
Modeling noisy time-series data of crime with stochastic differential equations1

Julia Calatayud a, Marc Jornet b, Jorge Mateu c
2
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Abstract. We develop and calibrate stochastic continuous models that capture crime dynam-13

ics in the city of Valencia, Spain. From the emergency phone, data corresponding to three crime14

events, aggressions, stealing and women alarms, are available from the year 2010 until 2020. As15

the resulting time series, with monthly counts, are highly noisy, we decompose them into trend16

and seasonality parts. The former is modeled by geometric Brownian motions, both uncorre-17

lated and correlated, and the latter is accommodated by randomly perturbed sine-cosine waves.18

Albeit simple, the models exhibit high ability to simulate the real data and show promising for19

crimes-interaction identification and short-term predictive policing.20
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1. Introduction26

Criminality is a serious problem for any region, which risks its economy, security and quality27

of life. In the field of mathematical modeling, the study of crime events from the point of view of28

differential equations has been developed in several directions. On the one hand, with partial29

differential equations, space locations are characterized by a potential of criminal activity,30

taking into account feasibility, attractiveness, opportunities, and knowledge of offenders about31

target, vulnerability, victims, area, etc.; the main objective is the study of the dynamics of32

crime hotspots [4, 10, 12, 16, 24–26, 30]. On the other hand, ordinary differential equations33

coupled through population compartments provide the mechanisms for the flow and the social34

transmission between criminality states [1, 9, 18, 20, 27, 28]. Albeit these theories are powerful35

to get a deeper understanding of crime patterns, fitting the models to actual crime data is not36

straightforward and therefore their applicability is lessened. In fact, to our knowledge, only37

two differential equation-based works overtake qualitative aspects and attempt to calibrate38

parameters to match model output and recorded observations, see [11, 13]. In paper [13], the39

authors consider serious and minor criminal activities in Manchester, which are influenced by40

the attractiveness of the place at each time instant, and set a system of ordinary differential41

equations for model fitting. However, the performance is limited, since the parameters seem42

to be unidentifiable and the inverse problem is challenging and not uniquely solvable. Further,43

although a stochastic model is proposed, it is not fully calibrated. Article [11], for its part,44

models criminality data in an area of South Africa, by dividing the region into high- and low-45

conflicting zones. A system of two ordinary differential equations is proposed, by assuming46
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certain behavioral and spatial fluxes. However, it is not clear how to divide the area of study in47

general. Also, data are aggregated on an annual basis, so noisy patterns do not arise and nearly48

linear models make a very good job at replicating the observations with no need of stochastic49

effects.50

In our paper, we intend to model time series of crime in a city of Spain, Valencia, by deal-51

ing with highly noisy patterns and calibrating stochastic effects. In this manner, we seek to52

supplement the interesting cases investigated in [11,13]. To provide context, Valencia is a city53

located in the Mediterranean coast, with 800,000 inhabitants. Even though it is a safe place,54

it is a major city in Spain and several illegal acts may occur per day. When suffered or wit-55

nessed, these activities are communicated to the 112-emergency phone. For the design of the56

paper, we have access to a list of crime events in the streets of Valencia from 2010 until 2020:57

aggression (theft with violence), stealing (theft with no violence), women alarms (attack to a58

woman with violence), and others. Our main goal is the proposal and calibration of stochas-59

tic differential equation models that can capture the trends of the crimes and quantify their60

uncertainties [2, 14, 17], by using standard models from the financial literature on stock price61

evolution. The ability of our simple stochastic equations to simulate the real data suggests a62

new view of crime-dynamics modeling. Ideally, for real-world applications seeking predictability63

by the police, short training periods may be employed for calibration and then forecast a few64

subsequent times (“predictive policing”).65

The structure of the paper is as follows. In Section 2, data are presented and decomposed66

to capture a trend and seasonality. Methods are proposed to model trend by uncorrelated or67

correlated Itô diffusion, and seasonality. Numerical results for each methodology are reported68

in Section 3, with tabulated calibrations and graphed model outputs. Section 4 is devoted to69

the discussion of the main aspects of the paper and a detailed comparison with the literature.70

Finally, in Section 5, conclusions are drawn.71

2. Methods72

In this section, we describe the methods followed in the analysis of crime data. After present-73

ing the data, we extract its components for simplification. Then we develop stochastic models74

that can well capture the new time series.75

2.1. Data. Our dataset contains information about reported criminal events in the city of Va-76

lencia for ten complete years, from 2010 to 2020. We have a total of 90247 events communicated77

to the 112-emergency phone, split into aggression (55610 cases), stealing (25342 cases), woman78

alarm (454 cases) and others (8841 cases). These four categories refer to different types of79

thefts or robberies in the streets: aggression means a theft after hitting a person, stealing is a80

smooth theft with no force used, woman alarm is a theft to a woman with violence, and others81

means other thefts or robberies that cannot be considered within the previous three groups.82

This last category is formed by several events with different types of structures, making it83

highly variable and difficult to model; thus, we focus on the other three categories.84

In Figure 1, we present the data on aggressions, stealing and women alarms. We employ85

monthly observations, along 132 months. Observe that the time series are very noisy, with86

some sort of white noise pattern. This motivates the separation of the series into trend (with87

an Itô-diffusion pattern) and seasonality (with some noisy bias).88

2.2. Trend and seasonality. The time series are split into two components: trend and sea-89

sonality. The trend captures the general pattern of the data over time; we obtain it by using a90

moving average of twelve months (months of periodicity) to smooth out the original time series.91

On the other hand, seasonality captures periodic patterns over time, in this case annual; we92
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Figure 1. Monthly counting of aggressions, stealing and women alarms in the
city of Valencia, from January 2010 to December 2020. Source: 112-emergency
phone.

obtain it by subtracting the original data and the trend. Both components present noise, due93

to the inherent uncertainty in the phenomenon and in data collection.94

In Figures 2 and 3, we present the data trend and seasonality, respectively. We see that,95

approximately, the trends increase until summer 2011, decrease until the beginning of 2013,96

and then augment until a spike at mid 2016, to later show a falling pattern up to December97

2020. The three criminal events have a similar evolution, although their incidences are quite98

different: aggressions double stealing incidents, while women alarms are seldom reported. On99

the other hand, we observe distinct yearly upward spikes in the seasonality time series.100

Due to the smoothing of the original noise and the fluctuations observed in Figure 2, we101

attempt to describe the trend by an Itô-diffusion process, rather than a white noise process.102

Specifically, as in the financial literature of stock price evolution, we employ a geometric Brow-103

nian motion process to fit the data trend. The seasonality, by contrast, will be given a noise104

complementing a deterministic Fourier series.105

2.3. Modeling of trend with a geometric Brownian motion. Given any of the three106

trends, to be described by xt = modeled value of the real trend at instant t, we start with the107

ordinary differential equation model108

x′
t = µxt, (2.1)109

where the prime denotes the derivative with respect to time. Parameter µ ∈ R may be inter-110

preted as the instantaneous relative risk of criminality. It is assumed to be constant over time.111

However, life is inherently uncertain, and there are certainly random factors that may affect112

the risk along time. Thus, parameter µ is perturbed through a Gaussian white noise process113
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Figure 2. Trend component of aggressions, stealing and women alarms in the
city of Valencia. The raw data sets were smoothed by using a moving window
average.

with intensity (magnitude) σ > 0:114

µ← µ+ σB′
t.115

The noise B′
t, uncorrelated with infinite variance and zero mean, is the formal derivative of a116

standard Brownian motion, or Wiener process, Bt. This Brownian motion has the properties117

of zero mean and covariance given by the minimum of the two time instants; its trajectories are118

continuous but nowhere differentiable or monotone. Since Bt is nowhere differentiable, the white119

noise B′
t is idealized and its properties are derived from merely formal calculations; actually,120

B′
t is only well-defined as a Schwartz distribution or generalized process. The model (2.1) for121

the trend becomes a stochastic differential equation122

x′
t = µxt + σxtB

′
t. (2.2)123

The white noise is multiplied by the population, so that both are proportional; greater oscil-124

lations occur when there are higher rates of crimes. In differential notation, the model (2.2)125

is126

dxt = µxt dt+ σxt dBt, (2.3)127

which is interpreted in integral form under the theory of Itô calculus. Another viewpoint for128

the Itô stochastic differential equation (2.3) is the continuous limit of the discrete system129

∆xt = µxt∆t+ σxt

√
∆t Zt,130
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Figure 3. Seasonality component of aggressions, stealing and women alarms in
the city of Valencia. The trends were extracted from the raw data sets.

given fine partitions, where Zt ∼ Normal(0, 1) is an uncorrelated process. Now xt is a stochastic131

process, called geometric Brownian motion. By Itô lemma, which extends the standard chain132

rule theorem for non-differentiable processes, the solution to (2.3) is given by133

xt = x0e
(µ− 1

2
σ2)t+σBt , (2.4)134

where x0 > 0 is the initial, deterministic state. Interestingly, the expected value of xt coincides135

with the solution to the deterministic model. The stochastic solution serves to indicate random136

variability and is qualitatively closer to data. Its trajectories are positive and continuous but137

nowhere differentiable or monotone.138

We fit the real trend time series {st}t≥0 at times 0 < t1 < t2 < . . ., by matching st and139

the model (2.4) xt and calibrating µ and σ. The simplest method to derive estimates of140

these two parameters is based on statistical moments. By using (Napierian) log-returns ut =141

log st − log st−1, and by equating the sample mean and variance, u and d2 respectively, to the142

distributional mean and variance, the estimates obtained are143

µ̂ =
u+ d2/2

∆t
, σ̂ =

d√
∆t

. (2.5)144

We will consider times 0 < 1 < 2 < . . . and ∆t = 1. As will be perceived, the realizations145

of the geometric Brownian motion (2.4) will mimic the trends qualitatively, which justifies the146

use of stochastic differential equations of Itô type.147

2.4. Modeling of seasonality with Fourier series and noise. In this part, sine-cosine148

waves are used to accommodate the seasonal pattern of crimes. Unspecified features of each149

month are represented by a random effect.150
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Seasonality is modeled through a truncated Fourier series of period 12 plus a noise,151

yt =
a0
2

+
K∑
k=1

(
ak cos

(
2kπt

12

)
+ bk sin

(
2kπt

12

))
+ ϵt, (2.6)152

where ϵt ∼ Normal(0, σ) is an uncorrelated process with homogeneous variance σ2 (distinct153

from the trend case).154

The Fourier coefficients a0, a1, . . . , aK , b1, . . . , bK in (2.6) are estimated by least-squares min-155

imization from the seasonality time series. Since the problem is linear with respect to the156

coefficients, there is one best-fit solution. The standard deviation σ is then simply estimated157

from the standard deviation of the residuals sample.158

2.5. Modeling of correlated trends with correlated geometric Brownian motions.159

In Figure 2, one notes that time series exhibit cross-correlation. For example, the evolution160

patterns of aggressions and stealing are similar, as both may be viewed as serious and minor acts161

of the same criminal activity. Thus, instead of working with independent geometric Brownian162

motion processes, one may consider certain dependencies. Given two ordinary differential163

equations164

x′
1,t = µ1x1,t165

and166

x′
2,t = µ2x2,t167

for the trend of aggressions and stealing, respectively, the parameters are perturbed as168

µ1 ← µ1 + σ1B
′
1,t169

and170

µ2 ← µ2 + σ2B
′
2,t,171

where B1,t and B2,t are correlated Brownian motions and σ1, σ2 > 0 are the intensities (magni-172

tudes) of the noises. Indeed, the random factors that may affect the risk of aggression or stealing173

are not entirely independent. To build the two correlated Brownian motions, one starts with a174

Brownian process B1,t and then defines175

B2,t = ρB1,t +
√
1− ρ2B3,t,176

where B3,t is an auxiliary Brownian motion that is independent of B1,t. Parameter ρ is the
resulting correlation between B1,t and B2,t, which is homogeneous in time:

cov[B1,t, B2,t] = cov[B1,t, ρB1,t +
√

1− ρ2B3,t]

= ρ cov[B1,t, B1,t] +
√

1− ρ2 cov[B1,t, B3,t]

= ρ t

and177

corr[B1,t, B2,t] =
cov[B1,t, B2,t]√
var[B1,t]var[B2,t]

=
ρ t√
t · t

= ρ.178

179

In differential form, the models for both trends are180

dx1,t = µ1x1,t dt+ σ1x1,t dB1,t,181
182

dx2,t = µ2x2,t dt+ σ2x2,t dB2,t.183

Itô lemma yields the solutions184

x1,t = x1,0e
(µ1− 1

2
σ2
1)t+σ1B1,t , (2.7)185
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186

x2,t = x2,0e
(µ2− 1

2
σ2
2)t+σ2B2,t = x2,0e

(µ2− 1
2
σ2
2)t+σ2ρB1,t+σ2

√
1−ρ2 B3,t . (2.8)187

To estimate the five parameters µ1, µ2, σ1, σ2 and ρ in (2.7) and (2.8), log-returns are188

considered. If {s1,t}t≥0 and {s2,t}t≥0 denote the real trend time series at time instants 0 < 1 <189

2 < . . ., with ∆t = 1, the log-returns u1,t = log s1,t − log s1,t−1 and u2,t = log s2,t − log s2,t−1 are190

considered. The method of moments is used. By equating the sample means and variances, u1,191

u2, d
2
1 and d22 respectively, to the distributional means and variances, the estimates obtained192

are193

µ̂1 =
u1 + d21/2

∆t
, σ̂1 =

d1√
∆t

, (2.9)194

195

µ̂2 =
u2 + d22/2

∆t
, σ̂2 =

d2√
∆t

. (2.10)196

These values coincide with those in the case of no correlation, see (2.5). This is an important197

feature of our approach for dealing with cross-correlation; since interactions arise from the198

noises’ correlation ρ only, the estimates for the remaining parameters do not change. The199

estimate for the correlation between the two Brownian motions is200

ρ̂ =
d1,2

σ̂1σ̂2∆t
, (2.11)201

where d1,2 is the sample covariance between {u1,t}t and {u2,t}t. When ρ̂ ̸= 0, we are identifying202

interaction between the two crimes.203

3. Results204

In this section, we describe the main results obtained in the analysis of the crime data.205

Specifically, trend time series modeled by uncorrelated and correlated geometric Brownian206

motions, and seasonality time series modeled by truncated Fourier series with random effects.207

We use the software Mathematica® [31].208

3.1. Fitting of trend with a geometric Brownian motion. In Figures 4 and 5, we show209

how geometric Brownian motion (2.4) accommodates the aggression trend. In both plots, the210

mean and a 0.95 probabilistic interval are represented. Recall that the mean is the curve of a211

deterministic exponential model, (2.1). The interval gathers the trajectories and becomes wider212

as time passes, by the linear increase of the variance of Brownian motion with time; indeed, as213

we move away from the initial condition, the uncertainty in the output estimation raises. In214

Figure 4, two realizations of (2.4) are depicted as an example, which mimic the fluctuations of215

the trend qualitatively. In Figure 5, the optimal path among an ensemble of 105 trajectories216

of (2.4) is drawn, which provides a good fit of the time series quantitatively. The optimal path,217

say xopt
t , minimizes the sum of the squared differences between the simulated values xt and the218

trend data st:219

xopt = argmin
105 trajectories x

∑
all t

(xt − st)
2 . (3.1)220

The capture of fluctuations would be impossible with deterministic formulations. As the number221

of runs (i.e. simulated trajectories of (2.4)) increases, it is expected that the least-squares222

optimal path shows less discrepancy and a better overlap with respect to the trend time series223

because the ensemble is larger.224

For the events of stealing and women alarms, analogous figures are presented. In Figures 6225

and 7, we show the fit of the stealing trend. In Figures 8 and 9, the trend of women alarms is226
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Figure 4. Trend-component fitting of aggressions in the city of Valencia. Mean,
0.95 probabilistic interval, and two realizations as an example.
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Figure 5. Trend-component fitting of aggressions in the city of Valencia. Mean,
0.95 probabilistic interval, and least-squares optimal realization among 105 runs.

modeled. In this part of Results, the three crime events are considered to be independent; they227

are fitted separately, as detailed in Subsection 2.3.228
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Figure 6. Trend-component fitting of stealing in the city of Valencia. Mean,
0.95 probabilistic interval, and two realizations as an example.

The estimates of the parameters µ and σ obtained by the method of moments, see (2.5), are229

given in Table 1. For the three types of events, the estimated global growth rate µ̂ is positive,230
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Figure 7. Trend-component fitting of stealing in the city of Valencia. Mean,
0.95 probabilistic interval, and least-squares optimal realization among 105 runs.
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Figure 8. Trend-component fitting of women alarms in the city of Valencia.
Mean, 0.95 probabilistic interval, and two realizations as an example.
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Figure 9. Trend-component fitting of women alarms in the city of Valencia.
Mean, 0.95 probabilistic interval, and least-squares optimal realization among
105 runs.
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although nearly zero. This indicates that criminality is similar at the beginning and at the end231

of the whole time period. The value of σ̂ gives the magnitude of the infinitesimal standard232

deviation.233

aggressions stealing women alarms
µ̂ 0.000220781 0.000740088 0.00450867
σ̂ 0.0282544 0.0328026 0.0867399

Table 1. Estimates of the parameters for the three trend components, by the
method of moments.

The predictive capability of the stochastic model (2.4) is assessed in Figures 10–13. To234

avoid repetitions, only the case of aggressions is shown. For each figure, several months are235

fixed for calibrating the parameters µ and σ by (2.5), and then it is checked whether the236

criminal events of the remaining months are correctly captured. It should be stressed that we237

are not seeking quantitative, pointwise forecasts, since this is impossible when working with238

randomly fluctuating phenomena; rather, we are committed to averaged predictions of crimes,239

with probabilistic bands. In Figures 10–12, we take three, six and eight years of training.240

It is perceived that, as the training data increase, the prediction may become worse, since241

changes in the last months may not be correctly captured. Moreover, forecasts may change242

with training data, especially for large training periods. For instance, the lower limit of the243

confidence intervals shows a possibility of decreasing criminality when three and eight years of244

training are used, but for six years the possibility of crime decreasing is very low. Also, for six245

years the upper limit grows faster. These facts stem from the level of variability within the246

training span. As shown in Figure 13, the data between the sixth and the eighth years are a247

better predictor for the last year than the whole time series; in this manner, the decreasing248

pattern of the last period is properly reflected. For real-life applications seeking predictability249

of crime trends, short training scales with recent case counts may be employed to cautiously250

forecast a few subsequent times. The determination of the training span is not easy and would251

deserve further research, but it seems that it should be some months long (two years according252

to the last figure).253
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Figure 10. Trend-component prediction of aggressions in the city of Valencia,
by using three years of training.

3.2. Fitting of seasonality with Fourier series and noise. Although it is less interesting254

for applications, Figures 14–16 show how a noisy, truncated Fourier series (2.6) accommodates255

the seasonality component. We represent the periodic mean, the 0.95 probabilistic interval,256
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Figure 11. Trend-component prediction of aggressions in the city of Valencia,
by using six years of training.
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Figure 12. Trend-component prediction of aggressions in the city of Valencia,
by using eight years of training.
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Figure 13. Trend-component prediction of aggressions in the city of Valencia,
by using training between the sixth and the eighth years.

and the least-squares optimal realization among 105 runs (optimality means (3.1)). Of course,257

the fitting of this type of noise is more difficult than in the Itô-diffusion case of the trend.258

We have used the truncation order K = 4, and the Fourier coefficients have been calibrated259

by least-squares optimization. For K > 4 harmonic waves, a similar least-squares error is260

obtained, at the expense of more parameters. The error variance is then fixed as the variance261

of the residuals sample. In Table 2, the estimates are tabulated for the three criminal events.262

Observe that the estimated standard deviations σ̂ are much higher than those for the trends,263

due to the strongly noisy behavior of seasonality.264
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Figure 14. Seasonality-component fitting of aggressions in the city of Valencia.
Mean, 0.95 probabilistic interval, and least-squares optimal realization among
105 runs.
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Figure 15. Seasonality-component fitting of stealing in the city of Valencia.
Mean, 0.95 probabilistic interval, and least-squares optimal realization among
105 runs.
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Figure 16. Seasonality-component fitting of women alarms in the city of Va-
lencia. Mean, 0.95 probabilistic interval, and least-squares optimal realization
among 105 runs.

3.3. Fitting of correlated trends with correlated geometric Brownian motions. In265

Figures 17–20, we show the results of modeling the trends of aggression and stealing with266

two correlated geometric Brownian motion processes, see (2.7) and (2.8). Indeed, as already267

commented, the evolution patterns of these two events are similar. For each event, we plot the268
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aggressions stealing women alarms
â0 -4.11366 -2.84963 -0.0261963
â1 3.49520 6.37358 -0.0518142
â2 -19.5921 -8.91074 -0.20953
â3 -12.1525 -6.87741 -0.185918
â4 -4.29074 -2.34963 -0.467863

b̂1 22.9402 13.7019 0.600703

b̂2 1.13425 -0.0914142 0.137121

b̂3 -1.77500 1.35556 -0.2875

b̂4 -4.29074 -1.2413 -0.185233
σ̂ 94.5516 53.9931 2.96081

Table 2. Estimates of the parameters for the three seasonality components, by
the method of moments.

mean, a 0.95 probabilistic interval, two examples of realizations, and the least-squares optimal269

path (with the minimization for the two trend series at the same time) among 105 simulations.270
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Figure 17. Trend-component fitting of aggressions in the city of Valencia, by
taking into account correlation between aggression and stealing. Mean, 0.95
probabilistic interval, and two realizations as an example.

The estimates of the parameters are given in Table 3, by using (2.9)–(2.11). The growth271

rates and the infinitesimal standard deviations are the same as in Table 1. But now, we are272

identifying the significant correlation between the two Brownian motions, which demonstrates273

that the use of this model is advisable. For an illustration of the existing interaction, one may274

jointly sample from x1,t and x2,t at fixed time t (i.e. from (2.7) and (2.8) jointly), and then obtain275

a scatter plot and the correlation estimate. In Figure 21, scatter plots for t = 2 and t = 100276

are displayed. As t increases, the dispersion of the conditional distribution x2,t|x1,t = u gets277

larger with u. An approximate functional relationship between x1,t and x2,t may be obtained278

via a regression line.279

3.4. Summary of the results. With geometric Brownian motion processes (2.4), the historic280

time series on trends are fitted for each of the three events separately: aggressions in Figures 4281

and 5, stealing in Figures 6 and 7, and women alarms in Figures 8 and 9. The fit consists282

of the mean value, a 95% probabilistic interval, and realizations. The first figure of each pair283

simulates two paths, to focus on the qualitative aspects of the fluctuations of the trends. The284
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Figure 18. Trend-component fitting of aggressions in the city of Valencia, by
taking into account correlation between aggression and stealing. Mean, 0.95
probabilistic interval, and least-squares optimal realization among 105 runs.
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Figure 19. Trend-component fitting of stealing in the city of Valencia, by taking
into account correlation between aggression and stealing. Mean, 0.95 probabilistic
interval, and two realizations as an example.
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Figure 20. Trend-component fitting of stealing in the city of Valencia, by taking
into account correlation between aggression and stealing. Mean, 0.95 probabilistic
interval, and least-squares optimal realization among 105 runs.
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aggression & stealing
µ̂1 0.000220781
µ̂2 000740088
σ̂1 0.0282544
σ̂2 0.0328026
ρ̂ 0.854833

Table 3. Estimates of the parameters when modeling the trends of aggression
and stealing with correlations, by using the method of moments.
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Figure 21. Scatter plots for x1,t (aggression) and x2,t (stealing) at t = 2 and
t = 100, by sampling, when modeling the trends of aggression and stealing with
correlations.

second figure of each pair plots a least-squares optimal trajectory (3.1) against the trend time285

series, to focus on quantitative, pointwise fits. Despite its simplicity, the performance of the286

model is good, since the trend data are nearly reproduced. The estimated parameter values of287

the model, by the method of moments (2.5), are tabulated in Table 1.288

The capability of a model to “view” the future is important. Given a training dataset, which289

serves for parameter calibration, the incidence of crime in subsequent times is forecast. Figures290

10–13 illustrate that matter for aggressions and model (2.4). Future incidences are delimited291

by probabilistic bands, with average values. Pointwise predictions are not possible. Uncer-292

tainty quantification for the model response is devoted to probabilistic measures for outcomes:293

statistics, regions, thresholds, etc. As the figures show, the selection of the training period is294

important, because too large periods may not forecast the future well.295

Seasonality is studied for the three crime events in Figures 14–16. The seasonality time296

series are highly noisy. A truncated Fourier series with uncorrelated noise, (2.6), is employed297

for fitting. The estimated coefficients are given in Table 2.298

Finally, aggression and stealing incidents are coupled. This serves as an instance to show299

the stochastic modeling of any two interacting phenomena. Two non-independent geometric300

Brownian motions are used to fit the historic trend time series of aggression and stealing,301

see (2.7) and (2.8). The method of moments renders closed-form estimates for the parameters,302

by (2.9)–(2.11). Figures 17–20 represent the usual metrics of interest: the mean value, a 95%303

probabilistic interval, and realizations. Parameter calibrations are detailed in Table 3. Scatter304

plots for the two events are given in Figure 21. The significant dependence demonstrates the305

need of introducing a correlation parameter. This new coupled model (2.7)–(2.8) may be used306

for forecasting too, with mean values and probabilistic intervals as in Figures 10–13.307
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4. Discussion308

As shown in this paper, standard stochastic differential equation models from finance are309

useful to model crime dynamics. Quantitatively, model trajectories fit historic data along a310

whole decade. Thus, for short-term predictions, the model may be a useful tool for delineating311

the incidence of crime, based on mean values and probabilistic regions. Of course, pointwise312

quantitative forecasts cannot be expected with randomly fluctuating dynamics. We believe313

that the ability of the model to fit and predict, applied to certain days/weeks/months and314

neighborhoods/areas/cities, could be an aid for law enforcement.315

A critique of our approach might be the lack of mechanistic components, which does not316

permit understanding social or psychological sources of crime to derive eradication strategies.317

However, the incorporation of these mechanisms complicates models. As reviewed in the Intro-318

duction section, those complex models are restricted to simulating data-independent dynam-319

ics [1, 4, 9, 10, 12, 16, 18, 20, 24–28, 30] or entail unidentifiable inverse problems [13], so we are320

sure that there should be a balance between complexity and applicability. Here is where phe-321

nomenological/statistical modeling comes in [15, Section 2.1]. Our adopted approach does not322

pose any computational difficulty; it allows for fitting and forecasting, and further, it identifies323

crime interactions (for example, serious and minor events) by simply correlating the noises.324

Nonetheless, statistical forecasting models are limited by the assumption that future incidence325

will follow the patterns of incidence observed in the past.326

Although phenomenological models of crime based on differential equations have not taken a327

noticeable place in the literature, these types of models have been widely used in environmental328

sciences. For example, [6] and [23] employ logistic differential equations to forecast the burden of329

Zika and Ebola epidemics, respectively; [5] proposes multiple stochastic logistic functions to fit330

several COVID-19 waves and forecast; and [21] studies the applicability of a stochastic modified331

Lundqvist-Korf diffusion process to model CO2 emissions. As our paper shows, differential332

equation-based statistical models shall be considered a tool to assess the evolution of social333

behaviors.334

Following [11], we tried to spatially divide our city of study into high- and low-criminality335

zones, but both areas showed similar form of the time series and no gain was clearly perceived.336

Even so, the inclusion of spatial dependencies, by correlating noises, will be the basis of our337

future efforts. Here, we are omitting spatial statistics analysis, committed to point patterns338

from a completely different perspective [7, 8].339

The geometric Brownian motion process used for trend evolution mimics the use for stock340

price evolution. In that financial setting, the variances of the trajectories are unbounded on341

[0,∞) and there is no mean reversion, because the prices may rise or diminish indefinitely. An342

alternative formulation is Vasicek’s model, which gives rise to the Ornstein-Uhlenbeck process343

and possesses the properties of mean reversion and asymptotic finite variance [3]. Used for344

interest rates in finance [22] since these cannot increase or decrease indefinitely, one may wonder345

whether the Vasicek’s model would be more appropriate for crime dynamics. We tried this346

model. In terms of pointwise fitting of historic data, we did not find particular differences.347

Essentially, the difference relied on the probabilistic band, which exhibited bounded amplitude348

along time. In this sense, the use of one or the other model depends on whether the extent of349

criminal activities is considered delimited or not.350

Some modifications and enhancements of the present paper are here commented. First, the351

growth-rate parameter µ was considered constant, but it would be more realistic to work with352

certain dependencies on covariates via link/effect functions [19]. Second, in line with the previ-353

ous point, covariates could be incorporated as Itô processes into the differential terms instead,354
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by setting a hierarchical stochastic model. While these ideas would help for better forecasts355

in criminology, the complexity of the model would certainly increase. Third, Poisson jumps356

could be included in the model, apart from Itô diffusion; as motivated by [29] in the financial357

setting, at least these jumps may give a better fit of the log-returns. Fourth, independently358

of the approach followed, it would be of high interest to derive a general methodology for the359

determination of the training span when forecasting. In our paper, we give some insights on360

this fourth topic, but it deserves further analysis. And fifth, our stochastic methods could361

be applicable to spatio-temporal series, by correlating two patches like we did with the two362

interacting crimes. This last topic is the focus of a future work.363

5. Conclusion364

The evolution of three time series of criminal activity (aggressions, stealing and women365

alarms) is analyzed. Our case study corresponds to the calls retrieved by the 112-emergency366

phone in the city of Valencia, Spain, for the decade 2010–2020. The original noisy time series367

are decomposed into trend, with an annual moving average, and seasonality. The trend is368

a smoother version of the raw data and fluctuates as an Itô process. We apply a geometric369

Brownian motion process with method-of-moments parameter estimation for the three types370

of events, which also permits analyzing interacting crimes (such as aggression and stealing)371

by correlating noises and coupling equations. Seasonality is fitted by a randomly perturbed372

periodic function. Numerical results are essentially based on tabulating parameter estimates373

and graphing fits of historic data and simulations of forecasts. Our simple approach allows for374

simulating the real data, rendering short-term predictions, and identifying correlated crimes375

and risky periods.376
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