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Abstract
We prove explicit upper and lower bounds for the Poisson hierarchy, the averaged L1-

moment spectra

{
Ak

(
BM

R

)
vol

(
SM

R

)
}∞

k=1

, and the torsional rigidity A1(B
M
R ) of a geodesic ball

BM
R in a Riemannian manifold Mn which satisfies that the mean curvatures of the geodesic

spheres SM
r included in it, (up to the boundary SM

R ), are controlled by the radial mean
curvature of the geodesic spheres Sω

r (oω) with same radius centered at the center oω of a
rotationally symmetric model space Mn

ω. As a consecuence, we prove a first Dirichlet eigen-
value λ1(B

M
R ) comparison theorem and show that equality with the bound λ1(B

ω
R(oω)),

(where Bω
r (oω) is the geodesic r-ball in Mn

ω), characterizes the L1-moment spectrum{
Ak(B

M
R )

}∞
k=1 as the sequence

{
Ak(B

ω
R)

}∞
k=1 and vice-versa.
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1 Introduction

Let (Mn, g) be a complete Riemannian manifold. We shall consider the Brownian motion
Xt in M and, given x ∈ M , its associated family of probability measures Px on the space
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of Brownian paths emanating from a point x ∈ M . Given a smoothly bounded precompact
domain D ⊆ M , the first exit time from D is given by the quantity

τD := inf {t ≥ 0 : Xt /∈ D} .
Given x ∈ D, the function ED : D → R that assigns to the point x the expectation

of the value of the first exit time τD with respect Px is the mean exit time function from x,
ED(x). We have the following characterization, (see [16]), of this function as a solution of
the second order PDE, with Dirichlet boundary data:

�MED + 1 = 0, in D,

ED|∂D = 0, (1.1)

where �M denotes the Laplace-Betrami operator on (Mn, g).
The mean exit time function is the first in a sequence of functions

{
ED = u1,D ,

u2,D , ....
}
defined in D ⊆ M inductively as follows

�Mu1,D + 1 = 0, on D,

u1,D|
∂D

= 0, (1.2)

and, for k ≥ 2,

�Muk,D + kuk−1,D = 0, on D,

uk,D|
∂D

= 0. (1.3)

This sequence is the so-called, (see [15]), Poisson hierarchy for D.
The Poisson hierarchy of the domain D determines the Lp-moment spectrum of D,

which can be defined as the following sequence of integrals, (see e.g. [30] and references
therein for a more detailed exposition of these concepts):

Ap,k(D) :=
(∫

D

(uk,D(x))pdV

) 1
p

, k = 1, 2, ...,∞.

We are going to focus our study on the L1-moment spectrum of D,
{
A1,k(D)

}∞
k=1 which

we denote as {Ak(D)}∞k=1 and, in particular, in its first value, A1(D), called the torsional
rigidity of D which is as the integral

A1(D) =
∫

D

ED(x) dσ, (1.4)

where ED is the smooth solution of the Dirichlet-Poisson (1.1).
The name “torsional rigidity” comes from the fact that, when D ⊆ R

2 is a plane domain,
the quantityA1(D) represents the torque required when twisting an elastic beam of uniform
cross sectionD, (see [36]). A natural question to consider is the optimization of this quantity
among all the domains having the same given area/volume in a fixed space or under some
other geometrical setting. This problem is known as a Saint-Venant type problem.

The study of this variational problem in the general context of Riemannian manifolds
involves the establishment of bounds on the torsional rigidity of a given domain D ⊆ M ,
together with the identification of the domains that optimize bounds given natural con-
straints on the domain (for example, fixed volume) and geometric constraints on the ambient
space, in a fashion analogous to the treatment of the principal eigenvalue for the Rayleigh
conjecture. The techniques involved in this analysis encompasses the use of the notion of
Schwarz symmetrization as well as the isoperimetric inequalities satisfied by the domains
in question.
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From the intrinsic point of view, the establishment of bounds for the Lp-moment spec-
trum and the study of the relationship between the torsional rigidity (and more generally,
the L1-moment spectrum), of a domain in a Riemannian manifold D ⊆ M and its
Dirichlet spectrum has been explored recently in a number of papers, (see, among others,
[4–7, 15, 22–26, 29–32] and the references therein). Related with this issue and in the
line of the classical Kac’s question, we have the isospectrality problem, namely, to see
to what extent the L1- moment spectrum of a domain determines it up to isometry, (see
[13, 14]).

From the viewpoint of submanifold theory, we can find in the papers [29], [22], and [23]
upper and lower bounds for the L1-moment spectrum of extrinsic balls BM

R ∩ �, (let us
denote as BM

R the geodesic R-ball in the manifold M), in submanifolds �m ⊆ Mn with
controlled mean curvature H� immersed in ambient Riemannian manifolds (M, g) with
radial sectional curvatures K(M,g)(

∂
∂r

, ) bounded from above or from below. These bounds
were given, on the basis of previously established isoperimetric inequalities, by the corre-
sponding values for the torsional rigidity of the Schwartz symmetrization of the geodesic
balls in rotationally symmetric spaces with a pole which are warped products of the form
Mn

w = [0, ∞)×wR
+, which we refer to as themodel spaces. As we shall see in Section 2.2,

the model spaces Mn
w are rotationally symmetric generalizations of the real space forms

with constant sectional curvature b ∈ R, denoted as Mn
wb

= R
n,Sn(b), orHn(b), with

ωb(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
b
sin

(√
b r

)
, if b > 0

r, if b = 0
1√−b

sinh
(√−b r

)
, if b < 0

We shall denote as Bω
r (oω) and as Sω

r (oω) the geodesic r-ball centered at oω and the
geodesic r-sphere, respectively, in Mn

ω.
Moreover, in [22, 23, 29], the geometry of the situation involving the case of equality

in the implied bounds was characterized. On the other hand, in these papers it were given
too intrinsic upper and lower bounds for the torsional rigidity of geodesic balls BM

R in the
ambient manifold when it was assumed that � = M , so the extrinsic distance became the
intrinsic distance and are only assumed bounds on the radial sectional curvatures of the
ambient manifold M .

The intrinsic results in [22, 23, 29] are strongly aligned with those in [30]. In this paper,
the author considers a domain D ⊆ M , in a Riemannian manifold (M, g) which satisfies
an isoperimetric condition with comparison constant curvature space form Mωb

, (namely,
that there exists a constant curvature space form Mωb

such that for all smoothly bounded
and precompact domains D, we have that Vol(D) = Vol(Bωb

R ) implies that Vol(∂D) ≥
Vol(∂B

ωb

R )). Then it is proved that

Ak(D) ≤ Ak(B
ωb

R ) ∀k ∈ N, where Vol(D) = Vol(Bωb

R )

The proof of this result relies on a Talenti-type comparison theorem, (see [1, 40]), satis-
fied by the solutions of the Poisson problem posed on domains D ⊆ M , in a Riemannian
manifold (M, g) which satisfies the isoperimetric condition mentioned above.

To summarize the intrinsic results obtained in [22, 23, 29] in a couple of statements,
we need the following context and notation: let us consider a complete Riemannian
manifold (M, g), and a geodesic R-ball BM

R (o) centered at o ∈ M . Let us denote as
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K(M,g)

(
∂
∂r

,
)
its radial, (from the center o) sectional curvatures, (namely, the sectional cur-

vatures of the planes containing the radial vector field ∂
∂r
, where r denotes the distance

function from the point o). With all these notions in hand, we have the following two results.
The first concerns the so-called, (see [22]), averaged L1-moment spectrum of a geodesic
ball:

Theorem A (see [29] and [22]) Let (M, g) be a complete Riemannian manifold. Let us
consider Mn

w a rotationally symmetric model space and let us suppose that

K(Mw,gw)

(
∂

∂r
,

)
≥ (≤)K(M,g)

(
∂

∂r
,

)
,

where K(Mw,gw)

(
∂
∂r

,
)
denotes the radial sectional curvatures of Mn

w from its center point
oω ∈ MN

ω .

Then the averaged L1-moments,

{
Ak

(
BM

R (o)
)

Vol
(
SM

R (o)
)
}∞

k=1

are bounded as follows

Ak

(
Bω

R(oω)
)

Vol
(
Sω

R(oω)
) ≥ (≤)

Ak

(
BM

R (o)
)

Vol
(
SM

R (o)
) . (1.5)

Equality in inequality (1.5) for some k0 ≥ 1 implies that BM
R (o) and Bω

R(oω) are
isometric.

Concerning now the torsional rigidity, we need to assume, in addition, that the model
space Mn

w is balanced from above, namely, that the isoperimetric quotient given by

qω(r) = Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
)

is a non-decreasing function of r . This condition is satisfied by a wide range of spaces;
in particular, for all real space forms of constant sectional curvature. We then obtain the
following

Theorem B [see [22, 29]] Let (M, g) be a complete Riemannian manifold. Let us consider
Mn

w a rotationally symmetric model space, balanced from above, and let us suppose that

K(Mw,gw)

(
∂

∂r
,

)
≥ (≤)K(M,g)

(
∂

∂r
,

)
,

where K(Mw,gw)

(
∂
∂r

,
)
denotes the radial sectional curvatures of Mn

w from its center point.
Then the torsional rigidityA1

(
BM

R (o)
)
is bounded as follows

A1

(
Bω

s(R)(oω)
)

≥ (≤)A1

(
BM

R (o)
)

, (1.6)

where Bω
s(R)(oω) is the Schwarz symmetrization of BM

R (o) in the model space (Mn
ω, gω).

Equality in inequality (1.6) implies that s(R) = R and that BM
R (o) and Bω

R(oω) are
isometric.

As a consequence of the bounds for the L1-moment spectrum stated in Theorem A,
and the proof of Theorem 1.1 in [32], (where a formula for the first Dirichlet eigen-
value of a precompact domain D in a Riemnnian manifold M , λ1(D), in terms of its
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L1-moment spectrum, {Ak(D)}∞k=1, was developed), the following version of Cheng’s
eigenvalue comparison theorem was obtained:

Theorem C [see [11, 12, 24]] Let (M, g) be a complete Riemannian manifold. Let us
denote as K(M,g)(

∂
∂r

, ) its radial sectional curvatures and as Ricc(M,g)

(
∂
∂r

, ∂
∂r

)
its radial

Ricci curvatures at any point.
Let us consider Mn

w a rotationally symmetric model space and let us suppose that

K(Mw,gw)

(
∂

∂r
,

)
≥ K(M,g)

(
∂

∂r
,

)
,(

or that Ricc(Mw,gw)

(
∂

∂r
,

∂

∂r

)
≤ Ricc(M,g)

(
∂

∂r
,

∂

∂r

))
,

where K(Mw,gw)

(
∂
∂r

,
)
and Ricc(Mw,gw)

(
∂
∂r

, ∂
∂r

)
denotes the radial sectional and Ricci

curvatures of Mn
w at its center point.

Then

λ1
(
Bω

R(oω)
) ≤ (≥) λ1

(
BM

R (o)
)
.

for all R < inj (o) ≤ inj (ow).
Equality in any of these inequalities holds if and only if the geodesic balls BM

R (o) and
Bω

R(oω) are isometric.

On the other hand, in the paper [31], P. McDonald showed that, given a precompact
domain D ⊆ M in a complete Riemannian manifold M that satisfies the inequalities
Ak(D) ≤ Ak(D

∗) where D∗ is the Schwarz symmetrization of D in a constant curvature
space form Mωb

, then we have the inequality λ1(D
∗) ≤ λ1(D), (see Theorem 1 in [31]).

Following with versions of Cheng’s result, in the paper [8], the authors proved that
Cheng’s eigenvalue comparison is still valid assuming bounds on the mean curvature of
(intrinsic) distance spheres, a weaker hypothesis (as we shall see below), than the bounds
on the sectional curvatures of the manifold:

Theorem D (see [8]) Let BM
R ⊆ Mn and B

wb

R be geodesic R-balls in a Riemannian man-
ifold (M, g) and in the real space form with constant sectional curvatures b ∈ R, Mn

wb
,

respectively, both within the cut locus of their centers and let (t, θ) ∈ (0, R] × S
n−1
1 be the

polar coordinates for BM
R and B

wb

R .
Then, if HSM

t
(t, θ) and H

S
wb
t

(t) are the, (inward pointing), mean curvatures of the

distance spheres SM
t in M and S

wb
t in the real space form of constant curvature Mwb ,

respectively, and we assume that

H
S

wb
t

(t) ≤ (≥)HSM
t

(t, θ) ∀t ≤ R ∀θ ∈ S
n−1
1

we have that

λ1(B
ωb

R (oω)) ≤ (≥) λ1(B
M
R (o)).

Equality in any of these inequalities holds if and only if HSM
t

(t, θ) = H
S

wb
t

(t) ∀t ≤
R ∀θ ∈ S

n−1
n .

The proof relies on Barta’s Lemma and the expresion of the Laplacian of the first Dirich-
let eigenfunction in polar coordinates. It is precisely from this intrinsic expression that the
use, as hypotheses, of bounds on the mean curvature of distance spheres comes from.
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Therefore, it can be said that the results we are going to present in the following paper
are inspired, on the one hand, by the intrinsic bounds for the torsional rigidity and the L1-
moment spectrum of the geodesic balls and by the estimation of λ1(B

M
R ) obtained in the

papers [22–24, 29], and on the other hand, by the weaker restrictions on the mean curvatures
of geodesic spheres assumed in [8] as well as the comparisons for the L1-moment spectrum
and the first Dirichlet eigenvalue given in [30, 31].

1.1 A Glimpse at our Results

We shall consider throughout the remainder of this paper, a complete Riemannian manifold
(Mn, g) and a rotationally symmetric model space (Mn

ω, gw), with center ow , and we shall
assume that given o ∈ M , the injectivity radius of o ∈ M satisfies inj (o) ≤ inj(ow). Let us
fix R < inj (o) ≤ inj (ow) and assume that the pointed inward mean curvatures of metric
r-spheres satisfies

HSω
r (oω) ≤ HSM

r (o) for all 0 < r ≤ R(
or that HSω

r (oω) ≥ HSM
r (o) for all 0 < r ≤ R

)

These hypotheses are the same than the conditions assumed in [8], and constitutes a more
general assumption than the bounds for the sectional and the Ricci curvatures in Theorems
A and C, as we shall see in next Section 1.2. On the other hand, they imply the following
isoperimetric conditions satisfied by the geodesic r- balls with r ≤ R in the complete
Riemannian manifold M ,

Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) ≥ (≤)

Vol
(
BM

r (o)
)

Vol
(
SM

r (o)
) for all 0 < r ≤ R. (1.7)

Concerning the use of isoperimetric inequalities, (not exactly those given in Eq.1.7), in
the study of the relation between the moments spectrum and the Dirichlet spectrum, we
refer to the paper [30].

Under these restrictions on the mean curvatures of geodesic spheres we have obtained
all the results in this paper, the most important of which are Proposition 3.2, Theorem 3.3
and Corollary 3.5 in Section 3, Theorem 4.4, Corollary 4.5 and Theorem 4.8 in Section 4,
and Theorem 5.1 and Corollary 5.2 in Section 5. A technical but fundamental result, key in
the proof of Theorem 4.8, is Proposition 4.6. As a consequence of this proposition, we have
also obtained a Talenti-type comparison satisfied by the mean exit time function defined on
geodesic balls in a Riemannian manifold satisfying our hypotheses, (Corollary 4.7).

We are going to present in the following statements of Theorem 1.1, Theorem 1.2 and
Theorem 1.3 summarized versions of some of our results concerning bounds on the Pois-
son hierarchy, the L1-moments spectrum and the first Dirichlet eigenvalue of the geodesic
balls BM

R (for complete results, see Sections 4 and 5 below). Our presentation is struc-
tured to make it clear that they are a generalization of those presented in Theorem A and in
Theorem C.

The techniques used in the proof of these results are basically the same as those cited
papers [22, 23, 29], but now with the intrinsic point of view as the main perspective. These
techniques encompasses the use of the formula of the Laplacian of the mean exit time
function in polar coordinates, the application of the Maximum principle, the properties of
the Schwartz symmetrization of the geodesic ball BM

R and the explicit expression of the
first Dirichlet eigenvalue of a geodesic ball Bw

R in a rotationally symmetric model space
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Mn
w as a limit of the sequence given by the L1-moment spectrum of this geodesic ball,{
Ak(B

w
R )

}∞
k=1, obtained in the paper [24]. This formula for λ1(B

ω
R(oω)) was subsequently

extended in the paper [7] to any precompact domain 
 ⊆ M , namely

λ1(
) = lim
k→∞

kAk−1 (
)

Ak (
)
. (1.8)

In fact, the presence of the mean curvature of geodesic spheres HSM
r

in the expresion of
the Laplacian operator in polar coordinates has played a key role in the establishment of our
hypotheses and also in the analysis of the equality with the bounds in all of our comparisons.

Concerning this analysis of the equality case, an important notion which appears in The-
orems 1.1, 1.2 and 1.3, (in fact, along all the equality discussions in the paper), is the concept
of determination of a Riemannian invariant defined on geodesic balls by its L1-moment
spectrum, its L1-averaged moment spectrum or its torsional rigidity, in a way which, though
not exactly the same, has been directly inspired by P. McDonald in [31].

In the paper [31] the notion of determination of a Riemannian invariant I (D) defined
on the precompact domain D ⊆ M by the L1-moment spectrum of D is presented: we
say that {Ak(D)}∞k=1 determines the invariant I (D) if and only if when {Ak(D)}∞k=1 ={
Ak(D

′)
}∞
k=1, then I (D) = I (D′). With this definition, in [31] it is proved that the L1-

moment spectrum of a precompact domain D determines its heat content.
We shall see in the following Theorems 1.1 and 1.2 that, under our hypotheses, the tor-

sional rigidity A1(B
M
R ) and any individual averaged moment

Ak0

(
BM

R (o)
)

Vol
(
SM

R (o)
) determines the

Poisson hierarchy, the volume, the L1-moment spectrum and the first Dirichlet eigenvalue
of the ball BM

R , in the following sense:
WhenA1(B

M
R (o)) = A1(B

ω
s(R)(oω)), or there exists k0 ≥ 1 such that

Ak0

(
BM

R (o)
)

Vol
(
SM

R (o)
) = Ak0

(
Bω

R(oω)
)

Vol
(
Sω

R(oω)
) ,

then s(R) = R and the Poisson hierarchy, the volume, the L1-moment spectrum and the
first Dirichlet eigenvalue of the ball BM

R is the same as the corresponding values for the
geodesic ball Bω

R(oω) in the model space Mn
ω.

With all these previous considerations, we present the following:

Theorem 1.1 [see Corollary 4.5]
Let us consider a complete Riemannian manifold (Mn, g) and a rotationally symmetric

model space (Mn
w, gw), with center ow , and we shall assume that given o ∈ M a point in M ,

the injectivity radius of o ∈ M satisfies inj (o) ≤ inj(ow). Let us fix R < inj (o) ≤ inj (ow)

assuming that the pointed inward mean curvatures of metric r-spheres satisfies

HSω
r (oω) ≤ (≥)HSM

r (o) for all 0 < r ≤ R. (1.9)

Then, for all k ≥ 1,

Ak

(
Bω

R(oω)
)

Vol
(
Sω

R(oω)
) ≥ (≤)

Ak

(
BM

R (o)
)

Vol
(
SM

R (o)
) . (1.10)

Equality in any of inequalities (1.10) for some k0 ≥ 1 implies that

HSω
r (oω) = HsMr (o) for all 0 < r ≤ R

and hence, we have the equalities
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(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM1r (o) for all k ≥ 1 and for all 0 < r ≤ R.
(2) Equalities Vol

(
Bω

r (oω)
) = Vol

(
BM

r (o)
)
and Vol

(
Sω

r (oω)
) = Vol

(
SM

r (o)
)

for all 0 <

r ≤ R.
(3) EqualitiesAk

(
Bω

r (oω)
) = Ak

(
BM

r (o)
)
, for all k ≥ 1 and for all 0 < r ≤ R.

(4) Equality λ1(B
M
r (o)) = λ1(B

w
r (oω)) for all 0 < r ≤ R.

Namely, one value of
Ak

(
BM

R (o)
)

Vol
(
SM

R (o)
) for some k ≥ 1 determines the Poisson hierar-

chy, the volume, the L1-moment spectrum and the first Dirichlet eigenvalue of the ball
BM

r (o) for all 0 < r ≤ R.

Our second result is a comparison for the torsional rigidity of the ball BM
R , and, as in

Theorem B, we need that the model space Mn
ω used in the comparison to be balanced from

above.

Theorem 1.2 [see Theorem 4.8 ] Let us consider a complete Riemannian manifold (Mn, g)

and a balanced from above rotationally symmetric model space (Mn
w, gw), with center ow ,

and we shall assume that given o ∈ M a point in M , the injectivity radius of o ∈ M satisfies
inj (o) ≤ inj(ow). Let us fix R < inj (o) ≤ inj (ow) assuming that the pointed inward mean
curvatures of metric r-spheres satisfies

HSω
r (oω) ≤ (≥)HSM

r (o) for all 0 < r ≤ R. (1.11)

Then

A1

(
Bω

s(R)(oω)
)

≥ (≤) A1

(
BM

R (o)
)

, (1.12)

where Bω
s(R)(oω) is the Schwarz symmetrization of BM

R (o) in the model space (Mn
w, gω).

Equality in any of inequalities (1.12) implies the equality among the radius s(R) = R

and that
HSω

r (oω) = HSM
r (o) for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality uω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r (oω)
) = Vol

(
BM

r (o)
)
and Vol

(
Sω

r (oω)
) = Vol

(
SM

r (o)
)
for all 0 <

r ≤ R.
(3) EqualitiesAk

(
Bω

r (oω)
) = Ak

(
BM

r (o)
)
, for all k ≥ 1 and for all 0 < r ≤ R.

(4) Equality λ1(B
M
r (o)) = λ1(B

w
r (oω)) for all 0 < r ≤ R.

Namely, the Torsional Rigidity determines the Poisson hierarchy, the volume, the L1-
moment spectrum and the first Dirichlet eigenvalue of the ball BM

r (o) for all 0 < r ≤ R.

As a consequence of the proof of Theorem 1.1 in [32], Theorem 4.5, and volume
inequalities given in 3.3, we have the following Cheng’s Dirichlet eigenvalue comparison,
following [8], (Theorem 5.1 in Section 5). In this case, we have proved that the first Dirichlet
eigenvalue ofBM

R determines its Poisson hierarchy, its volume and itsL1-moment spectrum.

Theorem 1.3 [see Theorem 5.1] Let (Mn, g) be a complete Riemannian manifold and let
(Mn

ω, gω) be a rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be
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a point in M and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball
BM

R (o), with R < inj (o) ≤ inj (ow). Let us suppose moreover that the pointed inward
mean curvatures of the geodesic spheres in M and Mω satisfy

HSω
r (oω) ≤ (≥)HSM

r (o) for all 0 < r ≤ R. (1.13)

Then we have the inequality

λ1(B
ω
R(oω)) ≤ (≥) λ1(B

M
R (o)) . (1.14)

Equality in any of these inequalities implies that

HSω
r (oω) = HSM

r (o) for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r (oω)
) = Vol

(
BM

r (o)
)
and Vol

(
Sω

r (oω)
) = Vol

(
SM

r (o)
)
for all 0 <

r ≤ R.
(3) EqualitiesAk

(
Bω

r (oω)
) = Ak

(
BM

r (o)
)
, for all k ≥ 1 and for all 0 < r ≤ R.

Namely, the first Dirichlet eigenvalue determines the Poisson hierarchy, the volume, and
the L1-moment spectrum of the ball BM

r (o) for all 0 < r ≤ R.

The characterizations of equalities in both theorems are ultimately based on a rigidity
property satisfied by the Poisson hierarchy for BM

R ,
{
uk,R

}∞
k=1 in a Riemannian manifold M

under the hypotheses depicted above. This rigidity property can be summarized by saying
that the value at one point p ∈ BM

R of one of the functions uk,R of the Poisson hierarchy
determines it entirely on the geodesic ball BM

R , ( see Proposition 3.2 and assertions (3) and
(4) in Theorem 4.4 in Section 4).

1.2 Example

We remark that, under the hypothesized bounds on the sectional curvatures of the mani-
fold, if we have the equality with the corresponding bound in the model space of any our
invariants defined on the geodesic ball BM

R , (namely, the Poisson hierarchy, the averaged
L1-moment spectrum, or the torsional rigidity), then BM

R is isometric to the geodesic balls
in the model space, Bw

R ⊆ Mn
w . However, the equality of the mean curvature of distance

spheres in the Riemannian manifold M , with its radial bound given by the mean curvature
of distance spheres in the model space Mω does not imply the isometry among the geodesic
balls, as in the previous case.

This observation is coherent with the fact that bounds on the sectional curvatures of the
manifold implies bounds for the mean curvature of its geodesic spheres, namely, if (M,g) is
a Riemannian manifold with radial sectional curvatures

Ksec,g

(
∂

∂r
,

)
≤ (≥)Ksec,gw

(
∂

∂r
,

)
= −w′′(r)

w(r)

then we have that

HSM
r

≥ (≤)HSw
r

= w′(r)
w(r)

.

These implications follow from the observation that the mean curvature of geodesics
spheres is the Laplacian of the distance from its center in the manifold, (see Proposition 2.3),
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together with the Hessian comparison analysis of the distance function as can be found in
[20, 27] or [35].

However, in the paper [8], the authors exhibit in Example 3.1 in Section 3, smooth com-
plete and rotationally symmetric metrics g on R

n with radial sectional curvatures bounded
from below, Ksec,g(

∂
∂r

, ) ≥ b outside a compact set and such that the distance spheres

S
(Rn,g)
t have mean curvature H

S
(Rn,g)
t

≥ H
S

wb
t
.

In the following, we are going to present a new example which shows that bounds on
the mean curvature of geodesic spheres of the manifold does not imply that the sectional
curvatures of the manifold are controlled.

Let (R2, g) be a Riemannian manifold such that its metric tensor expressed in polar
coordinates is given by g = dr2 + ω2(r, θ)dθ2, where ω : R2 → R is a positive smooth
function given by

ω(r, θ) = r

(
1 + r2

1 + r2 cos2 θ

)
. (1.15)

On the other hand, we consider as a model space the simply connected space form
(R2, gcan) of constant sectional curvature b = 0.

We are going to see that the mean curvatures of the geodesic spheres S(R2,g)
t (0) of (R2, g)

centered at 0 with radius t , are bounded from below by the mean curvatures of the geodesic
spheres Sω0

t (0) of (R2, gcan) centered at 0 with the same radius, namely, that

H
S(R2,g)

t

≥ HS
ω0
t

As H
S(R2,g)

t

(t, θ) =
∂ω
∂t

(t, θ)

ω(t, θ)
and we have

∂ω

∂t

(t, θ) = 1 + t2

1 + t2 cos2 θ
+ 2t2

(1 + t2 cos2 θ)2

we obtain

H
S(R2,g)

t

(t, θ) =
∂ω
∂t

(t, θ)

ω(t, θ)
= 1

t
+ 2t

(1 + t2

1+t2 cos2 θ
)(1 + t2 cos2 θ)2

But

2t

(1 + t2

1+t2 cos2 θ
)(1 + t2 cos2 θ)2

≥ 0 for all (t, θ) ∈ (0,+∞) × [0, 2π)

Hence we have that

H
S(R2,g)

t

(t, θ) ≥ 1

t
= HS

ω0
t

(t) for all (t, θ) ∈ (0,+∞) × [0, 2π)

Now, let us consider the unique 2-plane tangent to a point (t, θ) ∈ R
2 generated by

the coordinate vector fields
{

∂
∂r

, ∂
∂θ

}
. We are going to compute the sectional curvature of

(R2, g) at this point and we will see that it is not bounded by the corresponding sectional
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curvature of (R2, gcan), i.e., we will show that Ksec,g(t, θ) is not bounded from below by 0.

As Ksec,g(t, θ) = −
∂2ω

∂t2
(t, θ)

ω(t, θ)
then, it is straightforward to check that

Ksec,g(t, θ) = −
∂2ω

∂t2
(t, θ)

ω(t, θ)
= 2(t2 cos2 θ − 3)

(1 + t2 cos2 θ)2(1 + t2 + t2 cos2 θ)

Thus, for θ = 0, we have that

Ksec,g(t, 0) = 2(t2 − 3)

(1 + t2)2(1 + 2t2)

This shows that there are points (t, θ) ∈ R
2 where the sectional curvature of (R2, g) is

bounded either below or above by 0 which is the sectional curvature of (R2, gcan).

1.3 Outline

After the Introduction, Section 2 is devoted to the presentation of preliminary concepts,
including the rotationally symmetric model spaces used to construct the bounds and the
notion of Schwarz symmetrization based on these models. We have stated and proved, for
the sake of completeness, all the properties of these symmetrizations we need in our context.
Section 3 deals with the properties of the mean exit time function defined on the geodesic
R-balls in a complete Riemannian manifold satisfying our hypotheses and its relation with
its volume and the isoperimetric inequalities satisfied by these domains (Proposition 3.2,
Theorem 3.3, Corollary 3.5 and Corollary 3.6) . In Section 4 we have established bounds for
the Poisson hierarchy and the averaged L1-moment spectrum of a geodesicR-ball under our
restrictions (Theorem 4.4 and Corollary 4.5), and we have bounded the torsional rigidity of a
geodesic R-ball by means its Schwarz symmetrization, (Theorem 4.8). Finally, in Section 5,
we prove a Cheng-type comparison for the first Dirichlet eigenvalue of geodesic balls (The-
orem 5.1), and we have established the relation between the first Dirichlet eigenvalue of
geodesic balls, its L1-moment spectrum and its Poisson hierarchy (Corollary 5.2).

2 Preliminaries and Comparison Setting

We are going to present some previous notions and results that will be instrumental in our
work.

2.1 Polar coordinates and the Laplacian on a RiemannianManifold

Definition 2.1 Let us consider a complete Riemannian manifold (Mn, g) and a point o ∈
M . Let us denote as Cut(o) the cut locus of o ∈ M and as inj (o) = distM(o, Cut (o)) the
injectivity radius of the point o ∈ M . We shall denote by S

n−1
1 ⊆ R

n the unit sphere with
center 0 ∈ R

n.
We define, in the set M − (Cut (o) ∪ {o}), the polar coordinates of any point x ∈

M − (Cut (o) ∪ {o}) as the pair (r(x), θ) ∈ (0, inj (o)) × S
n−1
1 , where r(x) := ro(x) =
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distM(o, x) is the distance from o to x realized by the shortest geodesic between these
points which starts at o with direction θ ∈ S

n−1
1 .

The Riemannian metric g in M − (Cut (o) ∪ {o}) has in the polar coordinates the form

g = dr2 +
n−1∑
i,j=1

gi,j (r, θ)dθidθj ,

where θ ≡ (θ1, ..., θn−1) ∈ S
n−1
1 is a system of local coordinates in S

n−1
1 and gi,j (r, θ) =

g

(
∂

∂θi

∣∣∣
(r,θ)

, ∂
∂θj

∣∣∣
(r,θ)

)
.

Thus, the matrix form of the metric g in polar coordinates is a positive definite matrix
given by

G =

⎛
⎜⎜⎜⎝
1 0 · · · 0
0
...
0

G

⎞
⎟⎟⎟⎠ ,

where G is the matrix which elements are gij , i.e., G = (
gij

)
i,j∈{1,...,n−1}. Hence, for any

point (r, θ) ∈ M − (Cut (o) ∪ {o}), we have√
det

(
G(r, θ)

) =
√
det

(
G(r, θ)

)
.

Then, (see for example [9, 18]), the Laplace operator of M has the following expression
in the polar coordinates

�M = ∂

∂r2
+ ∂

∂r

(
log

√
detG

(
r, θ

)) ∂

∂r
+ �SM

r (o) , (2.1)

where �§M
r (o) is the Laplace operator in the geodesic sphere SM

r (o) ⊆ M .

Remark 2.2 Throughout the remainder of the paper, given o ∈ M and as long as R <

inj (o), we will use interchangeably the terms geodesic ball, geodesic sphere, metric ball,
metric sphere, distance ball and distance sphere to name the sets BM

R (o) and SM
R (o)

respectively.

Using this result we have the following

Proposition 2.3 Let (Mn, g) be a complete Riemannian manifold and let o ∈ M be a point
of M . Then the normalized mean curvature vector field of the geodesic sphere SM

t (o), is
given by

HSM
t (o) = −HSM

t (o)∇Mr ,

where

HM
St

= 1

n − 1
�Mr(γ (t)) = 1

n − 1

∂
∂t

√
detG

(
t, θ

)
√
detG

(
t, θ

) ∀t > 0

is the pointed inward mean curvature of SM
t (o) and γ (t) is a unit geodesic starting at the

point o ∈ M .
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Proof The proof is straightforward taking {ei(t)}ni=1 an orthonormal basis of Tγ (t)SM
t , with

en(t) = ∇Mr(γ (t)), the unit normal to SM
t at γ (t), pointed outward. Then, after some

computations,

HSM
t

= 1

n − 1

(
trL∇Mr

)∇Mr = − 1

n − 1
divM(∇Mr)

= − 1

n − 1
�Mr(γ (t))∇Mr(γ (t))

(2.2)

so

Ht = 〈 HSM
t

,−∇Mr(γ (t))〉 = 1

n − 1
�Mr(γ (t)).

The result follows now using equation (2.1).

Given a domain (connected open set) D in M , a function u ∈ C2(D) is harmonic (resp.
subharmonic) if�Mu = 0 (resp.�Mu ≥ 0) onD. We gather the strong maximum principle
and the Hopf boundary point lemma for subharmonic functions in the next statement.

Theorem 2.4 Let D be a smooth domain of a Riemannian manifold M . Consider a
subharmonic function u ∈ C2(D) ∩ C(D). Then, we have:

(i) if u achieves its maximum in D then u is constant,
(ii) if there is p0 ∈ ∂D such that u(p) < u(p0) for any p ∈ D then ∂u

∂ν
(p0) > 0, where ν

denotes the outer unit normal along ∂D.

Proof The proof of (i) can be found in [19, Corollary 8.15]. The proof of (ii) can be derived
from (i) as in the Euclidean case [21, Lemma 3.4].

2.2 Model Spaces

The model spaces Mn
ω are rotationally symmetric spaces defined as follows:

Definition 2.5 (See [18, 20]) A ω-model Mn
ω is a smooth warped product with base B1 =

[0, R[⊂ R (on 0 < R ≤ ∞), fiber Fn−1 = S1 (i.e., the unit (n − 1)-sphere with standard
metric), and warping function ω : [0, R[→ R+ ∪{0} with ω(0) = 0, ω′(0) = 1, ω(2k)(0) =
0 and ω(r) > 0 for all k ∈ N

∗ and for all r > 0, where ω(2k) denotes the even derivatives
of the warping function.

The point oω = π−1(0), where π denotes the natural projection onto the base B1, is
called center point of the model space. If R = +∞, then oω is a pole of Mn

ω. We denote as
r = r(x) the distance to the center oω of the point x ∈ Mn

ω.

Remark 2.6 The simply connected space forms Mn
ωb

of constant sectional curvature b can
be constructed as ω-models with any given point as center point using the warping functions

ωb(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
b
sin

(√
b r

)
, if b > 0,

r, if b = 0,
1√−b

sinh
(√−b r

)
, if b < 0.

(2.3)

Note that for b > 0, the warped metric gωb
= dr2 + ω2

b(r)gSn−1
1

determined by the

function ωb(r) admits smooth extension to r = π/
√

b. For b ≤ 0 any center point is a pole.
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In [18, 20, 29, 33], we have a complete description of these model spaces, including the
computation of their sectional curvatures Koω,Mn

ω
in the radial directions from the center

point oω. They are determined by the radial function Koω,Mn
ω
(σx) = Kω(r) = −ω′′(r)

ω(r)
.

Moreover, the normalized inward mean curvature of the distance sphere Sω
r (oω) of radius r

from the center point, is, at the point p = γ (r) ∈ Sω
r (oω), where γ (t) is the normal geodesic

parametrized by arclength joining oω and p

HSw
r
(p) = ηω(r) = ω′(r)

ω(r)
= d

dr
ln (ω(r)) . (2.4)

In particular, in [29] we introduce, for any given warping function ω(r), the isoperimetric
quotient qω(r) for the corresponding ω-model space Mn

ω as follows:

qω(r) = Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) =

∫ r

0 ωn−1(t) dt

ωn−1(r)
. (2.5)

On the other hand, using equation (2.1), the Laplace operator in Mn
w is given by

�Mn
w = ∂

∂r2
+ (n − 1)

w′(r)
w(r)

∂

∂r
+ �Sω

r (oω). (2.6)

Then, we have the following results concerning the mean exit time function of the
geodesic R-ball Bω

r (oω) ⊆ Mn
ω, (see [29]):

Proposition 2.7 Let Eω
R the solution of the Poisson Problem (1.1), defined on the geodesic

R-ball Bω
R(oω) in the model space Mn

ω. Then Eω
R is a non-increasing radial function given

by

Eω
R(x) = Eω

R(roω (x)) =
∫ R

roω (x)

qω(t) dt , (2.7)

where r ≡ roω (x) = distMn
ω
(oω, x) denotes the distance to the center point. Hence, it

attains its maximum at r = 0, with Eω′
R (0) = 0 and Eω′

R (r) < 0 ∀r ∈]0, R] .

Proof Using the expresion of the Laplace operator given in Eq. 2.6, it is straightforward to
check that ER(r) = ∫ R

r
qω(t) dt satisfies the equation

�Mn
wER = −1

with boundary condition ER(R) = 0.

2.3 Balance Conditions

We present now a purely intrinsic condition on the general model spaces Mn
ω, (see [29]),

which will play a key role in the last section of the paper:

Definition 2.8 A given ω-model spaceMn
ω is balanced from above if we have the inequality

qω(r)ηω(r) ≤ 1

n − 1
, for all r ≥ 0. (2.8)

In [29] the following characterization of the balance condition was established:
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Proposition 2.9 Let us consider the ω-model space Mn
ω. Then Mn

ω is balanced from above
if and only if the following equivalent conditions hold:

d

dr
(qω(r)) ≥ 0, (2.9)

ωn(r) ≥ (n − 1) ω′(r)
∫ r

0
ωn−1(t) dt . (2.10)

Several examples of balanced from above ω-model spaces Mn
ω were given in [29]. We

enumerate some of them:

Example 2.10

(1) Every ωb-model space Mn
ωb

= [0, R[×ωb
S1 of constant positive sectional curvature

b > 0 and R < π

2
√

b
is balanced from above. In fact, when b > 0 and for r > 0 we

have that (2.10) is a strict inequality, (see Lemma 2.4 in [28]).
(2) The ωb-model spaces Mn

ωb
of constant non-positive sectional curvature b ≤ 0 are

balanced from above. In fact, when b < 0, we have that inequality (2.10) is equivalent
to inequality ∫ r

0
sinhn−1(

√−bt) ≤ sinhn(
√−br)√−b(n − 1) cosh(

√−br)

which holds for all r > 0 because tanh2(
√−br) ≤ 1 ∀r > 0. The case b = 0 is trivial.

(3) The ω-model space Mn
ω with ω(t) := t + t3, t ∈ [0, ∞) is balanced from above.

2.4 Symmetrization into Model Spaces

As in [29] we use the concept of Schwarz-symmetrization as considered in e.g., [1, 37], or,
more recently, in [10, 30]. The Schwarz-symmetrization it is also known in the literature as
the symmetric decreasing rearrangement, (see e.g. the works [2, 3, 39, 40]). For the sake
of completeness, we review and show some facts about this instrumental concept, in the
context of Riemannian manifolds.

Definition 2.11 Let (Mn, g) be a complete Riemannian manifold. Suppose that D ⊆ M

is a precompact open connected domain in Mn. Let (Mn
ω, gω) be a rotationally symmetric

model space, with pole oω ∈ Mn
ω. Then the ω-model space symmetrization of D is denoted

by D∗ω and is defined to be the unique L(D)-ball in Mn
ω, centered at oω

D∗ω := Bω
L(D)(oω)

satisfying

Vol(D) = Vol
(
Bω

L(D)(oω)
)
.

In the particular case that D is a geodesic R-ball BM
R (o) in M centered at o ∈ M , then

the radius L(BM
R (o)) is some increasing function s(R) = L(BM

R (o)) which depends on the
geometry of M , so we can write

BM
R (o)∗ω = Bω

s(R)(oω)

and this symmetrization Bω
s(R)(oω) satisfies

Vol(BM
R (o)) = Vol(Bω

s(R)(oω)). (2.11)



V. Palmer, E. Sarrión-Pedralva

Remark 2.12 When it is clear from the context, we write D∗ instead of D∗ω .
In the remainder of the paper, and if there is not confusion, we shall omit the centers

o ∈ M and oω ∈ Mn
ω when we refer to the balls BM

r (o) and Bω
r (oω) and the spheres SM

r (o)

and Sω
r (oω).

Given f : D → R
+ a smooth non-negative function on D, we are going to introduce the

notion of ω- symmetrization f ∗ω : D∗ω → R
+. But first, we will show some useful facts.

Definition 2.13 Let (Mn, g) be a complete Riemannian manifold, D ⊆ M a precompact
domain in M and f : D ⊆ M −→ R

+ a smooth non-negative function on D. For t ≥ 0 we
define the sets

D(t) := {x ∈ D | f (x) ≥ t} ⊆ M

and
�(t) := {x ∈ D | f (x) = t} .

Remark 2.14

(1) The set D(t) is precompact for all t ≥ 0 and moreover, ∂D(t) = �(t) ⊆ D(t).
(2) Note too that D(0) = D and that if t1 ≤ t2 then D(t2) ⊆ D(t1).
(3) If T := supx∈D f (x), then D(t) = ∅ ∀t > T , and hence, Vol(D(t)) = 0 ∀t ≥ T .
(4) Therefore, we have a family of nested sets {D(t)}t∈[0,T ] that covers D.

Now, we define the symmetrization of a function:

Definition 2.15 Let (Mn, g) be a complete Riemannian manifold, D ⊆ M a precompact
domain in M and f : D ⊆ M −→ R

+ a smooth non-negative function on D. Let (Mn
ω, gω)

be a rotationally symmetric model space. Then the ω-symmetrization of f is the function
f ∗ω : D∗ω −→ R defined, for all x∗ ∈ D∗ω , by

f ∗ω (x∗) = sup
{
t ≥ 0 | x∗ ∈ D(t)∗ω

}
.

Note that the symmetrization f ∗ω ranges on [0, T ], namely, f ∗ω : D∗ω → [0, T ], where
T := supx∈D f (x).

Remark 2.16

(1) When it is clear from the context, we write f ∗ instead of f ∗ω and D∗ instead of D∗ω .
(2) By Sard’s theorem, if Df ⊆ D denotes the set of critical points of f , the set Sf =

f (Df ) ⊆ [0, T ] of critical values of f has null measure, and the set of regular values
of f , Rf = [0, T ] ∼ Sf is open and dense in [0, T ]. In particular, for any t ∈ Rf , the
set �(t) = {x ∈ D | f (x) = t} is a smooth embedded hypersurface in D and ‖∇Mf ‖
does not vanish along �(t).

(3) Given f1, f2 : D → R smooth and non-negative, if f1 ≤ f2, then f ∗
1 ≤ f ∗

2 .

With these observations in hand, we have the following

Definition 2.17 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space. Given the precompact domain D ⊆ M and f : D ⊆
M −→ R

+ a smooth non-negative function on D, let D(t)∗ and T be as in Definition 2.15
and define the function

r̃ : [0, T ] → [0, L(D)]
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such that, for all t ∈ [0, T ], r̃(t) is defined as the radius of the symmetrization

D(t)∗ = Bω
r̃(t)(oω)

satisfying

Vol (D(t)) = Vol
(
Bω

r̃(t)(oω)
)
.

Remark 2.18 Note that, as D(0) = D, then D(0)∗ = D∗, i.e., r̃(0) = L(D), the radius
defined in Definition 2.11, and D∗ = Bω

r̃(0)(oω). On the other hand, as Vol(D(t)) = 0 ∀t ≥
T , then r̃(t) = 0 ∀t ≥ T .

Concerning this last definition, we have the following result, which will play an
important rôle in the proof of Proposition 4.6:

Lemma 2.19 The function r̃ : [0, T ] → [0, L(D)] is non-increasing. In particular, for all
regular values t ∈ Rf , the function r̃|Rf

: Rf ⊆ [0, T ] → [0, L(D)] satisfies

r̃ ′(t) = −
∫
∂D(t)

∥∥∇Mf
∥∥−1

dμt

Vol
(
Sω

r̃(t)

) < 0

so r̃ is strictly decreasing in Rf , and hence, injective (and bijective onto its image).

Remark 2.20 Note that when Rf = [0, T ], then r̃ : [0, T ] → [0, L(D)] is bijective.

Proof When t1 ≤ t2, then D(t2) ⊆ D(t1) and hence Vol(D(t2)) ≤ Vol(D(t1)), so
Vol(Bω

r̃(t2)
(oω)) ≤ Vol(Bω

r̃(t1)
(oω)) and hence r̃(t2) ≤ r̃(t1).

On the other hand, given t ∈ Rf , let us denote as:

V(t) = Vol (D(t)) = Vol
(
Bω

r̃(t)

)
.

Then,

V′(t) = Vol
(
Sω

r̃(t)

)
r̃ ′(t)

and as ∂D(t) = �(t) = {x ∈ D | f (x) = t}, by the co-area formula (see [9], [38]), and as
t ∈ Rf , we have

r̃ ′(t) = −
∫
∂D(t)

∥∥∇Mf
∥∥−1

dμt

Vol
(
Sω

r̃(t)

) < 0

for all t ∈ Rf . Therefore, r̃|Rf
is strictly decreasing.

To finish this subsection, we are going to prove in Theorem 2.21 that, given f : D ⊆
M −→ R

+ a non-negative function defined on the precompact domain D, the symmetrized
function f ∗ : D∗ω −→ R is a radial function, and that f and f ∗ are both equimeasurable.

Theorem 2.21 Let (Mn, g) be a complete Riemannian manifold, D ⊆ M a precompact
domain in M and f : D ⊆ M −→ R

+ a non-negative and smooth function on D.
Let (Mn

ω, gω) a rotationally symmetric model space such that its center oω is a pole. The
symmetrized objects f ∗ and D∗ satisfy the following properties:

(1) The function f ∗ depends only on the geodesic distance to the center oω of the ball D∗
in Mn

ω and is non-increasing.
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(2) The functions f and f ∗ are equimeasurable in the sense that

VolM ({x ∈ D | f (x) ≥ t}) = VolMn
ω

({
x∗ ∈ D∗ | f ∗(x∗) ≥ t

})
(2.12)

for all t ≥ 0.

Proof To prove the first statement, let us consider x∗
1 , x

∗
2 ∈ D∗ = Bω

r̃(0)(oω) such that
roω (x∗

1 ) = roω (x∗
2 ). Then it is evident that x∗

1 ∈ Bω
r̃(t)(oω) if and only if x∗

2 ∈ Bω
r̃(t)(oω) for

all t ∈ [0, T ]. Hence,
f ∗(x∗

1 ) = sup
{
t ≥ 0 | x∗

1 ∈ Bω
r̃(t)(oω)

}
= sup

{
t ≥ 0 | x∗

2 ∈ Bω
r̃(t)(oω)

}
= f ∗(x∗

2 )

which means that f ∗ is a radial function. Namely, f ∗ depends only on the geodesic distance
to the center oω, f ∗(x∗) = f ∗(roω (x∗)).

To see that f ∗ is non-increasing, let us consider x∗
1 , x

∗
2 ∈ D∗ such that roω (x∗

1 ) ≤ roω (x∗
2 ).

We are going to see that t1 := f ∗(x∗
1 ) ≥ t2 := f ∗(x∗

2 ).
As

f ∗(x∗
2 ) = sup

{
t ≥ 0 | x∗

2 ∈ Bω
r̃(t)(oω)

}
= sup

{
t ≥ 0 | roω (x∗

2 ) ≤ r̃(t)
} = t2

then, if t ≤ t2, we have that x∗
2 ∈ Bω

r̃(t)(oω), so roω (x∗
2 ) ≤ r̃(t) ∀t ≤ t2. In partic-

ular, roω (x∗
1 ) ≤ roω (x∗

2 ) ≤ r̃(t2), so x∗
1 ∈ Bω

r̃(t2)
(oω) and therefore, t1 = f ∗(x∗

1 ) =
sup

{
t ≥ 0 | x∗

1 ∈ Bω
r̃(t)(oω)

}
≥ t2 = f ∗(x∗

2 ).

To prove the second statement, note that, for all t > 0, we have, by Definitions 2.15
and 2.17,

D(t)∗ = Bω
r̃(t)(oω) = {x∗ ∈ D∗ | f ∗(x∗) ≥ t} .

In fact, if x∗ ∈ Bω
r̃(t)(oω), then f ∗(x∗) = sup

{
t ≥ 0 | x∗ ∈ Bω

r̃(t)(oω)
}

≥ t and,

conversely, if f ∗(x∗) = sup
{
t ≥ 0 | x∗ ∈ Bω

r̃(t)(oω)
}

≥ t , then x∗ ∈ Bω
r̃(t)(oω).

Therefore, since D(t) = {x ∈ D | f (x) ≥ t}, we obtain that

Vol ({x ∈ D | f (x) ≥ t}) = Vol (D(t)) = Vol
(
D(t)∗

) = Vol
({

x∗ ∈ D∗ | f ∗(x∗) ≥ t
})

.

3 Mean Exit Time Comparison

We start this section with the notion of transplanted mean exit time.

Definition 3.1 Let (M, g) a complete Riemannian manifold and (Mn
ω, gω) a model space

with center oω. Given o ∈ M , let us consider a geodesic R-ball BM
R (o), with 0 < R <

inj (o) and the geodesic R-ball in Mn
ω, centered at the center oω, Bω

R(oω). Let EM
R and Eω

R

be the mean exit time functions defined on BM
R (o) and Bω

R(oω), respectively.
Now, we transplant the radial mean exit time function of Mn

ω to M by defining the
function Eω

R : BM
R → R as Eω

R(x) := Eω
R (ro(x)) ∀x ∈ BM

R where ro is the distance
function to o, the center of the ball BM

R (o).
The function Eω

R is a radial function called the transplanted mean exit time function of
BM

R .
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We can compare the transplanted mean exit time function Eω
R defined in a geodesic ball

BM
R with the mean exit time function EM

R corresponding with this ball. Remember that,
throughout the text, we can omit the centers o ∈ M and oω ∈ Mn

ω when we refer to the balls
BM

r (o) and Bω
r (oω) and the spheres SM

r (o) and Sω
r (oω).

Our first result in this regard is following:

Proposition 3.2 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a geodesic ball BM
R (o), with

R < inj (o) ≤ inj (ow). Then the following assertions are equivalent:

(1) EM
R = E

ω
R on BM

R (o).
(2) HSw

r (oω) = HSM
r (o) ∀r ∈]0, R].

whereHSM
r (o) denotes the mean curvature of the geodesic r- sphere SM

r (o) ⊆ M andHSω
r (oω)

is the corresponding mean curvature of the geodesic r-sphere Sω
r (oω) ⊆ Mn

ω.

Proof Using polar coordinates (r, θ) in M − (Cut (o) ∪ {o}), Eqs. 2.1 and 2.6 and applying
Maximum Principle, equality EM

R = E
ω
R on BM

R (o) is equivalent to equality

�M
E

ω
R(r, θ) = �MEM

R (r, θ) = −1 = �Mn
ωEω

R ∀(r, θ)

which, in its turn, applying Proposition 2.3 and Eqs. 2.4 and 2.6, is equivalent to equality,
for all (r, θ) ∈ [0, R] × S1:

E
ω′′
R (r) + (n − 1)HSM

r (o) E
ω′
R (r) = Eω′′

R (r) + (n − 1)HSw
r (oω) Eω′

R (r)

and, as for all r ∈]0, R], Eω′′
R (r) = Eω′′

R (r) and E
ω′
R (r) = Eω′

R (r) < 0 ∀r ∈]0, R], this last
equality is equivalent to equality

HSM
r (o) = HSw

r (oω) ∀r ∈]0, R].

Now, we can state the following comparison theorem:

Theorem 3.3 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with

R < inj (o) ≤ inj (ow). Let us suppose moreover that

HSω
r (oω) ≤ (≥)HSM

r (o) for all 0 < r ≤ R (3.1)

where HSM
r
denotes the mean curvature of the metric r- sphere SM

r (o) ⊆ M and HSω
r
is the

corresponding mean curvature of the metric r-sphere Sω
r (oω) ⊆ Mn

ω.
Then, we have the inequality

E
ω
R ≥ (≤) EM

R in BM
R (o) , (3.2)

where Eω
R(x) := Eω

R (ro(x)) is the transplanted mean exit time function in BM
R (o).

Moreover, if there exists p ∈ BM
R (o) such that Eω

R(p) = EM
R (p), then

E
ω
R = EM

R in BM
R (o)
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and hence,
HSw

r (oω) = HSM
r (o) ∀r ∈]0, R].

Proof To prove first assertion, let us consider polar coordinates (r, θ) ∈ [0, inj (o)) × S
n−1
1

centered at the center o ∈ M of the geodesic ball BM
R , with R < inj (o), (as before and

throughout the rest of the paper, we shall omit the center point of the ball o if there is not
confusion). By definition of Eω

R and Eq. 2.7, we have that this radial function satisfies

E
ω′
R (r) = Eω′

R (r) < 0, for all r ∈]0, R]. (3.3)

Since �Mn
ωEω

R = −1 onBω
R ,

E
ω′′
R (r) = Eω′′

R (r) = −1 − (n − 1)
ω′(r)
ω(r)

Eω′
R (r).

Therefore, using Eq. 2.1 and applying Proposition 2.3 and Eqs. 2.4 and 2.6, we have, for
all (r, θ) ∈]0, R] × S

n−1
1 :

�M
E

ω
R(r, θ) = −1 + (n − 1)

(
HSM

r
− HSω

r

)
Eω′

R (r) . (3.4)

Then, from Eqs. 3.3 and 3.4, and assuming inequality HSω
r

≤ HSM
r

for all r > 0 we
obtain that

�M
E

ω
R(r, θ) ≤ −1 = �MEM

R (r, θ), for all (r, θ) ∈]0, R] × S
N−1
1 . (3.5)

Thus

�M
(
EM

R − E
ω
R

)
(r, θ) ≥ 0 on BM

R

and since
(
EM

R − E
ω
R

)
(R) = 0 we have, applying the strong maximum principle

E
ω
R ≥ EM

R on BM
R

as we wanted to prove. We obtain opposite inequalities with same arguments, assuming that
HSω

r
≥ HSM

r
for all r > 0.

To prove the second assertion, assume that

HSω
r (oω) ≤ HSM

r (o) for all 0 < r ≤ R .

Suppose that there exists p ∈ BM
R such that Eω

R(p) = EM
R (p). Therefore, we have

that �M
(
EM

R − E
ω
R

) ≥ 0 on BM
R and that EM

R − E
ω
R ≤ 0 = (EM

R − E
ω
R)(p) on BM

R .
Hence, EM

R − E
ω
R attains its maximum in BM

R . Applying the strong maximum principle,
the difference function EM

R − E
ω
R = C is constant on BM

R and, by continuity, as EM
R −

E
ω
R = 0 on ∂BM

R = SM
R , then C = 0. Equality of the mean curvatures follows from

Proposition 3.2.

Remark 3.4 In Theorem 3.3, we have compared the functions EM
R : BM

R → R and E
ω
R :

BM
R → R, both defined in BM

R ⊆ M . Note that, using the properties of the symmetrized
functions, (see [30] and observation (3) in Remark 2.16) and under the assumptions of
Theorem above, we conclude from inequality (3.2) that

E
ω∗
R ≥ (≤) EM∗

R in Bw
s(R)(ow) , (3.6)

where Bw
s(R)(ow) is the Schwarz symmetrization of BM

R .
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As in a Talenti-type result, we have bounded the symmetrized functionEM∗
R with another

radial function Eω∗
R defined on Bw

s(R)(ow), the Schwarz symmetrization of BM
R . We shall see

in Corollary 4.7 the relation among Eω∗
R and EM

s(R), the solution of the symmetrized Poisson

problem which is the natural bound of EM∗
R in a Talenti-type comparison theorem.

Corollary 3.5 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with R <

inj (o) ≤ inj (ow). Let us suppose moreover that

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (3.7)

Then we have the isoperimetric inequalities

Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) ≥ (≤)

Vol
(
BM

r (o)
)

Vol
(
SM

r (o)
) for all 0 < r ≤ R. (3.8)

Moreover, equality in inequalites (3.8) for some radius r0 ∈]0, R] implies that
HSw

r (oω) = HSM
r (o) ∀r ∈]0, r0].

As a consequence of inequalities (3.8), for all 0 < r ≤ R, we have

Vol
(
Bω

r (oω)
) ≤ (≥)Vol

(
BM

r (o)
)

,

Vol(Sω
r (oω)) ≤ (≥)Vol(SM

r (o)).
(3.9)

Finally, equality

Vol
(
Bω

r0
(oω)

) = Vol
(
BM

r0
(o)

)
for some radius r0 ∈]0, R] implies that

HSw
r (oω) = HSM

r (o) ∀r ∈]0, r0].

Proof Let us fix one radius r ∈]0, R]. The proof follows the lines of the proof of Theo-
rem 1.1 and Corollary 1.2 in [34], adapting it to this intrinsic context and using the new
hypotheses.

First, let us assume that HSω
r

≤ HSM
r
, for all 0 < r ≤ R. If we fix r ∈]0, R], then we

have, in particular, that HSω
s

≤ HSM
s
, for all 0 < s ≤ r . We can apply Theorem 3.3 to obtain

�M
E

ω
r ≤ (≥)�MEM

r = −1 on BM
r .

Therefore, since
∥∥∇Mr

∥∥ = 1, and using the Divergence Theorem, we have

Vol
(
BM

r

)
≤

∫
BM

r

−�M
E

ω
r dσ̃ = −

∫
BM

r

div
(
∇M

E
ω
r

)
dσ̃ (3.10)

= −
∫
SM

r

〈
∇M

E
ω
r , ∇Mr

〉
dσ = −E

ω′
r (r)Vol

(
SM

r

)
. (3.11)

Thus, we obtain, using Proposition 2.7,

Vol
(
BM

r

)
≤ −E

ω′
r (r)Vol

(
SM

r

)
= qω(r)Vol

(
SM

r

)
= Vol

(
Bω

r

)
Vol

(
Sω

r

)Vol (SM
r

)
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and therefore

Vol
(
Bω

r

)
Vol

(
Sω

r

) ≥ Vol
(
BM

r

)
Vol

(
SM

r

) .
We are going to discuss the equality assertion: we are still assuming that HSω

r
≤ HSM

r
,

for all 0 < r ≤ R. If there exists r0 ∈]0, R] such that we have
Vol

(
Bω

r0

)
Vol

(
Sω

r0

) = Vol
(
BM

r0

)
Vol

(
SM

r0

)
then the inequality in Eq. 3.10 becomes an equality with the radius r0.

In particular,

Vol
(
BM

r0

)
=

∫
BM

r0

−�M
E

ω
r0

dσ̃

and hence, as 1+ �M
E

ω
r0

≤ 0 on BM
r0
, we conclude that 1+ �M

E
ω
r0

= 0 on BM
r0

and hence,
as �M

E
ω
r0

= �MEM
r0

on BM
r0

then, applying the maximum principle, Eω
r0

= EM
r0

on BM
r0

and
hence, by Proposition 3.2, HSω

r
= HSM

r
∀r ∈]0, r0].

When we assume that HSω
r

≥ HSM
r

∀r ∈]0, R], we argue as before, inverting all the
inequalities to conclude the opposite isoperimetric inequality. The equality discussion is the
same, mutatis mutandi.

To prove statement (3.9), and as in Corollary 1.2 in [34], let us define, given 0 < R <

inj (o) the function
G : [0, R] → R

as

G(s) :=

⎧⎪⎨
⎪⎩
ln

(
Vol

(
BM

s

)
Vol

(
Bω

s

)
)

, if s > 0,

0, if s = 0.

Then, if HSω
s

≤ HSM
s

∀s ∈]0, R], we have, applying inequality (3.8), that

G′(s) = Vol
(
SM

s

)
Vol

(
BM

s

) − Vol
(
Sω

s

)
Vol

(
Bω

s

) ≥ 0 ∀s ∈]0, R].
Hence, G is non-decreasing in ]0, R]. The rest of the proof follows as in [34], using in

this case the asymptotic expansion around s = 0 for the volume of a geodesic s-ball, (see
Theorem 9.12 in [17]) to conclude with a straightforward computation, that lims→0 G(s) =
0 = G(0), and hence, that G(s) is continuous and G(s) ≥ G(0) ∀s ∈ [0, R], so, given
s = r ∈]0, R], we have

Vol
(
Bω

r

) ≤ Vol
(
BM

r

)
∀r ∈]0, R].

Moreover, isoperimetric inequality (3.8), together with the above inequality implies that

Vol(Sω
r ) ≤ Vol(SM

r ) ∀r ≤ R.

We are going to discuss the equality assertion: let us assume that HSω
r

≤ HSM
r

∀r ∈]0, R]
and that there exists r0 ∈]0, R] such that Vol

(
Bω

r0

) = Vol
(
BM

r0

)
. Then, G(0) = G(r0) = 0

and, as G in non-decreasing, for all r ∈ [0, r0], we have
0 = G(0) ≤ G(r) ≤ G(r0) = 0
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so G(r) = 0 ∀r ∈ [0, r0] and therefore, G′(r) = 0 ∀r ∈ [0, r0] which implies that HSω
r

=
HSM

r
∀r ∈]0, r0].

When we assume that HSω
r

≥ HSM
r

∀r ∈]0, R], we argue as before, inverting all the
inequalities to conclude that G is non-increasing in ]0, R] and hence

Vol
(
Bω

r

) ≥ Vol
(
BM

r

)
∀r ∈]0, R]

and Vol(Sω
r ) ≥ Vol(SM

r ) ∀r ≤ R.
The equality discussion is the same as above, mutatis mutandi.

Corollary 3.6 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with R <

inj (o) ≤ inj (ow). Let us suppose moreover that

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (3.12)

Then, if there exists p ∈ BM
R (o) such that equality Eω

R(p) = EM
R (p) holds, we have, for

all r ∈]0, R]:
(1) The equalities Eω

r = EM
r on BM

r (o).
(2) The isoperimetric equalities

Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) = Vol

(
BM

r (o)
)

Vol
(
SM

r (o)
) .

(3) The volume equalities Vol
(
Bω

r

) = Vol
(
BM

r

)
and Vol(Sω

r ) = Vol(SM
r ).

Proof First of all, equality assertion in Theorem 3.3 states that, as we are assuming one of
the inequalities in (3.12), then if there exists p ∈ BM

R (o) such that equalityEω
R(p) = EM

R (p)

holds, we conclude the equality E
ω
R = EM

R on BM
R (o). Applying Proposition 3.2, from this

equality, we have equality HSω
r

= HSM
r

∀r ∈]0, R]. This last equality implies that, given any
fixed r ∈]0, R], we have the equalities HSω

s
= HSM

s
∀s ∈]0, r] and hence, by Proposition

3.2 again, we obtain E
ω
r = EM

r on BM
r (o).

On the other hand, equality E
ω
R = EM

R on BM
R (o) implies that �M

E
ω
R = −1 = �MEM

R

on BM
R (o), which implies in its turn that

Vol
(
BM

R

)
=

∫
BM

R

−�M
E

ω
R dσ = −E

ω′
R (R)Vol

(
SM

R

)
and hence, by Proposition 2.7

Vol
(
Bω

R(oω)
)

Vol
(
Sω

R(oω)
) = Vol

(
BM

R (o)
)

Vol
(
SM

R (o)
) .

Moreover, fixing r ∈]0, R], we know that, as E
ω
R = EM

R on BM
R (o), then E

ω
r =

EM
r on BM

r (o). Applying Proposition 3.2 and using this equality implies

Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) = Vol

(
BM

r (o)
)

Vol
(
SM

r (o)
)

with the same argument as above.
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Finally, as equality E
ω
R = EM

R on BM
R (o) implies that Eω

r = EM
r on BM

r (o) ∀r ∈]0, R],
then, if we define ⎧⎪⎨

⎪⎩
G(r) := ln

(
Vol

(
BM

r

)
Vol

(
Bω

r

)
)

, if r ∈]0, R],
0, if r = 0,

then G′(r) = 0∀r ∈]0, R], and hence, G(r) = 0 ∀r ∈]0, R], so Vol
(
Bω

r

) =
Vol

(
BM

r

) ∀r ∈]0, R] and differentiating with respect the parameter r , Vol(Sω
r ) =

Vol(SM
r ) ∀r ≤ R.

To finish this section, we present the following property satisfied by the symmetriza-
tion of the transplanted mean exit time function E

ω
R . This result is an intrinsic corollary of

Theorem 4.4 in [22], (see too Section 6 in [22]).

Theorem 3.7 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with

R < inj (o) ≤ inj (ow), and let us assume that there exists Bω
s(R)(oω), the Schwarz sym-

metrization of BM
R inMn

ω. Let E
ω∗
R : Bω

s(R) −→ R be the symmetrization of the transplanted

mean exit time function E
ω
R : BM

R −→ R. Then∫
BM

R

E
ω
R dσ =

∫
Bω

s(R)

E
ω∗
R dσ̃ . (3.13)

4 Moment Spectrum Comparison

We are going to apply the Mean Exit comparisons obtained in Section 3 to obtain esti-
mates of the moment spectrum, and the torsional rigidity of a geodesic ball in a Riemannian
manifold with bounds on the mean curvature of its extrinsic spheres.

4.1 Estimates for the Poisson Hierarchy and theMoment Spectrum of a Geodesic
Ball

We shall start by defining the so called Poisson hierarchy of a domain in a Riemannian
manifold, (see [15]).

Definition 4.1 Let (Mn, g) be a complete Riemannian manifold and let D ⊂ M be
a smooth precompact domain. We define the Poisson hierarchy for D as the sequence{
uk,D

}∞
k=1 of solutions of the following recurrence of boundary value problems

�Muk,D + kuk−1,D = 0, on D,

uk,D|
∂D

= 0, (4.1)

with u0,D = 1 on D.
Let us note that u1,D = EM

D , i.e. the mean exit time function from D.

As we did in Definition 3.1, we transplant the Poisson hierarchy for the geodesic balls in
a model space to the geodesic balls in a Riemanian manifold in the following way:
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Definition 4.2 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with R <

inj (o) ≤ inj (ow).

Let us consider the Poisson hierarchy for Bω
R(oω), namely, the sequence

{
uω

k,R

}∞
k=1

which, for k ≥ 1, are the solutions of

�Mn
ωuω

k,R + kuω
k−1,R = 0, on Bω

R,

uω
k,R|

Sω
R

= 0,

with uω
0,R = 1 on Bω

R .
It is known, for all k ≥ 1 that uω

k,R(x) = uω
k,R

(
roω (x)

)
, i.e. uω

k,R is radial, and that

uω′
k,R ≤ 0 (see Proposition 3.1 of [23]).

Thus, for all k ≥ 1, we can transplant these functions to BM
R (o) ⊆ M by defining

ūω
k,R : BM

R (o) → R

as ūω
k,R(x) := uω

k,R (ro(x)) ∀x ∈ BM
R (o), where ro is the distance function to the center of

BM
R (o).

The sequence
{
ūω

k,R

}∞
k=1

is the transplanted Poisson hierarchy for BM
R (o).

Associated to the Poisson hierarchy of a domain D ⊆ M , the exit time moment spectrum
of this domain is defined in the following way:

Definition 4.3 Let D ⊆ M a smooth precompact domain. We define the moment spectrum
of D as the sequence of integrals {Ak(D)}∞k=1 given by:

Ak(D) :=
∫

D

uk,D dσ

where
{
uk,D

}∞
k=1 is the Poisson hierarchy for D.

Let us note thatA1(D) is the torsional rigidity of D.

We have the following comparison for the Poisson hierarchy of a geodesic ball in a
Riemannian manifold:

Theorem 4.4 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with

R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of the geodesic
spheres in M and Mn

ω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.2)

Then the Poisson hierarchy for BM
R (o) ⊆ M ,

{
uk,R

}∞
k=1, and its transplanted Poisson

hierarchy for BM
R (o),

{
ūk,R

}∞
k=1 (and, for any fixed r ∈]0, R], the corresponding Poisson

hierarchies for BM
r (o)), satisfies

(1) ūω
1,R ≥ (≤) u1,R on BM

R .

(2) For all k ≥ 2, ūω
k,R ≥ (≤) uk,R on BM

R .
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(3) If there exists p ∈ BM
R and k0 ≥ 1 such that ūω

k0,R
(p) = uk0,R(p), then

HSω
r

= HSM
r

∀r ∈]0, R]
and

ūω
k,R = uk,R in BM

R ∀ k ≥ 1.

(4) If there exists p ∈ BM
R and k0 ≥ 1 such that ūω

k0,R
(p) = uk0,R(p), then

ūω
k,r = uk,r in BM

r ∀ k ≥ 1 and ∀r ∈ [0, R].
and hence,

Ak(B
ω
r ) = A(BM

r ) ∀r ∈ ] 0, R ] and k ≥ 1 .

Proof Statement (1) is proved in Theorem 3.3
The proof of statement (2) follows using induction on k, as it is done in [23]. Indeed,

assuming that HSω
r

≤ HSM
r

∀r ∈]0, R] and as ūω′
k,R(r) ≤ 0 ∀r ∈]0, R], we have that

ūω′
k,R(r)HSω

r
≥ ūω′

k,R(r)HSM
r

∀r ∈]0, R]
and then, by Eqs. 2.4 and 2.6 and Proposition 2.3, we have, for all k ≥ 2:

�Mūω
k,R = ūω′′

k,R(r) + (n − 1)HSM
r

ūω′
k,R(r) ≤ ūω′′

k,R(r) + (n − 1)HSω
r
ūω′

k,R(r)

= �Mn
ωuω

k,R = −kuω
k−1(r) = −kūω

k−1(r) ∀r ∈]0, R].
(4.3)

Now remember that ūω
1 ≥ u1 on BM

R and let us suppose that

ūω
k,R ≥ uk,R on BM

R .

Then, by induction with k + 1 and using equation (4.3), we have that

�Mūω
k+1,R ≤ −(k + 1)ūω

k,R ≤ −(k + 1)uk,R = �Muk+1,R on BM
R . (4.4)

Thus, �M
(
uk+1,R − ūω

k+1,R

)
≥ 0 on BM

R and, applying the Maximum Principle, we

obtain that
ūω

k+1,R ≥ uk+1,R .

When we assume that HSω
r

≥ HSM
r

∀r ∈]0, R], the argument is exactly the same,
inverting all the inequalities. All this proves (2).

To prove assertion (3), let us suppose that, as hypothesis, HSω
r

≤ HSM
r

∀r ∈]0, R], and
that there exists p ∈ BM

R and k0 ≥ 1 such that

ūω
k0,R

(p) = uk0,R(p).

We know that, for all k ≥ 1, ūω
k,R ≥ uk,R on BM

R . Then, as, on BM
R (o), �Mūω

k,R ≤
−kūω

k−1 ≤ −k uk−1 = �Muk,R for all k ≥ 1, we have, in particular,

�M
(
uk0,R − ūω

k0,R

)
≥ 0

on BM
R (o).

Moreover, as ūω
k0,R

≥ uk0,R on BM
R (o), then uk0,R − ūω

k0,R
≤ 0 on BM

R (o) and there exists

p ∈ BM
R such that (uk0,R − ūω

k0,R
)(p) = 0. Then, applying the strong maximum principle,

ūω
k0,R

= uk0,R on BM
R , because uk0,R − ūω

k0,R
is constant on BM

R (o), continuous in BM
R (o)

and uk0,R − ūω
k0,R

= 0 on SM
R (o).
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On the other hand, as ūω
k0−1 ≥ uk0−1 on BM

R , we have, on BM
R (o):

�Mūω
k0,R

= �Muk0,R = −k0uk0−1,R ≥
−k0ū

ω
k0−1,R = −k0u

ω
k0−1,R = �Mn

ωuω
k0,R

(4.5)

so, for all r ∈]0, R]:

ūω′′
k0,R

(r) + (n − 1)HSM
r

ūω′
k0,R

(r) ≥ uω
k0,R

′′(r) + (n − 1)HSω
r
uω′

k0,R
(r). (4.6)

As ūω′′
k0,R

(r) = uω′′
k0,R

(r) and ūω′
k0,R

(r) = uω′
k0,R

(r) for all r ∈]0, R], we conclude that

HSM
r

ūω′
k0,R

(r) ≥ HSω
r
uω′

k0,R
(r) ∀r ∈]0, R]

and hence, as uω′
k0,R

(r) < 0 ∀r ∈]0, R], then
HSω

r
≥ HSM

r
∀r ∈]0, R].

As, by hypothesis, HSω
r

≤ HSM
r

∀r ∈]0, R], we have finally that

HSω
r

= HSM
r

∀r ∈]0, R].
Now, to prove that ūω

k,R = uk,R on BM
R (o), we argue as follows: as we know that HSω

r
=

HSM
r

∀r ∈]0, R], let us apply Proposition 3.2, to have that ūω
1,R = u1,R on BM

R (o), and we

procceed by induction. Let us suppose that ūω
k,R = uk,R on BM

R (o). To see that ūω
k+1,R =

uk+1,R on BM
R (o), we compute

�Mūω
k+1,R = ūω′′

k+1,R(r) + HSM
r

ūω′
k+1,R(r) = ūω′′

k+1,R(r) + HSω
r
ūω′

k+1,R(r)

= �Mn
ωuω

k+1,R = −(k + 1)uω
k,R = −(k + 1)ūω

k,R

= −(k + 1)uk,R = �Muk+1,R on BM
R (o).

(4.7)

Hence �M(ūω
k+1,R − uk+1,R) = 0 on BM

R (o) and as ūω
k+1,R − uk+1,R = 0 on SM

R (o),

then, appliyng Maximum Principle again, we conclude that ūω
k+1,R = uk+1,R on BM

R (o).
Finally, to prove assertion (4), let us assume that that HSω

r
≤ HSM

r
∀r ∈]0, R], and that

there exists p ∈ BM
R and k0 ≥ 1 such that

ūω
k0,R

(p) = uk0,R(p).

As before, we conclude that
HSω

r
= HSM

r
∀r ∈]0, R],

and hence, fixing r ∈]0, R], that
HSω

s
= HSM

s
∀s ∈]0, r].

Now, to prove that ūω
k,r = uk,r on BM

r (o), we argue as in the proof of (3): as we know that

HSω
s

= HSM
s

∀s ∈]0, r], let us apply Proposition 3.2, to have that ūω
1,r = u1,r on BM

r (o),
and we procceed by induction, as in the proof of assertion (3).

As a consequence of the Theorem 4.4 we have the following result, where it is proved
that, under our hypotheses, any of the averaged moments of the geodesic balls determines
its first Dirichlet eigenvalue:

Corollary 4.5 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point inM and let

us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with R < inj (o) ≤
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inj (ow). Let us suppose moreover that the mean curvatures of the geodesic spheres in M

and Mn
ω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.8)

Then, for all k ≥ 1,

Ak

(
Bω

R

)
Vol

(
Sω

R

) ≥ (≤ )
Ak

(
BM

R

)
Vol

(
SM

R

) . (4.9)

Equality in any of inequalities (4.9) for some k ≥ 1 implies that

HSω
R(oω) = HSM

R (o) for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o ) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o ) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r

) = Vol
(
BM

r

)
and Vol

(
Sω

r

) = Vol
(
SM

r

)
for all 0 < r ≤ R.

(3) EqualitiesAk

(
Bω

r

) = Ak

(
BM

r

)
, for all k ≥ 1 and for all 0 < r ≤ R.

(4) Equalities λ1(B
ω
r ) = λ1(B

M
r ) for all 0 < r ≤ R.

Namely, one value of
Ak

(
BM

R (o)
)

Vol
(
SM

R (o)
) for some k ≥ 1 determines the Poisson hierarchy, the

volume, the L1-moment spectrum and the first Dirichlet eigenvalue of the ball BM
r (o) for

all 0 < r ≤ R.

Proof In the model spaces we have that �Mωuω
k+1,R = −(k + 1)uω

k on the geodesic ball

BMω

R (oω), so, applying Divergence theorem in this setting , we obtain

Ak

(
Bω

R

) =
∫
Bω

R

uω
k,R dσ̃ = − 1

k + 1

∫
Bω

R

�Mn
ωuω

k+1,R dσ̃ = − 1

k + 1
uω′

k+1,R(R)Vol
(
Sω

R

)
.

Therefore, for all k ≥ 1,

− 1

k + 1
uω′

k+1,R(R) = Ak

(
Bω

R

)
Vol

(
Sω

R

) . (4.10)

Assuming now as hypothesis one of the inequalities in (4.8), we obtain correspondingly
the inequalities

�Mūω
k+1,R ≤ (≥)�Muk+1,R on BM

R .

Then, using the Divergence theorem and that ūω
k+1,R is radial in BM

R , we have

Ak

(
BM

R

) = ∫
BM

R
uk,R dσ = − 1

k + 1

∫
BM

R
�Muk+1,Rdσ

≤ (≥) . − 1

k + 1

∫
BM

R
�Mūω

k+1,R dσ

= − 1

k + 1

∫
SM

R

〈
∇Mūω

k+1,R, ∇Mr
〉
dσr

= − 1

k + 1
ūω′

k+1,R(R)Vol
(
SM

R

)
.

(4.11)
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Then, using (4.10), and that ūω′
k+1,R(R) = uω′

k+1,R(R), we finally obtain that

Ak

(
BM

R

)
≤ (≥)

Ak

(
Bω

R

)
Vol

(
Sω

R

) Vol (SM
R

)
.

To discuss the case of equality, assume that HSω
r

≤ HSM
r

, for all 0 < r ≤ R, and that

Ak0

(
Bω

R

)
Vol

(
Sω

R

) = Ak0

(
BM

R

)
Vol

(
SM

R

) (4.12)

for some k0 ≥ 1. Then the inequality in (4.11) is an equality for this fixed k0, so
ūω

k0+1,R = uk0+1,R on BM
R (o). Applying assertion (3) in Theorem 4.4, we have that

HSω
r

= HSM
r

for all 0 < r ≤ R and that ūω
k,R = uk,R on BM

R (o) for all k ≥ 1.

In particular, ūω
1,R = u1,R on BM

R (o), so, by Corollary 3.6, Vol
(
Sω

r

) = Vol
(
SM

r

)
and

Vol
(
Bω

r

) = Vol
(
BM

r

)
for all r ∈]0, R] and, hence, for all k ≥ 1,

Ak

(
BM

R

) = ∫
BM

R
uk,R dσ = − 1

k + 1

∫
BM

R
�Muk+1,Rdσ

= − 1

k + 1

∫
BM

R
�Mūω

k+1,R dσ = − 1

k + 1
ūω′

k+1,R(R)Vol
(
SM

R

)
= Ak

(
Bω

R

)
Vol

(
Sω

R

) Vol (SM
R

) = Ak

(
Bω

R

)
.

(4.13)

Moreover, applying assertion (4) in Theorem 4.4, from equality ūω
k0+1,R = uk0+1,R on

BM
R (o) we can deduce that ūω

k,r = uk,r on BM
r (o) for all k ≥ 1 and for all r ∈]0, R], so

given r ∈]0, R], and for all k ≥ 1,

Ak

(
BM

r

) = ∫
BM

r
uk,r dσ = − 1

k + 1

∫
BM

r
�Muk+1,rdσ

= − 1

k + 1

∫
BM

r
�Mūω

k+1,r dσ = − 1

k + 1
ūω′

k+1,r (r)Vol
(
SM

r

)
= Ak

(
Bω

r

)
Vol

(
Sω

r

) Vol (SM
r

) = Ak

(
Bω

r

)
.

(4.14)

Finally, to prove the last assertion of the Theorem, we know that, assuming that HSω
r

≤
HSM

r
for all 0 < r ≤ R, the equality

Ak0

(
Bω

R

)
Vol

(
Sω

R

) = Ak0

(
BM

R

)
Vol

(
SM

R

)
implies equalities Ak

(
Bω

r

) = Ak

(
BM

r

)
, for all k ≥ 1, and for all r ∈]0, R]. Then, given

BM
r ⊆ M in a Riemannian manifold (M, g), (see [24] and [7]):

λ1(B
M
r ) = lim

k→∞
kAk−1

(
BM

r

)
Ak

(
BM

r

)
= lim

k→∞
kAk−1

(
Bω

r

)
Ak

(
Bω

r

) = λ1(B
ω
r ). (4.15)
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4.2 An Estimate for the Torsional Rigidity of a Geodesic R-ball

We are going to bound the torsional rigidity of a metric ball BM
R in a Riemannian manifold

(M, g) in Theorem 4.8, assuming that the mean curvature of the geodesic spheres in this
Riemnnian manifold is bounded from above or from below by the corresponding mean
curvature of the geodesic spheres in a symmetric model space (Mn

ω, gω) which is balanced
from above.

This result can be considered as a continuation of the intrinsic comparison done in
Section 6 of the paper [22]. In that paper upper and lower bounds for the torsional rigid-
ity of a metric ball BM

R (o) in a Riemannian manifold (M, g) with a pole o ∈ M were
obtained under more restrictive conditions, namely, assuming that the radial sectional cur-
vatures were bounded above or below by the corresponding radial sectional curvatures of a
suitable model space.

The proof of Theorem 4.8 relies on Proposition 4.6. Let us consider a symmetric model
space rearrangement of the metric ball BM

R as described in Definition 2.11 and Defini-
tion 2.15, namely, a symmetrization of BM

R which is a geodesic s(R)-ball in the model

space Mn
ω such that Vol

(
BM

R (o)
) = Vol

(
Bω

s(R)(oω)
)
, together with the symmetrization

E
ω∗
R : Bω

s(R) −→ R of the transplanted mean exit time function E
ω
R : BM

R −→ R. It is
evident that Proposition 4.6, Theorem 4.8 and Corollary 4.9 make sense for those geodesic
balls BM

R (o) which posses a Schwarz symmerization Bω
s(R)(oω).

Then, in Proposition 4.6 we compare the symmetrized function E
ω∗
R : Bω

s(R)(oω) → R

and the solution of the Poisson problem in Bω
s(R)(oω), Eω

s(R) → R. Its proof follows closely
the lines of the proof of Propositions 5.2 and 5.4 in [22], we have included it because the
changes due to its intrinsic character, the different assumptions on the curvatures we have
assumed here and the new analysis of the case of equality.

Proposition 4.6 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω, balanced from above. Let o ∈ M

be a point in M and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball
BM

R (o), with R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of
the geodesic spheres in M and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.16)

Then

E
ω∗′
R (̃r) ≥ (≤) Eω′

s(R)(̃r) for all r̃ ∈ (0, s(R)) (4.17)

and hence,
E

ω∗
R (̃r) ≤ (≥) Eω

s(R)(̃r) for all r̃ ∈ [0, s(R)]. (4.18)

Equality in any of the inequalities (4.18) implies the equality among the radius s(R) = R

and the equality
HSω

r
= HSM

r
, for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r

) = Vol
(
BM

r

)
and Vol

(
Sω

r

) = Vol
(
SM

r

)
for all 0 < r ≤ R.

(3) EqualitiesAk

(
Bω

r

) = Ak

(
BM

r

)
, for all k ≥ 1 and for all 0 < r ≤ R.
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(4) Equalities λ1(B
ω
r ) = λ1(B

M
r ) for all 0 < r ≤ R.

Proof We are going to analyze first the symmetrization Eω∗
R . The transplanted function

E
ω
R : BM

R (o) −→ R

satisfies that Eω
R ∈ C∞(BM

R (o) − {o}) ∩ C0(B
M

R (o)), and, moreover, that Eω
R|SM

R (o) = 0.
Let us consider the radial function ψ = Eω

R defined on the interval [0, R] in Eq. 2.7
of Proposition 2.7. Let us denote by T = max[0,R]ψ . Thus, as ψ is monotone, (strictly
decreasing, with ψ(0) = T and ψ(R) = 0), we have that d

dr
ψ < 0 on ]0, R] and that

ψ : [0, R] −→ [0, T ] is bijective.
Now, let us define the function a : [0, T ] −→ [0, R] as a(t) := ψ−1(t), satisfying

a(0) = ψ−1(0) = R and a(T ) = ψ−1(T ) = 0. We know that

a′(t) = 1

ψ ′(a(t))
< 0 ∀t ∈ (0, T )

so a(t) is strictly decreasing in (0, T ).
Let us denote, for all x ∈ BM

R (o),

ϕ(x) = E
ω
R(x) := Eω

R(ro(x)) = ψ(ro(x)).

We have that ϕ(BM
R (o)) = ψ([0, R]) = [0, T ], so the function ϕ : BM

R (o) → [0, T ]
satisfies ‖∇Mϕ‖ = | d

dr
ψ |‖∇Mro‖ �= 0 for all x ∈ BM

R (o) − {o}. Therefore, the set of
regular values of ϕ is Rϕ = (0, T ).

On the other hand, and given t ∈ [0, T ], let us consider the sets

D(t) =
{
x∈ BM

R | ϕ(x) ≥ t
}

=
{
x∈ BM

R |Eω
R(x) ≥ t

}
=

{
x∈ BM

R | ro(x) ≤ ψ−1(t)
}

= BM
a(t)

and

�(t) =
{
x∈ BM

R | ϕ(x) = t
}

=
{
x∈ BM

R | ψ (ro(x)) = t
}

= SM
a(t).

We have too that D(0) = BM
a(0) = BM

R and D(T ) = BM
a(T ) = {o}, where o is the center

of the geodesic ball BM
R .

We consider the symmetrization in Mn
ω of the sets D(t) = BM

a(t)⊆ BM
R ⊆ M , namely, the

geodesic balls D(t)∗ = Bω
r̃(t)(oω) in Mn

ω such that

Vol (D(t)) = Vol
(
Bω

r̃(t)(oω)
)
.

For each t ∈ [0, T ], let us consider the function r̃(t), defined in Definition 2.17. Then,
in this particular context, we have that r̃ : [0, T ] −→ [0, s(R)] is strictly decreasing and
hence, bijective. In fact, note that if t1, t2 ∈ [0, T ] such that t1 < t2, then, as a(t) is strictly
decreasing, a(t1) > a(t2), so

Vol
(
Bω

r̃(t1)
(oω)

)
= Vol

(
BM

a(t1)

)
> Vol

(
BM

a(t2)

)
= Vol

(
Bω

r̃(t2)
(oω)

)
and hence r̃(t1) > r̃(t2).

On the other hand, applying Lemma 2.19, we have that for all t ∈ Rϕ = (0, T ),

r̃′(t) = −1

Vol
(
Sω

r̃(t)

) ∫
�(t)

∥∥∥∇Mϕ

∥∥∥−1
dσt . (4.19)
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The inverse of r̃ is the decreasing function

φ : [0, s(R)] −→ [0, T ]; φ := φ(̃r),

such that φ′ (̃r(t)) = 1
r̃ ′(t) for all t ∈ [0, T ], φ(0) = T and φ(s(R)) = 0.

With all this background, we can say now that, in accordance with Definition 2.15
and Theorem 2.21, the symmetrization of ϕ = E

ω
R : BM

R −→ R is a radial function
ϕ∗ = E

ω∗
R : Bω

s(R) −→ R which satisfies the following equality

ϕ∗(x∗) = E
ω∗
R (x∗) = E

ω∗
R

(
roω (x∗)

) = t0 = φ (̃r(t0)) = φ (̃r) . (4.20)

To see Eq. 4.20, we argue as follows: given x∗ ∈ BM
R (o)∗ = Bω

s(R)(oω) =
∪t∈[0,T ]Sω

r̃(t)(oω), (concerning the second equality, recall that r̃ : [0, T ] → [0, s(R)]
is bijective), there exists some biggest value t0 such that roω (x∗) = r̃(t0) and, hence,
x∗ ∈ Bω

r̃(t0)
= D(t0)

∗. We then have that

ϕ∗(x∗) = ϕ∗(roω (x∗)) = sup
{
t ≥ 0/x∗ ∈ Bw

r̃(t)(o)
}

= t0 = φ (̃r(t0)) (4.21)

and hence, for all t ∈ (0, T ), ϕ∗ ≡ ϕ∗(̃r(t)) and we have, applying Eq. 4.19:

d

dr̃
|̃r=r̃(t)ϕ

∗(̃r) = ϕ∗′(̃r(t)) = E
ω∗
R

′(̃r(t)) = φ′(̃r(t))

= 1

r̃ ′(t)
= −

Vol
(
Sω

r̃(t)

)
∫
�(t)

∥∥∇Mϕ
∥∥−1

dσt

.
(4.22)

But, as ‖∇Mϕ(x)‖ = |ψ ′(ro(x))| �= 0 for all x ∈ BM
R (o) − {o} and �(t) = SM

a(t) for all
t ∈ Rϕ = (0, T ), we conclude that

∫
�(t)

∥∥∥∇Mϕ

∥∥∥−1
dσt = 1

|ψ ′(a(t))|Vol
(
SM

a(t)

)
(4.23)

and hence, Eq. (4.22) becomes, using Eq. (4.23), and the fact that ψ = Eω
R , in the following

expression, for all t ∈ [0, T ]:

ϕ∗′(̃r(t)) = − |ψ ′(a(t))|
Vol

(
Sω

r̃(t)

)
Vol

(
SM

a(t)

)

= −
Vol

(
Bω

a(t)

)
Vol

(
Sω

a(t)

) Vol
(
Sω

r̃(t)

)
Vol

(
SM

a(t)

) .
(4.24)

On the other hand, let us assume that HSω
r

≤ HSM
r
, for all r ∈ (0, R]. Then by Corollary

3.5 we know that Vol
(
Bω

r

) ≤ Vol
(
BM

r

)
for all r ∈ [0, R]. Therefore,

Vol
(
Bω

r̃(t)

)
= Vol

(
BM

a(t)

)
≥ Vol

(
Bω

a(t)

)
, for all t ∈ [0, T ]. (4.25)

Then, since Vol
(
Bω

r

)
is an increasing function, because d

dr
Vol

(
Bω

r

) = Vol
(
Sω

r

) ≥ 0, we
have that

r̃(t) ≥ a(t), for all t ∈ [0, T ]. (4.26)
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so, since Mn
ω is balanced from above, qω′(r) ≥ 0, we obtain:

Vol
(
Bω

r̃(t)

)
Vol

(
Sω

r̃(t)

) ≥
Vol

(
Bω

a(t)

)
Vol

(
Sω

a(t)

) , for all t ∈ [0, T ]. (4.27)

Therefore, using Eq. 4.24 and the fact that Vol
(
Bω

r̃(t)

)
= Vol

(
BM

a(t)

)
, we have

E
ω∗
R ′(̃r(t)) = ϕ∗′(̃r(t)) ≥ −

Vol
(
BM

a(t)

)
Vol

(
SM

a(t)

) , for all t ∈ [0, T ]. (4.28)

Now, we apply Proposition 2.7, the isoperimetric inequality (3.8) of Corollary 3.5, the
fact that r̃(t) ≥ a(t), and that q ′

ω ≥ 0, to obtain finally

E
ω∗
R ′(̃r(t)) ≥ −

Vol
(
BM

a(t)

)
Vol

(
SM

a(t)

) ≥ −
Vol

(
Bω

r̃(t)

)
Vol

(
Sω

r̃(t)

) = Eω′
s(R)(̃r(t)) ∀t ∈ (0, T ). (4.29)

Now, as Eω∗
R

′(̃r) ≥ Eω′
s(R)(̃r) ∀̃r ∈ (0, s(R)), we have, integrating along [0, s(R)], and

taking into account that Eω∗
R (s(R)) = Eω

s(R)(s(R)) = 0,

−E
ω∗
R (̃r) =

∫ s(R)

r̃

E
ω∗′
R (u)du ≥

∫ s(R)

r̃

Eω′
s(R)(u)du = −Eω

s(R)(̃r) ∀̃r ∈ [0, s(R)]
(4.30)

so

E
ω∗
R (̃r) ≤ Eω

s(R)(̃r) ∀̃r ∈ [0, s(R)].
If we assume that HSω

r
≥ HSM

r
, for all r ∈ [0, R], we use the same argument, changing

all the inequalities, to obtain

E
ω∗′
R (̃r(t)) ≤ Eω′

s(R)(̃r(t)) ∀t ∈ (0, T ) and hence

E
ω∗
R (̃r) ≥ Eω

s(R)(̃r) ∀̃r ∈ [0, s(R)]. (4.31)

We are going to study the case of equality, when we assume the hypothesis HSω
r

≤ HSM
r
,

for all r ∈ [0, R], (the discussion of equality if we assume HSω
r

≥ HSM
r
, for all r ∈ [0, R] is

the same, mutatis mutandi).
Equality E

ω∗
R (̃r) = Eω

s(R)(̃r) ∀r ∈]0, s(R)] implies equality E
ω∗′
R (̃r) = Eω′

s(R)(̃r) ∀̃r ∈
(0, s(R)), which in its turn implies that inequalities in (4.29) and hence, in (4.28) and (4.27)
become equalities for all t ∈ [0, T ]. In particular, from equality in Eq. 4.27 and inequality
(4.25), we deduce that

Vol
(
Sω

a(t)

)
Vol

(
Sω

r̃(t)

) ≤ 1, for all t ∈ [0, T ]. (4.32)
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On the other hand, using again equality in inequality (4.27) and taking into account that
HSω

r
≤ HSM

r
for all r ∈ [0, R], and then using the isoperimetric inequality (3.8), we obtain:

Vol
(
Bω

r̃(t)

)
Vol

(
Sω

r̃(t)

) =
Vol

(
Bω

a(t)

)
Vol

(
Sω

a(t)

) ≥
Vol

(
BM

a(t)

)
Vol

(
SM

a(t)

) , for all t ∈ [0, T ]. (4.33)

Using (4.32) and Vol
(
Bω

r̃(t)

)
= Vol

(
BM

a(t)

)
, we have

Vol
(
Sω

a(t)

)
≤ Vol

(
Sω

r̃(t)

)
≤ Vol

(
SM

a(t)

)
. (4.34)

Now, differentiating the equality

Vol
(
Bω

r̃(t)

)
= Vol

(
BM

a(t)

)
, for all t ∈ [0, T ], (4.35)

we obtain
Vol

(
Sω

r̃(t)

)
r̃ ′(t) = Vol

(
SM

a(t)

)
a′(t), for all t ∈ (0, T ), (4.36)

and hence, using inequality (4.34),

r̃ ′(t)
a′(t)

=
Vol

(
SM

a(t)

)
Vol

(
Sω

r̃(t)

) ≥ 1, for all t ∈ (0, T ), (4.37)

so r̃ ′(t) ≥ a′(t) ∀t ∈ (0, T ), and therefore, as r̃(T ) = a(T ) = 0, we finally obtain,
integrating along [0, T ], that r̃(t) ≤ a(t) ∀t ∈ [0, T ]. Hence, as we know, (see inequality
(4.26)), that r̃(t) ≥ a(t) ∀t ∈ [0, T ], we obtain

r̃(t) = a(t) ∀t ∈ [0, T ].
Therefore, s(R) = r̃(0) = a(0) = R and, moreover, Vol

(
Bω

r̃(t)

)
= Vol

(
BM

r̃(t)

)
for all

t ∈ [0, T ], so
Vol

(
Bω

r

) = Vol
(
BM

r

)
∀r ∈ [0, R]

and hence
Vol

(
Sω

r

) = Vol
(
SM

r

)
∀r ∈ [0, R].

Now, we apply the equality assertion in Corollary 3.5 to conclude that

HSω
r

= HSM
r

, for all 0 ≤ r ≤ R

To prove equality assertions (1), (3) and (4), the argument follows as in the proofs of The-
orem 4.4 and Corollary 4.5. Namely: to prove (1), and as we know that HSω

r
= HSM

r
∀r ∈

]0, R], let us apply Proposition 3.2, to have that ūω
1,R = u1,R on BM

R (o), and we proc-
ceed by induction, as in the proof of assertion (3) in Theorem 4.4, to obtain the equalities
ūω

k,R = uk,R on BM
R and for all k ∈ N. From these equalities we also have the equalities

ūω
k,r = uk,r on BM

r , for all r ∈]0, R] and for all k ∈ N. To prove (3), as we have that

Vol(BM
R ) = Vol(Bω

R) and Vol(SM
R ) = Vol(Sω

R), we proceed as in the proof of Corollary 4.5,
(see Eq. 4.13), to conclude that, for all k ≥ 1,

Ak

(
BM

R

)
= Ak

(
Bω

R

)
Vol

(
Sω

R

) Vol (SM
R

)
= Ak

(
Bω

R

)
.

Finally, to prove (4) the argument is the same than in the proof of Corollary 4.5.
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A first consequence of Proposition 4.6, as we previously announced in Remark 3.4 in
Section 3, is the following two-sided Riemannian version of Talenti’s comparison theo-
rem, (see [39], [40]), restricted to the mean exit time function defined on geodesic balls in
Riemannian manifolds satisfying our assumptions:

Corollary 4.7 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω, balanced from above. Let o ∈ M

be a point in M and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball
BM

R (o), with R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of
the geodesic spheres in M and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.38)

Then

EM∗
R (r) ≤ (≥) Eω

s(R)(r) for all r ∈ [0, s(R)]. (4.39)

Equality in inequality (4.39) implies the equality among the radius s(R) = R and the
equality

HSω
r

= HSM
r

, for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r

) = Vol
(
BM

r

)
and Vol

(
Sω

r

) = Vol
(
SM

r

)
for all 0 < r ≤ R.

(3) EqualitiesAk

(
Bω

r

) = Ak

(
BM

r

)
, for all k ≥ 1 and for all 0 < r ≤ R.

(4) Equalities λ1(B
ω
r ) = λ1(B

M
r ) for all 0 < r ≤ R.

Proof Applying Theorem 3.3 and the properties of the symmetrized functions, (see [30]
and assertion (3) of Remark 2.16) we have the inequality

E
ω∗
R ≥ (≤) EM∗

R in Bw
s(R)(ow) ,

whereBw
s(R)(ow) is the Schwarz symmetrization of BM

R , namely, Vol(Bw
s(R)(ow)) = Vol(BM

R ).
Now, from Proposition 4.6, we have that

E
ω∗
R (r) ≤ (≥) Eω

s(R)(r) for all r ∈ [0, s(R)].
and the result is done.

Equality in inequality (4.39) implies equality in inequality (4.18) of Proposition 4.6 and
we conclude the list of equality assertions as in Proposition 4.6.

Also as a consequence of the Proposition 4.6 we have the following result, where it is
proved that, under our hypotheses, the torsional rigidity of the geodesic balls determines its
first Dirichlet eigenvalue:

Theorem 4.8 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a rota-

tionally symmetric model space with center oω ∈ Mn
ω, balanced from above. Let o ∈ M

be a point in M and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball
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BM
R (o), with R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of

the geodesic spheres in M and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.40)

Then

A1

(
Bω

s(R)

)
≥ (≤)A1

(
BM

R

)
(4.41)

where Bω
s(R) is the Schwarz symmetrization of BM

R in the model space (Mn
ω, gω).

Equality in any of inequalities (4.41) implies the equality among the radius s(R) = R

and that

HSω
r (oω) = HSM

r (o) for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r (oω)
) = Vol

(
BM

r (o)
)
and Vol

(
Sω

r (oω)
) = Vol

(
SM

r (o)
)

for all 0 <

r ≤ R.
(3) EqualitiesAk

(
Bω

r (oω)
) = Ak

(
BM

r (o)
)
, for all k ≥ 1 and for all 0 < r ≤ R.

(4) Equality λ1(B
w
r (oω)) = λ1(B

M
r (o)) for all 0 < r ≤ R.

Namely, the torsional rigidity determines the Poisson hierarchy, the volume, the
L1-moment spectrum and the first Dirichlet eigenvalue of the ball BM

r (o) for all
0 < r ≤ R.

Proof Let us consider a symmetric model space rearrangement of the metric ball BM
R as it

has been described in Definition 2.11 and Definition 2.15, namely, a symmetrization of BM
R

which is a geodesic s(R)-ball in the model space Mn
ω such that Vol

(
BM

R

) = Vol
(
Bω

s(R)

)
,

together with the symmetrization E
ω∗
R : Bω

s(R) −→ R of the transplanted mean exit time

function E
ω
R : BM

R −→ R.
Applying Theorems 3.3 and 3.7 and Proposition 4.6, we have that

A1

(
BM

R

)
=

∫
BM

R

EM
R dσ ≤ (≥)

∫
BM

R

E
ω
R dσ

=
∫
Bω

s(R)

E
ω∗
R dσ̃ ≤ (≥)

∫
Bω

s(R)

Eω
s(R) dσ̃ = A1

(
Bω

s(R)

) (4.42)

and Eq. 4.41 is proved.
We are going to study the case of equality, when we assume the hypothesis HSω

r
≤ HSM

r
,

for all r ∈ [0, R], (the discussion of equality if we assume HSω
r

≥ HSM
r
, for all r ∈ [0, R]

is the same, mutatis mutandi). Equality in (4.42) implies that all the inequalities contained
in this expression become equalities. In particular, we have that

∫
BM

R
EM

R dσ = ∫
BM

R
E

ω
R dσ

and that
∫
Bω

s(R)
E

ω∗
R = ∫

Bω
s(R)

Eω
s(R) dσ̃ .

From this second equality and inequality (4.18) in Proposition 4.6, we have that Eω∗
R =

Eω
s(R) on [0, s(R)]. Applying again Proposition 4.6, we deduce that s(R) = R, and that

HSω
r

= HSM
r

for all 0 < r ≤ R.
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On the other hand, equality
∫
BM

R
EM

R dσ = ∫
BM

R
E

ω
R dσ implies, using Theorem 3.3, that

EM
R = E

ω
R on BM

R . Hence we conclude equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1

using assertion (3) in Theorem 4.4 and that ūω
k,r = uk,r on BM

r (o) for all k ≥ 1 and for all
r ∈ [0, R] using assertion (4) in Theorem 4.4.

Moreover, equality EM
R = E

ω
R on BM

R implies, using equality conclusions in Corollary
3.6, that, for all r ∈]0, R],

Vol
(
Bω

r (oω)
)

Vol
(
Sω

r (oω)
) = Vol

(
BM

r (o)
)

Vol
(
SM

r (o)
) ,

Vol
(
Bω

r

) = Vol
(
BM

r

)
,

Vol(Sω
r ) = Vol(SM

r ).

(4.43)

Hence, as we are assuming that A1
(
BM

R

) = A1

(
Bω

s(R)

)
and we have deduced s(R) =

R, then we obtain the equality

A1
(
Bω

R

)
Vol

(
Sω

R

) = A1
(
BM

R

)
Vol

(
SM

R

)
and hence, by Corollary 4.5,Ak

(
BM

r

) = Ak

(
Bω

r

)
for all k ≥ 1 and for all 0 < r ≤ R.

Finally, as equalityA1
(
BM

R

) = A1

(
Bω

s(R)

)
implies equalitiesAk

(
Bω

r

) = Ak

(
BM

r

)
, for

all k ≥ 1 and for all r ∈]0, R], we have that, given BM
r ⊆ M in a Riemannian manifold

(M, g) with r ∈]0, R], (see [24] and [7]):

λ1(B
M
r ) = lim

k→∞
kAk−1

(
BM

r

)
Ak

(
BM

r

)
= lim

k→∞
kAk−1

(
Bω

r

)
Ak

(
Bω

r

) = λ1(B
ω
r ). (4.44)

Corollary 4.9 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω, balanced from above. Let o ∈ M

be a point in M and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball
BM

R (o), with R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of
the geodesic spheres in M and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (4.45)

Then

A1

(
BM

R

)
≤ Eω

s(R)(0)Vol(B
M
R ). (4.46)

Proof Assuming that HSω
r

≤ HSM
r

for all 0 < r ≤ R, we use Eq. 4.42 to obtain, having
into account that Eω

s(R)(r) ≤ Eω
s(R)(0)∀r ∈]0, s(R)],



V. Palmer, E. Sarrión-Pedralva

A1

(
BM

R

)
=

∫
BM

R

EM
R dσ ≤

∫
BM

R

E
ω
R dσ

=
∫
Bω

s(R)

E
ω∗
R dσ̃ ≤

∫
Bω

s(R)

Eω
s(R) dσ̃ ≤ Eω

s(R)(0)Vol(B
M
R ).

(4.47)

Remark 4.10 As (Mn
ω, gω) is balanced from above, then

d

dr
(qω(r)) ≥ 0, so qω(r) is non-

decreasing with r . Then, as Eω
s(R)(r(x)) = ψ(r(x)) = ∫ s(R)

r(x)
qω(t) dt , we have that

Eω
s(R)(0) =

∫ s(R)

0
qω(t) dt ≤ s(R)qω(s(R)) = s(R)

Vol
(
Bω

s(R)(oω)
)

Vol
(
Sω

s(R)(oω)
)

so

A1

(
BM

R

)
≤ E

ω
s(R)(0)Vol(B

M
R ) ≤ s(R)

Vol
(
Bω

s(R)(oω)
)

Vol
(
Sω

s(R)(oω)
)Vol(BM

R ).

5 Cheng-type First Dirichlet Eigenvalue Comparison and the
Determination of theMoment Spectrum of a Geodesic Ball

Finally, as a corollary of the previous results, we have in Theorem 5.1 a Cheng-type first
Dirichlet eigenvalue comparison, (see [8]). On the other hand, in Corollary 5.2, we have
been able to show that, under our hypotheses, the first Dirichlet eigenvalue of geodesic balls
determines its exit time moment spectrum and its Poisson hierarchy.

Theorem 5.1 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point in M

and let us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with

R < inj (o) ≤ inj (ow). Let us suppose moreover that the mean curvatures of the geodesic
spheres in M and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (5.1)

Then we have the inequalities

λ1(B
ω
R) ≤ (≥) λ1(B

M
R ) (5.2)

where Bω
R is the geodesic ball in Mm

ω .
Equality in any of these inequalities implies that

HSω
r

= HSM
r

for all 0 < r ≤ R

and hence, we have the equalities

(1) Equality ūω
k,R = uk,R on BM

R (o) for all k ≥ 1, and hence, equality ūω
k,r = uk,r on

BM
r (o) for all k ≥ 1 and for all 0 < r ≤ R.

(2) Equalities Vol
(
Bω

r

) = Vol
(
BM

r

)
and Vol

(
Sω

r

) = Vol
(
SM

r

)
for all 0 < r ≤ R.

(3) EqualitiesAk

(
Bω

r

) = Ak

(
BM

r

)
, for all k ≥ 1 and for all 0 < r ≤ R.
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Namely, the first Dirichlet eigenvalue determines the Poisson hierarchy, the volume, and the
L1-moment spectrum of the ball BM

r (o) for all 0 < r ≤ R.

Proof The proof follows the lines of the proof of Theorems 6 and 7 in [24]. This technique
is based in the the description of the first Dirichlet eigenvalue of a smooth precompact
domain D in a Riemannian manifold given by P. McDonald and R. Meyers in [32].

When D = BM
R , we have

λ1(B
M
R ) = sup

{
η ≥ 0 : lim

k→∞ sup
(η

2

)k Ak(B
M
R )

�(k + 1)
< ∞

}
. (5.3)

Let us assume first that HSω
r

≤ HSM
r

, for all 0 < r ≤ R. Then, we have, by Corollary
4.5, that

Ak(B
M
R )

Vol(SM
R )

≤ Ak(B
ω
R)

Vol(Sω
R)

for all k ∈ N. (5.4)

On the other hand, by Corollary 3.5:

Vol(SM
R )

Vol(Sω
R)

≥ Vol(BM
R )

Vol(Bω
R)

≥ 1. (5.5)

Then, using inequality (5.4) the set

F2 :=
{

η ≥ 0 : lim
k→∞ sup

(η

2

)k Ak(B
ω
R)

�(k + 1)

Vol(SM
R )

Vol(Sω
R)

< ∞
}

is included in the set

F1 :=
{

η ≥ 0 : lim
k→∞ sup

(η

2

)k Ak(B
M
R )

�(k + 1)
< ∞

}
,

so we have, using this last observation and inequality (5.5),

λ1(B
M
R ) = sup

{
η ≥ 0 : lim

k→∞ sup
(η

2

)k Ak(B
M
R )

�(k + 1)
< ∞

}

≥ sup

{
η ≥ 0 : lim

k→∞ sup
(η

2

)k Ak(B
ω
R)

�(k + 1)

Vol(SM
R )

Vol(Sω
R)

< ∞
}

= Vol(SM
R )

Vol(Sω
R)

sup

{
η ≥ 0 : lim

k→∞ sup
(η

2

)k Ak(B
ω
R)

�(k + 1)
< ∞

}

= Vol(SM
R )

Vol(Sω
R)

λ1(B
ω
R) ≥ λ1(B

ω
R).

(5.6)

If we assume HSω
r

≥ HSM
r

, for all 0 < r ≤ R, then we obtain λ1(B
ω
R) ≥ λ1(B

M
R ) with

the same argument, inverting all the inequalities.
Finally, equality λ1(B

ω
R) = λ1(B

M
R ) implies that all the inequalities in (5.6) are

equalities, so we have the equality in the inequality (5.5), (namely, the equality in the
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isoperimetric inequality (3.8) in Corollary 3.5), and moreover the equality between the vol-
umes Vol(Bω

R) = Vol(BM
R ) and Vol

(
Sω

R

) = Vol
(
SM

R

)
. Hence, we have, by Corollary 3.5,

the equalities

HSω
r

= HSM
r

for all 0 < r ≤ R

and, in its turn, equalities Vol(Bω
r ) = Vol(BM

r ) and Vol
(
Sω

r

) = Vol
(
SM

r

) ∀r ∈]0, R].
Assertions (1) and (3) follows from Proposition 3.2 and Theorem 4.4.

We finish the paper with a consequence of Theorems 5.1 and 4.4 which summa-
rizes the relation between the first Dirichlet eigenvalue, the L1-moment spectrum and
the Poisson hierarchy of the geodesic balls BM

R (o) of a Riemannian manifold which
satisfies our restriction on the mean curvatures of the geodesic spheres included in it,
SM

r (o), r ≤ R.

Corollary 5.2 Let (Mn, g) be a complete Riemannian manifold and let (Mn
ω, gω) be a

rotationally symmetric model space with center oω ∈ Mn
ω. Let o ∈ M be a point inM and let

us suppose that inj (o) ≤ inj (oω). Let us consider a metric ball BM
R (o), with R < inj (o) ≤

inj (ow). Let us suppose moreover that the mean curvatures of the geodesic spheres in M

and Mω satisfies

HSω
r

≤ (≥)HSM
r

for all 0 < r ≤ R. (5.7)

Then, the following equalities are equivalent:

(1) λ1(B
ω
R) = λ1(B

M
R ).

(2) Ak(B
ω
R) = Ak(B

M
R ) ∀k ≥ 1.

(3) ūw
k,R = uk,R ∀k ≥ 1 in BM

R .

Moreover, equality HSω
r

= HSM
r

for all 0 < r ≤ R implies any, (and hence, all), of the
equalities (1), (2) and (3).

Proof We are going to prove these equivalences. We first assume that

HSω
r

≤ HSM
r

for all 0 < r ≤ R.

We see first that equality (1) implies equalities (3), namely, that the first Dirichlet eigen-
value of the geodesic ball BM

R determines its Poisson hierarchy. To do that, we start with
the last observation in Theorem 5.1, namely, that equality λ1(B

ω
R) = λ1(B

M
R ) implies that

all the inequalities in (5.6) are equalities, so we have the equality in the inequality (5.5),
(namely, the equality in the isoperimetric inequality (3.8) in Corollary 3.5), and moreover
the equality between the volumes Vol(Bω

r ) = Vol(BM
r ) and Vol

(
Sω

r

) = Vol
(
SM

r

)
for all

r ∈ [0, R]. Hence, we have, by Corollary 3.5, the equalities

HSω
r

= HSM
r

for all 0 < r ≤ R.

Then, by Proposition 3.2, we have that ūw
1,R = u1,R on BM

R . Hence we conclude equality

ūω
k,R = uk,R on BM

R (o) for all k ≥ 1 using assertion (3) in Theorem 4.4. We have concluded
that (1) implies (3).

To see that equality (1) implies equalities (2), we compute now as in Corollary 4.5: for
all k ≥ 1, we have that, as Vol

(
Sω

r

) = Vol
(
SM

r

)
for all r ∈ [0, R],
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Ak

(
BM

R

) = ∫
BM

R
uk,R dσ = − 1

k + 1

∫
BM

R
�Muk+1,Rdσ

= − 1

k + 1

∫
BM

R
�Mūω

k+1,R dσ = − 1

k + 1
ūω′

k+1,R(R)Vol
(
SM

R

)
= Ak

(
Bω

R

)
Vol

(
Sω

R

) Vol (SM
R

) = Ak

(
Bω

R

) (5.8)

and hence we have equalities (2).
To see that equalities (2) implies equality (1), i.e., that the exit time moment spectrum of

BM
R determines its first Dirichlet eigenvalue, we compute, using Theorem A in [24] and as

Ak

(
BM

R

) = Ak

(
Bω

R

) ∀k ≥ 1:

λ1(B
M
R ) = lim

k→∞
kAk−1

(
BM

R

)
Ak

(
BM

R

)
= lim

k→∞
kAk−1

(
Bω

R

)
Ak

(
Bω

R

) = λ1(B
ω
R). (5.9)

To see that equalities (3) implies equality (1), namely, that the Poisson hierarchy of the
ball BM

R determines its first Dirichlet eigenvalue, we will see first that equalities (3) implies
equalities (2). Assuming that (3) is satisfied, we have that ūω

k,R = uk,R on BM
R (o) for all

k ≥ 1. In particular, ūω
1,R = u1,R on BM

R (o), so, by Corollary 3.6, Vol
(
Sω

r

) = Vol
(
SM

r

)
and

Vol
(
Bω

r

) = Vol
(
BM

r

)
for all r ∈]0, R] and, hence, given r ∈]0, R], and for all k ≥ 1,

Ak

(
BM

R

) = ∫
BM

R
uk,R dσ = − 1

k + 1

∫
BM

R
�Muk+1,Rdσ

= − 1

k + 1

∫
BM

R
�Mūω

k+1,R dσ = − 1

k + 1
ūω′

k+1,R(R)Vol
(
SM

R

)
= Ak

(
Bω

R

)
Vol

(
Sω

R

) Vol (SM
R

) = Ak

(
Bω

R

)
so we have inequalities (2). Now, we use equation (5.9) to obtain (1).
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37. Pólya, G.: Torsionalrigidity, principal frequency, electrostatic capacity and symmetrization. Quart. Appl
Math. 6, 267–277 (1948)

38. Sakai, T.: Riemannian geometry. Translations of Mathematical Monographs, American Mathematical
Society, Providence, RI, 149. Translated from the 1992 original by Japanese the author (1996)

39. Talenti, G.: Elliptic equations and rearrangements. Annali de la Scuola Normale Superiore di Pisa 4,
697–718 (1976)

40. Talenti, G.: The art of rearranging. Milan J. Math. 84, 105–157 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	First Dirichlet eigenvalue and exit...
	Abstract
	Introduction
	A Glimpse at our Results
	Example
	Outline

	Preliminaries and Comparison Setting
	Polar coordinates and the Laplacian on a Riemannian Manifold
	Model Spaces
	Balance Conditions
	Symmetrization into Model Spaces

	Mean Exit Time Comparison
	Moment Spectrum Comparison
	Estimates for the Poisson Hierarchy and the Moment Spectrum of a Geodesic Ball
	An Estimate for the Torsional Rigidity of a Geodesic R-ball 

	Cheng-type First Dirichlet Eigenvalue Comparison and the Determination of the Moment Spectrum of a Geodesic Ball
	References


