extended to a right unit of A(H)∗∗. In particular, A(H)∗∗ has a unique
right unit if and only if H is compact.

PROOF. Since G is amenable, A(H) has a bounded approximate identity, by [7, Lemma
3.7]. Since A(K) is a closed ideal of A(H) and PK : A(H) −→ A(K) is a bounded
projection which is also a multiplier, it now follows from [20, Theorem 2.3] that every
right unit of A(K)∗∗ in A(H)∗∗ can be extended to a right unit of A(H)∗∗.

Let E be a right identity of A(H)∗∗ and (eα) be a bounded approximate identity of
A(H) associated with E. If H is compact, then 1 ∈ A(H) and limα ‖eα − 1‖ = 0. Then,
for each T ∈ A(H)∗ and each m ∈ A(H)∗∗, we have

〈E�m, T〉 = lim
α
〈eα�m, T〉

= lim
α
〈eα, m · T〉

= lim
α
〈m · T , 1〉

= 〈m, T〉.

Thus, E is also a left unit for (A(H)∗∗,�), and hence E is unique.
If H is not compact, then there exists an open σ-compact and noncompact

subhypergroup K of H, by Lemma 2.2. It follows from the definition of the spherical
hypergroup and by [15, Lemma 13.1C] that the set L = p−1(K) is a σ-compact and
noncompact subgroup of G. Hence, A(L) has a sequential bounded approximate
identity, which implies that A(K) must have a sequential bounded approximate identity
{en}, by [7, Lemma 3.7]. Towards a contradiction, suppose that {en} has a unique weak∗
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cluster point denoted by E. Then {en} must be a weakly Cauchy sequence, and since
A(K) is weakly sequentially complete, we have weak-limn en = E. Therefore, A(K)
is unital, which is impossible since K is not compact. Thus, A(K)∗∗ at least has two
distinct right identities. Now, let E1 and E2 be distinct right units of A(K)∗∗ in A(H)∗∗.
Then, by [20, Theorem 2.3], E1 and E2 can be extended to distinct right units for
A(H)∗∗, which is a contradiction. �

LEMMA 5.4. Let H be an ultraspherical hypergroup and let m ∈ A(H)∗∗. Suppose that
for every openσ-compact subhypergroup K of H, P∗∗K (m) ∈ A(K). Then, for each n ∈ N,
there exists a compact subset Kn of H such that |〈m, T〉| < (1/n) for T ∈ UCB(Ĥ) with
‖T‖ ≤ 1 and supp(T) ⊆ H \ Kn.

PROOF. Suppose to the contrary that the statement is false. By the same argument as
in the proof of [20, Lemma 3.1], we can construct a sequence {Tn} in UCB(Ĥ) and a
sequence of symmetric, relatively compact neighbourhoods {Un} of ė in H such that
U2

n ⊆ Un+1 and:

(1) supp(Tn) ⊆ Un and supp(Tn+1) ⊆ H \ Un;
(2) ‖Tn‖ ≤ 1 and |〈m, Tn〉| ≥ ε.

Let K =
⋃

n Un. Since U2
n ⊆ Un+1 for each n, it follows that K is an open σ-compact

subhypergroup of H. Therefore, by hypothesis, P∗∗K (m) ∈ A(K). Now, by the density of
the subspace A(H)∩Cc(H) in A(H), there exists an element v ∈ A(H)∩Cc(H) such that
‖P∗∗K (m) − v‖A(H) < ε/2 and supp(v) ⊆ K. Let V be a relatively compact neighbourhood
of supp(v) in K. Then, for any T ∈ VN(H) with ‖T‖ ≤ 1 and supp(T) ⊆ H \ V , we have

|〈P∗∗K (m), T〉| ≤ |〈P∗∗K (m) − v, T〉| + |〈v, T〉| ≤ ‖P∗∗K (m) − v‖A(H) <
ε

2
.

Since V ⊆ K is compact and {Un} is an increasing sequence of open sets, there is an
n ∈ N such that V ⊆ Un. Hence, the inequality |〈P∗∗K (m), Tn+1〉| ≤ ε/2 follows from the
fact that supp(Tn+1) ⊆ H \ Un ⊆ H \ V .

Now, we show that P∗K(Tn+1) = Tn+1. Let u ∈ A(H) ∩ Cc(H) be such that supp(u) ∩
Kc � ∅. Let v ∈ A(H) ∩ Cc(H) be such that v(ẋ) = 1 for each ẋ ∈ supp(u) ∩ Kc and
supp(v) ⊆ Kc. Then,

〈Tn+1, u〉 = 〈Tn+1, u|K〉 + 〈Tn+1, uv〉
= 〈Tn+1, u|K〉 + 〈v · Tn+1, u〉
= 〈Tn+1, u|K〉
= 〈Tn+1, PK(u)〉
= 〈P∗K(Tn+1), u〉,

and since supp(Tn+1) ∩ supp(v) = ∅, we have v · Tn+1 = 0, so the third equality holds.
Hence, a simple approximation argument gives that 〈Tn+1, u〉 = 〈P∗K(Tn+1), u〉 for all
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u ∈ A(H). Therefore,

|〈P∗∗K (m), Tn+1〉| = |〈m, P∗K(Tn+1)〉| = |〈m, Tn+1〉| ≥ ε,

which is a contradiction. �

PROPOSITION 5.5. Let m ∈ A(H)∗∗. Suppose that for every open σ-compact subhyper-
group K of H, P∗∗K (m) is in A(K). Then the restriction of m to UCB(Ĥ) is in A(H).

PROOF. By Lemma 5.4, for each n ∈ N, there exists a compact subset Kn of H such
that |〈m, T〉| < (1/n) for T ∈ UCB(Ĥ) with ‖T‖ ≤ 1 and supp(T) ⊆ H \ Kn. Let K be an
open σ-compact subhypergroup of H containing all Kn. Then for each n ∈ N, H \ K ⊆
H \ Kn. Hence, for each T ∈ UCB(Ĥ) with supp(T) ⊆ H \ K, we have 〈m, T〉 = 0. Let
T ∈ UCB(Ĥ), ẋ ∈ K, and let Uẋ ⊆ K be a neighbourhood of ẋ. Then for each u ∈ A(H)
with supp(u) ⊆ Uẋ, we have PK(u) = u. Consequently,

〈T − P∗K(T), u〉 = 〈T , u〉 − 〈P∗K(T), u〉 = 0,

which implies that supp(T − P∗K(T)) ⊆ H \ K. Therefore, for each T ∈ UCB(Ĥ), we
have

〈m, T〉 = 〈m, T − P∗K(T)〉 + 〈m, P∗K(T)〉 = 〈m, P∗K(T)〉 = 〈P∗∗K (m), T〉.

Since P∗∗K (m) is in A(K) ⊆ A(H), the restriction of m to UCB(Ĥ) is in A(H). �

With the preceding proposition at hand, we can now deduce the main result of this
section.

THEOREM 5.6. Let H be an ultraspherical hypergroup on an amenable locally
compact group G. Then for an element m ∈ A(H)∗∗, m ∈ A(H) if and only if A(H)�m ⊆
A(H) and E�m = m for all E in E.

PROOF. If m ∈ A(H), then A(H)�m ⊆ A(H) and for any E in E, E�m = m.
We now prove the converse. Suppose that m ∈ A(H)∗∗ is such that m satisfies the

assumptions. If H is compact, then 1H ∈ A(H), and hence m = 1H�m ∈ A(H). Let H
be noncompact and let K be a σ-compact, open subhypergroup of H. Let {Ki} be an
increasing sequence of compact subsets of K such that K =

⋃
i Ki. Let L = p−1(K).

Then L is a σ-compact, open and closed subgroup of G and L =
⋃

i p−1(Ki).
It follows from the amenability of L and [16, Corollary 2.7.3] that there exists a

sequence {ui} in A(L) such that for each i, ui = 1 on p−1(Ki) and ‖ui‖A(L) ≤ 1 + 1/i.
Therefore, ui −→ 1L in the σ(B(L), C∗(L)) topology. Hence, it follows from [16,
Theorem 3.7.7] that ‖uiv − v‖A(L) −→ 0 for all v ∈ A(L). Therefore, by identifying A(K)
with Aπ|L(L), the sequence {π(ui)} is in A(K). Now, if ẋ ∈ Ki, then Ox ⊆ p−1(Ki). So
ui = 1 on Ox and since π(δx) is a probability measure, we have

π(ui)(ẋ) = 〈ui, π(δx)〉 =
∫

Ox

ui(z) dπ(δx)(z) = 1.
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Further, for each v ∈ A(K),

‖π(ui)v − v‖A(K) = ‖π(ui)π(v) − π(v)‖A(K)

= ‖π(uiv − v)‖A(K)

≤ ‖uiv − v‖A(L) −→ 0.

By hypothesis, π(ui)�m ∈ A(H) for all i. Then, by using Lemma 5.3, we can
show as in [20, Theorem 3.2] that {π(ui)�m} is a weakly Cauchy sequence. Since
A(H) is the predual of the von Neumann algebra VN(H), it is weakly sequentially
complete, and thus {π(ui)�m} converges weakly to a point in A(H). Let f ∈ L1(H) with
compact support. Using the fact that each π(ui) ∈ A(K), we have 〈π(ui)�m, λ( f )〉 =
〈π(ui)�m, λ(1K f )〉. Now, for each u ∈ A(H),

〈P∗K(λ(((1H − 1K) f ))), u〉 = 〈λ((1H − 1K) f ), PK(u)〉 = 0.

Also,

〈P∗K(λ((1K f )) · π(ui)), u〉 = 〈λ(1K f ), π(ui)PK(u)〉
= 〈λ(1K f ), PK(π(ui))u〉
= 〈λ(1K f ) · PK(π(ui)), u〉.

Therefore,

〈π(ui)�m, λ( f )〉 = 〈π(ui)�m, λ(1K f )〉 = 〈m, λ(1K f ) · π(ui)〉
= 〈m, λ(1K f ) · PK(π(ui))〉 = 〈m, P∗K(λ(1K f ) · π(ui))〉
= 〈P∗∗K (m), λ(1K f ) · π(ui)〉 −→ 〈P∗∗K (m), λ(1K f )〉
= 〈P∗∗K (m), λ( f )〉,

since supp(1K f ) ⊂ Ki for some i. Thus, π(ui)�m
w−→ P∗∗K (m), which implies that

P∗∗K (m) ∈ A(H)
w
= A(H). Since each π(ui)�m ∈ A(K) and A(K) is a closed convex

subset of A(H), we have P∗∗K (m) ∈ A(K). Let m|UCB(Ĥ) = u. Then, by Proposition 5.5,
u ∈ A(H). Since G is amenable, A(H) has a bounded approximate identity, say {eα}. It
is easy to see that eα�m −→ E�m in the σ(A(H)∗∗, A(H)∗)-topology for some E ∈ E.
By assumption E�m = m. Hence, eα�m −→ m. Since eα�m = eαu and eαu −→ u in
norm, thus u = m. In fact, for each T ∈ VN(H), we have

〈eα�m, T〉 = 〈m, eα · T〉 = 〈u, eα · T〉 = 〈ueα, T〉,

so eα�m = eαu. Therefore, m ∈ A(H). �

COROLLARY 5.7. Let H be a discrete ultraspherical hypergroup on an amenable
locally compact group G and m ∈ A(H)∗∗. Then, m ∈ A(H) if and only if E�m = m
for each E ∈ E.

PROOF. If H is discrete, then A(H) is an ideal in A(H)∗∗ by [11, Proposition 2.7].
Hence, the result follows from Theorem 5.6. �
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COROLLARY 5.8. Let H be an ultraspherical hypergroup on an amenable locally com-
pact group G. If m ∈ Z(A(H)∗∗) and A(H)�m ⊆ A(H), then m ∈ A(H). In particular, if
H is discrete, then Z(A(H)∗∗) = A(H).
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