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A B S T R A C T

International environmental agreements address global environmental problems such as the
decline in biodiversity. The Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES) regulates international trade in wildlife to prevent its decline.
Discussions about CITES’ effectiveness abound, but evidence is lacking. We combine the largest
available panel database on wildlife populations with the history of countries’ membership and
species’ protection under CITES. We find that after more than 20 years of a species’ inclusion
into CITES, wildlife populations increase by about 66% in countries with thorough enforcement,
irrespective of whether trade in the species is only restricted or completely banned under CITES.
Our results suggest re-focusing discussions away from whether CITES should partially restrict
trade or impose a complete trade ban, and towards better enforcement. More generally, we find
that enforcement is crucial for effective international environmental agreements.

. Introduction

Global environmental problems such as the decline in wildlife and biodiversity have given rise to international environmental
greements (IEAs). To prevent the extinction of endangered species, the Convention on International Trade in Endangered Species
f Wild Fauna and Flora (CITES) regulates international wildlife trade. IEAs often remain vague in their implications for member
ountries. In contrast, CITES has established a system of export and import permits to implement its restrictions or bans on trade
n species under its protection. Whether CITES is effective in achieving its ultimate goal, i.e., preventing the decline of wildlife, is
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unclear.2 One reason for scepticism is that enforcing CITES is difficult: it targets numerous species and its detailed regulations have
to be implemented and enforced by national authorities across all member countries. CITES’ regulations impose costs on wildlife
trade or render it illegal. With imperfect enforcement, this may drive wildlife trade from regulated to unregulated countries and
from legal to illegal sources.

In this paper, we document the effectiveness of CITES in preserving wildlife if its regulations are properly enforced. We thus
rovide evidence that informs the ongoing debate on whether and under what circumstances restrictions on wildlife trade are
ffective in protecting wildlife. On the one hand, restricting trade seems an intuitive policy measure to prevent unsustainable
esource use and subsequent wildlife decline. Outright trade bans can stigmatize consumption of wildlife products, reducing demand.
conomists, on the other hand, tend to be sceptical about trade bans, as banning wildlife trade reduces the legal economic value of
ildlife to zero, reducing the incentive for local communities to protect or harvest resources at sustainable levels. Without costly
onitoring and enforcement, poaching and illegal trade may replace legal trade, rendering trade bans ineffective. Summarizing

he literature on wildlife trade restrictions, Fischer (2010) calls for an empirical evaluation of their effectiveness in preventing
ildlife decline.3 Similarly, ‘t Sas-Rolfes et al. (2019), in a recent survey on illegal wildlife trade, highlight the need to evaluate the

effectiveness of specific trade policy interventions. Our paper provides such an evaluation using the history of species’ listings in
CITES as well as of countries’ CITES membership, and documents the importance of enforcement for effective IEAs.

A naive test of CITES’ effectiveness would compare the size of wildlife populations of species listed in CITES with those of non-
isted species. A challenge to a causal interpretation of this comparison is the endogeneous selection of individual wildlife species into
ITES. For example, CITES-listed species may be more likely to become extinct; comparing population sizes of listed and non-listed
pecies would thus deliver biased results. Other confounding factors may correlate with both wildlife decline and CITES’ listing
ecisions: commercially valuable species may be less likely to see their international trade restricted or banned (Stokstad, 2010).
oreover, CITES listings may be more likely for well-known, charismatic species, reflecting a more general ‘‘taxonomic bias’’ in
ildlife conservation efforts (Clark and May, 2002).

Our paper overcomes these challenges by using geo-referenced unbalanced panel data from 1950 to 2015, the largest publicly-
vailable database on vertebrate population sizes over time. We combine these wildlife population data with the detailed history of
pecies’ inclusion in CITES and with data from the International Union for Conservation of Nature (IUCN) Red List of Threatened
pecies, the world’s most comprehensive inventory of species’ extinction risk. Our panel data allow us to control for the unobserved
haracteristics of species that drive the non-random selection of species into CITES. This enables us to identify the causal effect
f CITES’ trade restrictions on wildlife population sizes once a species has been listed in CITES, and to determine whether CITES
ffectively prevents the decline of wildlife.

We find that wildlife populations increase after the corresponding species is listed in CITES, but with a considerable lag, and
early exclusively for populations located in CITES member countries with strong enforcement of its rules. Populations in countries
ith strong enforcement increase by about 22% 16 to 20 years after the species is listed in CITES, and by about 66% for species that
enefit from CITES’ protection for more than 20 years. Frank and Wilcove (2019) find that, on average, species are listed in CITES
ore than 10 years after they have been identified as threatened by international trade. Our results, combined with this finding,
ighlight the importance of reducing the time lag between new scientific evidence and species’ inclusion in CITES to effectively
revent wildlife decline.

We explore whether populations of different types of species are affected differently after their CITES listing. Species that are
ntentionally harvested, vulnerable species with high extinction risk, highly-studied species, well-known species, and large species,
.e., with a large body mass, do not seem to benefit differently from CITES protection in countries with strong enforcement. While
ITES does not effectively protect populations of listed species in member countries with weak enforcement in general, it is effective

or large species even when enforcement is weak. One reason for this may be that large species such as elephants, rhinos, or whales
and their derived products) are more readily recognizable by enforcing agencies such as customs, making the enforcement of
ITES regulations for these species easier. It may also reflect the fact that these species are particularly salient for the international
ommunity, and so member countries with weak enforcement focus their efforts on these species.

Our results are robust to controlling for time-varying country-specific confounding factors that may affect both CITES listing
ecisions and wildlife decline, such as habitat loss, corruption, or armed conflicts.

We explore the two main mechanisms through which species benefit from CITES protection: (1) outright trade bans or (2)
ore nuanced trade restrictions that are meant to ensure the sustainable use of species. This allows us to quantify the relative

ffectiveness of these mechanisms, which are represented by the two main CITES appendices: species listed in Appendix I are
ot allowed to be traded internationally for commercial purposes; species listed in Appendix II may be traded internationally but
heir trade is restricted to ensure that trade is sustainable and does not threaten a species’ survival. Our results show that wildlife
opulations increase by a similar magnitude for species in Appendix I and those in Appendix II. Contrary to views that champion
ither international wildlife trade bans or sustainable use of wildlife, these results corroborate the importance of enforcement for
ffective wildlife protection (see, e.g., Smith et al., 2003b).

Our paper relates to various strands of the literature. A broad theoretical literature discusses the circumstances under which trade
estrictions can alleviate or exacerbate the overharvesting of renewable resources. Whether trade bans are effective in protecting

2 For different viewpoints concerning the effectiveness of CITES, see, e.g., Hutton and Dickson (2000), Ginsberg (2002), Bulte et al. (2004), Fischer (2010),
nd Challender et al. (2015).

3 So do Bulte and Barbier (2005) in an earlier survey of the effects of trade liberalization on welfare and wildlife stocks.
2
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wildlife populations depends on specific modeling assumptions such as whether wildlife trade is imperfectly competitive, whether
species can be illegally traded or stockpiled, whether legal trade enables the possibility of laundering poached specimens, and
how the behavior of the regulator is modeled, e.g., if it sells or destroys seized specimens of poached species. Much of this
theoretical literature focuses on the ivory trade ban: see, e.g., Khanna and Harford (1996), Bulte and van Kooten (1999), Burton
(1999), Fischer (2004), Heltberg (2001), and Kremer and Morcom (2000). Copeland and Taylor (2009) stress the importance of
country-specific institutional factors for successful management of common property resources, such as a government’s ability to
enforce wildlife trade regulations. Our results provide empirical evidence on the importance of countries’ enforcement capability
for CITES’ effectiveness.

Several studies quantify the effectiveness of other IEAs. Aichele and Felbermayr (2012) study whether the Kyoto Protocol, which
ttempts to reduce carbon dioxide emissions of its member countries, has led to a reduction in countries’ carbon footprint, i.e., the
missions embodied in domestic consumption and investment. They find that the Kyoto Protocol has been ineffective, as it has not
educed global emissions. Kellenberg and Levinson (2014) analyze the effectiveness of the Basel Convention, which seeks to reduce
he generation of hazardous waste by restricting its shipment to countries with inadequate environmental regulation. They find no
vidence of a reduction in the overall level of international trade in waste. Contrary to the evidence in this literature, we find that
ITES is effective in its goal of preventing wildlife decline. More generally, our paper highlights that international cooperation helps
o prevent environmental degradation caused by global threats such as international wildlife trade.

Our paper also relates to the literature that analyzes the effects of domestic regulations concerning endangered species. A large
art of this literature focuses on the U.S. Endangered Species Act (ESA). Similar to CITES, ESA protection relies on listing endangered
pecies. ESA implements CITES regulations in domestic law, but has more far-reaching powers. Whereas CITES only regulates
nternational wildlife trade, ESA protects species by effectively preventing any economic development of areas with populations
f listed species; see the survey by Brown and Shogren (1998). Metrick and Weitzman (1996) document that species’ characteristics
etermine the probability of receiving ESA protection: charismatic species, particularly large mammals, the so-called ‘‘charismatic
egafauna’’, are more likely to be protected, highlighting the importance of the non-random selection of species. Ferraro et al.

2007) evaluate the effectiveness of ESA listings by studying their impact on the change in a species’ endangerment status between
993 and 2004 using 430 species from the U.S. Similar to our results for CITES, they find that enforcement is crucial for ESA’s
ffectiveness. Ando and Langpap (2018) provide a survey on empirical studies of ESA’s effectiveness, as well as on similar regulations
n Australia and Canada. The literature surveyed finds only little evidence for the effectiveness of domestic regulations aimed at
rotecting endangered species. Our study identifies a positive effect of international wildlife trade regulation on populations using
ata from 185 countries over 66 years.

In addition, our paper relates to a literature that empirically analyzes the consequences of international trade bans using case
tudies of individual species. Hsiang and Sekar (2016) study the effect of a temporary removal of the trade ban on ivory for a one-
ff international legal sale. Using an unbalanced panel of illegal elephant killings across 38 countries, they find that the temporary
emoval of the trade ban led to an increase in elephant poaching. Chimeli and Soares (2017) study the effects of the introduction of
ban on mahogany exports in Brazil in 2001. They find that illegal exports of mahogany increase after the introduction of the trade
an and decrease with improved monitoring and enforcement of trade bans. Taylor (2011) documents that international trade and
he absence of trade restrictions on wildlife products explain the virtual extinction of the North American bison. Complementing
hese studies of individual species, we study the impact of CITES’ effectiveness for more than 3000 species.

More broadly, our paper relates to the literature on environmental effects of international trade; see the review by Cherniwchan
t al. (2017). This literature focuses mostly on local pollution and global emission effects of changes in trade policies for
anufacturing goods, whereas we focus on the effects of wildlife trade policy on global wildlife.

The rest of the paper is organized as follows. Section 2 provides institutional background and describes the data. Section 3
escribes our identification strategy. Section 4 presents results. Section 5 concludes.

. Institutional background and data

.1. Wildlife protection under CITES

CITES is the international environmental agreement that regulates wildlife trade in endangered species.4 Essentially, it is a
multilateral trade agreement, as it is aimed at ensuring species’ survival by prohibiting or regulating international wildlife trade and
the commercial use of wildlife and its products. Species covered by CITES are listed in two appendices, according to their degree
of protection. International commercial trade in species listed in Appendix I is prohibited, but may be allowed for species listed in
Appendix II if it does not endanger the survival of the species.5

4 For an in-depth description of CITES, see Favre (1989). For more recent overviews see Hutton and Dickson (2000), Ginsberg (2002), Reeve (2006),
nd Challender et al. (2015).

5 In addition to the multilaterally agreed upon species listed in Appendices I and II, CITES also gives member countries the right to unilaterally list species
n Appendix III. Countries can only list species in this appendix if they are not already included in Appendices I and II, if they are native to the respective
ountry, and when the country has passed domestic regulation to prevent or restrict exploitation of the species and to control international trade. Populations
f Appendix III species are only protected in their respective country, whereas Appendix I and II species are protected in all member countries. Our analysis
herefore focuses on multilaterally protected species (i.e., Appendices I and II). We explore the robustness of our results to the effect of unilateral, domestic
3

egulations reflected in Appendix III in Section 4.3.
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Fig. 1. Distribution of year of first entry into CITES (species).
Figure depicts the distribution of the first year a species entered into one of the CITES appendices in our data.

With its entry into force in 1975, CITES protected a large number of species. In subsequent years, species were included in
ITES at one of the Conferences of the Parties (CoPs), the meeting of representatives of CITES member countries. Today, about
664 vertebrate species are listed in one of the CITES appendices.6 We present the distribution of entry years of the species in our

data in Fig. 1. The majority of species were first listed in CITES by the mid-80s, and since then the inclusion of species has slowed
down.7

Once a species is listed, CITES monitors its international trade via a system of export permits (for Appendices I and II) and
import permits (for Appendix I). CITES member countries are expected to control all international trade in species listed in CITES,
even imports of species from non-member countries. We show the evolution of the number of member countries over time in Fig. 2.
Today, CITES membership is almost universal, with 184 countries being members. This is more than the 164 signatories of the
World Trade Organization agreements that are the basis of the multilateral trading system.

Implementing and enforcing CITES is crucial for its success. As part of the ‘‘National Legislation Project’’ (NLP), CITES oversees
the implementation of CITES regulations in domestic legislation in the member states and classifies countries accordingly. Using
information and recommendations provided by the CITES Secretariat, countries are classified by the CITES Standing Committee.8
The classification is based on four criteria that assess a country’s legislation, as set out in Conf. 8.4 (Rev. CoP15) ‘‘National laws
for implementation of the Convention’’: first, that the country has designated at least one management authority and one scientific
authority. Second, that the country prohibits trade in specimens in violation of CITES. Third, that the country penalizes such trade;
and, finally, that the country confiscates specimens illegally traded or possessed. Countries are then classified as Category 1 (those
that have legislation that meets all four requirements for effective implementation of CITES), Category 2 (those countries that
have legislation that is believed generally to meet one to three of the four requirements for effective implementation of CITES),
and Category 3 (those that have legislation that is believed generally not to meet any of the four requirements for effective
implementation of CITES).9 As implementing CITES in national legislation is a prerequisite for enforcing CITES, we take these
categories as indicators of the quality of countries’ enforcement and compliance procedures. In our analysis, we will make use of
the variation across species, time, member countries, as well as their quality of enforcement, to identify the effect of CITES on
wildlife.

2.2. Listing decisions

We provide details of the process of listing a species in one of the CITES appendices that are relevant for our identification
strategy.

6 Own calculation based on data from https://cites.org/eng/disc/species.php, accessed 18/05/2022.
7 A total of 242 species in our data were included since CITES’ inception in 1975. Overall, 569 species in our data were included in CITES at some point

n time.
8 The Standing Committee consists of an elected group of member countries, representing the different world regions. The Standing Committee was created

n 1979, reflecting the recognition by CITES member countries of the need for a coordinating body for CITES in between the biannual CoPs. For the current
andate of the Standing Committee as well as a description of how CITES member countries are elected to become Standing Committee members, see Conf. 18.2

‘Establishment of Committees’’. For a detailed history of the Standing Committee as well as its pre-1979 predecessor, the Steering Committee, see Wijnstekers
2011), chapter 25.

9 This description is the language used by the Standing Committee to distinguish the country classifications; see, e.g., page 2 in CoP18 Doc. 26, Annex 3
Rev. 1).
4

https://cites.org/eng/disc/species.php


Journal of Environmental Economics and Management 118 (2023) 102784B. Heid and L. Márquez-Ramos

o

C

Fig. 2. Year of entry into CITES (countries). Figure depicts number of countries in which CITES entered into force per year.

CITES Article XV lays out the procedure for making amendments to Appendices I and II. Any member country can, at any time,
propose a species to be included in either of the appendices by sending a proposal to the CITES Secretariat in Geneva. The member
country does not have to be a range country, i.e., there is no requirement that a species is native to the proposing country. In
practice, proposals include a supporting statement which should provide both biological and trade data concerning the proposed
taxon.

Member countries then vote at the next CoP on whether the amendment should be adopted. To allow enough time for the
Secretariat to communicate the proposal to all member countries, and to allow it and the member countries to gather relevant
information, proposals have to be communicated to the Secretariat at least 150 days before the next CoP. While CITES stipulates
that CoPs take place at least every two years, since 2004, they have occurred every three years.10 At a CoP, a proposal is accepted
on achieving at least a two-thirds majority of the members present and voting, where every member country has one vote.

A particular feature of CITES listing procedures helps with our identification strategy: the fact-finding (‘‘Is a species endangered
by international trade?’’) is considered separately from the decision-making (‘‘Should the species be included in Appendix I or II?’’).
Once the Secretariat receives a proposal, it has to gather information about the status of the species. According to Article XV(1)(a),
the Secretariat has to formulate a recommendation as to whether or not the species should be included in Appendices I or II, and
this recommendation has to be communicated to the member countries at least 30 days before the CoP. As described in Gehring and
Ruffing (2008), this separation of the recommendation during the scientific assessment stage from the voting stage creates incentives
for the Secretariat to provide a truthful evaluation about the facts concerning a proposed listing. Crucially, the recommendation has
to be based on available evidence in line with the listing criteria that all member countries have agreed upon and that apply to all
species.11

This restricts the possibility for individual member countries to make ‘‘deals’’, particularly as the Secretariat’s recommendation
and the evidence on which it is based is made available to all member countries. In addition, at any CoP, decisions are made on a
large number of listing proposals.12 The majority of member countries are not range countries for any given species considered in a
listing decision, hence they are less likely to have an economic interest in a species. In practice, most listing decisions are unanimous
(see Favre, 1989), and less than 10% of listing decisions are so contentious that voting is done by secret ballot (see Blundell and
Rodan, 2001). Consensus-based public voting likely reduces the possibility of ‘‘package deals’’ of trading favors between members,
as any country that wishes to influence a particular listing decision would have to convince a large number of members and they
would all have to be willing to display their vote against the recommendation of the Secretariat in public. These aspects make it
difficult for any one country to influence a particular listing decision, and in general, in the words of Gehring and Ruffing (2008),
in CITES, ‘‘arguments prevail over power’’.

10 CITES also allows for a postal vote between CoPs, but this procedure is hardly used in practice; see Favre (1989).
11 Listing criteria consider biological as well as trade-related factors of species; for a detailed description see Conf. 9.24 (Rev. CoP17) ‘‘Criteria for Amendment
f Appendices I and II’’.
12 For example, at CoP18 in 2019, 57 proposals were considered (see CoP18 Doc. 105.1 Annex 2). Favre (1989) reports between 50 to 100 proposals per
5

oP; Gehring and Ruffing (2008) report 30 to 50 adopted listing decisions per CoP.
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Still, if scientific evidence is scant, or for species where the decision is more contentious, the listing process may be more prone
o be influenced by country-specific interests. For example, in the decision on listing the Great White Shark (Carcharodon carcharias),

there was little available evidence prior to the listing decision, and so the Secretariat made a cautious recommendation; see Gehring
and Ruffing (2008). We discuss this threat to our identification strategy in more detail in Section 3. Our data allow us to create a
measure of the availability of scientific evidence at the time of inclusion, mitigating this threat. In addition, we exclude species for
which listing decisions are known to be particularly contentious in a subsample analysis in Section 4.1.

Further, the CITES listing process has been criticized for over-representing certain types of species in its appendices, particularly
charismatic species; see, e.g., Webb (2000). We document that this is the case in our data in Section 3. We therefore control for
differences across species in their probability of being listed by including species-location (i.e., population) fixed effects in all our
regressions.

Finally, the time lag between the emergence of scientific evidence and the listing of a species is considerable: Frank and Wilcove
(2019) document that on average, more than 10 years pass from an IUCN Red List assessment to a CITES inclusion. At the same
time, Rivalan et al. (2007) show that anticipation effects in terms of higher trade volumes in soon-to-be-listed species only materialize
in the year immediately prior to the listing of a species. Using an event study specification, we control for potential anticipation
effects via the inclusion of respective leads.

2.3. Data

Our focus is on measuring CITES’ effectiveness in terms of its ultimate goal, the prevention of wildlife decline. We therefore use
wildlife population size as our dependent variable.

Wildlife population size data—We focus on the evolution of the population size of a (sub-)species 𝑠 at a geographic location 𝑙 at
time 𝑡, i.e., population refers to the tuple (𝑠, 𝑙). We use the raw population data that are used to construct the Living Planet Index
(LPI) by World Wildlife Fund (2016).13 These data are the largest publicly-available database providing information on wildlife
population sizes over time and are routinely used to monitor the progress of biodiversity conservation targets (see, e.g., Butchart
et al., 2010 and Tittensor et al., 2014).14

The LPI project was created by the World Wildlife Fund (WWF) in 1997 as a global, comprehensive, and representative database
that allows users to measure the evolution of population sizes of vertebrate species over time. Today, the Zoological Society of
London manages the LPI data in collaboration with the WWF. Hence, the LPI data are collected independently of CITES, and CITES
listings are determined independently of the data collection efforts of the LPI. To be included in the LPI database, a population
has to be observed for at least two years using the same methodology. The population data have to be referenced and traceable,
i.e., for every population in our sample, LPI reports the exact reference for the population data. The main source of population data
are peer-reviewed academic journals (36% of all sources). Other sources, in order of declining importance, are secondary sources
(33%), other sources (15%), government reports (10%), and unpublished reports (6%).15

Population size data are ideal for our purpose as they react more quickly to changes in wildlife protection than data on species’
endangerment status and whether species are (close to becoming) extinct. Extinction is a long-run process and it can be difficult
to determine whether a species is actually extinct.16 Declines in population sizes are directly linked to reduced ecosystem services,
e.g., for fisheries and agricultural production. In particular, wildlife populations can become so small that they are functionally
extinct, i.e., they cease to provide economic benefits, even when complete extinction can be avoided; see Sekercioglu et al. (2004).17

Population size data in the LPI are unbalanced and not necessarily available for consecutive years. For example, the population
of Cape vultures (Gyps coprotheres) in Namibia is only observed for the years 1975, 1980, 1990, and 2000. Hence we cannot
calculate annual (log) growth rates for all populations. In our empirical analysis, we therefore use a within estimator instead of
a first difference transformation to control for unobserved population fixed effects. This allows us to incorporate the information
from those populations whose size is not observed every year.

The LPI data report population size in a variety of units, depending on the study from which the raw data are collected: population
sizes may be simple counts of individuals in a given geographic location, or the number of breeding pairs; sometimes, population
size is measured as the amount of biomass in a population, i.e., in kilograms, or as the number of individuals per a given area.
In our empirical analysis, we use a log-linear regression with species-location (i.e., population) fixed effects that control for these

13 For a more detailed description of the raw data, see Loh et al. (2005) and Collen et al. (2009). The data can be downloaded from http://www.
ivingplanetindex.org/projects?main_page_project=LivingPlanetReport&home_flag=1 (downloaded 10 January 2017).

14 Note that wildlife trade data for species included in the LPI raw data are not available. Available databases such as the CITES Trade Database only contain
rade in species listed in CITES, preventing before-and-after comparisons of species becoming listed in CITES. Furthermore, the CITES Trade Database is derived
rom the number of import and export permits CITES members submit through annual reports. The measurement of these data entails considerable error, and no
lear rules exist on how to calculate trade volumes from the underlying records on permits; see, e.g., Berec et al. (2018). As pointed out by Chan et al. (2015),
tandard merchandise trade classifications such as the Harmonized System do not distinguish trade in individual species. Even if trade data were available, many
pecies, including those that are regulated under CITES, are traded illegally and hence their trade is not documented; see, e.g., ‘t Sas-Rolfes et al. (2019).
15 Information in this paragraph is based on the supporting documents provided on the LPI website, www.livingplanetindex.org, as well as Loh et al. (2005).
16 For a discussion of these issues, see, e.g., Ceballos and Ehrlich (2002) and Butchart et al. (2006).
17 In our final data set, 4003 observations report a population size of zero, about 3% of the total. Note that population sizes of 0 do not necessarily imply that
population has gone extinct, as population size data entail considerable measurement error; see, e.g., Meir and Fagan (2000), and the recent upward revisions

f population size data for Gorilla gorilla gorilla by Strindberg et al. (2018). In our data set, of the 1226 populations which record a zero population size in
one year, 87% report a non-zero population size afterwards. We therefore assume that zeros are due to random measurement error. If measurement errors are
specific to certain populations, the fixed effects we include in our regressions will control for this.
6
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differences in units of measurements across the different populations.18 This strategy also corrects for potential population-specific
measurement errors.19

While the LPI data are arguably the largest available global database on vertebrate population data over time, a potential concern
is that the LPI data overrepresent data on species with declining populations. Collen et al. (2009), who describe the LPI raw data
in detail, investigate whether the LPI raw data overrepresent data with particular patterns of time trends. They argue that data
sets with declining populations may be published more quickly because these data may be helpful to argue for more conservation
efforts. Collen et al. (2009) test whether there is a difference in the publication date of data between declining and non-declining
populations, but they do not find any significant difference. Similarly, studying whether endangered species are overrepresented in
the LPI data, Loh et al. (2005) conclude that this ‘‘does not occur to any marked extent’’ (p. 295).

Also, the LPI data may overrepresent charismatic species, i.e., the LPI data itself may suffer from taxonomic bias. Clark and May
(2002) document that scientific studies suffer from taxonomic bias. As the LPI data are based on scientific studies, this bias applies
to the data as well. However, Clark and May (2002) report that the taxonomic bias does not seem to change over time. Whether
the charisma of species changes over time is an under-researched topic, but in a pioneering study, Monsarrat and Kerley (2018)
find that species considered to be of high charisma in the 16th to 19th century are generally considered to still be of high charisma
today. Thus, in our view, charisma and the corresponding taxonomic bias can be treated as time-invariant drivers of population
sizes and CITES listings, such that they are controlled by the population fixed effects we include in all our regressions.

CITES data—We combine the wildlife population size data with information about which species are listed in CITES Appendices I
and II from the Checklist of CITES Species by UNEP-WCMC (2017). We get the year in which countries became CITES members from
the CITES Secretariat website.20 We use the CITES classification of Category 1 members to identify countries with high levels of
enforcement and compliance procedures from the CITES official document ‘‘Status of Legislative Progress for Implementing CITES’’,
CoP17 Doc. 22 Annex 3 (Rev. 1). We create an indicator variable that identifies populations in Category 1 CITES member countries.

CITES sanctions data—CITES allows sanctions to be imposed on countries that are not compliant with CITES regulations. If a
country is sanctioned, all commercial trade in CITES-listed species is suspended. Sanctions are indicative of a lack of enforcement
of CITES. It is likely that CITES is not effective in sanctioned countries. To identify populations in sanctioned countries, we rely
on historical data on suspensions of all commercial trade in CITES-listed species that are available from Sand (2013). Sand lists
sanctions for the period 1985–2013. We update sanctions data until 2015 by using the information provided on the CITES webpage
regarding ‘‘Countries currently subject to a recommendation to suspend trade’’.21

Corruption data—As CITES is an international trade agreement, its rules have to be implemented by national governments and
enforced by customs officials. Therefore, in countries with high levels of customs corruption, CITES may be less effective. As a proxy
for corruption at the border, we use the share of a country’s population that answered ‘‘yes’’ to the question ‘‘in the last 12 months
have you or anyone living in your household paid a bribe in any form to customs?’’ (variable ‘‘Paid Bribe: Customs’’) in the Global
Corruption Barometer by Transparency International. As an alternative, more general measure of corruption in a country, we use the
World Bank’s control of corruption indicator by Kaufmann et al. (2010). This indicator is standardized to have a mean of zero and
a standard deviation of one, with higher values indicating more control of corruption (i.e., less corruption). We create an indicator
variable that is one if a country has a below average level of corruption, and zero otherwise. We use both corruption measures as
reported in the Quality of Government Basic Dataset (version Jan17) by Dahlberg et al. (2017).

GDP per capita data—We estimate separate treatment effects for populations in high-income countries versus populations in other
countries, as the effectiveness of CITES may be conditioned by a country’s income level. We use GDP per capita data in purchasing
power parities in 2011 US$ from the updated Maddison project by Bolt and Luiten Van Zanden (2020). We define a population as

18 By way of illustration, imagine that there are just two different measurement units used, individuals and pairs. In this case, the difference in measurement
nits is a factor of 2. By multiplying our dependent variable by this factor for all observations measured in pairs, we can transform all observations measured in
airs to individuals. This factor is constant over time, as the measurement unit for a population does not change over time in our data set, and is not affected
y CITES. It is hence perfectly captured by a population fixed effect 𝜇𝑠𝑙 . More generally, all observations can be converted to the same unit of measurement by
ultiplying by 𝑏𝑠𝑙 , a population-specific, time-invariant scale factor (𝑁𝑠𝑎𝑚𝑒 𝑢𝑛𝑖𝑡

𝑠𝑙𝑡 = 𝑏𝑠𝑙𝑁𝑠𝑙𝑡). Taking the natural logarithm, this becomes (ln𝑁𝑠𝑎𝑚𝑒 𝑢𝑛𝑖𝑡
𝑠𝑙𝑡 = ln 𝑏𝑠𝑙 + ln𝑁𝑠𝑙𝑡).

ence, including a population-specific fixed effect in combination with using the dependent variable in logs controls for the different units of measurement
roblem and we can then interpret regression coefficients in the usual way, as a semi-elasticity that is independent of the unit of measurement. This also holds
or measures of a species’ population density in our sample, as the relationship between population density and biomass is stable over time and log-linear, in
ccordance with Damuth’s rule; see Damuth (1981) and Rodrigues et al. (2007).
19 Classical measurement error in our dependent variable, i.e., population size, does not lead to inconsistently estimated regression coefficients. However, a

orm of non-classical measurement error in our dependent variable may occur if endangered species’ populations are harder to measure. For these species, the
ariance of the measurement error is larger, i.e., the measurement fluctuates more, potentially in combination with systematic over- or undercounting, i.e., a
on-zero average measurement error. Including a constant (or population fixed effects) in the regression allows for a non-zero mean in the dependent variable,
nd, conditional on the regressors, a non-zero error term. Hence, a non-zero average measurement error for such species is accounted for by the population fixed
ffects. The differences in variance imply heteroskedasticity. We will cluster standard errors at the species level, allowing for arbitrary correlation of the error
erms across populations of the same species, and thus account for this heteroskedasticity. Another form of non-classical measurement error may occur if more
ndangered populations are measured with a larger measurement error, i.e., there is a negative correlation between the size of the population and the size of
he measurement error. A simple way to model this is to assume that instead of the true dependent variable 𝑌𝑝, we measure 𝑌𝑝 = 𝑌𝑝 + 𝑣𝑝, and the measurement

error is given by 𝑣𝑝 = 𝛿𝑌𝑝 + 𝑣∗𝑝 , where 𝑣∗𝑝 is uncorrelated with the other variables and 𝛿 < 0. Bound et al. (1994) show that this leads to a downward bias in the
regression coefficient. If this were the case, we would underestimate the effectiveness of CITES and our estimates would be a conservative lower bound.

20 The ‘‘List of Contracting Parties’’ is available at https://www.cites.org/eng/disc/parties/chronolo.php.
21 This information is available at https://www.cites.org/eng/resources/ref/suspend.php, but is frequently updated, hence countries that are no longer

subject to a recommendation to suspend trade are removed from the list. We update the sanctions data using the Wayback Machine - Internet Archive at
https://archive.org/web.
7
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located in a high-income country when its GDP per capita in that year is within the top 25% of countries by GDP per capita in the
panel of countries from 1950 to 2015.

IUCN Red List data—We estimate separate species-type specific treatment effects because CITES may be more or less effective for
different types of species. For example, the protection offered by CITES may be more effective for species with commercial value
(or species with ‘‘intentional use’’), as it may prevent overharvesting. We use data on intentional use from the IUCN-CMP Unified
Classification of Direct Threats (version 3.2), which is a refined version of the classification introduced by Salafsky et al. (2008).22

We also estimate a separate effect for species that are vulnerable. We use the IUCN Red List of Threatened Species classification on
extinction risk and consider as vulnerable all species that are classified as ‘‘critically endangered’’, ‘‘endangered’’, and ‘‘vulnerable’’,
i.e., species facing extreme or very high risk of extinction in the wild.23

Citizen science data (iNaturalist)—We estimate a separate treatment effect for well-known species. To identify these species, we
se citizen science data on users’ identifications for species from iNaturalist.24 This database contains information about exemplars of

species identified by the community, mostly by photos, going back to 1970. Today, users can upload their photos via a smartphone
app.

Species traits data—We estimate a separate treatment effect for large species, i.e., species with larger than average body mass.
We use data from the EltonTraits 1.0 data set, a species-level compilation from various sources of attributes of bird and mammal
species by Wilman et al. (2014).25

3. Research design and identification

Our goal is to estimate the causal effect of CITES listings on the size of species’ populations. To inform our identification strategy,
we start by visualizing the average trends in our population data. Fig. 3 shows the evolution of the average population size for
species that are listed in CITES at some point within our sample period and those which are not, i.e., the graph does not take into
account the fact that different species enter in different years. The figure shows predicted log population size per year for these
two groups. To calculate predicted population sizes, we run a regression of log population sizes on a population fixed effect to
control for the difference in measurement units, and different year effects for CITES listed and non-listed (never listed) species.
Fig. 3 shows the average of the predicted values from this regression excluding the population fixed effect to ensure that we use the
same measurement unit for all observations. Species protected by CITES have smaller populations before CITES entered into force
in 1975, i.e., there are pre-existing differences in listed and non-listed species, which we will control for by including population
fixed effects in our regressions below. The figure also shows a thin, dashed line with the evolution of the difference in population
size between listed and non-listed species. This line allows a coarse comparison of the relative pre-existing trends for the period
before any species are treated, i.e, before 1975. We see that population size seems to move in parallel trends before CITES entered
into force.26 After 1975, species start to get listed in the CITES appendices and trends start to diverge.

The intuition from a first glance at Fig. 3 is also borne out when using a formal statistical test for equality of trends following
the approach by Antwi et al. (2013). As species start to be included in CITES with its entry into force in 1975, we only use data of
populations observed before 1975 for this test (𝑁 = 14540). We then regress population size on population (species-location) and
year fixed effects, and an interaction term of the linear time trend with 𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆𝑠, 𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆𝑠𝑡, where 𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆𝑠
ndicates whether species 𝑠 is part of the treatment group, i.e., a species included in the CITES appendices at some point in time in
ur data set. There is no difference in the trends of treatment and control groups prior to the entry into force of CITES.27

One of the reasons for pre-existing differences between listed and non-listed species is that the probability of being listed in
ITES differs across species. Metrick and Weitzman (1996) document that different types of species have different probabilities of
etting listed in the ESA. We confirm their result for CITES. In Appendix A, we show that large mammals (the so-called ‘‘charismatic
egafauna’’), vulnerable species, and species used intentionally have a higher probability of being listed in CITES. Similarly, we

ind that mammals, birds, and reptiles have higher probabilities of getting listed than fishes. This provides evidence of a selection
ias driven by species’ time-invariant characteristics.

The probability of a species getting listed may change over time due to the emergence of new scientific evidence on the status of
species. For every population in our data, the LPI data reference the source of the population size data in the scientific literature.
his allows us to construct a balanced panel data set for all species for the years 1950 to 2015 where we count the accumulated
umber of studies available in a given year for a specific species, 𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡. We run the following regression:

𝐶𝐼𝑇𝐸𝑆𝑠𝑡 = 𝛼𝑠 + 𝛽𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡 + 𝛿𝑡 + 𝜀𝑠𝑡, (1)

22 We downloaded these data from the IUCN Red List API-v3 (http://apiv3.iucnredlist.org/api/v3/docs) on 20 February 2019.
23 Data downloaded from the IUCN Red List API-v3 on 8 November 2017.
24 Data downloaded from the iNaturalist webpage https://www.inaturalist.org/home. Data downloaded are for taxa on amphibians, birds, fishes, mammals,
nd reptiles. Data downloaded on 12 and 13 November 2019.
25 The main sources for the body mass data are Smith et al. (2003a) for mammals and Dunning (2007) for birds.
26 Note that the number of observations included in the ‘‘treated’’ group is considerably lower than the number of observations included in the ‘‘control’’
roup, which explains the larger variance in the average population size for listed species.
27 The estimated coefficient for 𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆 𝑡 is −0.001 (𝑠.𝑒. = 0.013, 𝑝-value = 0.951), the 95% confidence interval is [−0.026; 0.025].
8
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Fig. 3. Average population size: Listed and never listed species by year.
Figure depicts the (predicted) population size per year for species that have ever been listed in CITES versus species that have never been listed in CITES.

Table 1
Determinants of CITES listings (panel).

(1) (2) (3) (4)

Trend 0.003 0.003 0.003 0.003
(0.000) (0.000) (0.000) (0.000)

Accumulated number of studies available 0.005 −0.000
(0.003) (0.001)

𝑅2 0.05 0.05 0.58 0.58
𝑁 228162 228162 228162 228162

Notes: Table 1 reports estimated coefficients from a linear probability model of variants of Eq. (1) using a balanced panel of 3457
species from 1950 to 2015. The dependent variable is a dummy variable that equals one when the species is listed in CITES in
year 𝑡 and zero otherwise. As regressors we use a variable that measures the accumulated number of published studies in our data
set in 𝑡 on a specific species and a time trend. Column (1) estimates Equation (1) but drops 𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡 using
pooled OLS, i.e., without a species fixed effect 𝛼𝑠. Column (2) re-estimates column (1) but adds 𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡.
Columns (3) and (4) re-estimate columns (1) and (2) but add a species fixed effect. Column (4) estimates Equation (1) as
presented in the main text. Standard errors are in parentheses and are clustered at the species level. Fixed effects, including the
constant, are not reported.

here 𝐶𝐼𝑇𝐸𝑆𝑠𝑡 is an indicator variable which is one if species 𝑠 is listed in CITES in year 𝑡 and zero otherwise, 𝛿𝑡 is a time trend,
nd 𝛼𝑠 is a species fixed effect that controls for all time-invariant species characteristics influencing the selection into CITES as
ocumented in Appendix A.28 We cluster standard errors at the species level. We present results in Table 1.

In column (1), we start by estimating a restricted version of Eq. (1) by dropping 𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡 and the species
ixed effect. We find a significant time trend, with the probability of being listed in CITES increasing by 0.3 percentage points per
ear. Its explanatory power is quite low as it only explains about 5% of the variation in the dependent variable. In column (2),
e add the number of accumulated studies. The regressor is not significant. Accordingly, the explanatory power of the regressor is

lose to zero, which together with the time trend still only contributes 5% to the overall 𝑅2 of the pooled regression. Columns (3)
nd (4) re-estimate columns (1) and (2) but add the species fixed effect. They reveal that the majority of the variation in 𝐶𝐼𝑇𝐸𝑆𝑠𝑡
s explained by the species fixed effect.29

These results inform our identification strategy to estimate the effect of CITES listings on wildlife populations. Including
opulation-specific fixed effects remedies the documented time-invariant selection bias by focusing on within-population variation
or a given species. In addition, our population fixed effect eliminates the time-invariant taxonomic bias. It also controls for

28 Changes in 𝐴𝐶𝐶𝑈𝑀𝑈𝐿𝐴𝑇𝐸𝐷𝑆𝑇𝑈𝐷𝐼𝐸𝑆𝑠𝑡 may also be interpreted as a proxy for changes in the unobserved time-varying endangerment status of a
particular species. Then, the coefficient 𝛽 should be biased towards zero when assuming a classical measurement error.

29 In unreported regressions, we also experimented with non-linear time trends as well as including only studies published after the entry into force of CITES
9
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systematic time-invariant differences between species that have been listed early on in CITES and those that have been listed later.
We control for the trend in the probability of species becoming listed by including year fixed effects. Our baseline regression is
given by:

ln𝑁𝑠𝑙𝑡 = 𝜇𝑠𝑙 + 𝜂𝑡 + 𝛽(in CITES)𝑠𝑡 + 𝜀𝑠𝑙𝑡, (2)

where 𝑁𝑠𝑙𝑡 is the size of the population of a species 𝑠 in location 𝑙 in year 𝑡.30 (in CITES)𝑠𝑡 is a dummy variable that is one when
a species is listed in one of the CITES appendices in a given year, and zero otherwise. 𝜇𝑠𝑙 is a time-invariant species-location
(i.e., population) fixed effect that controls for factors such as habitat suitability, which determine the population size of a species
in a given location. Even in a world without any loss of wildlife caused by human activity, species are unevenly distributed across
space according to their habitat. For example, red fox (Vulpes vulpes) populations vary considerably across their geographical range,
which is the largest within the order Carnivora; see Hoffmann and Silero-Zubiri (2016). This highlights the importance of allowing
for different base levels of a species’ population size in different locations. In addition, species differ in terms of both their abundance
and their extinction risk due to factors such as body weight, size, attractiveness to humans, economic value and reproductive rates;
see Hutton and Dickson (2000), Cardillo et al. (2005), and McClenachan et al. (2016).

𝜂𝑡 is a year-specific fixed effect that controls for time-varying factors that influence treatment and control species in a similar way.
Finally, 𝜀𝑠𝑙𝑡 is an error term that measures random fluctuations in population size. This regression is equivalent to a generalized
differences-in-differences approach where species protected by CITES are the treatment group and the control group comprises
species that are not included in the CITES appendices.31 Our final sample includes 10794 populations of 3385 species in 185 countries
over 66 years (from 1950 to 2015). We follow the suggestion of Bertrand et al. (2004) and cluster standard errors at the species
level to allow for correlation within species as our treatment variable is defined at the species level.

We later relax the assumption of constant treatment effects over time by estimating the following event study specification:

ln𝑁𝑠𝑙𝑡 = 𝜇𝑠𝑙 + 𝜂𝑡 +
∑

𝜏∈{−10,−5,0,5
10,15,20,>20}

𝛽𝜏𝟏(𝑡 = 𝑡𝐶𝐼𝑇𝐸𝑆
𝑠 + 𝜏)𝑠𝑡 + 𝜀𝑠𝑙𝑡. (3)

We regress the log of population size on a set of relative time dummies that indicate the number of years before or after a species’
listing in either CITES Appendix I or II. Our interest lies in estimating the treatment effect 𝛽𝜏 on population size 𝜏 years after a
species is included in the CITES appendices.32 The set of time dummies allows the treatment effect to vary with time 𝜏 since the
year a species was listed into the CITES appendices, 𝑡𝐶𝐼𝑇𝐸𝑆

𝑠 . We consider different effects for the year of inclusion (𝜏 = 0), the first
five years after listing, and then in five year intervals up to 20 years. We also consider a separate treatment effect for species listed
for more than 20 years.

We estimate leading values of the treatment to test the reliability of our identification strategy. A statistically significant effect
for 𝜏 = −10 or 𝜏 = −5 indicates pre-existing differences in the trends between listed and non-listed species, which may cast doubt
on the common trend assumption underlying our approach.

As an additional test of the parallel trend assumption, we follow the recommendation by Bilinski and Hatfield (2019) and estimate
a model that uses the same treatment variables as in Eq. (3) but we include 𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆𝑠𝑡 instead of placebo treatments in the
years before inclusion in CITES. Note that in this specification with a full set of treatment dummies for all years after treatment
starts, 𝜃𝐸𝑉 𝐸𝑅𝐶𝐼𝑇𝐸𝑆𝑠𝑡 directly measures a violation of the parallel trend assumption prior to treatment, i.e., inclusion in CITES.
We estimate 𝜃̂ = −0.002 (𝑠.𝑒. = 0.007, 𝑝-value = 0.818). Hence we can rule out a violation of the parallel trend assumption of trend
differences larger than the bounds of the 95% confidence interval of 𝜃̂, [−0.014, 0.011], validating our identification strategy.33

4. Results

4.1. Effect of CITES listings on wildlife population sizes

Species listed in CITES—We present results of Eq. (2) in column (1) of Table 2. After a species is listed in CITES, the populations
of this species increase by 20%.34 Most of the species in our sample were included in CITES in 1975 (see Fig. 1). There may be a
difference in CITES’ effectiveness between the species listed in 1975 and those that were listed later. We therefore estimate separate
treatment effects for these two groups of species.35 In column (2), we define treatment only for those species that were included in

30 Note that population refers to a given species 𝑠 in location 𝑙. Hence, for a given year, there may be several species in the same location, and the same
species may occur in several locations.

31 For our estimation, we use the Stata package reghdfe by Correia (2016).
32 We write 𝜏 = −10 for years 6 to 10 before a species’ CITES listing, 𝜏 = −5 for years 1 to 5 before a species’ CITES listing, 𝜏 = 0 for the year of a species’

CITES listing, 𝜏 = 5 for years 1 to 5 after a species’ CITES listing, 𝜏 = 10 for years 6 to 10, 𝜏 = 15 for years 11 to 15, 𝜏 = 20 for years 16 to 20, and 𝜏 > 20 for
more than 20 years after a species’ CITES listing.

33 Note that neither Fig. 3 nor this test are ultimately informative about whether treated and non-treated species follow the same pre-treatment trends in our
setting with variation in treatment timing. Instead, pre-treatment dummies in an event study specification are used to test this assumption, and we include these
in all our event study specifications; see Eq. (3). For a discussion of these issues, see chapter 9 in Cunningham (2021).

34 We calculate marginal effects of variable 𝑘 as (𝑒𝛽𝑘 − 1) × 100.
35 This also checks for the similarity of treatment effects for early and late treated species, in the spirit of Goodman-Bacon (2021). Note that the decomposition
f difference-in-differences estimates in balanced panels proposed by Goodman-Bacon (2021) does not apply in our unbalanced panel; see Baker et al. (2022).
10
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Table 2
Effect of CITES on population size.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

in CITES 0.184 0.242 −1.281 −0.146 0.008 0.082 0.061 −0.139
(0.071) (0.132) (0.325) (0.105) (0.091) (0.104) (0.106) (0.172)

in CITES in 1975 0.207 0.217
(0.122) (0.122)

in CITES after 1975 0.164 0.170
(0.081) (0.082)

in CITES × NONSANCTIONED −0.058 −0.051
(0.114) (0.117)

in CITES × (1−P(BRIBE=1)) 1.700
(0.393)

in CITES × LOWCORRUPT 0.420 0.183
(0.131) (0.138)

in CITES × HIGH-INCOME 0.263 0.148
(0.084) (0.090)

in CITES × MEMBER 0.122 −0.199 −0.068
(0.093) (0.133) (0.139)

in CITES × MEMBER × CATEGORY 1 0.399 0.229
(0.168) (0.161)

𝑁 119538 119538 119538 119538 119538 107566 113818 119538 119538 119538 113818

Notes: Table 2 reports estimated regression coefficients from an unbalanced panel regression of log of population size on various treatment dummies along a
set of population and year fixed effects. The sample consists of 10794 populations from 1950 to 2015. Fixed effects, including the constant, are not reported.
Standard errors are in parentheses and are clustered at the species level. Column (1) estimates Equation (2), i.e., a regression in which the treatment dummy
equals one for populations of species listed in CITES. Column (2) includes a variation of the treatment dummy that equals one for populations of species listed
in CITES in 1975. Column (3) includes a variation of the treatment dummy that equals one for species listed in CITES after 1975. Column (4) includes both
treatment dummies for species listed in CITES in 1975 and after 1975. Column (5) interacts the treatment dummy from column (1) with a dummy variable
that is one for populations located in non-sanctioned countries. Column (6) interacts the treatment dummy with 1−P(BRIBE=1), where 𝑃 (⋅) is the probability of
corruption at the border. Column (7) interacts the treatment dummy with a dummy variable that is one when a country has a low level of corruption. Column
(8) interacts the treatment dummy with a dummy variable that is one for populations located in high-income countries. Column (9) interacts the treatment
dummy with a dummy variable that is one when a population is located in a CITES member country. Column (10) interacts the treatment dummy with a dummy
variable that is one when a population is located in a CITES Category 1 member country, i.e., a country with high levels of enforcement. Column (11) includes
several regressors simultaneously. The reduced number of observations in columns (6), (7), and (11) is due to missing data in the included corruption measures.

CITES in 1975. We estimate a similarly sized effect as in column (1) but with low precision. In column (3), we define treatment
only for those species included after 1975. The effect is again of similar size, and is now precisely estimated. In column (4), we
include both dummies simultaneously, with similar results. We cannot reject the null hypothesis that the effect for species listed in
1975 and after 1975 is the same (𝑝-value = 0.732), but their effect is jointly significant (𝑝-value = 0.034).

Sanctions—Under Article XIV.1(a) of CITES, member countries can sanction other countries if they do not comply with CITES
regulations, e.g., by not passing local legislation to implement CITES.36 We create an indicator variable that is one if a country is
not subject to sanctions in a given year (NONSANCTIONED). By interacting this variable with our baseline CITES treatment dummy
from column (1), we can test whether CITES is less effective for populations located in sanctioned countries. We present results
in column (5). We do not find a significant difference of the effectiveness of CITES between populations in sanctioned and non-
sanctioned countries. However, we should interpret this result with caution: the correlation between our baseline treatment dummy
and the interaction term with sanctioned countries is 0.99, therefore, our data probably do not allow us to identify a meaningful
difference between populations in sanctioned and non-sanctioned countries.

Corruption—Countries with high levels of corruption may limit the success of conservation projects by reducing effective funding
levels and distorting priorities. Empirically, there seems to be a relationship between (bad) governance and wildlife (decline)
(see Smith et al., 2003b). We interact our baseline treatment dummy with a variable defined as one minus a particular measure of
corruption. As our measure of corruption, we use the share of population in country c answering ‘‘yes’’ to the question ‘‘in the last
12 months have you or anyone living in your household paid a bribe in any form to customs?’’ (variable ‘‘Paid Bribe: Customs’’,
see Dahlberg et al., 2017). Hence, we interact our baseline treatment dummy with 1−𝑃 (BRIBE=1), which allows corruption at the
order to vary the ‘‘dosage’’ of the effectiveness of CITES. Results obtained in column (6) imply that less corruption at the border
ncreases the effectiveness of CITES. At the mean value of 1 − 𝑃 (BRIBE=1) (0.88 in our sample), we find that inclusion in CITES
ncreases populations by (−1.281+1.700*0.88)*100=22%.

CITES has to be enforced not only by customs officials but also by other government agencies. Hence our corruption measure may
e too specific and not capture the overall level of corruption in a country. Also, individuals’ efforts to avoid self-incrimination may
ead to underreporting of bribe payments. More generally, differences in definitions of corruption may lead to important differences
cross corruption indicators; see Malito (2014). We therefore use the World Bank’s control of corruption index to construct an
ndicator variable 𝐿𝑂𝑊 𝐶𝑂𝑅𝑅𝑈𝑃𝑇 that is one when a country is characterized by low (below average) levels of corruption. We
nteract this indicator with our baseline treatment dummy and present results in column (7). We find a significant effect of CITES

36 For an overview of the CITES sanction regime, see Sand (2013).
11
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only for populations of species located in countries with low corruption, confirming the importance of good governance for CITES’
effectiveness.

Countries’ income level—Countries with a higher income per capita may be more effective at implementing CITES due to higher
ublic funding. In addition, with rising income levels, consumers have a higher willingness to pay for conservation; see the meta-
nalysis by Jacobsen and Hanley (2009). We therefore interact our baseline treatment indicator with a dummy variable that is 1 for
opulations located in high-income countries in a given year.37 We present results in column (8). We find that CITES’ effectiveness
s concentrated in populations in high-income countries.

CITES member countries—Until now, our treatment dummy has taken the same value for all populations of a given species.
ome populations of protected species in our data are located in a country which was not a CITES member country at the time of
bservation. CITES members are also expected to apply CITES regulations to wildlife trade originating from non-member countries
see Article X of CITES). Therefore, CITES should in principle also protect species in non-member countries. If the protection of a
pecies is only imperfectly enforced, our estimates in the previous columns can be interpreted as the intention-to-treat effect of the
nclusion in CITES. Still, CITES listings may be more effective in protecting wildlife populations in member countries. We therefore
ap each population to the country in which it is located. This allows us to include, in addition to our baseline species-specific

reatment dummy, an interaction term between the treatment dummy and a dummy variable indicating whether the country in
hich the population is located is a member of CITES that year. We present results in column (9). Both variables are not significant

ndividually, but are jointly significantly different from 0 (𝑝-value = 0.02), and we cannot reject the hypothesis that the effect of
ITES is the same for populations in and outside CITES member countries (𝑝-value = 0.83). This is not surprising. Article X of CITES
tipulates that trade with non-member countries is only allowed when essentially equivalent documentation, particularly export
ermits, are provided by any potential trader, and countries are explicitly allowed to apply even stricter standards to non-member
ountry trade.38

Member countries’ implementation and enforcement—Column (9) may seem to imply that there are no differences between member
nd non-member countries of CITES. This may be due to heterogeneity within the group of CITES member countries, as some
ember countries may implement and enforce CITES more stringently than others. Following the previous result that CITES listings

re effectively protecting species in countries that are less corrupt, we analyze whether the effectiveness of CITES might differ
y a member country’s implementation and enforcement level. If a country is not implementing or enforcing CITES regulations
roperly, we should not expect CITES to have a positive impact on the populations located in these countries. To check this, we
reate a dummy variable that identifies populations in Category 1 CITES member countries, i.e., countries that are CITES members
nd whose national legislation fully complies with the requirements of CITES, and interact it with our baseline treatment dummy.
e present results in column (10). We find that CITES is only effective in Category 1 CITES member countries, i.e., countries that

nforce CITES well, stressing the importance of proper enforcement.
In column (11), we include all variables simultaneously from columns (5) to (10), except that we only use the corruption measure

rom column (7), as it is available for more countries.39 The precision of the estimates becomes low, and none of the regressors is
ndividually significant. It is difficult to distinguish whether it is the high level of income of countries, their low level of corruption,
r their high level of enforcement that is driving CITES’ effectiveness. This is likely due to their high pairwise correlation, which
anges between 0.74 and 0.99.

Contentious listing decisions—While Gehring and Ruffing (2008) argue that for CITES listing decisions, ‘‘arguments prevail over
ower’’, this may not always be the case, particularly with species for which listing decisions are contentious. For these species,
isting decisions may be driven by country-specific interests. We check whether our results are driven by such species. According
o Blundell and Rodan (2001), listing decisions referring to elephants, sharks, turtles, and whales are particularly contentious. In
subsample analysis, we drop all populations of these species.40 We present results in Appendix Table 2. Compared with Table 2,
e find similar results, although estimated coefficients are slightly larger in absolute magnitude. Importantly, we now identify a

ignificant effect of enforcement for the effectiveness of CITES (Category 1 countries) even in the most stringent specification in
olumn (11). In sum, we do not find evidence that our results are driven by contentious listing decisions, and we corroborate the
mportance of enforcement of CITES.

Event study specifications—We now allow the treatment effect of CITES listings to vary over time in our event study specification
iven in Eq. (3). We present estimates in Fig. 4. Results confirm that CITES listings have a positive effect on species’ population
izes, however, the effect of CITES does not occur immediately, as it takes about 16 to 20 years until populations of CITES-listed
pecies increase in size as a consequence of their listings in CITES (significant coefficient at the 10% level). In addition, the pre-trend
ariables are not significant, validating the common trend assumption.

In the following, we present variations of the baseline event study specification where we allow for separate effects across
ifferent types of countries, similar to the variables presented in Table 2. As in columns (2) and (3) of Table 2, we allow for

37 Note that not all populations are located in either high-income or non-high-income countries: in our data, populations are also found in international waters
r Antarctica.
38 For a detailed discussion of the provisions of Article X and their implementation, see Sand (2013) and Wijnstekers (2011, pp. 339–342).
39 The correlation between in CITES × (1 − 𝑃 (BRIBE=1)) and in CITES × LOWCORRUPT is 0.82.
40 Specifically, we drop all populations of the family Elephantidae (i.e., elephants) and of the order Testudines (i.e., turtles). To drop shark populations, we
rop populations of the orders Carcharhiniformes, Hexanchiformes, Lamniformes, Orectolobiformes, Squaliformes, and Squatiniformes. Our data set does not
ontain shark populations of the orders Heterodontiformes, Pristiophoriformes, and Echinorhiniformes. As whales are an informal taxonomic group, we drop all
opulations of species that include the word ‘‘whale’’ in their common name. This also excludes orcas (killer whales, Orcinus orca), which are part of the family

Delphinidae, i.e., oceanic dolphins. In total, we drop 5820 observations of 126 species.
12
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Fig. 4. Effect of CITES on population size.
This figure shows coefficient estimates from Eq. (3), i.e., an unbalanced panel regression of log of population size on a set of dummy variables indicating the
years since a species’ entry into CITES, along with a set of population and year fixed effects. 95% confidence intervals are displayed around each point estimate.
Standard errors are clustered at the species level. Number of observations: 119538. The sample is the same as in column (1) of Table 2.

separate effects of species listed in 1975 and after 1975. We present results in Appendix Figure 1. We find a similar pattern of the
estimated coefficients for both species listed in 1975 and those listed after 1975. It takes about 16 to 20 years until populations of
CITES-listed species increase. Again, precision of the estimates is considerably lower when singling out 1975, probably because we
observe the majority of populations after 1975. The effect of CITES on population sizes increases over time, as wildlife populations
slowly recover.

We then allow for separate dynamic effects of CITES listings for countries with high and low corruption, using the corruption
easure from column (7) in Table 2. We present results in Fig. 5. For high-corruption countries (left panel), we find negative point

stimates but with low precision. Importantly, we find that CITES’ effectiveness is driven by populations in countries with low
orruption (right panel). Compared to Fig. 4, we now find significantly larger populations 11 to 15 years after inclusion in CITES,
.e., earlier than in the baseline event study specification.

In Fig. 6, we alternatively allow for separate dynamic effects for populations in low and high-income countries, similar to column
8) in Table 2. While we find no significant effect of CITES listings in low-income countries (left panel), we find that populations
re significantly larger in high-income countries beginning 16 years after their inclusion in CITES (right panel).

Finally, we allow for separate dynamic effects of CITES listings depending on whether a population is located in a CITES member
ountry with a high level of CITES enforcement, i.e., a Category 1 member country, similar to column (10) in Table 2. We present
esults in Fig. 7. We find that CITES has a significant lagged effect on population sizes in Category 1 countries only, stressing the
mportance of proper enforcement: after more than 20 years of a species’ inclusion into CITES, its population is about 66% larger.

The results in this section show evidence of heterogeneous treatment effects at the country level, as CITES is effective in countries
ith low corruption, high income, and strong enforcement. They also show that CITES’ effectiveness increases over time.

.2. Reverse causality and selection on vulnerability

While our specification controls for differences in the probability of inclusion of different species into CITES via the population
ixed effects, it may be that a species’ vulnerability or endangerment status change over time, i.e., species whose populations have
xperienced a recent decline are more likely to be included in CITES. This would be a case of reverse causality: because a species
s in decline, it gets listed. Similarly, species whose populations have increased recently may have a lower probability of inclusion
n CITES. What is the influence of this selection on vulnerability on the size of our estimated CITES treatment effect?

Let us denote the influence of such a time-varying omitted variable by 𝛼𝑥𝑠𝑡. If this omitted variable is correlated with (in CITES)𝑠𝑡,
ur estimated effect of CITES, 𝛽, is biased. With selection on vulnerability, the bias is downwards, as vulnerability is negatively
orrelated with population sizes (𝛼 < 0) and as discussed above, the correlation between vulnerability and CITES is likely positive,
.e., 𝐶𝑜𝑟𝑟[(in CITES)𝑠𝑡, 𝑥𝑠𝑡] > 0.41

While the inclusion of population fixed effects goes some way towards controlling for this vulnerability bias, i.e., for its species-
nd population-specific time-invariant determinants, it does not control for time-varying vulnerability bias. In an ideal world, we

41 In our species-level data, the correlation between a species ever being listed in CITES Appendix I or II and it being classified as either ‘‘critically endangered’’,
13

‘endangered’’, or ‘‘vulnerable’’ by the time-invariant IUCN Red List data is 0.327.
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Fig. 5. Effect of CITES on population size by corruption level.
This figure shows results from an unbalanced panel regression of log of population size on a set of treatment dummies, along with a set of population and year
fixed effects. The left panel shows the coefficient estimates of dummy variables indicating the years since a species’ entry into CITES interacted with a variable
indicating whether the population is located in high-corruption countries. The right panel shows the coefficient estimates of dummy variables indicating the
years since entry into CITES interacted with a variable indicating whether the population is located in a low-corruption country. 95% confidence intervals are
displayed around each point estimate. Standard errors are clustered at the species level. Number of observations: 113818. The sample is the same as in column
(7) of Table 2.

Fig. 6. Effect of CITES on population size by country income level.
This figure shows results from an unbalanced panel regression of log of population size on a set of treatment dummies, along with a set of population and year
fixed effects. The left panel shows the coefficient estimates of dummy variables indicating the years since a species’ entry into CITES interacted with a variable
indicating whether the population is located outside high-income countries. The right panel shows the coefficient estimates of dummy variables indicating the
years since entry into CITES interacted with a variable indicating whether the population is located in a high-income country. 95% confidence intervals are
displayed around each point estimate. Standard errors are clustered at the species level. Number of observations: 119538. The sample is the same as in column
(1) of Table 2.

would control for an independent, time-varying vulnerability measure at the population level for all populations across the globe
but, to the best of our knowledge, such a measure does not exist. The best available proxy at the global level is the IUCN Red
List. The IUCN Red List is the largest available database that publishes classifications for the endangerment status of individual
species (see Rodrigues et al., 2006), but not at the level of populations. However, there is hardly any time variation in the IUCN
Red List except for a few individual species. Rondinini et al. (2014) estimate that with current funding levels, 83% of Red List
14
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Fig. 7. Effect of CITES on population size depending on enforcement status (species listed in CITES, in CITES member countries).
This figure shows results from an unbalanced panel regression of log of population size on a set of treatment dummies, along with a set of population and year
fixed effects. The left panel shows the coefficient estimates of dummy variables indicating the years since a species’ entry into CITES interacted with a variable
indicating whether the country is a CITES member in year t for non-‘‘Category 1’’ countries. The right panel shows the coefficient estimates of dummy variables
indicating the years since entry into CITES interacted with a variable indicating whether the country is a CITES member in year t for ‘‘Category 1’’ countries.
95% confidence intervals are displayed around each point estimate. Standard errors are clustered at the species level. Number of observations: 119538. The
sample is the same as in column (1) of Table 2.

assessments will be outdated by 2025 and the average age of assessments will be more than 30 years. Therefore, available measures
of endangerment status are slow moving indicators at best.

Another way of looking at this problem is through counterfactual thinking; see Ferraro (2009). To estimate the effectiveness of
CITES listings, we would like to know what would have happened to a species had it not been listed. For a credible identification,
we need to identify counterfactual species, i.e., those that are similar to listed species in terms of their endangerment status and
other characteristics, but not their CITES listing status. As two robustness checks, we use two separate approaches to identify such
counterfactual species: (1) As a crude approximation, we restrict our sample to species that have similar endangerment status, and
(2) we use a matching approach in the spirit of Ferraro et al. (2007) to identify counterfactual species that are similar in terms of
observable characteristics. We explain both approaches below.

Subsample analysis for vulnerable species—We restrict our sample to species that have similar IUCN Red List threat evaluations,
irrespective of whether they are listed in CITES or not. We use the IUCN Red List of Threatened Species classification on extinction
risk and create an indicator variable that identifies vulnerable species, which we define as species that are classified as ‘‘critically
endangered’’, ‘‘endangered’’, and ‘‘vulnerable’’, i.e., species that face a high risk of extinction in the wild. Keeping only vulnerable
species reduces our sample to 16391 observations, about 14% of our baseline sample. We present results in Appendix Table 3. The
table replicates Table 2 from the main text but uses the restricted sample. Point estimates are mostly of the same sign and larger
than those in our baseline results presented in Table 2, in line with our bias prediction. Likely due to the small sample size, most of
the estimated effects are not significant, with the exception of the effect of CITES in high-income countries (columns (8) and (11)).
Hence, the subsample analysis confirms CITES’ effectiveness for populations of species located in high-income countries.

Matching—Ferraro et al. (2007) use propensity score and covariate matching estimators to control for the endogenous selection
of species listed in ESA. This allows them to identify counterfactual species, i.e., comparable species that are not ESA-listed to
answer the question of what would have happened to a species’ endangerment status if it had not been ESA-listed. While Ferraro
et al. (2007) use a cross-sectional outcome regression, Ferraro and Miranda (2017) go one step further in terms of methodology and
combine covariate matching with a two-way fixed effects (TWFE) panel estimator to identify the counterfactual observations. This
is closer to our application, as we also use panel data and a TWFE panel estimator. We therefore combine the insights from Ferraro
et al. (2007) and Ferraro and Miranda (2017): following Ferraro and Miranda (2017), we use nearest neighbor covariate matching
with replacement using a Mahalanobis distance metric to create a sample of matched counterfactual species, i.e., species that are
similar in terms of observable characteristics except their CITES listing status, for all species that are listed in CITES in our data
set. Like Ferraro and Miranda (2017), we apply a caliper of one standard deviation of the propensity score, i.e., the probability
that a species gets listed in CITES Appendix I or II, and we trim our sample by keeping only those species for which the estimated
propensity score lies within [0.1;0.9] using Crump et al. (2009)’s rule of thumb. We follow Ferraro et al. (2007) and use a Metrick and
Weitzman (1996) style regression to estimate the propensity score, using the same covariates as we use for the covariate matching.
In particular, we estimate a logit model using the same specification as we use in the log-linear probability model in column (4) of
15

Appendix Table 1, i.e., the most exhaustive specification of our Metrick and Weitzman (1996) style regressions. After our matching
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procedure, the sample of matched species is well balanced in terms of covariates and the propensity score; see Appendix Table 4
and Appendix Figure 2.

Following the methodology of Ferraro and Miranda (2017), we use the matched species to create a matched panel data set of
opulations. This panel contains all populations listed in CITES as well as all populations of species identified as nearest neighbors
n the matching process, i.e., the non-treated species that serve as counterfactuals. This ensures that we estimate the treatment effect
f CITES on population sizes using a sample of populations of species that are similar in terms of their observed covariates. In this
anel data set, we re-estimate our baseline panel fixed effects model from Table 2. We present results in Appendix Table 5. The
atched sample consists of 13645 observations. A major difference is that in column (1), we find a smaller effect of CITES listing

n population sizes that is no longer significant, and we do not find significant effects of CITES for species listed after 1975 in
olumns (3) and (4). As in the baseline results, we find non-significant effects when we distinguish between species listed in 1975
n columns (2) and (4), and no difference between sanctioned and non-sanctioned countries in column (5). We do find significant
ffects and confirm the detrimental effects of corruption for the effectiveness of CITES in columns (6) and (7). We also confirm
he effectiveness of CITES in high-income countries in column (8). As in the baseline results, we do not find a differential effect
or CITES member countries (column (9)), but we confirm the importance of enforcement in column (10). When controlling for all
egressors simultaneously, we obtain similar signs and magnitudes as in our baseline results, but with low precision.

To sum up, when identifying counterfactual species, we confirm the importance of low corruption, high income, and the quality
f enforcement for the effectiveness of CITES.

.3. Robustness

In this section, we present short summaries of several robustness checks. We present detailed results and discussion in Appendices
, F, G, and H.

Species type-specific treatment effects—We explore whether treatment effects differ across different types of species. For each type
of species, we estimate separate treatment effects, distinguishing between non-‘‘Category 1’’ member countries (i.e., where CITES
is poorly implemented or enforced) and for ‘‘Category 1’’ countries (i.e., where CITES is effectively implemented or enforced). In
particular, we study whether there are differences for intentionally-used species, i.e., for species with a direct economic value,
vulnerable species as classified by the IUCN Red List, highly-studied or well-known species, as well as for the ‘‘charismatic
megafauna’’, i.e., particularly large animals. We present a detailed discussion and results in Appendix E. Our results show that
species with different characteristics do not seem to benefit differently from CITES, with the exception of large animals, as for them
CITES is also effective in non-‘‘Category 1’’ member countries. We confirm the existence of heterogeneous treatment effects across
countries as CITES is only effective in countries with strong enforcement.

Cohort-specific treatment effects—A recent literature studies a potential bias when estimating treatment effects and event studies
using TWFE models with staggered treatments.42 This bias can be remedied by estimating separate, cohort-specific event studies
using TWFE, i.e., using clean control groups. This delivers consistent treatment effects for each cohort; see Sun and Abraham
(2021), Wooldridge (2021), and Baker et al. (2022). Cohorts in our setting are species listed into the CITES appendices in the same
year, using as control groups only species that were never treated (never listed in CITES) to avoid comparison of treated species with
species that will be treated at a later date. We present a detailed discussion and results in Appendix F. Allowing for cohort-specific
effects of CITES is pushing the variation in that precise identification becomes difficult. Still, at least for some cohorts, we confirm
significant and positive effects of CITES on population sizes.

Controlling for country-specific time-varying confounders—Countries’ enforcement efforts, their attitudes towards protecting wildlife,
the size of their wildlife populations, and voting in favor of listing further species at one of the CoPs are likely correlated. To
control for these and other unobserved country-specific time-varying factors, we augment Eq. (3) by two alternative set of controls:
(i) country-specific trends, possibly non-linear, and (ii) country-year fixed effects. We present a detailed discussion and results in
Appendix G. Results are consistent with our main findings and confirm that listing species in CITES has a positive effect on species’
population size. Again, this effect is lagged and starts to be significant from 16 to 20 years after listing.

Are estimates of CITES’ effectiveness driven by domestic regulation?—Some countries may protect their wildlife populations by
domestic regulations, independent of whether a species is included in CITES. One may think that our estimates for the effectiveness
of CITES simply pick up the effectiveness of such domestic regulations, and wrongly attribute their effect to CITES. A particular
feature of the CITES appendices allows us to proxy for domestic regulations at the species-country-year level. Appendix III is different
from Appendices I and II. Whereas inclusion into Appendices I and II occurs only after a positive vote by a two-thirds majority of
the member countries, members can unilaterally list in Appendix III native species not included in Appendices I and II that they
protect through domestic regulation. These inclusions have to be submitted to the Secretariat. To qualify, species have to be native
to the country, have to be protected by domestic policies, and require control of their international trade.43 To investigate whether
our estimates of the effectiveness of CITES are driven by species-specific domestic policies, we create a dummy variable that is one
if a country has domestic regulation in place to protect a species in a given year, and zero otherwise. We proxy this by a listing
of the species in Appendix III by the respective country. We present a detailed discussion and results in Appendix H. We find that
domestic regulation is not driving our finding that CITES has a positive effect on wildlife populations.

42 de Chaisemartin and D’Haultfœuille (2022) and Wooldridge (2021) provide technical surveys of this literature. For a more intuitive survey from an applied
erspective, see Baker et al. (2022), but note that this paper does not include the insights from Wooldridge (2021).
43 See CITES Article II(3) in combination with Conf. 9.25 (Rev. CoP18) ‘‘Implementation of the Convention for species in Appendix III’’ and its predecessor
16

onf. 5.22, and Favre (1989).
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Fig. 8. Distribution of year of first entry into CITES Appendix I and Appendix II.
Figure depicts the distribution of the year a species entered into Appendix I (left panel) and Appendix II (right panel) in our data.

4.4. Is CITES effective because it bans wildlife trade or because it enables sustainable wildlife trade?

We have established that inclusion in CITES leads to an increase in the size of wildlife populations. Until now, our analysis has
een silent on a key debate concerning CITES. The main way in which CITES offers protection for species is via inclusion into either
ts Appendix I or Appendix II. These two appendices represent two different approaches to wildlife conservation. Species listed
n Appendix I cannot be traded internationally for commercial purposes, i.e., it imposes an international trade ban. Species listed
n Appendix II can be traded internationally as long as this trade is sustainable and does not endanger the survival of the species
‘‘sustainable use’’). Which of these two approaches is more effective in protecting wildlife is debated among conservationists, policy
akers, and the wider community. Economic theory as well as case studies provide conflicting arguments.

On the one hand, prohibiting trade may have negative effects as it reduces the (international) legal value of wildlife to zero,
educing economic incentives to protect wildlife. Also, enforcing wildlife trade bans is difficult. Bans reduce the legal supply of
oods from wildlife, but do not directly affect demand. At the same time, bans may stigmatize the purchase and possession of goods
erived from endangered species, thereby reducing demand as well; see Fischer (2004).

On the other hand, sustainable use of species listed in Appendix II allows local communities to generate income from their legal
se in the long run (Rivalan et al., 2007; Challender et al., 2015). However, it may increase demand by legitimizing the consumption
f wildlife goods. Consumers may interpret labels that assure goods are produced in accordance with CITES as a go-ahead without
ny negative environmental consequences. It may also allow poachers to launder illegally harvested specimens in the legal market;
ee Fischer (2004).

Trade bans create incentives for poaching and diversion (or ‘‘leakage’’) to illegal channels, rendering bans ineffective. While these
eakage concerns are likely more important for trade bans as their cost of compliance is higher, sustainable use restrictions impose
osts on traders and therefore also can lead to illegal wildlife trade. As we use wildlife population data, not trade or production
ata, we circumvent these issues.

To disentangle which mechanism, trade bans or sustainable use, dominates the positive effect of CITES on wildlife population
izes, we distinguish between species listed in Appendix I and species listed in Appendix II. In Eq. (3) we have defined 𝑡𝐶𝐼𝑇𝐸𝑆

𝑠 as the
year when a species 𝑠 is included in either Appendix I or II for the first time, whichever comes first. We now distinguish whether a
species has ever been listed in Appendix I or Appendix II. In Fig. 8, we show the distribution of years when a species in our sample
is first listed in one of the two appendices. There has been a movement away from Appendix I in recent years and species now
typically enter CITES via its Appendix II.44

We show the results of two regressions in Fig. 9. The left panel shows coefficients of an event study where we define treatment as
the year when a species is listed in Appendix I . The right panel shows the results for a regression where we define treatment as the
year when a species is listed in Appendix II. We find that population sizes of species included in either Appendix I or II increase by

44 Note that the number of species entering into either of the CITES appendices depicted in Fig. 1 is not the sum of species entering in Appendix I and Appendix
I as species can have been uplisted or downlisted over time. For example, the Mauritius kestrel (Falco punctatus), a falcon from Mauritius, was included into

Appendix II in 1975 and uplisted to Appendix I in 1977, hence it appears in both the left and right panel of Fig. 8, but only once in Fig. 1. In addition, in a
given year, a (sub)species may be listed in one appendix, but a subspecies of the same species may be listed in another appendix, so that the species appears
17

in both appendices in one year. For example, different subspecies of the brown bear (Ursus arctos) were listed in either Appendix I or II in 1975.
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Fig. 9. Effect of CITES on population size (App. I vs. App. II), including country-year fixed effects.
The left panel shows coefficient estimates from an event study specification, i.e., an unbalanced panel regression of log of population size on a set of dummy
variables indicating the years since a species’ entry into CITES Appendix I. The right panel shows coefficients from a separate estimation where dummy variables
indicate the years since entry into CITES Appendix II. Both regressions include population and country-year fixed effects. 95% confidence intervals are displayed
around each point estimate. Standard errors are clustered at the species level. Number of observations: 118106. The sample is the same as in column (1) of
Table 2 except for dropped singleton observations.

similar amounts. However, the positive effect on wildlife population sizes is significant after 6 to 10 years of inclusion in Appendix
II, whereas we find a positive and significant effect for species included in Appendix I after 16 to 20 years.

Some species may move from Appendix II to Appendix I (they get ‘‘uplisted’’) or from Appendix I to Appendix II (they get
‘downlisted’’). The previous regressions ignored these dynamics. We therefore take into account a species’ history of being uplisted or
ownlisted as an additional robustness check. For example, the bald eagle (Haliaeetus leucocephalus) was downlisted from Appendix

I to Appendix II in 2005, while the African elephant (Loxodonta africana) was first listed in CITES Appendix II in 1977, and uplisted
to Appendix I in 1990. Listings in the CITES appendices can occur at any taxonomic level, i.e., either individual (sub-)species are
included in an appendix or a whole taxonomic group (genus, family, order) is included, i.e., groups of related species. The sturgeon,
the source of sought-after caviar, is a good example. The common name sturgeon refers to 27 species which are part of the family
Acipenseridae, which itself is part of the larger order Acipenseriformes. In 1975, the species Acipenser oxyrinchus was included
in Appendix I. In 1979, this species was downlisted to Appendix II. In 1998, the whole order Acipenseriformes was included in
Appendix II. The family Lemuridae, a group of primates found primarily in Madagascar, was included in Appendix I in 1975, except
the probably best known lemur species, the ring-tailed lemur (Lemur catta), which was included in Appendix II. Lemur catta was
then uplisted into Appendix I in 1977. We take into account changes like these in Appendix Figure 8, where we drop populations
of species that have ever been listed in both Appendix I and Appendix II during the period available for those populations in the
sample (‘‘switchers’’).45

Appendix Figure 8 confirms that trade bans and sustainable use are both effective in the long run. We find significant positive
effects on wildlife populations of incentivizing sustainable use 6 to 10 years after inclusion into Appendix II. However, it seems that
identification of positive effects for trade bans, i.e., Appendix I, in Fig. 9 stems mostly from ‘‘switchers’’. The low precision of the
effect of Appendix I listings implies that we cannot rule out positive effects of trade bans in the early years after their imposition.
One of the reasons for this may be the relatively low number of affected species that are not ‘‘switchers’’ in Appendix I.

45 Specifically, we drop from our regressions 4707 observations that correspond to populations of 46 (sub-)species. Their common names are: Addax, African
lephant, American alligator, American crocodile, Bald eagle, Black caiman, Black rhinoceros, Bonobo, Brown bear (Grizzly and Kodiak bear), Chimpanzee,
ommon spider tortoise, Dalmatian pelican, Dugong, Fin whale, Flatback turtle, Forest elephant, Green turtle, Grey wolf, Guadalupe fur seal, Gyrfalcon, Iberian

ynx, Indus blind dolphin, Insular flying-fox, Irrawaddy dolphin, Leatherback turtle, Loggerhead sea turtle, Markhor, Mauritius kestrel, Mongolian saiga, Morelet’s
rocodile, Nile crocodile, Northern elephant seal, Olive ridley, Peregrine falcon, Red-necked amazon, Ring-tailed lemur, Saltwater crocodile, Samoa flying fox, Sei
hale, Southern white rhinoceros, Tiger, Vicuna, and Yellow-shouldered amazon. Of these, 9 were downlisted from Appendix I to Appendix II of CITES: American
lligator, Bald eagle, Black caiman, Mongolian saiga, Morelet’s crocodile, Nile crocodile, Northern elephant seal, Southern white rhinoceros, and Vicuna; different
opulations of 7 (sub-)species were listed in different CITES appendices (I and II) the same year: Dugong, Fin whale, Grizzly bear, Markhor, Red-necked amazon,
ei whale, and Yellow-shouldered amazon. For example, all populations of Dugong were listed in Appendix I in 1975, except those of Australia that were listed
18

n Appendix II. The remaining (sub-)species correspond to species that were uplisted from Appendix II to Appendix I of CITES.
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5. Conclusion

Wildlife is in decline. One driver of this decline is international wildlife trade. CITES is the international environmental agreement
hose goal is to protect endangered species from extinction either by restricting their international trade to sustainable levels or
y banning their international trade altogether. We provide the first global assessment of CITES’ effectiveness. We combine geo-
eferenced panel data on wildlife population sizes for 10794 vertebrate populations across 185 countries with the history of their
pecies’ inclusion in CITES and of countries’ CITES membership. We find that CITES is effective, with its effect increasing over time.
owever, its effectiveness is mostly concentrated on populations in countries with strong enforcement: their wildlife populations

ncrease by 66% 20 years after their species’ inclusion into CITES.
While our results show that CITES does prevent wildlife decline, our approach is silent on whether other policy options could

ore effectively (and efficiently) protect wildlife than regulating wildlife trade via CITES. Furthermore, our approach does not
etermine whether the effect of CITES is strong enough to prevent the eventual extinction of a population or of the whole species,
r whether CITES merely delays its extinction. Wildlife decline is not only caused by the harvesting and consumption of endangered
pecies, the focus of CITES. The production of merchandise goods for foreign consumption in biodiversity hotspots has been shown
o have large detrimental effects on wildlife due to its impact on habitat loss; see Lenzen et al. (2012). Identifying and monitoring
he effects of international merchandise trade on wildlife may well be needed to effectively prevent the extinction of endangered
pecies. Irrespective of the specific drivers of wildlife decline, our research highlights a need for greater efforts to create detailed,
ime-varying indicators of the vulnerability of wildlife at the population level, as our knowledge of the state of wildlife populations
s still inadequate.

Our results reveal that CITES is effective at protecting wildlife, but only in member countries that properly enforce its rules. We
lso document that CITES mainly protects populations in high-income countries, which may indicate a lack of funding for proper
nforcement in low-income countries. Focusing on mechanisms, we find that both wildlife trade bans and restrictions that incentivize
ustainable use of endangered species increase wildlife.

In light of these results, it seems that much of the ongoing focus on the relative merits of trade bans versus sustainable use of
ildlife is at least partly misguided. International wildlife trade regulation can be a tool for effective wildlife protection—if it is
roperly enforced, and properly funded. More generally, CITES demonstrates that international environmental agreements can be
ffective. However, mere membership in an agreement is not enough; instead, an agreement is effective if its members commit to
ts rules and enforce them. Therefore, empirical evaluations of international environmental agreements should take into account
ot only whether countries sign up to them but also the level of de facto enforcement of their rules.
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