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Abstract
In this paper we study the dynamics of damped Traub’s methods Tδ when applied to poly-
nomials. The family of damped Traub’s methods consists of root finding algorithms which
contain both Newton’s (δ = 0) and Traub’s method (δ = 1). Our goal is to obtain several
topological properties of the basins of attraction of the roots of a polynomial p under T1,
which are used to determine a (universal) set of initial conditions for which convergence to
all roots of p can be guaranteed. We also numerically explore the global properties of the
dynamical plane for Tδ to better understand the connection between Newton’s method and
Traub’s method.
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1 Introduction

Dynamical Systems is a powerful tool which allows us to obtain a deep understanding of the
global behaviour of root-finding algorithms, that is, iterative methods capable to determine
numerically the solutions of the (non-linear) equation f (x) = 0. In most cases, the order
of convergence of those methods near the zeros of f is well known, but the behaviour and
effectiveness when initial conditions are chosen on the whole space is in general unclear.
This is, in fact, the main problem to tackle when studying a root-finding algorithm from the
dynamical systems point of view, particularly, when we do not know a priori where the roots
are, when there are many roots, or when we do not know how they are distributed.

The numerical exploration of the solutions of the equation f (x) = 0 has always been a
central problem in many areas of applied mathematics, from biology to engineering, since
mostmathematicalmodels require a thoroughknowledge of the solutions of certain equations.
Once we are certain that no algebraic manipulation of the equation will allow to explicitly
find out the solutions, one can try to build numerical methods which will approximate the
solutions with arbitrary precision. Perhaps the most well-known and universal method is
Newton’s method (see for instance [3]) inspired by the linearisation of the equation f (x) = 0
but also other methods like the one under consideration here, Traub’s method (see [21]), have
been shown to be efficient when converging.

Roughly speaking, all these iterative methods give efficient ways to find the solutions
of f (x) = 0, at least once you have a good approximation of them. However, there is a
significant amount of uncertainty when the initial conditions are freely chosen, when, as we
mentioned above, there is no natural candidate for the solution, or the number of solutions of
f (x) = 0 is large. It is in this context where dynamical systems can play a central role since
a precise description of the dynamical plane could be a cornerstone input. More precisely,
the topological properties of the (immediate) attracting basins of the points that correspond
to solutions of f (x) = 0 are the key tool to elaborate algorithms which will calculate all
solutions at once in an efficient way.

A paradigmatic example of this method can be found in the seminal paper by Hubbard,
Schleicher and Sutherland, [11], where the authors first prove theoretical results on the topol-
ogy of the mentioned invariant sets for Newton’s method and then they use this information
to create efficient algorithms to find all solutions, even in the case that the degree of p
is extremely high. Let us summarize the main result in [11]. First, we introduce the basic
notation from holomorphic dynamics.

Let R : Ĉ → Ĉ be a rational map. A point z = ξ is fixed if R(ξ) = ξ (resp. periodic
of period p if Rp(ξ) = ξ for some p ≥ 1). The multiplier of ξ is λ = R′(ξ) (resp.
λ = (Rp)′(ξ)). The fixed or periodic point ξ is attracting if |λ| < 1 (superattracting if
λ = 0), repelling if |λ| > 1, and indifferent if |λ| = 1. If ξ is attracting, we define the basin
of attraction of ξ as

AR(ξ) := A(ξ) = {z ∈ Ĉ | Rn(z) → ξ, n → ∞}.

In what follows we omit the dependence with respect to the rational map under consideration,
unless it is mandatory. It is easy to see that A(ξ) is an open set containing ξ . We denote by
A�(ξ) the connected component of A(ξ) containing ξ .

Recall that if p is a polynomial of degree d ≥ 2, the rational map defined as

Np(z) := z − p(z)

p′(z)
(1)
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is known asNewton’smap (ormethod) applied to p. Themap Np is the universal root-finding
algorithm and it satisfies a key global dynamical property: the point z = α is a root of p if
and only if it is an attracting fixed point of Np . In fact, if z = α is a simple root of p, then
N ′

p(α) = 0 (z = α is superattracting) and the local order of convergence of Np near z = α

is quadratic. We remark that z = ∞ is always a repelling fixed point of Np .
We now turn to the dynamics of the map Np . It is clear that for all initial conditions z0 ∈ C

such that

z0 ∈
d⋃

j=1

A (
α j

)

the sequences {Nn
p(z0)}n≥0 will converge to one of the roots of p. Newton’s map might have

other stable periodic components not related to the roots of p (see [18, Proposition 4] and
[12]). Those open domains on the dynamical plane determine a positive measure set of bad
initial conditions that we want to avoid when finding all roots of p. But, of course, a priori
there is no control on the topology and distribution of these domains in the plane and so it
seems difficult to choose the initial conditions carefully enough so that they are not in the
positivemeasure bad set (if any). The authors in [11] constructed a universal and explicit set of
initial conditions Sd (only depending on the degree of the polynomial) such that for any given
z = α j , j = 1, . . . , d, at least one of the corresponding sequences {Nn

p(z0), z0 ∈ Sd}n≥0,
converges to α j . The existence of the set Sd is guaranteed by the following key properties of
the immediate basins of attraction for the fixed points of Np .

Theorem 1.1 Let p be a polynomial of degree d ≥ 2. Assume that p(α) = 0 and let Np be
the corresponding Newton’s map. Then A�(α) is a simply connected unbounded set.

The above result was proven by Przytycki [15]. Later on, Shishikura [17], generalized the
simple connectivity ofA�(α) (and, in fact, of any Fatou component) by proving that the Julia
set of any rational map having one, and only one, weakly repelling fixed point is connected.
For a general overview of this topic there are many excellent references, see for instance [1,
7, 14]. For concrete results on Newton’s method as a dynamical system see [2, 10, 11, 16,
20].

This paper is a step forward in order to extend the above theorem to a class of root-finding
algorithms which includes Newton’s method as well as Traub’s method. But the underlying
motivation is to be able to construct an Sd like-set for these root–finding algorithms which
we can use to find all the roots of p at once. More precisely, we consider the damped Traub’s
family of root-finding algorithms

Tp,δ(z) = Np(z) − δ
p(Np(z))

p′(z)
, (2)

which depends on a complex parameter δ. To our knowledge this family, with δ ∈ R, was
first considered in [6, 22]. In these papers the authors analysed the existence of attracting
cycles other than the roots of the polynomial p, when p is a quadratic or cubic polynomial.
Notice that δ = 0 corresponds to Newton’s map. Traub (see [21]) proposed the root-finding
algorithm, nowadays known as Traub’smethod, which corresponds to δ = 1. For simple roots
of p the (local) order of convergence of Traub’s method is cubic but it is worth to be noticed
that each Traub’s iteration is one and a half iterations for Newton’s method. More precisely,
two iterates of Newton’s method require evaluating both p and p′ at z andw := Np(z), while
one iterate of Traub’s method requires evaluating p at z and w and p′ only at z. In other
words, there are clear local advantages of Traub’s method (cubic instead of quadratic) but it
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Fig. 1 In the left picture we illustrate the dynamical plane of Traub’s method applied to the cubic polynomial
p(z) = (z2 + 0.25)(z − 0.439). In this case, Tp has an attracting fixed point located at ζ ≈ 0.155. The basins
of attraction of the three fixed points associated with the zeros of p are shown in red. The basin of attraction
of ζ is shown in black. In the right picture we illustrate the Newton’s and Traub’s maps restricted to R. We
can observe that Np |R has one attracting fixed point while Tp |R has two attracting fixed points

has also some drawbacks compared to Newton’s method as it requires some extra evaluations
and it might have attracting fixed points which do not correspond to any root of p. See Fig. 1.

In any event, proving an equivalent result to Theorem 1.1 for Tp,1 will provide the tools for
constructing the Sd like-set of good initial conditions with the advantage of the cubic, instead
of quadratic, convergence of Traub’s method. Nonetheless, according to some rigorous argu-
ments plus the numerical experiments we have done we state the following conjecture.

Conjecture Let p be a polynomial of degree d ≥ 2. Assume that p(α) = 0 and let Tp,1 be
the corresponding Traub’s map. Then A�(α) is a simply connected unbounded set.

Neither Przytycki’s nor Shishikura’s proof of Theorem 1.1 apply to the family Tp,δ except
for δ = 0. Indeed, their proofs rely on the fact that for Newton’s method there are no finite
fixed points other than the roots. In this paper we prove the conjecture in the case where some
additional hypothesis holds.

Theorem A Let p be a polynomial of degree d ≥ 2. Assume that p satisfies one of the
following conditions:

(a) d = 2, or
(b) it can be written in the form pn,β(z) := zn − β for some n ≥ 3 and β ∈ C.

Suppose that p(α) = 0 and consider Tp,δ with δ ∈ [0, 1]. ThenA�
δ(α) is a simply connected,

unbounded set.

Westrongly believe, and it is indicated byour numerical experiments, thatworkingwith the
δ-family instead of proving the conjecture for Tp,1 as an isolated map, might have important
advantages. See Sect. 5 for details.

In Sect. 2 we show the main properties of the family of rational maps Tp,δ . Section3 is
devoted to prove Theorem A (a). Moreover, we also study in this section the δ−parameter
plane of Tp,δ and we prove that δ = 0 and δ = 1 belong to the same hyperbolic component
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of the parameter plane. In Sect. 4 we prove Theorem A (b). Finally, in Sect. 5 we discuss
some numerical evidence supporting the conjecture as well as illustrating that some of the
arguments used in the previous sections will not work in general; so other approach will be
needed.

2 Local dynamics of the family Tp,ı

In this section we prove fundamental dynamical properties for maps in Tp,δ . These properties
will allow us to prove Theorem A. First, the local behaviour of Tp,δ near the roots of p is
described (Lemma 2.1). Afterwards, we study the dynamical behaviour of the maps Tp,δ at
z = ∞ by proving under which conditions infinity is an attracting fixed point (Lemma 2.2).
Finally, we study the critical points of Tp,δ (Lemma 2.3), which play a key role in the local
and global dynamics.

We can assume that p(z) is a monic polynomial since easily we have that Nλp = Np

and Tλp,δ = Tp,δ for all λ ∈ C. Throughout this section we will use either of the following
equivalent expressions for the polynomial p:

p(z) = zd + · · · + a1z + a0 =
d∏

i=1

(z − αi ). (3)

Notice, in particular, that we are not assuming that the zeros of p are simple. In Lemma 2.1
we describe the local behaviour of the map Tλp,δ near the roots of p. This study depends on
whether the root is simple or multiple. This local study was previously done in [6, Theorem
1] (for the case of simple roots) and [22, Theorem 1] (for the case of multiple roots). Even
though Lemma 2.1 follows directly from [6, Theorem 1] and [22, Theorem 1], we add the
proof for the sake of completeness. The main difference between these results is that [6,
Theorem 1] and [22, Theorem 1] are obtained by studying the corresponding error terms of
the numerical methods while in Lemma 2.1 we use the multiplier of the roots as fixed points
of Tp,δ .

Lemma 2.1 Let p be a monic polynomial of degree d ≥ 2 which has a root α of multiplicity
1 ≤ k ≤ d, i.e. p(z) = (z−α)kq(z),where q is a polynomial of degree d−k with q(α) 	= 0.
Then, α is a fixed point of Tp,δ . Moreover the following statements hold.

• If k = 1 (simple roots) then Tp,δ has a superattracting fixed point at α for all δ ∈ C.
• If k ≥ 2 (multiple roots) then Tp,δ has an attracting fixed point at α if and only if

δ ∈ Dk :=
{
z ∈ C;

∣∣∣∣z − kk

(k − 1)k−1

∣∣∣∣ <
kk+1

(k − 1)k

}
.

Proof To simplify notation we omit the dependence on p; that is, Tδ = Tp,δ . Let α be a
root of p and assume p(z) = (z − α)kq(z), where q is a polynomial of degree d − k with
q(α) 	= 0. We have

Tδ(z) = z − p(z)

p′(z)
− δ

(N (z) − α)k q (N (z))

p′(z)
. (4)
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Some computations show that

q (N (z)) = q

(
kzq(z) + (z − α)(zq ′(z) − q(z))

kq(z) + (z − α)q ′(z)

)
:= q(A)

(N (z) − α)k = (z − α)k
(

(k − 1)q(z) + (z − α)q ′(z)
kq(z) + (z − α)q ′(z)

)k

.

(5)

From (4) and (5) and some further computations we get

Tδ(z) = z − B1(z)(z − α) − δB2(z)(z − α)q(A), (6)

where

B1(z) = q(z)

kq(z) + (z − α)q ′(z)

B2(z) =
(
(k − 1)q(z) + (z − α)q ′(z)

)k

(kq(z) + (z − α)q ′(z))k+1 .

(7)

Now, trivially, Tδ(α) = α. Taking the derivative in (6) we have

T ′
δ (z) = 1 − B1(z) − (z − α)B ′

1(z) − δ
(
B2(z) − (z − α)B ′

2(z)
)
.

Evaluating at z = α and using the expressions of B1(z) and B2(z) in (7), we get

T ′
δ (α) = k − 1

k
− δ

(
k − 1

k

)k 1

k
.

Thus, if k = 1 then α is a superattracting fixed point of Tδ since T ′
δ (α) = 0. If k ≥ 2 then

α is an attracting fixed point of Tδ if and only if |T ′
δ (α)| < 1 and the result follows since

|T ′
δ (α)| < 1 ⇐⇒

∣∣∣∣∣
k − 1

k
− δ

(
k − 1

k

)k 1

k

∣∣∣∣∣ < 1 ⇐⇒
∣∣∣∣δ − kk

(k − 1)k−1

∣∣∣∣ <
kk+1

(k − 1)k
.

�

From the lemma above we conclude that if α is a simple root of p, the local order of

convergence of any map in Tp,δ is at least quadratic (a well known result for Newton’s maps
corresponding to δ = 0). Later in this section we prove that for δ = 1 (Traub’s method) the
local order of convergence is at least cubic (see Lemma 2.3(a)); so near simple roots of p
Traub’s method is more efficient than Newton’s method. It is well known that for δ = 0, the
point z = ∞ is always a repelling fixed point with multiplier N ′

p(∞) = d/(d −1). However
the dynamical behaviour of z = ∞ for maps in Tp,δ depends on the particular choice of δ.
The next lemma shows that the point z = ∞ is fixed except for the degeneracy parameter
δ = dd/(d − 1)d−1. In particular, in the case that infinity is an attracting fixed point we
obtain open sets of initial conditions for which Tp,δ does not converge to the roots of p. Such
parameters are avoided when looking for roots of a degree d polynomial.

Lemma 2.2 Let p be amonic polynomial of degree d, and assume δ ∈ C, δ 	= dd/(d−1)d−1.
Then, z = ∞ is a fixed point of Tp,δ and satisfies:

(a) it is repelling if

0 <

∣∣∣∣δ − dd

(d − 1)d−1

∣∣∣∣ <
dd+1

(d − 1)d
,
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(b) it is attracting if
∣∣∣∣δ − dd

(d − 1)d−1

∣∣∣∣ >
dd+1

(d − 1)d
,

(c) and it is indifferent otherwise.

Proof As before we simplify notation by erasing the dependence on p. Since Tδ is a rational
map we rewrite the damped Traub’s map as a quotient of two polynomials. We claim that

Tδ(z) = z − p(z)

p′(z)
− δ

[p(z)]2r(z)
[p′(z)]d+1 ,

where r(z) is a polynomial of degree d2 − 2d . To see the claim we notice that from (3) we
have

p′(z) =
d∑

i=1

pi (z), where pi (z) =
d∏

k=1, k 	=i

(z − αk).

Also,

p(Np(z)) =
d∏

i=1

(
z − p(z)

p′(z)
− αi

)
= 1

[p′(z)]d
d∏

i=1

[(z − αi )p
′(z) − p(z)]

= 1

[p′(z)]d
d∏

i=1

[(z − αi )

d∑

k=1

pk(z) − p(z)] = 1

[p′(z)]d
d∏

i=1

(z − αi )

d∑

k=1,k 	=i

pk(z),

= 1

[p′(z)]d
d∏

i=1

(z − αi )
2

d∑

k=1,k 	=i

pk,i (z) = [p(z)]2
[p′(z)]d

d∏

i=1

d∑

k=1,k 	=i

pk,i (z),

where pk,i (z) = ∏d
j=1 , j 	=i,k(z − α j ) and r(z) =

d∏

i=1

d∑

k=1 ,k 	=i

pk,i (z) is a polynomial of

degree d2 − 2d . Therefore, we obtain

Tδ(z) = z[p′(z)]d+1 − p(z)[p′(z)]d − δ[p(z)]2r(z)
[p′(z)]d+1 . (8)

We now compute the leading coefficients of the numerator and the denominator in (8).
Since the polynomial p has degree d with leading coefficient equal to 1, p′ has degree d − 1
with leading coefficient equal to d and the polynomial r(z) has degree d2 − 2d with leading
coefficient equal to (d − 1)d , some computations show that

Tδ(z) = [dd+1 − dd − δ(d − 1)d ]zd2 + · · ·
dd+1zd2−1 + · · · . (9)

Consequently, if

δ 	= dd+1 − dd

(d − 1)d
= dd

(d − 1)d−1

the numerator of the rational map Tδ has degree d2 while the denominator has degree d2 −1.
We conclude that Tδ(∞) = ∞. On the other hand, if δ = dd/(d − 1)d−1, the degree of the
denominator of Tδ is d2−1 and the degree of the numerator is at most d2−1, so Tδ(∞) 	= ∞.
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Assume Tδ(∞) = ∞. To compute the multiplier at z = ∞ we use the auxiliary map
Gδ(z) = 1/Tδ(1/z). Straightforward computations from (9) give

Gδ(z) = 1

Tδ(1/z)
= z

dd+1 + · · ·
[dd+1 − dd − δ(d − 1)d ] + · · · ,

and so

T ′
δ (∞) = G ′

δ(0) = dd+1

(d − 1)
[
dd − δ (d − 1)d−1] .

We know that z = ∞ is a repelling fixed point of Tδ if and only if |T ′
δ (∞)| > 1. Hence,

statement (a) follows from

|T ′
δ (∞)| > 1 ⇐⇒

∣∣∣∣∣∣
dd+1

(d − 1)
[
dd − δ (d − 1)d−1

]

∣∣∣∣∣∣
> 1 ⇐⇒

∣∣∣∣∣δ − dd

(d − 1)d−1

∣∣∣∣∣ <
dd+1

(d − 1)d
.

Statements (b) and (c) follow similarly by imposing |T ′
δ (∞)| < 1 and |T ′

δ (∞)| = 1, respec-
tively. �


We finish this section studying the critical points of the maps Tp,δ . The importance of
these points comes from the fact that they are related to the stable behaviour of the dynamics
of any rational map. In order to explain this relation, let us first recall the basic concepts
we need here about rational dynamics. Given a rational map R : Ĉ → Ĉ, we consider the
dynamical system given by the iterates of R. The Riemann sphere splits into two completely
R−invariant subsets: the Fatou setF(R), which is defined to be the set of points z ∈ Ĉwhere
the family {Rn , n ≥ 0} is normal in some neighbourhood of z, and its complement, the Julia
set J (R) = Ĉ\F(R). The Fatou set is open and therefore J (R) is closed. Moreover, if the
degree of the rational map f is greater than or equal to 2, then the Julia setJ (R) is not empty
and is the closure of the set of repelling periodic points of R.

The connected components of F(R), called Fatou components, are mapped under R
among themselves. Sullivan ( [19]) proved that any Fatou component of a rational map is
either periodic or preperiodic. The Classification Theorem concludes that there are only four
types of periodic Fatou components one of which consists of the connected components of
the basin of attraction of an attracting cycle. It is known that any attracting cycle of Fatou
components contains at least one critical point. For a background on the dynamics of rational
maps we refer to [1, 7, 14].

Accordingly, the key tool to understand the dynamical plane of Tp,δ is to control the
dynamical behaviour of the critical orbits, i.e. orbits of critical points. For instance, if we
assume that all roots of p are simple we have

T ′
p,0(z) = N ′

p(z) = p(z)p′′(z)
(p′(z))2

, (10)

and the critical points of Newton’s method are the zeros of p (which are superattracting fixed
points of Tp,0) and the zeros of p′′. These latter critical points are usually called free critical
points since they are not linked to any prescribed dynamics. Notice that the poles of T ′

p,0,
that is, the zeros of p′, are not critical points since it follows by (8) the map is one-to-one on
a sufficiently small neighbourhood of each pole.

When considering δ 	= 0 the degree of the map changes drastically compared to δ = 0.
Indeed, the degree increases from d to d2, and so the number of critical points increases from
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2d − 2 (d zeros of p and d − 2 zeros of p′′) to 2d2 − 2. In some way, Tp,δ , with δ 	= 0, can
be considered a singular perturbation of Tp,0, although the local perturbation takes place on
the Julia set while in most cases where this theory applies the perturbation takes place on the
Fatou set which allows a more rigid control of the global dynamics after perturbation (see for
instance [4, 9]). The following proposition gives a precise description of the critical points
of Tp,δ .

Lemma 2.3 Let p be a monic polynomial of degree d with all its roots being simple, and
assume δ ∈ C \ {0}. Then, the critical points of Tp,δ can be classified as follows.

(a) The zeros of p. If p(α) = 0 then α is a critical point with multiplicity 1 for δ 	= 1 and
multiplicity 2 for δ = 1 (Traub’s method).

(b) The zeros of p′ (which are poles of Tp,δ). If p′(β) = 0, then β is a critical point with
multiplicity d.

(c) The zeros of p′′. If p′′(γ ) = 0 then γ is a critical point and its multiplicity depends on
higher derivates of p at γ .

(d) Critical points that do not belong to any of the above cases. There are as many as

(i) d(d − 1) if δ 	= 1 and δ 	= dd/(d − 1)d−1.
(ii) d(d − 2) for δ = 1 (Traub’s method).
(iii) d(d − 1) − 2 for δ = dd/(d − 1)d−1.

Proof The critical points of Tp,δ are given by the solutions of T ′
p,δ(z) = 0 and eventually the

poles of Tp,δ . Using (1), (2) and (10) it is easy to see that

T ′
p,δ(z) = p′′(z)

(p′(z))2

[
p(z) − δ

p′(Np(z))p(z)

p′(z)
+ δ p(Np(z))

]
. (11)

We start by proving statement (a). Letα ∈ C such that p(α) = 0 (notice that by assumption
p′(α) 	= 0). On the one hand, we have that p(Np(α)) = 0, and so substituting in (11) it
is clear that T ′

p,δ(α) = 0 and α is a critical point of Tp,δ . On the other hand, we have that
N ′

p(α) = 0 and so doing some computations we get that

T ′′
p,δ(α) = N ′′

p(α)(1 − δ) = p′′(α)

p′(α)
(1 − δ) and T ′′′

p,1(α) 	= 0,

so statement (a) follows.
We turn now to statement (b). It follows from (8) that the roots of p′(z), i.e. poles of

Tp,δ , are preimages of z = ∞ of multiplicity d + 1 and, hence, are critical points of Tp,δ of
multiplicity d (one less than the order of the roots of p′ as poles of Tp,δ). Statement (c) follows

directly from (11) since p′′(γ ) = 0 implies T ′
p,δ(γ ) = 0 and T ′′

p,δ(γ ) = p′′′(γ )/
(
p′(γ )

)2.
Finally, we prove statement (d). If δ 	= 1 and δ 	= dd/(d − 1)d−1 we have already

d + d(d − 1) + (d − 2) = d2 + d − 2 critical points corresponding to zeros of p, p′ and
p′′. From Lemma (2.2)(b) the global degree of the map is d2 so the total number of critical
points is 2d2 − 2. Hence, we have

2d2 − 2 − (d2 + d − 2) = d(d − 1),

extra critical points and thus (i) is proved. If δ = 1 the number of critical points corresponding
to zeros of p, p′ and p′′ is 2d + d(d − 1) + (d − 2) = d2 + 2d − 2 while again the global
degree of the map is d2, so the total number of extra critical points is

2d2 − 2 − (d2 + 2d − 2) = d(d − 2).
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This proves (ii). Finally, if δ = dd/(d − 1)d−1 the number of critical points related to the
zeros of p, p′ and p′′ is equal to d + d(d − 1) + (d − 2) = d2 + d − 2, while the global
degree of the map is now d2 − 1 (this is a degeneracy parameter where the degree decreases
by 1), so the total number of extra critical points is

2(d2 − 1) − 2 − (d2 + d − 2) = d(d − 1) − 2.

This proves (iii). �


3 The quadratic case

In this section we assume that p is a monic polynomial of degree 2. The main goal is to
prove Theorem A with the assumption (a). We first study the case for which the quadratic
polynomial has 2 different simple roots. Let

p2(z) = (z − α1)(z − α2), (12)

with α1 	= α2 ∈ C and α1 	= α2. A key feature to understand the dynamics of Tp2,δ is the
fact that this map is conjugated to a map Gδ which depends on δ but does not depend on α1

and α2 (compare [6]). Indeed, let

h(z) = z − α2

z − α1
(13)

be the Möbius transformation which sends α2, α1, and ∞ to 0, ∞, and 1, respectively. A
simple computation shows that for all z ∈ Ĉ, we have Gδ(z) = (h ◦ Tp2,δ ◦ h−1)(z), where

Gδ(z) = z2
z2 + 2z + (1 − δ)

(1 − δ)z2 + 2z + 1
. (14)

In other words Tp2,δ is analytically conjugate to the rational mapGδ .Wewould like to remark
that a first study of the dynamics of the map Gδ was done in [6], where the authors studied
for which parameters there are attracting fixed points (other than the roots) and attracting
cycles of period 2 and performed several numerical experiments.

The next lemma states that if δ ∈ R then Gδ is a Blaschke product (see [14, pp. 162–
163] for details). This is an important property since Blaschke products leave the unit circle
invariant.

Lemma 3.1 If δ ∈ R we have that Gδ is a Blaschke product.

Proof The case δ = 1 follows directly by noticing that G1(z) = z3 (z+2)
(1+2z) , is a Blaschke

product. Assume in what follows that δ ∈ R and δ 	= 1. To see that Gδ is a Blaschke product,
we compute its zeros (other than z = 0), denoted by ξ± := ξ±(δ), and its poles, denoted by
w± = w±(δ). They are given by

ξ± = −1 ± √
δ and w± = −1 ± √

δ

1 − δ
= ξ±

1 − δ
, if δ 	= 1;

Notice that ξ+ξ− = 1 − δ, w− = 1/ξ+ and w+ = 1/ξ−. Consequently we can rewrite
Gδ , as
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Gδ(z) = z2
(z − ξ+)(z − ξ−)

ξ+ξ−(z − 1/ξ+)(z − 1/ξ−)
= z2

(
z − ξ+
1 − z ξ+

) (
z − ξ−
1 − z ξ−

)

proving thus that Gδ is a Blaschke product. �

It follows from the previous lemma that, if δ ∈ R then Gδ is symmetric with respect to the
unit circle: so Gδ = τ−1 ◦ Gδ ◦ τ where τ(z) = 1/z. The next lemma states that the map
ς(z) = 1/z conjugates Gδ with itself for all δ ∈ C. The proof is straightforward.

Lemma 3.2 Let δ ∈ C and let ς(z) = 1/z. Then for all z ∈ Ĉ we have

Gδ(z) = (ς−1 ◦ Gδ ◦ ς)(z).

The following lemma deals with the critical orbits for Gδ and in particular shows the
existence of a well defined one-dimensional δ-parameter plane for the family Gδ . The proof
depends strongly on the previous lemma since the conjugacy ς allows us to tie the dynamics
of the free critical orbits since both critical orbits behaves symmetrically.

Lemma 3.3 Let Gδ be the family of maps given by (14) and assume that δ 	= 0. The following
statements hold.

(a) The map Gδ has degree 4, so it has 6 critical points counting multiplicity.
(b) If δ 	= 1 then the critical points are given by z = 0, z = −1 (double), z = ∞, and z± =

c±(δ), where

c±(δ) = −(2 + δ) ± √
(2 + δ)2 − 4(1 − δ)2

2(1 − δ)
. (15)

Moreover

lim
δ→1

c+(δ) = 0 and lim
δ→1

c−(δ) = ∞.

(c) If δ = 1 there are three double critical points given by z = 0, z = ∞, and z = −1.
(d) The orbit of all critical points different from c± is prescribed. Precisely Gδ(0) = 0,

Gδ(∞) = ∞, Gδ(1) = 1 and Gδ(−1) = 1. In particular z = 0 and z = ∞ are
superattracting fixed points. We denote by A�

δ(0) and A�
δ(∞) the immediate basins of

attraction, respectively.
(e) If δ ∈ (0, 1) we have Gδ(x) 	= x for all x ∈ (0, 1) and G ′

δ(x) > 0 for all x ∈ (0,∞).
(f) The critical points c±(δ) satisfy c+(δ) = 1/c−(δ). Moreover, their orbits are symmetric

with respect to ς(z) = 1/z, i.e. they satisfy Gn
δ (c+(δ)) = 1/Gn

δ (c−(δ)) for all n ≥ 1.

In particular, Gδ defines a well defined one-dimensional δ-parameter plane depending on
the dynamical behaviour of the critical orbit {Gn

δ (c+(δ))}n≥0 (compare Fig.2).

Proof Statements (a) to (e) can be obtained by simple computations. For statement (f), the
fact that c+(δ) = 1/c−(δ) also follows from a simple computation. Using this, the fact that
their orbits are symmetric with respect to ς(z) follows directly from Lemma 3.2. �


In Fig. 2 we plot the δ−plane of Gδ depending on the dynamical behaviour of the crit-
ical orbit {Gn

δ (c+(δ))}n≥0. We colour with a scaling from red (fast convergence) to blue
(slow convergence) parameter values δ such that the critical orbit is attracted by one of the
two superattracting fixed points located at the origin and infinity, while we colour in black
δ−values for which the critical orbit exhibits a different behaviour. In particular, the central
red regionK (a hyperbolic component) corresponds to parameter values where c+(δ) belongs
to the immediate basin of attraction of 0. More precisely,

K = {δ ∈ C | c+(δ) ∈ A�
δ(0)} = {δ ∈ C | c−(δ) ∈ A�

δ(∞)}. (16)
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•
0

•
1

K

Fig. 2 Parameter plane of Gδ near δ = 1. The hyperbolic component K is the central red region and it is the
hyperbolic component containing Traub’s method (δ = 1). We also indicate the position of Newton’s method
(δ = 0) on the boundary of K

Remark 1 We have not proven thatK is simply connected. For simplicity, from now on when
we refer to K we restrict to the connected component of K which contains δ = 1.

Proof of TheoremA(a) First we consider the degenerate case p(z) = (z − α)2. Easily we
obtain

Tp,δ(z) = Np(z) − δ
p(Np(z))

p′(z)
= z

2
+ α

2
− δ

( z2 + α
2 − α)2

2(z − α)
= z

2
+ α

2
− δ

z − α

8
.

Therefore, Tp,δ is a degree one map and, if |δ − 4| < 8, the point z = α is a global attracting
fixed point; all points in C converge to α under iteration. This range of δ’s includes δ = 1,
so the statement follows.

Second we take p = p2, a quadratic polynomial with two different roots α1, α2 ∈ C,
α1 	= α2. For simplicity in the exposition, we write Tδ := Tp2,δ with δ ∈ [0, 1]. It is well
known that the proposition is true for δ = 0. Hence in what follows we take δ ∈ (0, 1].

We have seen that Tδ is conjugate to Gδ by the Möbius map h(z) (13), no matter the
polynomial p2 under consideration. Notice that since h(∞) = 1, the unboundedness of the
immediate attracting basins for Tδ is equivalent to show that 1 ∈ ∂A�

δ(0) ∩ ∂A�
δ(∞) for Gδ .

This follows directly from Lemma 3.3(d-e).
It remains to prove that A�

δ(α j ), j = 1, 2, are simply connected. To see this we argue as
follows. First we prove that (0, 1] ⊂ K (notice that Remark 1 implies 1 ∈ K). Second we
prove that for δ = 1 the result is true (notice this is enough for the conjecture). Finally, the
result follows since simple connectivity is preserved for all parameters in the same hyperbolic
component (see Fig. 2).
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A simple computation shows that for δ ∈ (0, 1) we have

c−(δ) < −1 < c+(δ) < 0 and Gδ(c+(δ)) = − (c+(δ))3 ∈ (0, 1).

Notice that Gδ has two vertical asymptotes but they are located to the left of c+(δ). In
particular, c+(δ) ∈ A�

δ(0) (and c−(δ) ∈ A�
δ(∞) by the symmetry) and so (0, 1] ⊂ K.

Assume now that δ = 1. From Lemma 3.3(a,c), neither A�
1(0) nor A�

1(∞) contain extra
critical points different from z = 0 and z = ∞. Hence the local Bötcher coordinates defined
in a sufficiently small neighbourhood of z = 0 and z = ∞ (compare [14]) extend to the
whole immediate basin of attraction, which implies that they both are simply connected.

To finish the proof we observe that simple connectivity is preserved inside the hyperbolic
componentK. For instance, we can use the fact that inside a hyperbolic component Julia sets
are quasi-conformally conjugated, or J -stable, see [13, Section 4.1]. Since 1 ∈ K the result
follows. �


4 The case zn − ˇ

In this section we consider a family of higher degree polynomials. More precisely,

pn,β(z) = zn − β,

where n ≥ 3 and β ∈ C. We firstly consider the (degenerate) case β = 0. Easy computations
show that the damped Traub’s map applied to the polynomial pn,0(z) = zn is given by

Tpn ,0,δ(z) =
(
n − 1

n

)(
1 − δ

(n − 1)n−1

nn

)
z

.
Thus, Tpn ,0,δ is a degree 1 map and for δ ∈ [0, 1]we have thatA∗(0) = C since the origin

is an attracting fixed point.
Hereafter, we take β 	= 0. Using the symmetries of the family (to keep the dynamical

behaviour of the critical points under control) and introducing some new tools, in this section
we prove TheoremA(b) as a direct consequence of Proposition 4.3 (simple connectivity) and
Proposition 4.4 (unboundedness).

Let

Npn,β (z) = (n − 1)zn + β

nzn−1 and pn,β

(
Npn,β (z)

) = ((n − 1)zn + β)n − β nnzn(n−1)

nnzn(n−1)
.

(17)

Then, the rational map obtained when applying the family of numerical methods to the
polynomials pn,β is

Tpn,β ,δ(z) = Npn,β (z) − δ
pn

(
Npn,β (z)

)

p′
n,β(z)

= nn(n − 1)zn
2 + β nn(1 + δ)zn(n−1) − δ((n − 1)zn + β)n

nn+1zn2−1
.

(18)

Notice that the nth-roots of β are always superattracting fixed points of Tpn,β ,δ since they
are simple zeros of pn,β .

In order to understand the dynamics of Tpn,β ,δ it is enough to work with Tpn ,δ , where

pn(z) := pn,1(z) = zn − 1.
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−2 −1 0 1 2
−2

−1

0

1

2

(a) n = 2

−2 −1 0 1 2
−2

−1

0

1

2

(b) n = 3

−2 −1 0 1 2
−2

−1

0

1

2

(c) n = 4

−2 −1 0 1 2
−2

−1

0

1

2

(d) n = 5

Fig. 3 Dynamical planes of Traub’s method applied to the polynomial pn(z) = zn − 1, for different values
of n

Indeed, Tpn ,δ and Tpn,β ,δ are conjugate for every β ∈ C \ {0}. This is the content of the
following lemma. The proof is straightforward and so omitted.

Lemma 4.1 Let β ∈ C\{0} and let η(z) = z n
√

(1/β). Then, for all z ∈ Ĉwe have Tpn ,δ(z) =
(η−1 ◦ Tpn,β ,δ ◦ η)(z)

Throughout the section we work with the maps Tpn ,δ since, by Lemma 4.1, every result
proved for Tpn ,δ can be generalized to Tpn,β ,δ . In Fig. 3 we can observe the dynamical planes
obtained when applying Traub’s method to pn for several values of n.

The next lemma states that the maps Tpn ,δ are symmetric with respect to rotation by an
nth root of unity. Its proof is straightforward and so omitted.

Lemma 4.2 Let φ(z) = ξ z with ξn = 1. Then Tpn ,δ(φ(z)) = φ(Tpn ,δ(z)).

This property is relevant since it ties the orbit of every critical point c different from
z = 0 (or z = ∞) to the orbit of the critical points ξ i c, i = 1, ..., n − 1. This fact decreases
drastically the degree of freedom of the family Tpn ,δ of degree n

n rational maps. Indeed, from
Lemma 2.3 we know that, if δ 	= 0 and δ 	= nn/(n−1)n−1, the critical points of Tpn ,δ are the
nth-roots of unity (which correspond to the zeros of pn and, hence, are superattracting), the
point z = 0 (which is the only zero of p′

n and p′′
n ) and n(n − 1) other critical points. Since
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z = 0 is a pole and z = ∞ is a fixed point for δ 	= nn/(n − 1)n−1 (see Lemma 2.2), the
maps Tpn ,δ have n(n−1) free critical points. However, by Lemma 4.2 these n(n−1) critical
points can be grouped in sets of n critical points which have symmetrical orbits. Therefore,
the maps Tpn ,δ only have n − 1 free critical orbits.

We want to remark that the dynamics near ∞ in the case δ = nn/(n − 1)n−1 is very
different from that when δ 	= nn/(n − 1)n−1. Indeed, for δ = nn/(n − 1)n−1 we have
Tpn ,δ(∞) = 0, so the points z = 0 and z = ∞ form a superattracting cycle of period 2.
However, for δ 	= nn/(n − 1)n−1 the point z = ∞ is fixed and, hence, z = 0 is prefixed.

Proposition 4.3 The immediate basins of the nth-roots of unity under Tpn ,δ are simply con-
nected.

Proof It follows from Lemma 4.2 that the immediate basins of attraction of the nth-roots
of unity are symmetric with respect to rotation by an nth-root of unity. Therefore, either all
immediate basins of attraction are simply connected or they all are multiply connected.

Assume that they are multiply connected. It follows from themaximummodulus principle
that all immediate basins of attraction have to surround a pole. Since z = 0 is the only pole
of Tpn ,δ , all immediate basins of attraction of the nth-roots of unity surround z = 0. Since
they are symmetric with respect to rotation by an nth-root of unity, that would imply that the
immediate basins of attraction have non-empty intersection, which is a contradiction. �


We now turn our attention to the unboundedness. We already know from Lemma 2.2 that
for some δ-parameters the point z = ∞ is an attracting fixed point of Tpn ,δ and, hence,
the immediate basins of attraction of the roots of pn cannot be unbounded for such param-
eters. Notice that the parameter δ = 1 does not belong to this set of bad parameters, so
the unboundedness part of the Conjecture still makes sense. The next result states that the
immediate basins of attraction of the roots are unbounded if δ ∈ [0, 1].
Proposition 4.4 Let δ ∈ [0, 1] and n ≥ 3. Then, the immediate basins of attraction of the
nth-roots of unity under the map Tpn ,δ are unbounded.

Proof The case δ = 0 is well known, see [17]. So we may assume δ ∈ (0, 1]. The maps
Tpn ,δ are symmetrc with respect to rotation by an nth-root of unity (Lemma 4.2). Since δ is
real, the real line is forward invariant under Tpn ,δ . Moreover Tpn ,δ(1) = 1 and T ′

pn ,δ
(1) = 0.

Hence, x = 1 is a superattracting fixed point for Tpn ,δ . Denote byA�(1) the immediate basin
of attraction of x = 1. If we prove that for all x > 1 we have 1 < Tp,δ(x) < x , we can
conclude that [1,∞) ⊂ A�(1) and, hence, the result follows.

The inequality Tpn ,δ(x) < x is equivalent to

pn(x) + δ pn
(
Npn (x)

)

p′
n(x)

> 0. (19)

Since pn(x) = xn −1 and p′
n(x) = nxn−1, we have pn(x) > 0 and p′

n(x) > 0 for all x > 1.
Recall that

Npn (x) = (n − 1)xn + 1

nxn−1 .

Therefore, Npn (1) = 1 and we know that Npn (x) > 1 for all x > 1. Thus we can conclude
that pn(Npn (x)) > 0 for all x > 1. This implies that the inequality (19) is satisfied for x > 1.

Now we prove Tpn ,δ(x) > 1 for all x > 1. Easy manipulations imply that the equation
Tpn ,δ(x) = 1 (for x > 1) can be written as

pn
(
Npn (x)

) = 1

δ

(
(n − 1)xn − nxn−1 + 1

)
. (20)
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Since

pn
(
Npn (x)

) = 1

nnxn2−n

[(
(n − 1)xn + 1

)n − nnxn
2−n

]

we have that (20) is equivalent to

(
(n − 1)xn + 1

)n = nn

δ

[
(n − 1)xn

2 − nxn
2−1 + (1 + δ)xn

2−n
]
. (21)

The left hand side of this equation expands as
(
(n − 1)xn + 1

)n = (n − 1)nxn
2 + n(n − 1)n−1xn

2−n + An(x) (22)

where

An(x) =
n∑

j=2

(
n
j

)
(n − 1)n− j xn

2−nj .

Thus, if we set

Sδ,n(x) := (n − 1)

(
nn

δ
− (n − 1)n−1

)
xn

2

−nn+1

δ
xn

2−1 +
(
nn(1 + δ)

δ
− n(n − 1)n−1

)
xn

2−n − An(x)

equation (21) rewrites as

Sδ,n(x) = 0. (23)

We claim that Sδ,n(x) = 0 either has a unique (triple) positive root at x = 1 (case δ = 1),
or two roots (case δ ∈ (0, 1)): x = x0 < 1 (simple) and x = 1 (double). Consequently the
equation Tpn ,δ(x) = 1 has no solutions for x > 1. Moreover, since

lim
x→∞ Tpn ,δ = ∞,

we conclude that Tpn ,δ(x) > 1 for all x > 1, as desired.
To justify the claim we notice that using (22) we can compute the following expressions

An(1) = nn − (n − 1)n−1(2n − 1),

A′
n(1) = (n − 1)

[
nn+1 − 2n2(n − 1)n−1] and

A′′
n(1) = n2(n − 1)2

[
nn − (n − 1)n−2(2n2 − n − 2)

]
(24)

Then, from the above expression of Sδ,n and (24) we get

Sδ,n(1) = nn − (n − 1)n−1(2n − 1) − An(1) = 0,

S′
δ,n(1) = (n − 1)

[
nn+1 − 2n2(n − 1)n−1] − A′

n(1) = 0 and

S′′
δ,n(1) = nn+1(n − 1)

δ

(
δn2 − δn + 1 − δ

) − n2(n − 1)n(2n2 − n − 2)

(25)

Some easy computations show that S′′
1,n(1) = 0 and S′′

δ,n(1) > 0 for all δ ∈ (0, 1).
Applying Descarte’s rule, the polynomial equation Sδ,n(x) = 0 has either 1 or 3 positive

real solution(s), counting multiplicity (this is immediate since the consecutive coefficients
change sign three times). Noticing that Sδ,n(0) = −1 we conclude the claim. �


We can now prove Theorem A(b).
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Proof of TheoremA(b) By Propositions 4.3 and 4.4 we know that the immediate basins of
attraction of nth roots of unity under Tpn ,δ are simply connected and unbounded. The imme-
diate basins of attraction of the nth roots of β under Tpn,β ,δ are also simply connected and
unbounded since the conjugacy η(z) = n

√
βz (see Lemma 4.1) sends the basins of attraction

of the nth roots of unity to the basins of attraction of the nth roots of β. �


4.1 The cubic case

In the study of the maps Tpn ,δ we have analysed the topological properties of the immediate
basins of attraction of the nth-roots of unity but we have not provided any control on the
dynamics of the orbits of the free critical points. We finish this section studying the dynamics
of the critical orbits for the cubic case, i.e. we study the rational maps Tp3,δ obtained when
applying the numerical methods to p3(z) = z3 − 1. Their formula is given by

Tp3,δ(z) = (54 − 8δ)z9 + (27 + 15δ)z6 − 6δz3 − δ

81z8
.

Their derivative is given by

T ′
p3,δ(z) = (54 − 8δ)z9 − (54 + 30δ)z6 + 30δz3 + 8δ

81z9
.

The critical points of Tp3,δ are z = 0 (which is a preimage of z = ∞ of multiplicity 8) and
the zeros of T ′

p3,δ
(z). These latter critical points correspond to the third roots of unity (which

are superattracting fixed points) and the points

cξ,± = ξ 3
√
r±, where r± = 19δ ± √

27(16δ + 11δ2)

54 − 8δ
(26)

and ξ3 = 1. The next proposition describeswhere these free critical points liewhen δ ∈ (0, 1].
Recall that, given an nth-root of unity ξ , we denote byA∗(ξ) the immediate basin of attraction
of ξ under Tp3,δ .

Proposition 4.5 Let δ ∈ (0, 1]. Then, for any third root of unity ξ we have cξ,+ ∈ A∗(ξ)

and Tp3,δ(cξ,−) ∈ A∗(ξ). In particular, the set of parameters (0, 1] belongs to a hyperbolic
component for which all free critical points lie in the basins of attraction of the third roots
of unity.

Proof Fix δ ∈ (0, 1]. By the symmetry with respect to rotation by third roots of unity (see
Lemma 4.2), it suffices to show that c1,+ ∈ A∗(1) and Tp3,δ(c1,−) ∈ A∗(1). Notice that both
c1,+ and c1,− are real since δ is real (see (26)). Therefore, it is enough to restrict to the real
dynamics of Tp3,δ . Since δ ∈ (0, 1] we have c1,+ > 0. Since limx→−∞ Tp3,δ(x) = −∞
and limx→0− Tp3,δ(x) = −∞ for δ ∈ (0, 1], it follows that c1,− is negative and is a local
maximum (see Fig. 4). Moreover, the global maximum of Tp3,δ among negative real numbers
is Tp3,δ(c1,−).

We first prove that c1,+ ∈ A∗(1). If δ = 1 (which corresponds to Traub’s Method) then
c1,+ = 1 (see (26)) and we are done. If δ ∈ (0, 1) then the superattracting fixed point x = 1
is a local minimum (see Fig. 4). Indeed, the second derivative of Tp3,δ is given by

T ′′
p3,δ(x) = (18 + 10δ)x6 − 20δx3 − 8δ

9x10
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Fig. 4 Graphic of Tp3,δ(x) for δ = 0.1. We also draw the line y = x

and T ′′
p3,δ

(1) = 2 − 2δ, which is negative for δ ∈ (0, 1). Since limx→0+ Tp3,δ(x) = −∞
and c1,+ is the only real and positive critical point other than x = 1 if δ ∈ (0, 1), it follows
that c1,+ ∈ (0, 1) and Tp3,δ has a local maximum at c1,+. We can conclude that the segment
[c1,+, 1] is mapped into the segment [1,+∞) under Tp3,δ . By the proof of Proposition 4.4
we know that [1,+∞) ⊂ A∗(1). Therefore, we have c1,+ ∈ A∗(1).

To finish the proof we have to show that Tp3,δ(c1,−) ∈ A∗(1). First of all observe that
c1,− /∈ A∗(1). Otherwise, it would follow from the Schwartz Reflection Principle thatA∗(1)
surrounds the pole z = 0, which is impossible since A∗(1) is simply connected (see Propo-
sition 4.3). Since Tp3,δ(−1/2) = 1 and c1,− is the global maximum of Tp3,δ among negative
real numbers for δ ∈ (0, 1], it follows that Tp3,δ(c1,−) ∈ [1,+∞). The result holds since
[1,+∞) ⊂ A∗(1) (see the proof of Proposition 4.4). �


In Fig. 5 we can observe the parameter plane of damped Traub’s method applied to p3.
Notice that there are 2 different critical orbits (modulo symmetries). This figure is produced
by iterating the critical points c1,+ and c1,−. If any of the critical points does not converge to
a root we plot the parameter in black. Otherwise we use a scaling of colours which indicates
the speed of convergence to a root of the critical point which takes longer time to converge.
The largest coloured region corresponds to the hyperbolic component which contains the
segment of parameters (0, 1].

5 Numerical evidence and conclusions

Up to now we have studied the Conjecture of simple connectivity and unboundedness of
the immediate basins of attraction of the roots of polynomials under Traub’s method from
an analytical point of view. In this section we present a further discussion together with
numerical evidence to justify why we think that the Conjecture is true and how damped
Traub’s family can help us to prove the conjecture in full generality.

As we have mentioned before, for δ close enough to 0 we can formulate damped Traub’s
method Tp,δ as a singular perturbation of Newton’s method Np . However, compared to usual
singular perturbations where the poles are added to superattracting fixed cycles (see for
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Fig. 5 Parameter plane of damped Traub’s method applied to p3

instance [9]), this singular perturbation is done by adding extra preimages of ∞ to the zeros
of p′(z), which are already poles of Np . Since z = ∞ is a repelling fixed point for Newton’s
method, it follows that this singular perturbation is done over the Julia set, which makes it
much more difficult to control.

On the other hand, if a point belongs to the basin of attraction of a root under Np , then
it also belongs to the basin of attraction of the root under Tp,δ , if |δ| is small enough. The
unboundedness of the basin of attraction of a root of the polynomial p under Tp,δ can be
inherited from that of Np at least for |δ| small. In fact, it can be proven that if |δ| is small
enough, then the number of accesses to ∞ from the basin of a root α under Tp,δ is at least
equal to the number of accesses to∞ under the Np (see Fig. 6a, b). Therefore, if Tp,1 happens
to have a bounded immediate basin of attraction associated to a root of p (i.e., all accesses to
infinity inside the basin of the root have been truncated) there should be a bifurcation, which
requires the intervention of critical points. However, all simulations seem to indicate that the
critical points that appear after perturbation cannot be responsible for that.

Numerical experiments also indicate that when an access to ∞ is closed, it is not due to
the critical points which appeared after perturbation, but rather due to a critical point which
is a continuation of a free critical point of Newton’s method (and already belongs to the
immediate basin of attraction). In Fig. 6 we can see, step by step, how this process of closing
one access to ∞ can happen. In Fig. 6a we can observe the dynamical plane of Newton’s
method applied to p(z) = z(z − 1)(z − i). In this case the basins of attraction of z = 1
and z = i are unbounded and have a unique access to ∞ since they do not contain any free
critical point. The basin of attraction of z = 0 does contain a free critical point c and has two
accesses to ∞. Notice that, when applying Newton’s method to polynomials, the number of
accesses to ∞ from an immediate basin of attraction of a root is always equal to the number
of free critical points that it contains plus 1 [11]. As δ grows from 0 to 1 we can observe how
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Fig. 6 Dynamical plane of damped Traub’s method applied to p(z) = z(z − 1)(z − i), for different values of
δ

the Julia set closes over the critical point c, erasing one of the accesses to ∞ (see Fig. 6f).
Nevertheless, the skeleton of the Julia set obtained for Traub’s method (δ = 1) is still strongly
related to the Julia set obtained for Newton’s method. Following this idea, we believe that if
the immediate basin of attraction of a root has d + 1 accesses to ∞ under Newton’s map,
then the d free critical points it contains can be responsible for closing up to d accesses to
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∞ when the parameter moves from δ = 0 up to reaching Traub’s method (δ = 1). However,
this process would always leave an open access to ∞.

We have explained how damped Traub’s method can help us understand the unbound-
edness of the immediate basins of attraction of Traub’s method relating it to the dynamics
of Newton’s method. It is not obvious though that it can also be used to provide a better
understanding of the simple connectivity. Indeed, there is a priori no obstruction in obtain-
ing disconnected Julia sets after the singular perturbation for |δ| small, which could lead to
multiply connected basins of attraction. An example of such behaviour could be Chebyshev-
Halley family of root-finding algorithms (see [8]). These root-finding algorithm’s depend on
a parameter α. When α converges to ∞ the operators converge to Newton’s method. Despite
that, if |α| is large enough the immediate basins of attraction of the roots may be disconnected
(compare [5]).
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