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Abstract. We model the incidence of the COVID-19 disease during the first wave of the epidemic
in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic
map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infec-
tions through a density-independent parameter that entails positive spatial correlation. Pointwise
values of the input parameters are fitted by an optimization procedure. To accommodate the
significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a
random noise is incorporated into the model, whose parameters are calibrated by maximum like-
lihood estimation. The calculated paths of the stochastic response and the probabilistic regions
are in good agreement with the data.

Keywords: COVID-19 infections; Generalized logistic differential equation; Parameter calibra-
tion; Spatial correlation; Stochastic modeling

AMS Classification 2010: 92-10; 34A55; 34F05; 62M30

1. Introduction

Phenomenological (or statistical) models are often useful to reproduce and forecast the course
of an epidemic, when the insight is limited, treatments and interventions rapidly change, and
data are scarce, uncertain and vary abruptly [5, 15]. In these circumstances, some mechanistic
models, based on specific laws of transmission, may not work well.

The main example of phenomenological model is the logistic growth curve. Devised by P.F.
Verhulst in 1838 as an extension of the Malthusian exponential model, it has become an essential
tool in biology, ecology and epidemiology for the fit of growth phenomena. Examples of logistic
epidemic modeling include Ebola [6] and COVID-19 [21]. Generalizations of the logistic equation,
to capture other growth profiles, have been suggested and applied to tumor growth [4, 13, 17, 20]
and to diseases such as SARS [7, 9], dengue fever [10], influenza H1N1 [8], Zika [5], Ebola [15],
and COVID-19 [1, 12,14,22].

Though phenomenological, these models may be extended to incorporate some spatial effects.
Extending logistic models to heterogeneous space may be done by including logistic growth as
the reaction term in a reaction-diffusion partial differential equation model, or by modeling space
as a collection of discrete patches, among which populations can disperse [23]. The second case
yields a coupled system of ordinary differential equations, which is simpler than a mechanistic
compartmental system.

Phenomenological models may also incorporate stochastic effects, to deal with the uncertainty
associated to data collection and the phenomenon itself [19]. For the COVID-19 disease, some
examples include a frequentist approach for the derivative of the logistic map with Gaussian
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error [18], a Bayesian approach for the Gompertz curve [3], and a phenomenological model based
on the spatio-temporal evolution of a Gaussian probability density function [2].

In this paper, the aim is to model COVID-19 data phenomenologically, taking into account
spatial and stochastic effects. We base on daily new infections through the derivative of a gener-
alized logistic map, by generalizing somehow the simple logistic map from [18]. By coupling, we
include a spatial structure in the phenomenological model of differential equations, with a positive
correlation of cases between nearby regions. To our knowledge, such a model has not been utilized
in mathematical epidemiology. Finally, we also incorporate a random noise into the deterministic
solution, in order to capture the highly irregular dynamics of the data. Our case study is the
Spanish autonomous community of Castilla-Leon, divided into 9 regions called provinces. It is the
largest community in Spain by area, it is located in the northwest of Spain, and it has a population
of around 2.5 million. In Figure 1, we show the location of Castilla-Leon among the autonomous
communities of Spain (left map), as well as the nine provinces of Castilla-Leon (right map). In
Table 1, codes for the nine provinces are shown, as well as their populations (year 2019, approxi-
mated to the nearest thousands). Our aim is to model the first wave of the COVID-19 epidemic,
from 1st March 2020 to 22nd June 2020 (114 days), with recorded data on daily new infections
for the provinces. The cases have been retrieved from the open data portal of Castilla-Leon:
https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html.

Figure 1. Location of Castilla-Leon among the autonomous communities of
Spain (left map), and the nine provinces of Castilla-Leon (right map). Source:
Mathematica R©, built-in function GeoGraphics.

Province Index Inhabitants
Leon 1 462 000

Palencia 2 160 000
Burgos 3 355 000
Soria 4 89 000

Segovia 5 154 000
Avila 6 159 000

Salamanca 7 332 000
Zamora 8 173 000

Valladolid 9 520 000
Table 1. The nine provinces of Castilla-Leon, their codes and populations.

https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html
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2. Deterministic model

Given an index i ∈ {1, . . . , 9} that identifies the province, let Pi ∈ [0, 1] be the proportion of
cumulative infections and pi ∈ [0, 1] be the proportion of new infections, scaled from the total
population Ni. These proportions depend on the day t: Pi ≡ Pi(t) and pi ≡ pi(t), t ≥ 0. As
suggested in [18], the relation pi = P ′i is assumed (the prime denotes the derivative). The key
idea is that the differential equation model is set for P1, . . . , P9, while the parameter calibration
is conducted for p1, . . . , p9 (scaled daily new infections) to avoid serial correlation in errors for
cumulative cases and biased parameters.

Within-province dynamics may be governed by a generalized logistic differential equation model
of the form

P ′i = aiPi

(
1−

(
Pi
Ki

)bi)
, i = 1, . . . , 9. (2.1)

The parameters are the growth rate ai > 0, the local asymptotic equilibrium Ki > 0, and the
flexibility coefficient bi > 0, which are assumed to be time invariant. The saturation effect from Ki

implicitly captures public health interventions, without complex mechanistic assumptions about
the transmission process. The parameter bi allows for more flexible S-shaped growth profiles than
the classical logistic formulation by Verhulst. It reflects the asymmetry of the curve of daily new
infections with respect to the peak (new infections rise quicker than decrease). When bi = 1 and
bi → 0, the logistic and the Gompertz curves are retrieved, respectively. The reader may consult
an extensive list of references for the generalized and classical logistic equations, with a variety
of applications, in the Introduction section.

Spatial structure, in which individuals interact more intensely with neighbors, may be incor-
porated as follows. Given two provinces i and j, we write i ∼ j whenever they are adjacent. The
complete phenomenological model is then the following:

P ′i = aiPi

(
1−

(
Pi
Ki

)bi)
+D

∑
j 6=i
j∼i

P ′j , i = 1, . . . , 9. (2.2)

To couple the provinces, we have related the daily new infections through a density-independent
parameter D > 0 that entails positive spatial correlation: when some Pj increases rapidly at
t, for j ∼ i, then Pi augments quicker too. Again, no mechanistic assumptions are made.
To construct (2.2), some ideas were taken from the theory of disperse populations in discrete
patches [23]. After isolating P ′1, . . . , P

′
9 in (2.2) symbolically, each P ′i is written as a linear com-

bination of a1P1(1− (P1/K1)
b1), . . . , a9P9(1− (P9/K9)

b9); this is somehow similar to the coupled
model investigated a few decades ago in [11] from the system dynamics viewpoint. In contrast
to the local model (2.1), which belongs to the class of Bernoulli ordinary differential equations,
the coupled system (2.2) does not have a closed-form solution; numerical methods are required
for its resolution.

The next section details the calibration of the 28 parameters in the coupled generalized logistic
model (2.2).

2.1. Calibration of the deterministic model. The initial conditions Pi(0) in (2.2) are fixed
as the initial data; if any of them is 0, then Pi(0) is set as 1/Ni (one infected individual). The
28 parameters are fitted by least-squares optimization for {pi(t)}i=1,...,9, t=0,...,113 (scaled daily new
infections), as recommended by [18]:

min
{aj ,bj ,Kj}9j=1, D

9∑
i=1

113∑
t=0

(pi(t)− di(t))2 . (2.3)

Here di(t) denotes the observed datum. This minimum gives a measure of how good the fit is.
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For computations, Mathematica R© has been used. The system of ordinary differential equa-
tions (2.2) is parametrically solved with the built-in function ParametricNDSolveValue, with the
option Method → {”EquationSimplification” → ”Residual”} to isolate the derivatives. The min-
imization is carried out with the routine FindMinimum. This function was executed with 800
iterations, for 7.5 hours, and the algorithm converged. The estimates of the parameters that
minimize (2.3) are presented in Table 2. The powers bi are closer to 0 than to 1, so the model for
each province is more similar to a Gompertz curve than to a classical logistic curve. The coeffi-
cients Ki provide the maximum level of infection at the first wave under no neighboring-provinces
effect; for example, in Leon it would have been 1.95% and in Soria 4.39%. The value of (2.3) is
0.0000498. It is observed that D > 0, so there is indeed a spatial effect. In fact, if D = 0 and local
generalized logistic curves are fitted for each province, then the value of (2.3) becomes 0.0000523,
that is, 5.06% greater. When D = 0, the provinces for which the least-squares error increases
are Zamora, Palencia, Avila and Valladolid, in decreasing order of magnitude; this means that
these four provinces were the most susceptible to their neighbors during the first wave of the
epidemic. Of course, these assertions on D are conditional on the validity of the generalized
logistic model (2.1) to describe within-province dynamics, so that any deviation of it is due to
spatial factors; in general, the validity of the model is a necessary assumption when performing
sensitivity analysis.

Parameter Estimate Parameter Estimate
D 0.130 b5 0.0979
a1 0.939 b6 0.0421
a2 0.963 b7 0.0883
a3 0.922 b8 0.0262
a4 1.00 b9 0.00606
a5 0.900 K1 0.0195
a6 0.874 K2 0.0243
a7 0.927 K3 0.0291
a8 0.362 K4 0.0439
a9 0.411 K5 0.0381
b1 0.0724 K6 0.0347
b2 0.0330 K7 0.0284
b3 0.0213 K8 0.0347
b4 0.0492 K9 0.0429

Table 2. Parameter estimates of (2.2) that minimize (2.3).

In Figure 2, the fit of qi(t) = pi(t)Ni to the data is plotted. The deterministic model renders
a smooth, averaged fit. However, the abrupt variation in consecutive days is not captured, and
this is the reason of incorporating stochasticity in the following section.

3. A stochastic model

In order to capture the highly irregular dynamics of the data, stochasticity is incorporated into
the coupled generalized logistic model (2.2) [19]. By inspecting the deterministic fit, a Gaussian
white noise error is added to the scaled number of daily new cases pi(t):

zi(t) = pi(t) + (pi(t))
λi ηi(t). (3.1)

Here the power λi > 0 is independent of t, the noise ηi(t) ∼ Normal(0, σ2
i ) is an uncorrelated

process, with variance σ2
i > 0 independent of t, and zi(t) is the new stochastic response. This new

response is highly irregular: it is not jointly measurable nor right/left-continuous on any interval.
The term (pi(t))

λi controls the dispersion of the random error; the higher the value of pi(t), the
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Figure 2. Fit of qi(t) = pi(t)Ni to the number of daily new cases, by province i = 1, . . . , 9.
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larger is the variability the error exhibits. The mean of (3.1) is the output of the deterministic
model (2.2).

3.1. Calibration of the stochastic model. Given the estimates of D, ai, bi and Ki from
Table 2, both parameters λi and σi of the stochastic model (3.1) are calibrated for each province
i ∈ {1, . . . , 9} by means of maximum likelihood [16]. The likelihood of the observed time series
di = {di(t) : t = 0, . . . , 113} is given by

L(di|λi, σi) =
113∏
t=0

πNormal(pi(t),(pi(t))
2λiσ2

i )
(di(t)),

where π denotes the probability density function. By maximizing it,

max
λi,σi

113∏
t=0

πNormal(pi(t),(pi(t))
2λiσ2

i )
(di(t)),

the infinitesimal probability around di,

Pr{datum ∈ [di(t), di(t) + δdi(t)], t = 0, . . . , 113} = L(di|λi, σi) δdi(0) · · · δdi(113),

is also maximized. After applying − log, the maximization problem is more conveniently given as

min
λi,σi

[
λi

113∑
t=0

log pi(t) + 114 log σi +
113∑
t=0

(datoi(t)− pi(t))2

2 (pi(t))
2λi σ2

i

]
.

We use Mathematica R© with the built-in instruction NMinimize, in the region λi ∈ (0, 1) and
σi ∈ (0, 1). If some pi(t) is a small negative number or zero, it is changed to 10−8. In Table 3,
the optimal values of λi and σi are reported. These are then plugged in (3.1).

Province i 1 2 3 4 5
λi 0.0701 0.549 0.757 0.539 0.00168
σi 0.000365 0.0127 0.0871 0.0216 0.000345

Province i 6 7 8 9
λi 0.645 0.0863 0.837 0.764
σi 0.0399 0.000586 0.223 0.0943

Table 3. Optimal values of λi and σi for the stochastic model.

In Figure 3, the fit of the stochastic model is illustrated. We have taken the stochastic process
max{zi(t)Ni, 0}, whose statistics are determined with Monte Carlo simulation. We show the mean
(which is approximately equal to the deterministic fit) and probabilistic intervals, as well as an
example of a randomly realizable path. One appreciates the similarity in pattern of the realizable
path and the data, which justifies the need of stochasticity.

4. Conclusions

As shown in this paper, a phenomenological model may be useful to capture faithfully the
dynamics of an epidemic. In the case study of Castilla-Leon (Spain) and the first wave of COVID-
19, we have used a coupled system of generalized logistic differential equations. The coupling
comes from the spatial effect due to neighboring provinces of Castilla-Leon. The calibration of
the 28 parameters is based on the daily new infections through the derivative of the system.
The process is computationally intensive, but optimal parameters can be obtained at the end.
The model yields a smooth, averaged curve that follows the pattern of the data. However,
stochasticity is needed to obtain realizable paths that resemble the abrupt changes of the data.
It is incorporated into the model via a random noise error, whose parameters are determined by
maximum likelihood estimation.
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Figure 3. Fit of the stochastic model, for each province i = 1, . . . , 9. The mean
and probabilistic intervals are shown, as well as an example of a randomly realizable
path.
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The main limitation when fitting models of coupled differential equations rigorously is the
time to execute the optimization procedure. Once the optimal parameters are available, it is
simple to incorporate a random noise and to estimate the parameters of dispersion. Several
extensions of the present paper may be devised, but constrained to optimizing parameters of
coupled differential equations with higher efficiency. This is not easy, due to the well-known
curse of dimensionality. Future works could be based on dealing with several waves of infection
at once (through a sum of logistic responses), on estimating the deterministic and random error
parameters at once (through an intensive likelihood maximization procedure), on dividing the
space into finer subregions, or on adding mechanistic processes of infection. Nonetheless, it is
important to emphasize that, sometimes, rather than augmenting the complexity of a simple
but satisfactory model with mechanistic considerations, it might be better to treat the error as
random, and to apply a stochastic fit.
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(Acció 3.2 del Pla de Promoció de la Investigació de la Universitat Jaume I per a l’any 2021).
Jorge Mateu has been supported by the grant PID2019-107392RB-I00 from Spanish Ministry of
Science and the grant AICO/2019/198 from Generalitat Valenciana.

Conflict of Interest Statement

The authors declare that there is no conflict of interests regarding the publication of this article.

Data Availability Statement

The infection cases have been retrieved from the open data portal of Castilla-Leon: https:

//datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html

References

[1] Aviv-Sharon, E. and A. Aharoni (2020), Generalized logistic growth modeling of the COVID-19 pandemic in
Asia, Infectious Disease Modelling, 5, 502–509.
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