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Let G be a finite group and N a nontrivial proper normal 
subgroup of G. A.R. Camina introduced the class of finite 
groups G, which extends Frobenius groups, satisfying that for 
all g ∈ G − N and n ∈ N , gn is conjugate to g. He proved 
that under these assumptions one of three possibilities occurs: 
G is a Frobenius group with kernel N ; or N is a p-group; 
or G/N is a p-group. In this paper we extend this class of 
groups by investigating the structure of those finite groups G
having a nontrivial proper normal subgroup N such that gn is 
conjugate to either g or g−1 for all g ∈ G −N and all n ∈ N .
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open access article under the CC BY license (http://
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1. Introduction

Let G be a finite group and N a nontrivial proper normal subgroup of G. In 1978, 
A.R. Camina introduced the class of finite groups G, which extends Frobenius groups, 
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satisfying that for all g ∈ G − N and n ∈ N , gn is conjugate to g. This condition is 
equivalent to assert that every nontrivial coset of N is contained in a conjugacy class of 
G. Furthermore, a character-theoretic equivalent condition was also given (see Theorem 
1 of [3]), though it is not to be used in this paper. The pair (G, N) was subsequently 
called a Camina pair. Camina obtained that if (G, N) is a Camina pair, then one of 
(non-excluding) three possibilities occurs: G is a Frobenius group with kernel N ; or N is 
a p-group; or G/N is a p-group. Later on, several authors have made significant progress 
at classifying these groups. For instance, Chillag and MacDonald [4] made an effort in 
investigating such pairs when G is neither a p-group nor a Frobenius group. Also, Isaacs 
[10] demonstrated that if G/N is a p-group, (G, N) being a Camina pair, then G possesses 
normal p-complement. Further progress on this topic can be found in [1] and [5] as well 
as a survey in [11].

More recently, instead of considering all cosets of N , Navarro and Guralnick [6] in-
dependently proved, by appealing to the Classification of Finite Simple Groups, that if 
just one coset, xN with x ∈ G, lies in a conjugacy class of G, then N must be soluble. In 
addition, if x is a p-element, then N must be p-nilpotent, which improves above Isaacs’s 
result. On the other hand, the second named author has recently proved that when a 
single coset of N is contained in the union of a conjugacy class of G and its inverse class, 
then the same conclusion as Navarro and Guralnick’s holds (Theorem A of [2]).

Inspired by the above results, in this paper we generalize Camina’s condition by 
exploring the class of finite groups G having a nontrivial proper normal subgroup N
such that gn is conjugate to either g or g−1 for all g ∈ G −N and n ∈ N . Observe that 
any group satisfying Camina’s hypotheses trivially satisfies ours, so the class of groups 
we are dealing with must include groups satisfying Camina’s aforementioned properties. 
Our study is made depending on whether N is nilpotent or not, and each case yields to 
the following two theorems.

Theorem A. Suppose that G is a finite group and N is a nontrivial proper normal sub-
group of G such that gn is conjugate to g or g−1 for all g ∈ G −N and all n ∈ N . Assume 
that N is non-nilpotent. Then G/N is a p-group, and G is p-nilpotent and soluble.

We recall that a group G is said to be quasi-Frobenius when G/Z(G) is a Frobenius 
group. The inverse image in G of the kernel and complement of G/Z(G) are then called 
the kernel and complement of G, respectively.

Theorem B. Suppose that G is a finite group and N is a nontrivial proper normal sub-
group of G such that gn is conjugate to g or g−1 for all g ∈ G − N and all n ∈ N . 
Assume that N is nilpotent. Then G satisfies one of the following conditions:

(1) G is a Frobenius group with kernel N ;
(2) N has prime power order;
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(3) |G/N | = 2, C2 ∼= Z(G) ⊆ N and G is a quasi-Frobenius group with complement 
cyclic of order 4 and abelian kernel N . In particular, G/Z(G) is a generalized dihedral 
group.

These results seem to conclude that our class of groups is quite similar to those groups 
satisfying Camina’s condition. However, a new group structure arises, concretely that 
given in case (3) of Theorem B. This cannot be excluded since, in fact, it is easy to see 
that every group described in (3) satisfies our hypothesis too.

2. Preliminaries

In this section, and also throughout the paper, we consider a group G satisfying the 
hypothesis pointed out in the introduction, which can be reformulated as follows.

Hypothesis. Let G be a finite group and 1 �= N a proper normal subgroup of G such 
that for every x /∈ N , the coset xN is contained in K ∪K−1 for some conjugacy class K
of G. Notice that we can assume without loss that K is the conjugacy class xG of x in 
G.

We will prove a set of lemmas that help us to get the proofs of our main theorems. 
This is done by following the same ideas as those in Section 2 of [3]. Some of the proofs 
being identical, we omit them and refer the reader to [3].

Lemma 2.1. Assume that G satisfies the hypothesis and let x ∈ G −N .

(i) If x is real, then |CG(x)| = |CG/N (xN)|.
(ii) If x is non-real, then either |CG(x)| = |CG/N (xN)| or |CG(x)| = 2|CG/N (xN)|.

Proof. Since xN is contained in K ∪ K−1, where K = xG, then (xN)G ⊆ K ∪ K−1. 
Also, (xN)G is a normal subset of G, so it is a union of conjugacy classes of G. Hence, 
either (xN)G = K or (xN)G = K ∪ K−1. Now, (xN)G considered as a subset of G is 
union of distinct conjugates of xN in G/N , say

(xN)G = xN ∪ xg2N ∪ . . . ∪ . . . xgtN

where gi ∈ G and t = |G/N : CG/N (xN)|. Therefore, by counting elements in the above 
equality we get either |K| = |(xN)G| = |N |t or |K ∪K−1| = |(xN)G| = |N |t. Now, if x
is real, that is, if K = K−1, then

|G/N : CG/N (xN)||N | = |K| = |G : CG(x)|

and this gives |CG(x)| = |CG/N (xN)|, so (i) is proved. If x is non-real, then we have two 
possibilities: either (xN)G = K or (xN)G = K ∪K−1. Similarly, these equalities yield 
to both cases of (ii), respectively. �
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Lemma 2.2. Assume that G satisfies the hypothesis. If x ∈ G − N has order m and 
y ∈ CN (x), then the order of y divides m.

Proof. As xy ∈ xN ⊆ xG ∪ (x−1)G, then xy has the same order as x, so 1 = (xy)m =
xmym = ym, and the lemma is proved. �
Lemma 2.3. Assume that G satisfies the hypothesis. Let x ∈ G − N such that xN has 
order m in G/N . If y ∈ CN (x) has prime order p, then p divides m.

Proof. Identical to the proof of Lemma 3 of [5]. �
Lemma 2.4. Assume that G satisfies the hypothesis. If x ∈ G −N has prime order, then 
N is nilpotent.

Proof. Let us consider the subgroup 〈x〉N . Every element in 〈x〉N −N belongs to some 
coset xiN , with xi /∈ N . Since xiN ⊆ (xi)G ∪ (x−i)G, it follows that every element in 
〈x〉N−N has prime order, the same as x, and then by Hughes-Thompson-Kegel Theorem 
(V.8 of [9]), N is nilpotent. �
Theorem 2.5. Assume that G satisfies the hypothesis and that N and G/N have coprime 
orders. Then G is a Frobenius group with kernel N .

Proof. By the Schur-Zassenhauss theorem it is known that N has a complement in G, 
say H, and by using Lemma 2.3, we get that if 1 �= h ∈ H, then CN (h) = 1. This 
condition characterizes Frobenius groups. �

Independently of the above results, we know that if G satisfies the hypothesis and 
G/N has p-elements for some prime p, then N has normal p-complement by Theorem 
A(c) of [2]. As a consequence, for every group G satisfying the hypothesis, N has a 
normal π(G/N)-complement.

Lemma 2.6. Assume that G satisfies the hypothesis. If xN has order pq in G/N , with p
and q distinct primes, then N is nilpotent.

Proof. Identical to the proof of Lemma 5 of [5]. �
Lemma 2.7. Assume that G satisfies the hypothesis and let P be a Sylow p-subgroup of G
for some odd prime p. Suppose that there is x ∈ P such that x /∈ N and CP (x)(P ∩N) =
P . Then P ∩N = 1.

Proof. As CP (x)(P ∩N) = P , then by taking cardinalities,

|CP (x)||P ∩N)| = |P |,
|CP∩N (x)|
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or equivalently

|CP (x)| = |CP∩N (x)||P/(P ∩N)|. (I)

On the other hand, by applying Lemma 2.1, we have

|CP (x)| ≤ |CG(x)|p = |CG/N (xN)|p ≤ |P/P ∩N |,

which, joint with Eq. (I), gives |CP (x)| = |P/P ∩ N | and CP∩N (x) = 1. This is a 
contradiction unless P ∩ N = 1, because if P ∩ N �= 1, then Z(P ) ∩ N �= 1, which 
obviously centralizes x. �
Lemma 2.8. Assume that G satisfies the hypothesis. Let p be an odd prime dividing both 
|N | and |G/N | and let P be a Sylow p-subgroup of G. Then P/P ∩ N contains an 
elementary abelian subgroup of order p2.

Proof. Every odd order p-group having no elementary abelian subgroups of order p2 is 
necessarily cyclic. But then, if x(P ∩N) is a generator of P/P ∩N , we have

P

P ∩N
= 〈x〉(P ∩N)

P ∩N
.

This clearly implies that CP (x)(P ∩N) = P , against Lemma 2.7. �
Remark 2.9. Lemmas 2.7 and 2.8 do not hold in general for p = 2. The next example 
shows it. Let G be the semidirect product of C2

3 and C4 acting faithfully, that is,

G = 〈a, b, x | a3 = b3 = x4 = 1, ab = ba, xax−1 = a−1b, xbx−1 = ab〉.

Take N = 〈a, b, x2〉 ∼= C3 �S3 and K = xG. It is easy to check that xN = K ∪K−1 and 
moreover, this is the only nontrivial coset of N in G, so G satisfies the hypothesis. Now, if 
you take P = 〈x〉 of order 4, then P/(P ∩N) is cyclic of order 2 and thus Lemma 2.8 fails. 
Notice that Lemma 2.7 does not hold either in this example, since 1 �= P ∩ N = 〈x2〉. 
Nevertheless, by taking into account Lemma 2.1 it can be easily seen that Lemma 2.7
does hold for p = 2 whenever x is real.

3. Proof of Theorem A

In this section we assume that N is non-nilpotent. For proving Theorem A, we ob-
tain first the solubility of G/N by employing the classification of those finite simple 
groups all of whose elements have prime power order [7]. This classification relies on the 
Classification of Finite Simple Groups.
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Theorem 3.1. Assume that G satisfies the hypothesis and that N is not nilpotent. Then 
G/N is soluble.

Proof. Since N is non-nilpotent, we know by Lemma 2.6 that G/N is a CP-group, that 
is, every element of G/N has prime power order. Also, by applying Lemma 2.4, we may 
assume that every prime dividing |G/N | divides |N |. Suppose that G/N is non-soluble 
and seek a contradiction. Then, by Proposition 2 of [7] (which gives the structure of non-
soluble CP-groups), there exist normal subgroups B/N ⊆ C/N ⊆ G/N such that B/N

is a 2-group, C/B ∼= (C/N)/(B/N) is non-abelian simple and G/C ∼= (G/N)/(C/N) is a 
p-group (cyclic or generalized quaternion). Furthermore, Proposition 2 of [7] also claims 
that if B/N �= 1, then p = 2. Moreover, as C/B is a non-abelian simple CP-group, we 
also know by Proposition 3 of [7] that C/B is isomorphic to one of the following groups: 
L2(4), L2(7), L2(8), L2(9), L2(17), L3(4), Sz(8) or Sz(32).

Next we show that G/N must have a cyclic Sylow p-subgroup for some odd prime 
p. In this case, since p divides both |N | and |G/N |, then Lemma 2.8 will provide a 
contradiction, as required. Observe that each of the above listed groups except L2(9)
possesses cyclic Sylow subgroups for two distinct odd primes. These primes are: 3 and 5
for L2(5); 3 and 7 for L2(7); 3 and 7 for L2(8); 3 and 17 for L2(17); 5 and 7 for L3(4); 
5, 7 and 13 for Sz(8); and 31 and 41 for Sz(32). Therefore, in all these cases, by the given 
structure of G/N , we get that G/N has cyclic Sylow subgroups for at least one odd 
prime, as wanted. Suppose now that C/B ∼= L2(9), which has cyclic Sylow subgroups 
only for the prime 5. If B/N �= 1, then G/C is a 2-group (possibly trivial), and thus 
G/N also has cyclic Sylow 5-subgroups, so we are finished. On the contrary, if B/N = 1, 
as C/N ∼= L2(9) is the only minimal normal subgroup of G, then G/N is immersed in 
Aut(L2(9)). However, Out(L2(9)) ∼= C2×C2, and this implies that G/N has cyclic Sylow 
5-subgroups too, so the solubility of G/N is proved. �
Theorem 3.2. Assume that G satisfies the hypothesis and that N is not nilpotent. Then 
G/N is a p-group.

Proof. We prove the theorem in several steps as follows:

Step 1. Either G/N has prime power order or G/N is a {2, p}-group for some odd 
prime p. In the second case, if M/N = Op(G/N) then G/N is a Frobenius group with 
kernel M/N , and thus, G/M is a cyclic 2-group or generalized quaternion.

Proof. By Theorem 3.1, we know that G/N is soluble and we will assume that it 
does not have prime power order. Then we can choose M/N = Op(G/N) �= 1 for some 
prime p. Let q be a prime divisor of |G/N | distinct from p and let Q be a Sylow q-
subgroup of G. Since G/N is a CP-group, Lemma 2.6 implies that QN/N ∼= Q/Q ∩N

acts fixed-point-freely on M/N , so Q/Q ∩N is cyclic or generalized quaternion. If q is 
odd, then Q/Q ∩N is cyclic and since q also divides |N | by Lemma 2.4, then Lemma 2.8
provides a contradiction. Henceforth, q = 2 and consequently, p is odd. On the other 
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hand, Theorem 1 of [8] (which gives the structure of soluble CP-groups) establishes that 
G/M is either cyclic of order a power of a prime other than p, or generalized quaternion, 
or a {q, p}-group with q of the form kpa+1 with a ≥ 1. Since q = 2, the latter possibility 
is not possible, so we conclude that G/M is a cyclic 2-group or generalized quaternion 
and the step is proved.

The rest of the proof consists in proving that the second possibility of Step 1 is not 
possible. In the sequel, we fix Q to be a Sylow 2-subgroup of G, so QN/N is a Sylow 
2-subgroup of G/N .

Step 2. Suppose that G/M is a generalized quaternion group or a cyclic group of order 
2a, for some integer a. Let x(Q ∩N) ∈ Q/(Q ∩N) be an element of maximal order 2b, 
where b ∈ {a − 1, a} depending on the structure of G/M . Then CG(x) = 〈x〉, |x| = 2b+1

and Z(Q) ∩N = 〈x2b〉.

Proof. By Step 1, we know that G/N is Frobenius. Let z = x2b−1 and observe that 
z2 ∈ N . By applying Lemma 2.4, we have z2 �= 1, and this implies that |x| ≥ 2b+1. Now, 
taking into account Lemma 2.1, we have two possibilities. First

2b+1 ≤ |〈x〉| ≤ |CG(x)| = |CG/N (xN)| = 2b,

where the last equality follows by the Frobenius structure of G/N . This is trivially a 
contradiction. The second possibility is

2b+1 ≤ |〈x〉| ≤ |CG(x)| = 2|CG/N (xN)| = 2b+1,

which forces CG(x) = 〈x〉 and |x| = 2b+1. By noting that Z(Q) ∩N ⊆ CN (x) = 〈x〉 ∩N , 
we easily deduce that Z(Q) ∩N = 〈x〉 ∩N = 〈x2b〉, as claimed.

Step 3. G/M cannot be a generalized quaternion group of order greater that 8 or a 
cyclic 2-group of order greater than 2.

Proof. Suppose that G/M is either generalized quaternion of order at least 16 or a 
cyclic 2-group of order at least 4. With the same notation used in Step 2, we have |z| = 4
and z2 ∈ N . Then the hypotheses assert that xz2 is conjugated to x or to x−1, so there 
exists some g ∈ G such that xz2 = xg or xz2 = (x−1)g. In both cases g ∈ Aut(〈x〉)
(which is a 2-group isomorphic to Z2 × Z2b−1).

Assume first that xg = xz2. Then (x2)g = (xz2)2 = x2, that is, g fixes x2. As we 
have x2 �= z when G/M is generalized quaternion of order at least 16, and we have 
x2 /∈ N when G/M is cyclic of order at least 4, we can reason as in Step 2 by employing 
Lemma 2.1 to obtain |CG(x2)| = 2|CG/N (x2N)| = 2b+1. The latter equality follows by 
applying that G/N is Frobenius and that the centralizer of x2N in QN/N coincides 
with the centralizer of xN . By Step 2, it follows that CG(x2) = CG(x), in particular g
centralizes x, which is a contradiction.

Suppose now that (x−1)g = xz2. Then (x−2)g = (xz2)2 = x2. This means that x2 is 
a real element, so again by Lemma 2.1, we easily obtain |CG(x2)| = |CG/N (x2N)| = 2b. 
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This provides a contradiction by order considerations, since obviously we always have 
CG(x) ⊆ CG(x2).

Step 4. G/M is not isomorphic to Q8.

Proof. Suppose that G/M ∼= Q/(Q ∩N) ∼= Q8. By Step 2, if x(Q ∩N) is an element 
of order 4, then |x| = 8, |CG(x)| = |CQ(x)| = 8 and T := Z(Q) ∩ N = 〈x4〉. Next, we 
distinguish two cases depending on whether xx4 ∈ xN is conjugate to x or x−1, and 
show that each one leads to a contradiction.

Case 1. There exists g ∈ G such that (x−1)g = xx4 = x5. Then (x−2)g = x2, and 
hence, x2 is real. By Lemma 2.1, we have |CG(x2)| = |CG/N (x2N)| = 8 and so CG(x2) =
〈x〉. We claim that Q ∩N = T . Suppose not and take 1 �= tT ∈ Z(Q/T ) ∩ (N ∩ Q)/T . 
Hence [x, t] = x4, or equivalently xt = x5. This is a contradiction because x5 is conjugate 
to x−1 and x is not real. Therefore, Z(Q/T ) ∩ (N ∩Q)/T = 1, and this certainly implies 
that N ∩ Q = T , as claimed. As a consequence, Q must have order 16. Noting that 
g2 ∈ CG(x2) = 〈x〉, it follows that 〈x, g〉 has order 16 too. Hence Q ∼= 〈x, g〉 and satisfies 
the relations x8 = 1 and xg = x3. According to the classification of groups of order 16, 
we have Q ∼= SD16 (the semi-dihedral group of order 16). This is not possible, however, 
because this group has no quotients isomorphic to Q8 (indeed Q/(Q ∩N) is isomorphic 
to the dihedral group D8).

Case 2. There exists g ∈ G such that xg = xx4 = x5, and hence g fixes x2. In this 
case, by applying Lemma 2.1 and the fact that x2(Q ∩ N) ∈ Z(Q/(Q ∩ N)), we have 
16 ≤ |〈x, g〉| ≤ |CG(x2)| ≤ 2|CG/N (x2N)| = 16, and so CG(x2) = 〈g, x〉 has order 16. 
By using the classification of groups of order 16 having a cyclic subgroup of order 8, we 
obtain CG(x2) ∼= M16. Thus, there is no loss if we assume |g| = 2 and so g ∈ N , as 
G −N does not contain elements of order 2 as a result of Lemma 2.4. Moreover, there 
is no loss if we assume g ∈ Q.

Therefore, in this case we have got the following properties: x(Q ∩N) is an element of 
order 4 in the quaternion group Q/(Q ∩N), with |x| = 8, and there exists g ∈ Q ∩N of 
order 2 such that xg = x5 and CG(x2) = 〈g, x〉 ∼= M16. The rest of this case involves in 
proving that from exactly these properties we derive a contradiction. We want to remark 
that we do not utilize the fact that N is not nilpotent in this part of the proof.

Assume first that Z(Q/T ) ∩(N∩Q)/T = 1, so N∩Q = T , and as a result, Q has order 
16. By the above paragraph, this forces that Q ∼= M16, but this group has no factors 
isomorphic to Q8 (indeed Q/(Q ∩N) ∼= C4 ×C2), so we have a contradiction. Therefore, 
we can take 1 �= tT ∈ Z(Q/T ) ∩ (N ∩ Q)/T . Then [x, t] = x4, or equivalently, xt = x5. 
From this, we deduce that t ∈ L := CN (x2) = 〈x4, g〉 ∼= C2 × C2. This implies that 
Z(Q/T ) ∩ (N ∩ Q)/T = L/T . In particular, L � Q and we may consider Q/L. Assume 
now that 1 �= hL ∈ Z(Q/L) ∩(N∩Q)/L. Then [x, h] ∈ {x4, g, x4g}. If the first possibility 
occurs, then xh = x5, and as a consequence h ∈ CG(x2). But we also have h ∈ N , so 
h ∈ L, a contradiction. If the second or third possibilities occur, that is, if xh = xg or 
xh = x5g, then both equalities lead to (x2)h = x−2, that is, x2 is real. However, this 
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is not possible by Lemma 2.1 since |CG(x2)| �= |CG/N (x2N)|. This contradiction shows 
that Q ∩N = L, which implies that Q has order 32.

On the other hand, we write Q8 ∼= Q/(N ∩Q) = 〈x̄, ȳ〉 where x̄, ȳ have order 4, and 
x̄2 = ȳ2 and x̄ȳ = x̄−1. As we have proved above that N ∩ Q = 〈x4, g〉, the equality 
x̄ȳ = x̄−1 gives xxy ∈ {1, x4, g, x4g}. Next we prove that each of these possibilities 
provides a contradiction. Of course xxy �= 1, otherwise x would be real and this is 
not possible. If xxy = x4, then xy = x3, and this gives xyg = (x3)g = x−1, again a 
contradiction. Suppose finally that xxy = g or xxy = x4g. In the first case

(x2)y = (xy)2 = (x−1g)2 = x−1(x−1)g = x−1x3 = x2,

and in the second case

(x2)y = (xy)2 = (x3g)2 = x3(x3)g = x3x7 = x2,

that is, in both cases y ∈ CG(x2). Now, we have proved at the beginning of this case that 
this subgroup coincides with 〈x, g〉 and has order 16. However, Q is certainly generated 
by x, y and Q ∩N , so Q = 〈x, y, g〉. Thus, since y ∈ 〈x, g〉, then Q = 〈x, g〉, contradicting 
the fact that Q has order 32.

Step 5. G/M is not cyclic of order 2. Consequently, G/N is a p-group.

Proof. Assume that Q/(Q ∩N) is cyclic of order 2 and let x(Q ∩N) ∈ Q/(Q ∩N) be 
a generator. By Step 2, we have CG(x) = 〈x〉 and |x| = 4. Now, by using Lemma 2.1, we 
know that x cannot be real in G, that is, there is no g ∈ G, such that xg = x−1 = x3. But 
this implies that NG(〈x〉) = CG(〈x〉) = 〈x〉 (because any g ∈ NG(〈x〉) must centralize 
x). In particular, NQ(〈x〉) = CQ(〈x〉) = 〈x〉. As normalizers grow in any prime power 
order group we conclude that Q = 〈x〉.

On the other hand, by the observation made after Theorem 2.5, we know that N has 
normal 2-complement, say K. Hence K is normal in G and G = G/K is a {2, p}-group. 
Since we have proved that G has cyclic Sylow 2-subgroups of order 4, then G has a normal 
Sylow p-subgroup, say P . Also, since 〈x2〉 = N �G, then x2 ∈ CG(P ). Hence, for every 
y ∈ P − (N ∩P ), since P ∩N = P ∩K we have 1 �= y ∈ P , and yx2 has order 2|y|. As a 
consequence, |yx2| is divisible by 2|y|. However, the fact that yx2 ∈ yN ⊆ yG ∪ (y−1)G
ensures that yx2 and y have the same order, a contradiction. This contradiction also 
allows us to conclude that case 2 of Step 1 cannot happen. Hence G/N is a p-group and 
the proof is finished. �
Proof of Theorem A. Theorem 3.2 proves that G/N is a p-group for some prime p. The 
solubility of N and the fact that N is p-nilpotent follow straightforwardly by Theo-
rem A(a) and (c) of [2], so G is soluble and p-nilpotent as well.

Example. The example given in Remark 2.9 illustrates a group satisfying our hypothesis 
with N non-nilpotent and |G/N | = 2.
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4. Proof of Theorem B

In this section, we assume that N is nilpotent and by tracking the following theorem 
and lemmas, we prove Theorem B.

Theorem 4.1. Assume that G satisfies the hypothesis and that N is nilpotent. Then one 
of the following occurs:

(a) G is a Frobenius group with kernel N ;
(b) N has prime power order;
(c) (|G/N |, |N |) = 2a for some a ≥ 1. In addition, if N is not a 2-group, then every 

Sylow subgroup of G/N acts fixed-point-freely on the 2-complement of N .

Proof. Assume that G is not a Frobenius group and N has not prime power order and 
we will prove (c). Then, by Theorem 2.5, we have (|N |, |G/N |) �= 1, so we take a prime 
p dividing both |N | and |G/N |, and P a Sylow p-subgroup of G. Let r �= p be a prime 
dividing |N |, and R a Sylow r-subgroup of N . As N is nilpotent, then P ⊆ NG(R) and 
P ∩N ⊆ CG(R). Hence P/(P ∩N) acts fixed-point-freely on R by using Lemma 2.3. In 
particular, P/(P ∩N) has no elementary abelian subgroups of order p2. But if p is odd, 
since P ∩N �= 1 and P/(P ∩N) �= 1, this contradicts Lemma 2.7. Therefore p = 2, and 
the first part of (c) is proved.

Assume further that N is not a 2-group. We can use the same reasonings to deduce 
that if q is any prime dividing |G/N | and K denotes the (normal and nontrivial) 2-
complement of N , then every Sylow q-subgroup of G/N acts fixed-point-freely on K. 
Hence, the lemma is proved. �
Lemma 4.2. Assume that G satisfies the hypothesis, N is nilpotent and Case (c) of The-
orem 4.1, including that N is not a 2-group, occurs. Let Q be a Sylow 2-subgroup of G
and x(Q ∩N) an element of Q/(Q ∩N) of maximal order. Then the following assertions 
occur:

(i) |CG(x)| = 2|CG/N (xN)|.
(ii) CG(x)N/N = CG/N (xN).
(iii) Either |G/N |2 = 2 or the Sylow 2-subgroups of G/N are quaternion.

Proof. As G/N acts Frobeniusly on the (nontrivial) 2-complement of N , then every 
Sylow 2-subgroup of G/N is either cyclic or generalized quaternion. Let x(N ∩ Q) ∈
Q/(N ∩Q) be an element of maximal order 2a. Attending to Lemma 2.1, suppose first 
that |CG(x)| = |CG/N (xN)|. Note that 2a ≤ |〈x〉| ≤ |CG(x)|2 = |CG/N (xN)|2 = 2a, 
which means that x2a = 1 and so 〈x〉 ∩N = 1. However, 1 �= Z(Q) ∩ N ⊆ CG(x), and 
this leads to a contradiction. Hence, |CG(x)| = 2|CG/N (xN)|, which shows the validity 
of (i).
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Set C/N := CG/N (xN). Observe that |CG(x)N/N | = |CG(x) : CG(x) ∩ N | and 
that x cannot fix any 2′-element of N by hypothesis, hence CG(x) ∩ N is a 2-group. 
Thus, |CG(x)N/N |2′ = |CG(x)|2′ = |C/N |2′ . On the other hand, it is clear that L/N =
〈x〉N/N is a Sylow 2-subgroup of C/N and is contained in CG(x)N/N . Therefore, C/N ⊆
CG(x)N/N , which implies that C = CG(x)N , so (ii) is proved.

To prove (iii), suppose that Q/(Q ∩ N) is neither cyclic of order 2 nor quaternion. 
Then, as CG(x) ⊆ CG(x2), according to Lemma 2.1 and the structure of the Sylow 
2-subgroup of G/N given by the hypotheses, we have |CG(x)|2 = 2|CG/N (xN)|2 =
2|CG/N (x2N)|2 = |CG(x2)|2. Now, as 2a = |〈x〉N/N | ≤ |CQ(x)N/N | ≤ |CG/N (xN)|2 =
2a, we conclude that CQ(x) ∩ N = Z(Q) ∩ N has order 2. The same discussion yields 
that CQ(x2) ∩N = Z(Q) ∩N .

Take y ∈ Z(Q) ∩N to be the element of order 2. We distinguish two cases, depending 
on the fact that yx is conjugate to either x or x−1. Suppose first that xg = yx for 
some g ∈ G. Then, as [x, g] ∈ N , by (ii) we can write g = cn, where c ∈ CG(x) and 
n ∈ N . Thus, we may assume without loss that g ∈ N . On the other hand, notice that 
g ∈ CG(x2). Since x2 cannot fix any 2′-element of N , we deduce that g is a 2-element, 
so g belongs to Z(Q) ∩ N ⊆ CG(x), which is a contradiction. Finally, if (x−1)g = yx

for some g ∈ G, it follows that x2 is real, again a contradiction. The proof of (iii) is 
complete. �
Lemma 4.3. Assume that G satisfies the hypothesis, N is nilpotent and Case (c) of The-
orem 4.1, including that N is not a 2-group, occurs. Then the Sylow 2-subgroups of G/N

are not quaternion.

Proof. Assume on the contrary that the Sylow 2-subgroups of G/N are isomorphic to 
Q8 and take x(Q ∩ N) an element of order 4, where Q is a Sylow 2-subgroup of G. 
According to Lemma 2.1 we have either |CG(x2)|2 = |CG/N (x2N)|2 = 8 or |CG(x2)|2 =
2|CG/N (x2N)|2 = 16. We study both cases separately.

Case 1. Suppose that the former case occurs. By applying Lemma 4.2(i), it follows 
that CG(x2) = CG(x) and so CQ(x2) = CQ(x). On the other hand, 4 = |CQ(x)N/N | =
|CQ(x)/CQ∩N (x)|. Thus, 4 = |〈x〉N/N | ≤ |CQ(x)N/N | ≤ |CG/N (xN)|2 = 4, which 
means that Z(Q) ∩ N = CQ(x) ∩ N = CQ(x2) ∩ N is a group of order 2. Set T =
Z(Q) ∩ N = 〈y〉. By hypothesis, we know that there exists g ∈ G, such that either 
xg = yx or (x−1)g = xy. In the following we exclude both cases.

Suppose first that xg = yx for some g ∈ G. Since [x, g] ∈ N , then by Lemma 4.2(ii) 
we can write g = cn, where c ∈ CG(x) and n ∈ N . Thus, we may assume g ∈ N . On the 
other hand, g ∈ CG(x2). Since x2 does not fix any 2′-element of N by Theorem 4.1(c), 
we deduce that g is a 2-element. As N is nilpotent, then g belongs to the only Sylow 
2-subgroup of N , that is, g ∈ Q ∩N . Then g must belong to T = Z(Q) ∩N ⊆ CG(x), a 
contradiction.

Therefore, we may assume (x−1)g = yx for some g ∈ G, and it follows that x2 is real. 
Now, assume 1 �= tT ∈ Z(Q/T ) ∩ (N ∩ Q)/T . Then [t, x] = y, which implies that xt =
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xy = (x−1)g. This contradicts the fact that x is non-real. Hence Z(Q/T ) ∩(N∩Q)/T = 1
and so N ∩ Q = T , which gives that Q has order 16. According to the classification of 
groups of order 16 that have a factor isomorphic to Q8, we obtain that Q is isomorphic 
to either Q8 ×C2 or C4 �C4. But in both cases, all elements of order 2 are central. This 
would imply that |CQ(x2)| = 16, a contradiction.

Case 2. Assume |CG(x2)|2 = 2|CG/N (x2N)|2 = 16. By Lemma 2.1, we have that x2

is not real, and consequently, |x2| > 2, which means that |x| > 4. Since |CQ(x)| = 8, we 
get CQ(x) = 〈x〉, |x| = 8 and Z(Q) ∩N = 〈x4〉 is a group of order 2. By hypothesis, there 
exists g ∈ G, such that xg = x5 or (x−1)g = x5. The latter case yields that x2 is real, 
a contradiction. Therefore, we assume xg = x5 for some g ∈ G. Then, as [x, g] ∈ N , by 
applying Lemma 4.2(ii) we can write g = cn, where c ∈ CG(x) and n ∈ N , so we assume 
g ∈ N . On the other hand, g ∈ CG(x2). Since x2 does not fix any 2′-element of N , we 
deduce g is a 2-element. As N is nilpotent we have g ∈ Q ∩N . Thus, g ∈ CQ(x2) \CQ(x), 
CQ(x2) = 〈x, g〉 is a group of order 16 and CQ∩N (x2) = 〈g, x4〉. By the classification of 
groups of order 16 with a cyclic maximal subgroup we obtain CG(x2) ∼= M16 and |g| = 2.

Therefore, we have got the following properties: x(Q ∩N) is an element of order 4 in 
the quaternion group Q/(Q ∩ N), with |x| = 8, and there exists g ∈ Q ∩ N of order 2
such that xg = x5 and CG(x2) = 〈g, x〉 ∼= M16. Observe that these properties are exactly 
the same as the ones obtained in case 2 of Step 4 in the proof of Theorem A. Thus, by 
using the same argument we get a contradiction. As noticed before, the fact that N is 
nilpotent is not employed. �
Lemma 4.4. Assume that G satisfies the hypothesis, N is nilpotent, |G/N |2 = 2 and 
case (c) of Theorem 4.1, including that N is not a 2-group, occurs. Then, |G/N | = 2, 
C2 ∼= Z(G) ⊆ N and G is a quasi-Frobenius group with complement cyclic of order 4
and abelian kernel N . In particular, G/Z(G) is a generalized dihedral group.

Proof. Let x and Q be as described in Lemma 4.2. By applying Lemma 4.2(i), we 
have |CG(x)|2 = 2|CG/N (xN)|2, which means that x is not real by Lemma 2.1, and in 
particular |x| ≥ 4. But on the other hand, as |CG(x)|2 = 4, we get |x| = 4.

Since x is not real, then for every g ∈ NG(〈x〉), we have g ∈ CG(〈x〉). In particular, 
NQ(〈x〉) = CQ(〈x〉) = 〈x〉, which forces that 〈x〉 = Q. It is well-known then that G has 
a normal 2-complement, say H. As N is nilpotent, Q ∩N = 〈x2〉 is normal in G, so we 
trivially have 〈x2〉 ⊆ Z(G). Furthermore, by hypothesis x2 ∈ N cannot centralize any odd 
order element out of N , so H ≤ N = H〈x2〉 and |G/N | = 2. Also, by Theorem 4.1(c) we 
know that G/N acts Frobeniusly on H, so necessarily Z(G) = 〈x2〉. Moreover, notice that 
H is abelian since it is an odd order group acted on by a fixed-point-free automorphism 
of order 2. We conclude then that G is a quasi-Frobenius group with complement cyclic 
or order 4 and abelian kernel N . In particular, G/Z(G) is generalized dihedral. �
Proof of Theorem B. Theorem 4.1 asserts that we have three possibilities for G, the 
first two of which coincide with the first two possibilities of Theorem B. Suppose that 
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Theorem 4.1(c) occurs including the hypothesis that N is not a 2-group. Then, by fol-
lowing Lemmas 4.2-4.4, we conclude that G satisfies the assertion (3) of Theorem B, as 
wanted.
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