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Abstract
When exploring the literature, it can be observed that the operator obtained when
applying Newton-like root finding algorithms to the quadratic polynomials z2 − c

has the same form regardless of which algorithm has been used. In this paper, we
justify why this expression is obtained. This is done by studying the symmetries of
the operators obtained after applying Newton-like algorithms to a family of degree d

polynomials p(z) = zd −c. Moreover, we provide an iterative procedure to obtain the
expression of new Newton-like algorithms. We also carry out a dynamical study of
the given generic operator and provide general conclusions of this type of methods.

Keywords Iterative methods · Newton-like algorithms ·
Complex dynamics of rational functions
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1 Introduction

Numerical methods allow finding solutions of non-linear equations that cannot be
solved by algebraic procedures. The development and improvement of these methods
and their behaviour constitute a field of intense research and a vast literature related to
this topic can be found (see, for example [21, 24, 25, 28] [26] and references therein).

Iterative methods solve non-linear equations by generating successive approxima-
tions that may eventually converge to the solution. The so-called one-point-methods
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(see [28]) start with an initial guess of the solution to proceed iteratively so that each
approximation is used to obtain the next one, until a desired level of convergence is
reached. That is, an approximation of the solution x∗ of an equation f (x) = 0 can
be found by applying an iterative scheme of the form:

xk+1 = φ(xk), k = 0, 1, 2, ...

where xk is an approximation of x∗ and φ is the iteration operator. The function φ

may depend on derivatives of f in order to increase the order of convergence.
The simplest and most popular method using this scheme is the well-known

Newton’s method, also known as Newton–Raphson’s method (see [4]), given by:

xk+1 = Nf (xk) := xk − f (xk)

f ′(xk)
.

To improve the efficiency of one-point methods, multi-point methods were intro-
duced. For them, each step is not exclusively based on the previous iteration, but also
includes information of intermediate evaluations. These schemes, mainly variants of
Newton’s method, have recently gained interest because they provide root-finding
algorithms which improve both convergence order and computational efficiency in
comparison with one-point ones. Such advantages allow to optimise computational
resources. However, the radii of convergence which ensure that the solution of the
method is correct decrease when the order of the method increases (see [23], for
example).

One way to assess the balance between benefits and drawbacks is to study the
dynamical behaviour of these methods. By considering a discrete dynamical system
and performing a qualitative study of it, we can obtain dynamical spaces that identify
the regions where the method displays good behaviour. Moreover, if the method has
parameter dependence constituting a family of methods, we can plot the correspond-
ing parameter spaces to find the members of the family with better behaviour (see [6,
14], for example).

The first works in this sense ([19], for example) show the dynamical planes of
the best known numerical methods acting on polynomials of degree two or three.
In [14], the authors began the dynamical study of the one-parameter family called
Chebyshev-Halley.

In the present paper, we study multipoint Newton-like methods, that is, methods
where the intermediate evaluations are variations of Newton’s scheme.

As can be observed in the literature (see [2, 5, 7, 8, 12–14, 20, 30], for example),
when Newton-like algorithms are applied to the quadratic polynomials p(z) = z2−c,
the operator obtained is conjugated (via a Möbius map that sends the ±√

c to 0 and
∞) with a rational map which has the following generic expression:

O(z) = zn ak + ak−1z + ... + a1z
k−1 + zk

1 + a1z + ... + ak−1zk−1 + akzk
. (1)

The main goal of this paper is to justify why this kind of operator is obtained
regardless of the Newton-like algorithm used. This is done in Theorem 2.7. This
theorem follows from a more general symmetry property of the iterative schemes
obtained from Newton-like algorithms applied to the degree d polynomials p(z) =
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zd − c (Theorem 2.2). The symmetry was noted by Chun et al. [11], but they did not
draw conclusions.

The idea of how to justify that operator (1) is obtained when applying Newton-like
algorithms to p(z) = z2 −c is the following. In Theorem 2.2, we describe a recurrent
procedure which can be used to describe the operators obtained from Newton-like
root-finding algorithms when applied to the degree d polynomials p(z) = zd − c.
Moreover, we prove that the maps obtained from Theorem 2.2 are symmetric with
respect to rotation by a dth root of the unity. By restricting to d = 2 and applying a
conjugacy, we conclude (Theorem 2.7) that the operators obtained for the different
families of Newton-like methods when they are applied on quadratic polynomials are
given by (1).

In Section 3, we carry out a dynamical study of the operator (1) in order to obtain
generic conclusions of this type of methods. In Proposition 3.4, we show that the
points z = 0, z = ∞ and z = 1 are always fixed points of this operator and z = −1
is also a fixed point if n + k is odd. The points z = 0 and z = ∞ correspond to
the zeros of the quadratic polynomial, which are superattracting fixed points of local
degree n (the numerical methods have order of convergence n to the roots). In order
to establish the existence of stable behaviour other than the basins of attraction of the
roots, we also study the sets of parameters where z = 1 and z = −1 are attracting
fixed points (Propositions 3.5 and 3.6). This study is done under the extra hypothesis
that the relation between the coefficients of the rational function and the parameter
of the family is linear, which is a common phenomenon in the literature.

Section 4 is devoted to display some known examples of Newton-like algorithms
that correspond to families with one free critical point, which allows us to draw
the parameter planes of the families. The operators of this section follow (1). It
is also observed that, under given conditions, two different methods whose opera-
tors, expressed as (1), have the same values of n and k present similar dynamics
(Section 4.1). Moreover, in Section 4.3, we study the particular case in which n = k

and all the coefficients of the rational function, except ak , are real.
Finally, we want to emphasise that the functions introduced in Theorem 2.2 can

be used to generate new Newton-type algorithms for solving nonlinear equations.
In fact, in Section 2, we show that the algorithms of the most usual methods, such
as Newton, Traub, Halley, Chebyshev and Jarratt, are obtained from the functions
introduced in Theorem 2.2. Although we do not intend to carry out an exhaustive
verification, it is easy to extend this assertion to other Newton-like algorithms.

In the construction of new Newton-type algorithms, parameters must be intro-
duced in the iterative procedure applied to functions given in Theorem 2.2. These
parameters must be adjusted so that the method obtained has the desired order of
convergence.

We also want to emphasise that the main goal of this paper is to study general
properties of Newton-like algorithms and to make a qualitative study of them. The
construction of methods using the iterative procedure provided by Theorem 2.2 is the
aim of a coming paper.

For the sake of completeness, in Section 1.1, we present some of the best known
Newton-like methods of different degree and in Section 1.2, we recall some basic
concepts of complex dynamics.
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1.1 Newton-likemethods

As mentioned before, multi-point iteration methods were introduced to improve the
order of convergence and the efficiency of iterative methods and they are described
by means of the expressions w1(xk), w2(xk), ..., wn(xk). The iteration function φ,
defined as

xk+1 = φ (xk, w1(xk), w2(xk), ..., wn(xk))

is called a multi-point iteration function without memory.
The simplest examples are Steffensen’s method, with w1(xk) = xk + f (xk):

xk+1 = xk − f (xk)
2

f (xk + f (xk)) − f (xk)

and Traub-Steffensen’s method, with w1(xk) = xk + γf (xk):

xk+1 = S(xk) := xk − γf (xk)
2

f (xk + γf (xk)) − f (xk)
.

There are many multi-point methods and we do not pretend here to do an exhaus-
tive study of them; we only point out those that we consider best known. A more
comprehensive study can be seen in [24, 25] and [28], for example.

Following the summary provided in [26], different two-step methods can be built
by using Newton’s method as pre-conditioner, such as Traub’s scheme [28]:

yk = xk − f (xk)

f ′(xk)

xk+1 = yk − f (yk)

f ′(xk)

or Ostrowski’s scheme [24]:

yk = xk − f (xk)

f ′(xk)

xk+1 = yk − f (yk)

f ′(xk)

f (xk)

f (xk) − 2f (yk)
.

The latest was generalised by King [18], who defined the scheme:

yk = xk − f (xk)

f ′(xk)

xk+1 = yk − f (yk)

f ′(xk)

f (xk) + βf (yk)

f (xk) + (β − 2)f (yk)
, (2)

obtaining a family of iterative methods depending on one parameter. It was shown by
Chun et al. [11] that the best parameter is β = 0.
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If instead of using the Newton’s method as the first step, the so-called Jarratt
method step is used, a method of order of convergence four is obtained. The resulting
scheme is called Jarratt method [16]:

yn = xn − 2

3

f (xn)

f ′(xn)

xn+1 = xn − Jf (xn)
f (xn)

f ′(xn)
(3)

where:

Jf (xn) = 3f ′(yn) + f ′(xn)

2 (3f ′(yn) − f ′(xn))
.

From the two-step methods, other three-step methods can be obtained, with
general scheme:

yk = xk − f (xk)

f ′(xk)

zk = φ(xk, yk)

xk+1 = zk − f (zk)

f ′(zk)
.

Some examples of schemes obtained using this procedure are the sixth-order
convergence method deduced by Wang et al. [29],

xn+1 = xn − Jf (xn)
f (xn)

f ′(xn)

yn = xn − 2

3

f (xn)

f ′(xn)

Jf (xn) = 3f ′(yn) + f ′(xn)

6f ′(yn) − 2f ′(xn)
,

the fourth-order family of iterative method introduced by Amat et al. in [1],

uf (z) = f (xn)

f ′(xn)

hf (z) =
f ′

(
z − 2

3uf (z)
)

− f ′(z)

f ′(z)

J (z) = z − uf (z) + 3

4
uf (z)hf (z)

1 + βhf (z)

1 +
(

3
2 + β

)
hf (z)

, (4)
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and the family of sixth-order methods defined by Chun [10],

yn = xn − 2

3

f (xn)

f ′(xn)

zn = xn − Jf (xn)
f (xn)

f ′(xn)

xn+1 = zn − f (zn)

α(zn − xn)(zn − yn) + 3
2Jf (xn)f ′(yn) +

(
1 − 3

2Jf (xn)
)

f ′(xn)
.

One of the best known Newton-like method corresponds to the one-parameter
family called Chebyshev-Halley.

yk = xk − f (xk)

f ′(xk)

Lf (xk) = f (xk)f
′′(xk)

(f ′(xk))2

xk+1 = yk − 1

2

Lf (xk)

1 − αLf (xk)

f (xk)

f ′(xk)
. (5)

This family includes the Chebyshev’s method when the parameter α is equal to 0,
Halley’s scheme for α = 1/2 and Newton’s method when α tends to ∞. In [14], the
authors began the dynamical study of this family applied on arbitrary polynomials of
degree two.

This type of dynamical study has been extended to other families of numerical
methods, such as the King family [12] and the c-family [7]. Nowadays, there is a
wide literature expanding this study to methods with higher order of convergence
(see, for example [2, 11, 17] and references therein). In these papers, the dynamical
behaviour of these families applied on quadratic polynomials is considered. Dynam-
ical studies of methods, or families of numerical methods, applied on polynomials of
higher degree can be found (see [5, 6, 15], for example).

1.2 Basic concepts of complex dynamics

Before starting the dynamical study of these operators, we briefly recall the basic
concepts of complex (as opposed to real) dynamics that we use in this paper. For a
more detailed introduction to the topic of complex dynamics, we refer to [22].

Given a rational map R : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere, we con-
sider the dynamical system given by the iterates of R. We say that a point z0 ∈ Ĉ is
fixed if R(z0) = z0 and periodic of period p if Rp(z0) = z0, where p is minimal. The
multiplier of a fixed point is given by λ(z0) = R′(z0). Analogously, the multiplier of
a periodic point is given by λ(z0) = (Rp)′(z0) = R′(z0)·R′(R(z))·. . .·R′(Rp−1(z)).
A fixed or periodic point z0 is called attracting if |λ(z0)| < 1 (superattracting if
|λ(z0)| = 0), repelling if |λ(z0)| > 1 and indifferent if |λ(z0)| = 1. An indiffer-
ent point is called parabolic if λ(z0) = e2πip/q , where p, q ∈ N. All attracting
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and parabolic fixed points have a basin of attraction associated to them which con-
sists of the set of points which converge to z0 under iteration of R. Analogously,
every attracting or parabolic periodic point z0 has a basin of attraction associ-
ated to it which consists of the set of points which converge to the cycle 〈z0〉 =
{z0, R(z0), · · · , Rp−1(z0)}.

The dynamics of R provides a totally invariant partition of the Riemann sphere.
The Fatou set F(R) consists of the set of points z ∈ Ĉ for which the family of iterates
of R(z), {R(z), R2(z), . . . , Rn(z), . . .}, is normal (or equivalently equicontinuous)
in some open neighbourhood of z. The Fatou set is open and consists of the set of
points for which the dynamics presents stable behaviour. Its complement, the Julia
set J (f ), is closed and consists of the set of points which present chaotic behaviour.
The connected components of the Fatou set, called Fatou components, are mapped
amongst themselves under iteration of R. In view of Sullivan’s No-Wandering The-
orem (see [27]), all Fatou components are either periodic or preperiodic. Every
periodic Fatou component either belongs to the basin of attraction of an attracting
or parabolic point, or is a simply connected rotation domain (a Siegel disk), or is a
doubly connected rotation domain (a Herman ring). Moreover, periodic Fatou com-
ponents of rational maps can be related to critical points, i.e. points where R′(z) = 0.
Indeed, every cycle of attracting or parabolic Fatou components contains, at least, a
critical point. On the other hand, Siegel disks and Herman rings have critical points
whose orbits accumulate on their boundaries.

Along the paper, we use these concepts to draw both dynamical and parameter
planes. Dynamical planes show the dynamics of points in a given range. They are
drawn by creating a grid of points in the specified range. Afterwards, the point is
iterated up to 150 times. If the point converges to a root (the distance to the root
is smaller than 10−4), the iteration stops and we use a scaling from red (fast con-
vergence), to yellow, to green, to blue and to grey (slow convergence) to draw the
point. If after 150 iterates the point has not converged to a root, the point is plotted in
black.

When a family depends on parameters, it also makes sense to draw parameter
planes. Parameter planes describe the possible dynamics of a map depending on
the parameter. Since all Fatou components of rational maps are related to critical
points, in order to draw parameter planes, it is enough to study the orbits of the
critical points, the critical orbits. In this paper, we restrict our drawings to families
which only have one free critical orbit, i.e. an orbit of a critical point other than
the superattracting fixed points of the method, up to symmetry (compare Section 2).
Therefore, in order to draw a parameter plane, we restrict to a grid of points in a given
range of parameters and iterate a free critical point. If the orbit of the critical point
converges to a root (the distance to the root is smaller than 10−4), we conclude that
there can be no stable behaviour other than convergence to the roots. In that case, the
iteration stops and we use a scaling from red (fast convergence), to yellow, to green,
to blue and to grey (slow convergence) to draw the point. If after 150 iterates the point
has not converged to a root, the point is plotted in black. These points correspond to
parameters for which there might be other stable behaviour than convergence to the
roots.
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2 Symmetries of operators

Symmetries in the dynamical planes of Newton-like root-finding algorithms applied
on polynomials zd −c have been observed for different families (see, e.g. [6] and [9]).
In this section, we prove the need for this symmetry to appear and use it to obtain
the operator that appears by applying Newton-like root-finding algorithms on degree
2 polynomials. We start studying the families of maps presenting these symmetry
properties and we show that these maps which can be used to write the expressions
of Newton-like root-finding algorithms. First, we introduce the concepts of λd -odd
and λd -even.

Definition 2.1 Let d ≥ 2. We say that a map f : Ĉ → Ĉ is λd -odd if f (λz) = λf (z)

for all λ ∈ C such that λd = 1 and all z ∈ C. Respectively, we say that f is λd -even
if f (λz) = f (z).

Notice that λ2-odd and λ2-even maps are, precisely, odd and even maps (the only
second roots of the unity are 1 and -1). The dynamics of a λd -odd map is symmetric
with respect to rotation by dth roots of the unity. Indeed, λd -odd maps are conjugated
with themselves by multiplication with a dth-root of the unity: f (z) = λ−1f (λz).
We refer to this property as the symmetry of λd -odd maps. This symmetry is relevant
since it allows us to decrease the degrees of freedom of λd -odd maps. It is easy to
show that if κ �= 0, ∞ is a critical point of a λd -odd map f , then the points λdκ ,
where λd = 1, are also critical points of f . Moreover, their dynamics is tied by the
symmetry, so it is enough to control the dynamics of a single critical orbit to know
the asymptotic behaviour of d different critical points. The next proposition shows
different ways in which we can use the polynomials p(z) = zd − c, c ∈ C \ {0}, to
obtain λd -odd maps.

Theorem 2.2 Let p(z) = zd − c, where d ≥ 2, c ∈ C \ {0}. Let g, h : Ĉ → Ĉ be
λd -odd maps and let H : Ĉ → Ĉ be a λd -even map. Then, the following maps are
λd -odd:

i) (the identity) f (z) = z ;
ii) (the linear combination) f (z) = a · g(z) + b · h(z), where a, b ∈ C;
iii) (the composition) f (z) = g(h(z));
iv) f (z) = p(g(z))

p′(h(z))
;

v) f (z) = h(z) · H(z). In particular, H(z) can be obtained as follows:

v.1) H(z) = ∏k
i=1

p(ni )(gi (z))

p(mi )(hi (z))
is λd -even, where p(n) denotes the nth derivative

of p, k ≥ 1, 0 ≤ ni, mi ≤ d ,
∑k

i=1mi = ∑k
i=1ni and gi, hi : Ĉ → Ĉ are

λd -odd maps.

v.2) H(z) =
k∑

i=1
ai ·p(n)(gi (z))

	∑
i=1

bi ·p(n)(hi (z))

, where n ≥ 0, p(n) denotes the nth derivative of p,

k, 	 ≥ 1, ai, bi ∈ C \ {0} and gi, hi : Ĉ → Ĉ are λd -odd maps.
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v.3) H(z) = a1 · H1(z) + a2 · H2(z), where H1, H2 : Ĉ → Ĉ are λd -even and
a1, a2 ∈ C.

v.4) H(z) = H1(z)/H2(z), where H1, H2 : Ĉ → Ĉ are λd -even.

Proof The cases i), ii) and iii) are straightforward. We prove now case iv). Let f (z) =
p(g(z))/p′(h(z)). Using that λd = 1 and λd−1 = λ−1, we have

f (λz) = p(g(λz))

p′(h(λz))
= p(λg(z))

p′(λh(z))
= (λg(z))d − c

d(λh(z))d−1
= λdg(z)d − c

d · λd−1h(z)d−1
= g(z)d − c

d · λ−1h(z)d−1

= λ
g(z)d − c

d · h(z)d−1
= λf (z).

For v), the fact that f (z) = h(z) · H(z) is λd -odd follows directly from the def-
inition of λd -odd and λd -even. We have to see that the proposed functions H(z) are
λd -even. We start with

k∏
i=1

p(ni) (gi(z))

p(mi) (hi(z))
.

Notice that if ni = 0 (or mi = 0) then

p(0) (λgi(z)) = (λgi(z))
d − c = p(0)(gi(z)).

If 0 < ni ≤ d , then

p(ni) (λgi(z)) = d!
(d − ni)! (λgi(z))

d−ni = λ−ni p(ni ) (gi(z)) .

Analogously, if 0 < mi ≤ d , then

p(mi) (λgi(z)) = λ−mi p(mi) (gi(z)) .

The same equalities work if we replace gi by hi . Then, the fact that H is λd -even
follows then easily from

∑k
i=1 mi = ∑k

i=1 ni .
Similarly, the fact that the function H in v.2) is λd -even holds easily using that

p(n) (λgi(z)) = λ−np(n) (gi(z)). The cases v.3) and v.4) follow directly from the
definition of λd -even.

Remark 2.3 An important property of the maps constructed in Theorem 2.2 is that
they can be used to obtain new Newton-like algorithms.

Another important feature of the maps constructed in the previous Theorem is that
they generally have z = ∞ as a simple fixed point: f is a rational map and the degree
of its numerator equals the degree of its denominator plus 1. In the next proposition,
we describe how this property is preserved under the different constructions in Theo-
rem 2.2. The proof is straightforward by computing the degree of the numerator and
the denominator of the resulting maps.
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Proposition 2.4 Let p(z) = zd − c, where d ≥ 2, c ∈ C \ {0}. Let g, h : Ĉ → Ĉ

be two maps that have z = ∞ as simple fixed point. Then, the maps f (z) = g(h(z))

and f (z) = p(g(z))
p′(h(z))

have z = ∞ as simple fixed point. Moreover:

i.) The map f (z) = a · g(z) + b · h(z), where a, b ∈ C, has z = ∞ as simple
fixed point unless the linear combinations cancel out the highest order term of
the numerator.

ii.) The map f (z) = h(z) · H(z), where H : Ĉ → Ĉ, has z = ∞ as sim-
ple fixed point provided that H(z) is a rational map whose numerator and the
denominator have the same degree.

Remark 2.5 We can analyse whether the different options for H in Theorem 2.2
v) satisfy the conditions of Proposition 2.4 ii). The numerator and denominator of
the map H obtained from v.1) have the same degree. The map obtained from v.2)
also satisfies the property provided that the lineal combinations do not decrease the
degree at the numerator or the denominator. Analogously, the map H in v.3) satisfies
the property provided that H1 and H2 also do and there are no simplifications of the
higher order term at the numerator. Finally, the numerator and denominator of the
map H in v.4) have the same degree provided that H1 and H2 also do.

Since the base map used in Theorem 2.2, f (z) = z (the identity map), has z = ∞
as simple fixed point, we can conclude that the maps obtained from Theorem 2.2
have z = ∞ as simple fixed point provided that the linear combinations given by ii),
v.2) and v.3) keep the maximal degree. Otherwise, the degree of z = ∞ as a fixed
point may increase (it becomes a superattracting fixed point) or decrease (z = ∞ is
no longer a fixed point).

As it has been stated, the different steps in Theorem 2.2 are relevant for root-
finding algorithms since they can be used to obtain many different methods. For
instance:

• Newton’s method Np(z) = z − p(z)/p′(z) can be obtained from i), ii) and iv);
• Traub’s method Tp(z) = Np(z) − p

(
Np(z)

)
/p′(z) can be obtained from i), ii)

and iv);
• Chebyshev’s method Cp(z) = z −

(
1 + 1

2L(z)
)

p(z)/p′(z), where L(z) =
p(z)p′′(z)/p′(z)2, can be obtained from i), ii), iv) and v.1).

• Halley’s method Hp(z) = z − L(z)p(z)/p′(z), where L(z) =(
1 − p(z)·p′′(z)

2p′(z)2

)−1
, can be obtained from i), ii), iv) and v) (L(z) is obtained

combining v.1), v.3) and v.4)).
• Jarratt’s method (see (3)) can be obtained from i), ii), iii), iv) and v.2).

Let f be a map which is obtained by applying a root finding algorithm that can be
built using Theorem 2.2 with p(z) = z2 − c. Then, f is odd (by definition λ2-odd
maps are odd) and f (±√

c) = ±√
c (the roots need to be attracting fixed points of

f ). Following Proposition 2.4, we may also assume that f (∞) = ∞. By taking a
conjugation τ which sends

√
c to ∞, −√

c to 0 and ∞ to 1, we obtain a new map f̃
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with the same dynamics (we just move the roots to 0 and ∞). In the next proposition,
we describe some properties of f̃ .

Proposition 2.6 Let c ∈ C \ {0} and let f : Ĉ → Ĉ be such that f (
√

c) = √
c,

f (−√
c) = −√

c, f (∞) = ∞ and f (−z) = −f (z) for all z ∈ C. Let τ(z) =
(z + √

c)/(z − √
c). Then the map f̃ (z) = τ ◦ f ◦ τ−1(z) satisfies f̃ (1) = 1 and

ι ◦ f̃ ◦ ι−1(z) = f̃ (z), where ι(z) = 1/z.

Proof Notice that τ−1(z) = √
c(z + 1)/(z − 1) and ι(z) = ι−1(z). Let ς(z) = −z.

We have

ς ◦ τ−1 ◦ ι(z) = −√
c

1/z + 1

1/z − 1
= −√

c
1 + z

1 − z
= √

c
1 + z

z − 1
= τ−1(z);

ι ◦ τ ◦ ς(z) = 1
−z+√

c

−z−√
c

= −z − √
c

−z + √
c

= z + √
c

z − √
c

= τ(z).

Using that f (z) = ς ◦ f ◦ ς(z) we conclude:

ι◦ f̃ ◦ι−1(z) = ι◦τ ◦f ◦τ−1 ◦ι(z) = ι◦τ ◦ς ◦f ◦ς ◦τ−1 ◦ι(z) = τ ◦f ◦τ−1(z) = f̃ .

In Proposition 2.6, we have proved that f̃ satisfies f̃ (1) = 1 and ι◦f̃ ◦ι(z) = f̃ (z),
where ι(z) = 1/z. In the next theorem, we provide a classification of all rational
maps satisfying these properties.

Theorem 2.7 Let R : Ĉ → Ĉ be a degree n rational map and let ι(z) = 1/z. Then,
the following items are equivalent:

1. R(z) satisfies (i) R(1) = 1 and (ii) ι ◦ R ◦ ι−1(z) = R(z).

2. R(z) =
n∏

i=1

z−ri
1−riz

, where ri ∈ C, i = 1, ..., n.

3. R(z) = an+an−1z+...+a1z
n−1+a0z

n

a0+a1z+...+an−1z
n−1+anzn = P(z)

P̂ (z)
, where ai ∈ C, i = 0, ..., n.

Proof 1 ⇒ 2) As R(z) is a degree n rational map, it can be written as:

R(z) = C
(z − r1) · ... · (z − rn1)

(z − s1) · ... · (z − sn2)
, (6)

where at least n1 = n or n2 = n and C ∈ C. Since ι−1(z) = ι(z), we have that:

ι ◦ R ◦ ι−1(z) = ι (R (1/z)) = ι

(
C

( 1
z

− r1) · ... · (1/z − rn1)

(1/z − s1) · ... · (1/z − sn2)

)

= 1

C

(1/z − s1) · ... · (1/z − sn2)

(1/z − r1) · ... · (1/z − rn1)
= R(z).
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From this expression and comparing with (6), we have that:

z = 1/si, i = 1, ..., n2, are roots of R

z = ri, i = 1, ..., n1, are roots of R

}
=⇒ n2 = n1 = n and

1

si
= rj for some j .

Let us write 1
si

= ri, i = 1, ..., n. Then, we have that:

R(z) = 1

C

(1/z − s1) · ... · (1/z − sn)

(1/z − r1) · ... · (1/z − rn)
= 1

C

(1 − zs1) · ... · (1 − zsn)

(1 − zr1) · ... · (1 − zrn)
(7)

Denominators in (6) and (7) are two degree n polynomials p(z) and q(z) with the
same roots (including multiplicity), then p(z) = Kq(z) with K ∈ C and

R(z) = C
(z − r1) · ... · (z − rn)

K(1 − zr1) · ... · (1 − zrn)
.

Since R(1) = 1, we have that C
K

= 1. We obtain

R(z) = (z − r1) · ... · (z − rn)

(1 − zr1) · ... · (1 − zrn)
.

2 ⇒ 3) For this implication, we use the induction method. This is obviously true
for n = 1:

(z − a)

(1 − az)
.

Let us suppose that it is true for n − 1:

an−1 + an−2z + ... + a1z
n−2 + a0z

n−1

a0 + a1z + ... + an−1zn−1
=

n−1∏
i=1

(z − ri)

(1 − riz)

and we check that it is true for n:

(z − r1)(z − r2)...(z − rn−1)(z − rn)

(1 − r1z)(1 − r2z)...(1 − rn−1z)(1 − rnz)

= an−1 + an−2z + ... + a1z
n−2 + a0z

n−1

a0 + a1z + ... + an−2zn−2 + an−1zn−1

z − rn

1 − rnz

= −rnan−1 + (an−1 − rnan−2)z + ... + (a1 − rna0)z
n−1 + a0z

n

a0 + (a1 − rna0)z + ... + (an−1 − rnan−2)zn−1 − ar−1rnzn

= bn + bn−1z + ... + b1z
n−1 + b0z

n

b0 + b1z + ... + bn−1zn−1 + bnzn
.
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3 ⇒ 1) Any rational function that satisfies 3) also satisfies 1). Indeed, it verifies
R(1) = 1 and

ι ◦ R ◦ ι−1(z) = ι

(
R

(
1

z

))
= ι

(
an + an−1

1
z

+ ...a1
1

zn−1 + a0
1
zn

a0 + a1
1
z

+ ... + an−1
1

zn−1 + an
1
zn

)

= ι

(
anz

n + an−1z
n−1 + ... + a1z + a0

a0zn + a1zn−1 + ... + an−1z + an

)

= a0z
n + a1z

n−1 + ... + an−1z + an

anzn + an−1zn−1 + ... + a1z + a0
= R(z).

3 Dynamical study of Newton-like operators

In Section 2, we have justified that Newton-like methods applied on complex
quadratic polynomials p(z) = z2 − c lead to an operator O(z) of the form (1), where
n denotes the order of convergence to the roots of p(z). Examples of this fact can be
found in [5, 7, 8, 13, 14, 30], among many other papers. In [5], we study this family
of operators when the polynomials of the rational function have k equal roots. In this
paper, we delve deeper into the dynamical study of the operator O(z). Following the
results from Section 2, we can write the operator O(z) as follows:

O(z) = zn ak + ak−1z + ... + a1z
k−1 + zk

1 + a1z + ... + ak−1zk−1 + akzk
= zn

k∏
i=1

(z − ri)

(1 − riz)
, (8)

with ak �= 0. Its derivative can be written as follows:

O ′(z) = zn−1
k∏

i=1

(z − ri)

(1 − riz)

⎛
⎝n + z

k∑
j=1

1 − r2
j

(z − rj )(1 − rj z)

⎞
⎠ . (9)

The relations among the coefficients ai and the roots ri of the polynomial P(z) =
ak + ak−1z + ... + a1z

k−1 + zk = ∏k
i=1(z − ri) are given by:

ak = (−1)k
k∏

i=1

(ri)

ak−1 = (−1)k−1(r1r2...rk−1 + r1r3...rk + ...)

...

a2 = r1r2 + r1r3 + ....

a1 = −
k∑

i=1

ri . (10)

Observe that the subscript of the coefficients indicates the number of roots that
appear in the different products.



Numerical Algorithms

Remark 3.1 Along this paper, we suppose that z = 1 is not a root of the polynomial
P(z) since, if z = 1 were a root of P(z), we could simplify the rational function of
the operator. Let us suppose that rk = 1. Then,

O(z) = zn ak + ak−1z + ... + a1z
k−1 + zk

1 + a1z + ... + ak−1zk−1 + akzk
= zn

k∏
i=1

(z − ri)

(1 − riz)

= −zn
k−1∏
i=1

(z − ri)

(1 − riz)
= −zn bk−1 + ... + b1z

k−2 + zk−1

1 + b1z + ... + bk−1zk−1
.

In this case, the point z = 1 is not a fixed point of the operator, it forms an orbit of
period 2 with z = −1 if k + n even or it is a pre-image of z = −1 if k + n odd.
Therefore, in this paper, we assume that 1 + a1 + ... + ak �= 0.

In the following lemma, we provide another relation between the roots and the
coefficients of the polynomial.

Lemma 3.2 Given a polynomial P(z) = ak + ak−1z + ... + a1z
k−1 + zk with roots

ri , i = 1, ..., k, the following relationship holds:
k∑

j=1

1 + rj

1 − rj
= k − 2

a1 + 2a2 + ... + kak

1 + a1 + a2 + ... + ak

.

Proof Let us prove this relation by induction. For k = 1, we have the polynomial
P1(z) = a1 + z with a1 = −r1. Therefore,

1 + r1

1 − r1
= 1 + 2r1

1 − r1
= 1 − 2

a1

1 + a1
.

Now we assume that for the degree k − 1 polynomial

Pk−1(z) = ak−1 + ak−2z + ... + a1z
k−2 + zk−1

the relationship

k−1∑
j=1

1 + rj

1 − rj
= (k − 1) − 2

a1 + 2a2 + ... + (k − 1)ak−1

1 + a1 + a2 + ... + ak−1

holds. Finally, we prove the relation for the degree k polynomial Pk(z) = (z −
rk)Pk−1(z) = bk + bk−1z + ... + b1z

k−1 + zk:

k∑
j=1

1 + rj

1 − rj
=

k−1∑
j=1

1 + rj

1 − rj
+ 1 + rk

1 − rk
= k − 1 − 2

a1 + 2a2 + ... + (k − 1)ak−1

1 + a1 + a2 + ... + ak−1
+ 1 + 2rk

1 − rk

= k − 2
(a1 + 2a2 + ... + (k − 1)ak−1)(1 − rk) − rk(1 + a1 + a2 + ... + ak−1)

(1 + a1 + a2 + ... + ak−1)(1 − rk)

= k − 2
a1 − rk + 2(a2−rka1) + 3(a3 − rka2) + ... + (k − 1)(ak−1−rkak−2) − kak−1rk

(1 − r1)...(1 − rk−1)(1 − rk)

= k − 2
b1 + 2b2 + ... + (k − 1)bk−1 + kbk

1 + b1 + b2 + ... + bk

,
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where the relations (10) have been used.

Lemma 3.3 Given a polynomial P(z) = ak + ak−1z + ... + a1z
k−1 + zk with roots

ri , i = 1, ..., k, the following relationship holds:

k∑
j=1

1 − rj

1 + rj
= k − 2

−a1 + 2a2 − ... + (−1)kkak

1 − a1 + a2 + ... + (−1)kak

.

Proof The proof is similar to the previous lemma.

We continue by studying some properties of the Newton-like operators. We focus
on fixed points. Let f be an operator obtained by applying a root finding algorithm,
that can be described by Theorem 2.2, on a quadratic polynomial p(z) = z2 − c.
Then, the points ±√

c are attracting fixed points of f . Assume also that f (∞) = ∞.
In Proposition 2.6, the operator (8) was obtained by applying a conjugacy that sends
the fixed points −√

c,
√

c, and ∞ to 0, ∞, and 1, respectively. Therefore, 0 and ∞
are fixed points under (8) which correspond to the roots of the polynomial while 1 is
a strange fixed point (a fixed point which does not correspond to a root). Moreover,
the term zn in (8) indicates that the method has order of convergence n to the roots.
Next statement, whose proof is straightforward, indicates that the points 0, 1 and
∞ are fixed points of (8) (even if the operator does not come from a root finding
algorithm).

Proposition 3.4 The points z = 0, z = ∞ and z = 1 are fixed points of operator
(8). Moreover, z = −1 is also a fixed point of (8) if n + k is odd and z = −1 is a
preimage of z = 1 if n + k is even.

When a Newton-like operator (8) comes from a one-parameter family of numer-
ical methods, the coefficients ai usually have a linear dependence with respect to
the parameter of the family, as it can be observed in the following subsections. In
paper [5], we study a family of Newton-like operators where the coefficients have a
quadratic dependence on the parameter that produces a duplicity of the information
in the parameter plane. This duplicity was avoided by redefining the parameter in
order to obtain a linear dependence.

As mentioned before, the point z = 1 is a strange fixed point of the operator
(8), so it is important to analyse its dynamical behaviour. Assuming a linear rela-
tionship between the coefficients and the parameter of the family and using Lemma
3.2, we obtain the regions where the point z = 1 is attracting in terms of the
coefficients.

Proposition 3.5 Let ai = Ai+Biα be the linear relationships between the coefficient
ai of the operator (8) and the parameter α of the family of rational operators, with
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Ai, Bi ∈ R and α ∈ C. Let us denote:

A = n + k +
k∑

j=1

(n + k − 2j)Aj , B =
k∑

j=1

(n + k − 2j)Bj ,

A′ = 1 +
k∑

j=1

Aj , B ′ =
k∑

j=1

Bj ,

c = (AB − A′B ′)/(B2 − B ′2), r = (A′B − AB ′)/(B2 − B ′2).

Then, the fixed point z = 1 satisfies the following statements:

1. For B2 − B ′2 �= 0,

i) z = 1 is indifferent on the circle C: |α + c| = |r|,
ii) z = 1 is attracting inside C if B2 − B ′2 > 0 and outside C if B2 − B ′2 < 0.
iii) z = 1 is repelling outside C if B2 − B ′2 > 0 and inside C if B2 − B ′2 < 0.

2. For B2 − B ′2 = 0:

a) If B = B ′ �= 0, then

i) z = 1 is indifferent if A = A′,
ii) z = 1 is attracting if Re(α) < −A+A′

2B
and B(A − A′) > 0 or

Re(α) > −A+A′
2B

and B(A − A′) < 0.
(i) z = 1 is repelling in other case.

b) If B = −B ′ �= 0, then

i) z = 1 is indifferent if A = −A′,
ii) z = 1 is attracting if Re(α) < A′−A

2B
and B(A + A′) > 0 or

Re(α) > A′−A
2B

and B(A + A′) < 0.
iii) z = 1 is repelling in other case.

c) If B = B ′ = 0, then

i) z = 1 is indifferent if |A| = |A′|,
ii) z = 1 is attracting if |A| < |A′|,
iii) z = 1 is repelling |A| > |A′|.

Moreover, if α = −A
B
the fixed point z = 1 is superattracting.

Proof By sustituting the point z = 1 in (9) and by applying the result obtained in
Lemma 3.2, we have:

∣∣O ′(1)
∣∣ =

∣∣∣∣∣∣
n +

k∑
j=1

1 + rj

1 − rj

∣∣∣∣∣∣
=

∣∣∣∣n + k − 2
a1 + 2a2 + ... + kak

1 + a1 + a2 + ... + ak

∣∣∣∣ .
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Assuming the relation ai = Ai + Biα, we obtain:

∣∣O ′(1)
∣∣ =

∣∣∣∣
(n + k)(1 + A1 + B1α + ... + Ak + Bkα) − 2(A1 + B1α + ... + k(Ak + Bkα))

1 + A1 + B1α + ... + Ak + Bkα

∣∣∣∣

that can be written as:

∣∣O ′(1)
∣∣ =

∣∣∣∣∣
n+k+ ∑k

j=1(n+k−2j)Aj + α
∑k

j=1(n+ k−2j)Bj

1 + ∑k
j=1 Aj + α

∑k
j=1 Bj

∣∣∣∣∣ =
∣∣∣∣

A + αB

A′ + αB ′

∣∣∣∣ .

Now, we look for the values of the parameter that make
∣∣O ′(1)

∣∣ < 1. As α is a
complex parameter, we can write it as α = p + iq, p, q ∈ R. Then,

∣∣A+B(p+iq)|< |A′+B ′(p+ iq)
∣∣ ⇒p2(B2−B ′2)+2p(AB−A′B ′)+q2(B2−B ′2)<A′2−A2.

For the case B2 − B ′2 �= 0, this expression can be divided by B2 − B ′2 and, after
looking for a perfect square, it can be written, in the complex plane, as the equation
of the disk:

(
p + AB − A′B ′

B2 − B ′2

)2

+ q2 <

(
A′B − AB ′

B2 − B ′2

)2

if B2 − B ′2 > 0, or the disk

(
p + AB − A′B ′

B2 − B ′2

)2

+ q2 >

(
A′B − AB ′

B2 − B ′2

)2

if B2 − B ′2 < 0, obtaining the regions where the point z = 1 is attractive.
The point z = 1 is indifferent on the circle

(
p + AB − A′B ′

B2 − B ′2

)2

+ q2 =
(

A′B − AB ′

B2 − B ′2

)2

and the point z = 1 is repelling for the other regions.
For the case B2 − B ′2 = 0, the proof of the latter cases is straightforward without

more than substituting the conditions in
∣∣O ′(1)

∣∣.
Finally, from O ′(1) = 0, we obtain that the point z = 1 is superattracting for

α = −A/B.

Moreover, if z = −1 is also a fixed point of (8), i.e. n + k is odd, we have the
following result. The proof is similar to the previous proposition from the substitution
of z = −1 in (8) and using Lemma 3.3.
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Proposition 3.6 Let ai = Ai+Biα be the lineal relationship between the coefficients
ai of the operator (8) and the parameter α of the family of rational operators, with
Ai, Bi ∈ R, α ∈ C and n + k odd. Let us denote:

C = n + k +
k∑

j=1

(−1)j (n + k − 2j)Aj , D =
k∑

j=1

(−1)j (n + k − 2j)Bj ,

C′ = 1 +
k∑

j=1

(−1)jAj , D′ =
k∑

j=1

(−1)jBj ,

c = (CD − C′D′)/(D2 − D′2), r = (C′D − CD′)/(D2 − D′2).

Then, the fixed point z = −1 satisfies the following statements:

1. For D2 − D′2 �= 0,

i.) z = −1 is indifferent on the circle S: |α + c| = |r|.
ii.) z = −1 is attracting inside the circle S if D2 − D′2 > 0 and outside the

circle S if D2 − D′2 < 0.
iii.) z = −1 is repelling outside the circle S if D2 −D′2 > 0 and inside the circle

S if D2 − D′2 < 0.

2. For D2 − D′2 = 0,

a.) If D = D′ �= 0, then

i.) z = −1 is indifferent if C = C′.
ii.) z = −1 is attracting if Re(α) < −C+C′

2D
and D(C − C′) > 0 or

Re(α) > −C+C′
2D

and D(C − C′) < 0.
iii.) z = −1 is repelling in other case.

b.) If D = −D′ �= 0, then

i.) z = −1 is indifferent if C = −C′,
ii.) z = −1 is attracting if Re(α) < C′−C

2D
and D(C + C′) > 0 or

Re(α) > C′−C
2D

and D(C + C′) < 0.
iii.) z = −1 is repelling in other case.

c.) If D = −D′ = 0, then

i.) z = −1 is indifferent if |C| = |C′|,
ii.) z = −1 is attracting if |C| < |C′|,
iii.) z = −1 is repelling |C| > |C′|.

Moreover, if α = − C
D

the fixed point z = −1 is superattracting.

As was observed in [5], the dynamical behaviour of the rational operators depends
on the relationship between the exponent n of z and the degree k of the polynomial in
the rational function of the operator. In fact, the numerical behaviour of the method
is very bad when n < k and the better numerical behaviour occurs when n > k + 1.
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4 Examples of Newton-like operators

In this section, we overview different methods in the literature. For the case n = k,
we show some results for a particular case of dependence of the parameter. Along
the paper, we mention examples of numerical methods for which there is exactly one
free critical point, modulo symmetry; so, we can plot their parameter planes iterating
a single critical point.

4.1 The case n > k

The first family of numerical methods that we studied satisfying these conditions is
the Chebyshev-Halley family, defined by (5). A more complete study of the dynam-
ical behaviour of this family can be found in [14] when this family is applied
on quadratic polynomials and in [6], when it is applied on a family of n-degree
polynomials.

After applying the corresponding algorithm on two-degree polynomials p(z) =
z2 − c and enforcing the conjugacy map, we obtained the operator:

Oα(z) = z3 z − 2(α − 1)

1 − 2(α − 1)z
, (11)

which corresponds to the operator (8) for n = 3 and k = 1. The parameter plane can
be seen in Fig. 1.

As described in Section 1.2, the black zones correspond to values of the parameter
for which the corresponding dynamical planes have attractors that do not correspond
to the roots of the polynomial p(z) = z2 − c.

King’s family is another example of a family that leads to an operator of the form
(8) for n = 4 and k = 2, see [12]. The operator of this iterative scheme is given in
(2) which leads to:

Oβ(z) = z4 5 + 2β + (4 + β)z + z2

1 + (4 + β)z + (5 + 2β)z2
(12)

Fig. 1 Parameter plane of the
Chebyshev-Halley family,
n = 3, k = 1
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after applying it on a quadratic family of polynomials. The parameter plane is shown
in Fig. 2 (left).

As mentioned in the introduction, many methods built from Jarratt’s method also
satisfy the conditions of Theorem 2.2. For example, the family of order four studied
by Amat et al. in [1] with scheme (4). Applying it on two-degree polynomials p(z) =
z2 − c and enforcing the conjugacy map, the operator obtained is:

JAβ (z) = z4 8β − 3 + (4β − 6)z − 3z2

−3 + (4β − 6)z + (8β − 3)z2
. (13)

The parameter plane can be seen in Fig. 2 (right).

Remark 4.1 Let us notice that the operators given in (12) and (13) correspond to the
case n = 4 and k = 2. In fact, a change β ⇒ − 4

3β −2 leads to the same operator. So,
the parameter planes are the same except for the symmetry induced by the negative
sign in the change.

We find an example of n = 5 and k = 3 in the subfamily S2 coming from the
Ostrowski-Chun methods (see [8]), whose operator is

OS2a (z) = z5 14 + 5a + 2(7 + 2a)z + (6 + a)z2 + z3

1 + (6 + a)z + 2(7 + 2a)z2 + (14 + 5a)z3
. (14)

The parameter plane can be seen in Fig. 3.
Let us notice that the numerical behaviour of these families is quite good due to

the fact that the operators with presence of strange attractors correspond to values of
the parameter included in the small black zones of the parameter plane.

Fig. 2 Parameter planes of King’s family (left) and a family coming from Jarrat method (right). In both
cases, n = 4, k = 2
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Fig. 3 Parameter plane of the
subfamily S2, n = 5, k = 3

4.2 A degenerate case

An example that coincides with the degenerate case of Remark 3.1 can be seen in
paper [8] for the subfamily S5 of the Ostrowski-Chun methods. The operator is:

OS5a (z) = z4 −5(7 + 2a) + (14 + 5a)z + (14 + 4a)z2 + (6 + a)z3 + z4

1 + (6 + a)z + (14 + 4a)z2 + (14 + 5a)z3 − 5(7 + 2a)z4

= −z4 5(7 + 2a) + (21 + 5a)z + (7 + a)z2 + z3

1 + (7 + a)z + (21 + 5a)z2 + 5(7 + 2a)z3
. (15)

The points z = 1 and z = −1 form an attractive 2-cycle of this operator.
The parameter plane can be seen in Fig. 4 (top). In this figure, green color corre-

sponds to values of the parameter where the free critical point is located in the basin
of attraction of the 2-cycle. Black color corresponds to values of the parameter where
the orbit of the free critical point does not converge neither to any of the roots of the
polynomial nor to the 2-cycle {−1, 1}.

In Fig. 4 (bottom), we also show two dynamical planes of this family. Colour green
indicates the basin of attraction of the 2-cycle {−1, 1}. The left figure corresponds to
a value of the parameter where the critical point belongs to the basin of attraction of
another attracting cycle. The right figure corresponds to a value of the parameter for
which there is no other stable behaviour than the basins of attraction of the roots of
the polynomial or to the 2-cycle {−1, 1}.

4.3 The case n = k

For n = k, the operator is:

Oα(z) = zn an + an−1z + ... + a1z
n−1 + zn

1 + a1z + ... + an−1zn−1 + anzn
= zn

n∏
i=1

(z − ri)

(1 − riz)
. (16)

This operator is obtained in many cases (see [7, 8, 13, 30], for example).
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Fig. 4 The subfamily S5. The parameter plane (top) and dynamical planes for a = 2 − 9.3i (bottom left)
and a = 0 (bottom right)

Next, we consider that all the coefficients of the operator (8) are real except an;
that is, ai ∈ R for 1 = 1, 2, ..., n − 1 and an = α ∈ C and we delve deeper into the
study of this type of operators.

In this case, the point z = −1 is a preimage of z = 1. In the following result, we
establish the set of parameters where the fixed point z = 1 is attracting for operator
(16). We obtain that z = 1 is attracting outside a disk with radius related with the
coefficients of the polynomial in the numerator of (16). The next proposition is a
particular case of Proposition 3.5.

Proposition 4.2 The fixed point z = 1 of Oα satisfies the following statements:

i) z = 1 is attracting if
∣∣α + A′∣∣ > |A|,

ii) z = 1 is indifferent if
∣∣α + A′∣∣ = |A|,

iii) z = 1 is repelling if
∣∣α + A′∣∣ < |A|,



Numerical Algorithms

where A and A′ �= 0 are defined as follows:

A = 2n + 2
n−1∑
j=1

(n − j)aj , A′ = 1 +
n−1∑
j=1

aj .

Moreover, if A = 0 the fixed point z = 1 is superattracting.

Proof The proof is straightforward from Proposition 3.5 taking into account that, in
this case, an = α, ai = Ai for i = 1...n−1, An = 0, Bi = 0 for i = 1...n−1, Bn = 1;
so B = 0 and B ′ = 1 and A = 2n+ 2

∑n−1
j=1(n− j)aj and A′ = 1 +∑n−1

j=1 aj . Then,

|O ′(1)| = | A

A′ + α
|

From the previous expression, it is easy to see that z = 1 is superattracting, i.e.
O ′

α(1) = 0, for A = 0.

This type of operator is obtained in [7], where the c-family of iterative methods
is applied on quadratic polynomials. After applying the conjugacy map (see [3]), the
operator is:

Oc (z) = z3 2 (1 − 2c) + 5z + 4z2 + z3

1 + 4z + 5z2 + 2 (1 − 2c) z3
(17)

and the parameter plane can be observed in Fig. 5 (left). Notice that the set of
parameters for which z = 1 is attracting corresponds to the unbounded black disk.

A three-step iterative method for solving non-linear equations is studied in [13]. It
is obtained by using the technique of undetermined coefficients and the composition

Fig. 5 Parameter plane of c−family for n = k = 3 (left) and the M4 family for α = −1+5β
β

n = k = 4
(right)
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of Newton’s scheme with itself, with frozen Jacobian. The authors denote it as M4
and its iterative expression is:

yk = xk − F ′(xk)
−1F(xk),

zk = yk − 1

β
F ′(xk)

−1F(yk),

xk+1 = zk − F ′(xk)
−1((2 − 1/β − β)F (yk) + βF(zk)).

After applying it on quadratic polynomials and enforce the conjugacy map, the
operator obtained is:

Oβ(z) = z4 −1 + 5β + 14βz + 14βz2 + 6βz3 + βz4

β + 6βz + 14βz2 + 14βz3 + (−1 + 5β)z4
. (18)

This operator can be transformed into an operator of the type (16) by means of the
change of the parameter α = −1+5β

β
:

Oα(z) = z4 α + 14z + 14z2 + 6z3 + z4

1 + 6z + 14z2 + 14z3 + αz4
.

Its parameter plane (see Fig. 5 right) is similar to the previous one (Fig. 5 left).
Despite they correspond to different values of n, the main difference between these
parameter planes comes from the different sign of the parameters c and α. This leads
to a change of positions of the main interior bulb.

Another example of n = 4 is obtained from a sub-family of operators coming
from the Ostrowski- Chun methods (see [8]). Applying this method on quadratic
polynomials, and studying one of the subfamilies obtained, the resulting operator is:

OS4b (z) = z4 4b − 3 − 6z − 2z2 + 2z3 + z4

1 + 2z − 2z2 − 6z3 + (−3 + 4b) z4
.

The parameter plane of this family is shown in Fig. 6 (top). Let us realise that,
in this case, the fixed point z = 1 is superattracting. Therefore, this family has bad
initial conditions for every parameter. Since z = 1 is superattracting for all values of
the parameter, we cannot observe the disks that appears in the parameter planes of
Fig. 5. Since z = 1 is superattracting, z = 1 does not need to have a critical point
(other than itself) in its basin of attraction. As in Fig. 4, we use the green colour when
the critical orbit converges to the basins of attraction of the fixed point z = 1.

In Fig. 6 (bottom), we also show two dynamical planes of this family. Colour
green indicates the basin of attraction of z = 1. The left figure corresponds to a value
of the parameter where the critical point belongs to the basin of attraction of another
attracting cycle. The right figure corresponds to a value of the parameter for which
there is not other stable behaviour than the basins of attraction of the roots of the
polynomial or z = 1.

Let us remark that in Fig. 5 the region of parameters where z = 1 is attracting
corresponds to the exterior black zone. Similar parameter planes are also obtained in
[13, 30]. Although in each of these papers a different numerical method is studied,
the operator obtained after applied it on quadratic polynomials is of the type given
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Fig. 6 The subfamily S4 for n = 4, k = 4. The parameter plane (top) and dynamical planes for b = 5
(bottom left) and b = 1 + 1i (bottom right)

in Eq. (16). We also want to point out that for Fig. 6 (top) the unbounded region
corresponds to a set of parameters for which the free critical points are captured by
the basin of attraction of z = 1.

Another example where the operator is given by (8) for n = k = 4 can be found
in the S3 family studied in paper [8], whose operator is:

OS3a (z) = z4 5(14 + 5a)2 + (196 + 76a + 9a2)((14 + 5a)z + 2(7 + 2a)z2 + (6 + a)z3 + z4)

(1 + (6 + a)z + 2(7 + 2a)z2 + (14 + 5a)z3)(196 + 76a + 9a2) + 5(14 + 5a)2z4
. (19)

Let us notice that, in this case, there is not a linear relationship between the coef-
ficients of the operator and the parameter of the family. The parameter plane can be
seen in Fig. 7.
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Fig. 7 Parameter plane of the
subfamily S3, n = 4, k = 4

5 Conclusions

When Newton-like algorithms are applied on quadratic polynomials, an intrinsic
symmetry appears in the operator obtained.

Firstly, we study some symmetry properties of certain families of maps which can
be used to obtain the expressions of Newton-like finding algorithms. We show that
many of the current numerical methods can be obtained from the functions defined
in the Theorem 2.2.

Moreover, the functions introduced in Theorem 2.2 can be used to generate new
Newton-type algorithms for solving nonlinear equations.

We conclude from Theorem 2.7 that the operators obtained for the different fam-
ilies of numerical Newton-like methods have the same expression, regardless of the
method used, when they are applied on quadratic polynomials p(z) = z2 − c.

We carry out a dynamical study for this generic operator. Moreover, except for
the degenerate cases, z = 1 is always a fixed point of the operator and we study its
stability region (Proposition 3.5). We also prove that z = −1 is a fixed point when
the degree of the operator is odd and we locate its stability region (Proposition 3.6).

Along this paper, we exhibit some parameter planes coming from different papers
of literature where predicted results are observed.
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