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Let {Gi | i ∈ N} be a family of finite Abelian groups. We say that a subgroup 
G ≤

∏
i∈N

Gi is order controllable if for every i ∈ N there is ni ∈ N such that for 

each c ∈ G, there exists a ∈ G satisfying that a|[1,i] = c|[1,i], supp(a) ⊆ [1, ni], and 
order(a) divides order(c|[1,ni]). In this paper we investigate the structure of order 
controllable subgroups. It is proved that every order controllable, profinite, abelian 
group contains a subset {gn | n ∈ N} that topologically generates the group and 
whose elements gn all have finite support. As a consequence, sufficient conditions 
are obtained that allow us to encode, by means of a topological group isomorphism, 
order controllable profinite abelian groups. Further applications of these results to 
group codes will appear subsequently.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let Z and N respectively denote the group of integers and the semigroup of natural numbers. Suppose 
that Z is given the discrete topology and ZN the corresponding product topology. Nunke proved in [10] that 
every infinite, closed, subgroup G of ZN is topologically isomorphic to a product of infinite cyclic groups, 
i.e., the group G contains a subset {gn | n ∈ N} such that G ∼=

∏
n∈N

〈gn〉. Furthermore, one can prove that 

the elements gn can be selected with finite support if and only if G ∩Z(N) is dense in G (here Z(N) denotes 
the direct sum, that is, the subgroup of the product consisting of all elements with finite support). In this 
case, we say that {gn | n ∈ N} is a generating set that encodes the group G.
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The main goal of this paper is to study the existence of generating sets, in a profinite abelian group 
G, whose elements have finite support. We prove that for order controllable groups it is always possible 
to find a generating set whose elements all have finite support. As a consequence, we obtain a topological 
group isomorphism that encodes an order controllable closed subgroup of a product of finite abelian group 
and describes how the subgroup is placed within the product of finite groups where it appears. Further 
applications of these results to group codes appear in [4,6].

Let {Gi | i ∈ I} be a family of topological groups. As usual, its direct product
∏

i∈I Gi is the set of all 
functions g : I →

⋃
{Gi | i ∈ I} such that g(i) ∈ Gi for every i ∈ I. The group operation on 

∏
i∈I Gi

is defined coordinate-wise: the product gh ∈
∏

i∈I Gi of g and h in 
∏

i∈I Gi is the function defined by 
gh(i) = g(i)h(i) for each i ∈ I. Clearly, the identity element e of 

∏
i∈I Gi is the function that assigns the 

identity element ei of Gi to every i ∈ I. We equip the product with the canonical product topology. The 
subgroup

⊕
i∈I

Gi = {g ∈
∏
i∈I

Gi | g(i) = ei for all but finitely many i ∈ I}

is called the direct sum of the family {Gi | i ∈ I}. The support of an element x ∈
∏

i∈I Gi is the set

supp(x) := {i ∈ I |xi �= ei}.

Given a subgroup G ≤
∏
i∈I

Gi and a subset J ⊆ I, we denote by GJ := {c ∈ G | supp(c) ⊆ J} and 

G|J := πJ(G), where πJ :
∏
i∈I

Gi →
∏
i∈J

Gi is the canonical projection.

If S is a subset of a group G, then we denote by 〈S〉 the subgroup generated by S, that is, the smallest 
subgroup of G containing every element of S. However, the symbol 〈g〉 will denote the cyclic subgroup 
generated by {g}, g ∈ G. Since most results here concern abelian groups, we will use additive notation from 
here on. In particular, we will denote the identity element by 0.

The following two group-theoretic notions originate from coding theory.

Definition 1.1. A subgroup G ≤
∏
i∈I

Gi is called

(1) weakly controllable if G ∩
⊕
i∈I

Gi is dense in G.

(2) weakly observable if G ∩
⊕
i∈I

Gi = G∩
⊕
i∈I

Gi, where G stands for the closure of G in 
∏
i∈I

Gi for the product 

topology.

Although the notion of (weak) controllability was coined by Fagnani earlier in a broader context (cf. [2,3]), 
both notions were introduced in the area of coding theory by Forney and Trott (cf. [7]). They observed that 
if the groups Gi are locally compact abelian, then controllability and observability are dual properties with 
respect to the Pontryagin duality: If G is a closed subgroup of 

∏
i∈I

Gi, then it is weakly controllable if and 

only if its annihilator G⊥ = {χ ∈
∏̂
i∈I

Gi | χ(G) = {0}} is a weakly observable subgroup of 
⊕
i∈I

Ĝi ≤
∏
i∈I

Ĝi

(cf. [7, 4.8]).
We now describe different ways in which a subgroup is placed in a product of topological groups.

Definition 1.2. Let {Gi}i∈N be a family of compact groups and let G be a closed subgroup of the product ∏
i∈N

Gi.

(1) The subgroup G is called rectangular if for all i ∈ N there is a subgroup Hi ≤ Gi such that G =
∏

Hi.
i∈N
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(2) The subgroup G is said to be topologically generated by the set {gn | n ∈ N} if all elements gn, n ∈ N, 
have finite support and the subgroup 

⊕
n∈N

〈gn〉 is dense in G.

(3) If, in addition, the map

Φ:
⊕
n∈N

〈gn〉 → G

defined by

Φ((xn)) :=
∑
n∈N

xn,

with xn ∈ 〈gn〉 for all n ∈ N, extends to a topological, necessarily surjective, group isomorphism

Φ̂:
∏
n∈N

〈gn〉 → G

we say that G is weakly rectangular and Φ is an isomorphic encoder of G. We remark that since we are 
only interested in topologies that are Hausdorff, the map Φ̂ (the extension of the homomorphism Φ to 
the product) is unique. Therefore, for simplicity’s sake, we will also use the same symbol Φ to denote 
Φ̂ from here on.

(4) Finally, if Φ(
⊕

n∈N 〈gn〉) = G ∩
⊕

i∈N Gi, we say that G is an implicit direct product.

The observations below are easily verified. (cf. [9]).

(1) Weakly rectangular subgroups and rectangular subgroups of 
∏
i∈N

Gi are weakly controllable.

(2) If each Gi is a pro-pi-group for some prime pi, and all pi are distinct, then every closed subgroup of the 
product 

∏
i∈N

Gi is rectangular, and thus is an implicit direct product.

(3) If each Gi is a finite simple non-abelian group, then every closed normal subgroup of the product 
∏
i∈N

Gi

is rectangular, and thus an implicit direct product.

The main goal addressed in this paper is to investigate when a profinite abelian group is weakly rect-
angular or an implicit direct product of finite groups. In particular we aim to know to what extent the 
converse of (1) above holds. Specifically, we are interested in the following (cf. [9]):

Problem 1.3. Let {Gi | i ∈ N} be a family of finite abelian groups, and G is a closed, weakly controllable sub-
group of the product 

∏
i∈N

Gi. Which additional conditions ensure that the group G is topologically generated? 

And when is G weakly rectangular? An implicit direct product?

A first step in order to tackle this question, was given in [5,8], where the following result was established.

Theorem 1.4. Let I be a countable set, {Gi | i ∈ N} be a family of finite abelian groups and 
∏

i∈N Gi be its 
direct product. If G is a closed weakly controllable subgroup of 

∏
i∈N Gi, then G is topologically isomorphic 

to a direct product of finite cyclic groups.

We notice that Theorem 1.4 does not answer Problem 1.3 directly, and its proof does not present any 
generating set for G. Incidentally, the continuity of mappings defined on weak direct sums has been inves-
tigated in [1,12]. However, the results there go in a different direction and the questions in Problem 1.3 are 
not addressed.
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Remark 1.5. The relevance of these notions stems from coding theory where they appear in connection 
with the study of (convolutional) group codes [7,11]. In fact, similar concepts had been studied in symbolic 
dynamics previously. Thus, the notions of weak controllability and weak observability are related to the 
concepts of irreducible shift and shift of finite type, respectively, that appear in symbolic dynamics. Here, 
we are concerned with abelian profinite groups and our main interest is to clarify the overall topological 
and algebraic structure of abelian profinite groups that satisfy any of the properties introduced above. In a 
subsequent paper, we will discuss some applications of our results to the study of group codes.

We now formulate our main result.

Theorem A. Let G be an order controllable, closed subgroup of a direct product 
∏
i∈N

Gi of a countable family 

of finite abelian groups {Gi|i ∈ N}. Then the following hold.

(a) There is a generating set {y(p)
m | mm ∈ N, p ∈ PG} ⊆ G ∩ (

⊕
i∈N Gi) for G such that each element y(p)

m

has order a power of p.
(b) If, in addition, G has finite exponent, then an isomorphic encoder

Φ:
∏

m∈N, p∈PG

〈y(p)
m 〉 → G

can be defined from the generating set and, as a consequence, G is weakly rectangular.
(c) If 

⊕
m∈N〈y(p)

m 〉[p] is weakly observable for each prime p, then G is an implicit direct product.

2. Basic definitions and terminology

In accordance with the general terminology, a group G is called torsion or periodic if the orders of all its 
elements are finite, torsion-free if all elements, except the identity, have infinite order. If there is a natural 
number n such that ng = 0 for all g ∈ G, we say that G has finite exponent. Then the smallest such n is 
called the exponent of G, denoted as exp(G). An abelian torsion group G in which the order of every element 
is a power of a prime number p is called p-group. An element g of a p-group G is said to have finite height
if there is a largest natural number n such that the equation pnx = g has a solution in G. We denote such 
n as h(g, G). Otherwise, we say that g has infinite height. Here on, the symbol G[p] denotes the subgroup 
consisting of all elements of order dividing p. It is well known that G[p] is a vector space on the field Z(p)
of integers modulo p. In general, for every group G, we denote by (G)p the largest p-subgroup of G and 
PG = {p ∈ P : G contains a non-tivial p − subgroup} where P is the set of all prime numbers.

Definition 2.1. Let {Gi | i ∈ N} be a family of topological groups and G a subgroup of 
∏
i∈N

Gi. We introduce 

the following notions:

(1) G is controllable if for every i ∈ N there is ni ∈ N such that for each c ∈ G, there exists a ∈ G such 
that a|[1,i] = c|[1,i] and supp(a) ⊆ [1, ni]. The sequence (ni)i∈N is called controllability sequence of G
when each ni is minimal with the property.

(2) G is order controllable if for every i ∈ N there is ni ∈ N such that for each c ∈ G, there exists a ∈ G

such that a|[1,i] = c|[1,i], supp(a) ⊆ [1, ni], and order(a) divides order(c|[1,ni]). The sequence (ni)i∈N is 
called order controllability sequence of G when each ni is minimal with the property.

Remark 2.2. Property (1) implies the existence of b := c − a ∈ G such that c = a + b, supp(a) ⊆ [1, ni] and 
supp(b) ⊆ [i + 1, +∞[.
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Property (2) implies the existence of b := c − a ∈ G such that c = a + b, supp(a) ⊆ [1, ni], supp(b) ⊆
[i + 1, +∞[, and order(b) divides order(c).

Remark 2.3.

(i) Every controllable group is weakly controllable and, if the groups Gi are finite, then the notions 
of controllability and weakly controllability are equivalent (see [5, Corollary 2.3], where the term 
uniformly controllable subgroup is used instead of controllable subgroup that we have adopted here).

(ii) If {Gi | i ∈ N} is a family of finite, abelian, groups and G is an infinite subgroup of 
∏
i∈N

Gi that contains 

an order controllable dense subgroup H, then G is order controllable as well. (To see this, take an 
arbitrary element z ∈ G and let [1, m] be an arbitrary finite block. By the density of H in G, there 
is an element h ∈ H such that π[1,nm](z) = π[1,nm](h), where (ni) denotes the order controllability 
sequence of H. Now, applying that H is order controllable, there is h1 ∈ H such that π[1,m](h1) =
π[1,m](h) = π[1,m](z), supp(h1) ⊆ [1, nm] and order(h1) divides order(h|[1,nm]) =order(z|[1,nm]).)

3. Profinite abelian p-groups

In this section, we describe the structure of profinite abelian p-groups.

Lemma 3.1. Let {Gi | i ∈ N} be a family of finite, abelian, p-groups and let G be an infinite subgroup of ∏
i∈N

Gi which is order controllable. If x ∈ G[1,ni][p] and π[1,i](x) �= 0, where (ni)i∈N is the order controllability 

sequence of G, then there exists x̃ ∈ G[1,ni][p] such that π[1,i](x̃) = π[1,i](x) and h(x, G) = h(x̃, G[1,ni]). In the 
particular case that π[1,i−1](x) = 0 and there is j such that nj < i we can take x̃ such that h(x̃, G[j+1,ni]) =
h(x, G) = h(x, G[j+1,+∞[). In either case, we take x̃ with the maximum possible height among those elements 
satisfying these properties.

Proof. Take an element x ∈ G[1,ni][p] with π[1,i](x) �= 0. Since every group Gi in the product is finite and 
x has finite support, it follows that x has finite height. Pick an arbitrary element y ∈ G such that x = phy

(where h = h(x, G) is the maximal height), which implies that order(y) = ph+1. Since G is order controllable, 
y = ỹ+w where ỹ ∈ G[1,ni], order(ỹ) = ph+1, w ∈ G[i+1,+∞[, order(w) ≤ ph+1 and phw(j) = 0 for all j > ni. 
Observe that phw ∈ G[i+1,ni][p], x̃ := phỹ ∈ G[1,ni][p], 0 �= π[1,i](x) = π[1,i](x̃), and h(x̃, G[1,ni]) = h(x, G).

Suppose now that π[1,i−1](x) = 0 and there is j such that nj < i. Then π[1,nj ](x) = π[1,nj ](x̃) = 0 and 
order(ỹ|[1,nj ]) ≤ ph. Moreover, ỹ = w1+w2, w1 ∈ G[1,nj ], w2 ∈ G[j+1,ni] and order(w1) ≤ order(ỹ|[1,nj ]) ≤ ph. 
Then 0 �= x̃ = ph(w1 +w2) = phw1 + phw2 = phw2, π[1,j](w2) = 0 and order(w2) = ph+1. As a consequence, 
h(x, G) = h(x̃, G[1,ni]) = h(x̃, G[j+1,ni]). The same argument shows that h(x, G) = h(x, G[j+1,+∞[). �

Next follows the main result of this section. It provides sufficient conditions for a subgroup G to be 
weakly rectangular or an implicit direct product.

Theorem 3.2. Let {Gi | i ∈ N} be a family of finite, abelian, p-groups. If G is an (infinite) order controllable, 
closed, subgroup of 

∏
i∈N

Gi then the following assertions hold true:

(i) There is a generating set {ym | m ∈ N} ⊆ G ∩
⊕

i∈N Gi for G.
(ii) If G has finite exponent, then there is an isomorphic encoder

Φ:
∏

〈ym〉 → G.

m∈N
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As a consequence G is weakly rectangular.
(iii) Let phm+1 be the order of ym. If the group 

∑
m∈N

〈phmym〉 is weakly observable, then G is an implicit 

direct product.

Proof. The proof relies on the existence of two increasing sequences of natural numbers (dk)k≥1 and 
(m(k))k≥0, where m(0) = 0, and a sequence of finite subsets Bk := {xm(k−1)+1, · · · , xm(k)} ⊆ G[p] 

⋂ ⊕
i∈N

Gi

satisfying the following conditions:

(a) π[dk−1+1,dk](Bk) consists of linearly independent vectors in π[dk−1+1,dk](G[p]);
(b) π[dk−1+1,dk](B1 ∪ · · ·Bk) is a generating set of π[dk−1+1,dk](G[p]);
(c) π[1,dk](B1 ∪ · · ·Bk) forms a basis of π[1,dk](G[p]);
(d) if m(k − 1) + 1 ≤ j ≤ m(k), then xj ∈ G[dk−1+1,ndk

][p] \ 〈x1, · · ·xj−1〉 and xj has maximal height hj in 
G;

(e) for each xj ∈ Bk there is an element yj ∈ G[1,ndk
] such that xj = phjyj . Furthermore yj(i) = 0 for all 

j > m(ni);
(f) G[p] = 〈B1〉 

⊕
· · · 〈Bk〉 

⊕
G[dk+1,+∞[[p] (here, with some notational abuse, we mean vector space direct 

sum).

Remark that (f) yields

π[1,dk](G[p]) = π[1,dk](〈B1〉
⊕

· · · 〈Bk〉) (∀k ∈ N). (1)

As a consequence, we obtain

G[p] ⊆
⊕
k∈N

〈Bk〉 ∼=
⊕
m∈N

〈xm〉.

We proceed by induction in order to prove the existence of the sequences (dk)k∈N , (m(k))k∈N , and 
Bk := {xm(k−1)+1, · · · , xm(k)}.

Since G is order controllable, there is an order controllability sequence (ni)i≥1 ⊆ N such that π[1,i](G) =
π[1,i](G[1,ni]) for all i ∈ N. We have further

G = G[1,n1] + G[2,+∞[ = G[1,n1] + · · ·G[i,ni] + G[i+1,+∞[,
G[p] = G[1,n1][p] + G[2,+∞[[p] = G[1,n1][p] + · · ·G[i,ni][p] + G[i+1,+∞[[p].
Remark that, since every group in the product Gi is finite, all the elements in (G 

⋂⊕
i∈N Gi)[p] have 

finite height.
Let d1 ∈ N be the minimum element such that

m(1) := dim π[1,d1](G[p]) = dim π[1,d1](G[1,nd1 ][p]) �= 0.

We select an element x1 ∈ G[1,nd1 ][p] such that π[1,d1](x1) �= {0} and has maximal height h1 :=
h(x1, G) = h(x1, G[1,nd1 ]), by Lemma 3.1. If dim π[1,d1](G[1,nd1 ][p]) �= 1, we repeat the same argu-
ment in order to obtain an element x2 ∈ G[1,nd1 ][p] satisfying: (i) π[1,d1](x2) /∈ 〈π[1,d1](x1)〉; and (ii) 
h1 ≥ h2 := h(x2, G) = h(x2, G[1,nd1 ]). Furthermore, we select x2 in such a way that has maximal height 
among the elements in G[1,nd1 ] satisfying (i) and (ii). We go on with this procedure obtaining a finite subset 
B1 = {x1, x2, · · ·xm(1)} such that π[1,d1](B1) is a basis of π[1,d1](G[p]) and h1 ≥ h2 ≥ · · · ≥ hm(1), where 
hj = h(xj , G) = h(xj , G[1,nd1 ]) is the maximal possible height, 1 ≤ j ≤ m(1). Moreover, associated to 
every xj ∈ B1 there is yj ∈ G[1,nd1 ] such that xj = phjyj . Thus the properties (a),. . . , (e) stated above are 
satisfied for n = 1.
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We now verify (f), that is

G[p] = 〈B1〉 ⊕G[d1+1,+∞[[p].

Indeed, let 0 �= c ∈ G[p]. If π[1,d1](c) = 0 then c /∈ 〈B1〉 since, otherwise, we would have

c = λ1x1 + · · · + λm(1)xm(1)

and

0 = π[1,d1](c) = λ1π[1,d1](x1) + · · · λm(1)π[1,d1](xm(1)),

which yields λ1 = · · · = λm(1) = 0 because π[1,d1](B1) is an independent set.
On the other hand, if π[1,d1](c) �= 0, then π[1,d1](c) = π[1,d1](b) for some b ∈ 〈B1〉. Hence c = b + w, and 

w = c − b ∈ G[d1+1,+∞[[p].
Now, the inductive procedure for the proof of n ⇒ n + 1 is straightforward. We will only sketch the case 

n = 2, as it explains well the general case.
First, since G is infinite, for some d2 ∈ N (take the smallest possible one), we have

m(2) := dim π[1,d2](G[p]) �= dim π[1,d2](〈B1〉).

Furthermore, since G is order controllable, it follows

π[1,d2](G[p]) = π[1,d2](〈B1〉 ⊕G[d1+1,+∞[[p]) = π[1,d2](〈B1〉 ⊕G[d1+1,nd2 ][p]).

Now, we proceed as in the case n = 1 in order to obtain a subset

B2 = {xm(1)+1, · · ·xm(2)} ⊆ G[d1+1,nd2 ][p]

satisfying the assertions (a),...,(d) and (f) stated above. On the other hand, assertion (e) follows from 
Lemma 3.1. This completes the inductive argument.

Next, we prove the following

CLAIM:

G ∩ (⊕Gi) ⊆
∑
m∈N

〈ym〉 = G.

Proof of the Claim:
First, remark that for each x ∈ Bk, we have order(x) = p, supp(x) ⊆ [dk−1+1, ndk

], and π[dk−1+1,dk](x) �=
0. Furthermore, for each x ∈ Bk, there exists y ∈ G[1,ndk

] with x = phy, order(y) = ph+1, where h =
h(x, G) = h(x, G[1,ndk

]), and such that if nj < dk, for some j, then π[1,j](y) = 0 by Lemma 3.1.
Set

Y :=
∑
m∈N

〈ym〉.

We first prove that every element in 
∑

m∈N
〈xm〉 has the same height in the group G as in the subgroup 

Y ⊆ G.
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Indeed, let z be an arbitrary element in 
∑

m∈N
〈xm〉. Then there is some index k ∈ N such that

z ∈ 〈B1 ∪ · · ·Bk〉 =
∑

1≤m≤m(k)

〈xm〉.

Set

Yk :=
∑

1≤m≤m(k)

〈ym〉,

since Yk ⊆ Y ⊆ G, it is enough to verify that z has the same height in the group G (equivalently, in the 
subgroup G[1,ndk

]) as in the subgroup Yk.
Assume for the moment that

0 �= z = λm(k−1)+1xm(k−1)+1 + · · ·λrxr ∈ 〈Bk〉, (2)

0 ≤ λj < p, λr �= 0, m(k − 1) < j ≤ r ≤ m(k), where the terms appearing in (2) are displayed with 
decreasing height, that is, in the same order as they are listed in Bk. Thus

hj = h(xj , G) ≥ h(xj+1, G) = hj+1,

m(k − 1) < j ≤ r ≤ m(k). We also have π[1,dk−1](z) = 0 and π[dk−1+1,dk](z) �= 0.
Set

Hk :=
∑

m(k−1)<m≤m(k)

〈ym〉.

Remark that, since the elements xj ∈ Bk are taken with decreasing height, it follows that each λjxj �= 0
has the same height in G as in Hk. Furthermore, the height of z in G is

h := h(z,G) = h(xr, G) = hr = min{hj |λj �= 0,m(k − 1) < j ≤ r} = h(z,Hk). (3)

Indeed, if we had h > hr, then we would have selected z (or another vector of the same height) in place of 
xr when defining Bk. Thus h(z, G) = h(z, Hk) ≤ h(z, Yk) ≤ h(z, G), and we are done in this case.

The general case is proved by induction. Assume that whenever

0 �= z ∈ 〈Bi ∪ · · · ∪Bk〉,

where i is the first index such that π[1,di](z) �= 0, we have that h(z, G) = h(z, Yk).
Reasoning by induction, take an arbitrary element 0 �= z ∈ 〈Bi−1 ∪ · · ·Bk〉, where i − 1 is the first index 

such that π[1,di−1](z) �= 0.
Then z = zi−1 + zi + · · · zk, zj ∈ 〈Bj〉, i − 1 ≤ j ≤ k, where

π[1,di−1](zi−1) = π[1,di−1](z)

and, from the argument in the paragraph above, the height of zj in Hj is the same as in G, i − 1 ≤ j ≤ k.
If h(zi−1, G) < h(zi + · · · zk, G), then

h(z, Yk) ≤ h(z,G) = h(zi−1, G) = h(zi−1, Hi−1) ≤ h(zi−1, Yk) ≤ h(zi−1, G)
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by (3). On the other hand, by the inductive hypothesis, we have

h(zi + · · · zk, G) = h(zi + · · · zk, Yk).

Hence

h(zi−1, Yk) = h(zi−1, G) < h(zi + · · · zk, G) = h(zi + · · · zk, Yk),

which yields

h(z, Yk) = h(zi−1, Yk) = h(zi−1, G) = h(z,G).

This completes the proof when h(zi−1, G) < h(zi + · · · zk, G). The case h(zi + · · · zk, G) < h(zi−1, G) is 
analogous.

Therefore, we may assume without loss of generality that

h(zi−1, G) = h = h(zi + · · · zk, G).

Moreover, by the inductive hypothesis, we also have

h(zi−1, Yk) = h(zi−1, G) = h = h(zi + · · · zk, G) = h(zi + · · · zk, Yk).

Reasoning by contradiction, suppose that

h(z,G) = r > h(z, Yk) ≥ h.

Since G is order controllable we can decompose

z = pry = prvi−1 + prwi−1,

where

y ∈ G[1,ndk
], vi−1 ∈ G[1,ndi−1 ], wi−1 ∈ G[di−1+1,ndk

],

order(pry) = order(prvi−1) = p,

π[1,di−2](p
ry) = π[1,di−2](p

rvi−1) = 0,

and

π[di−2+1,di−1](p
ry) = π[di−2+1,di−1](p

rvi−1) = π[di−2+1,di−1](z) = π[di−2+1,di−1](zi−1) �= 0.

Let λlxl be the last term in the sum of zi−1, then the height of xl in G coincides with the height of zi−1 in 
G, which is h by (3). Furthermore, prvi−1 ∈ G[di−2+1,ndi−1 ][p] and

π[di−2+1,di−1](p
rvi−1) /∈ π[di−2+1,di−1](〈xm(i−2)+1, · · ·xl−1〉).

This is a contradiction with the previous choice of xl because the height of prvi−1 in G is r > h and xl was 
selected with maximal possible height in G. Therefore, we have proved h(z, G) = h = h(z, Yk) = h(z, Y ).

We now prove that for every z ∈ tor(G) (the torsion subgroup of G) there is a sequence

(λm) ∈
∏

Z(phm+1)

m∈N
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such that

z = lim
k→∞

∑
1≤m≤m(k)

λmym (4)

which is tantamount to

π[1,dk](z) = π[1,dk]

⎛
⎝ ∑

1≤m≤m(k)

λmym

⎞
⎠

for every k ∈ N.
We proceed by induction on the order ps of z.
Take any element z ∈ G[p]. By Equation (1), we know that

π[1,dk](G[p]) = π[1,dk](〈B1〉
⊕

· · · 〈Bk〉)

holds for all k ∈ N. Therefore, there is a sequence

(αm) ∈
∏
m∈N

Z(p)

such that

π[1,dk](z) = π[1,dk]

⎛
⎝ ∑

1≤m≤m(k)

αmxm

⎞
⎠ = π[1,dk]

⎛
⎝ ∑

1≤m≤m(k)

αmphmym

⎞
⎠

for all k ∈ N. This means

z = lim
k→∞

∑
1≤m≤m(k)

αmphmym.

This completes the proof for s = 1 if we set λm := αmphm for all m ∈ N.
Now, suppose that the assertion is true when order(z) ≤ ps and pick an arbitrary element z ∈ G with 

order(z) = ps+1. Then psz has order p and therefore belongs to G[p]. By Equation (1) again, we know that 
there is a sequence

(αm) ∈
∏
m∈N

Z(p)

such that

π[1,dk](psz) = π[1,dk]

⎛
⎝ ∑

1≤m≤m(k)

αmxm

⎞
⎠ = π[1,dk]

⎛
⎝ ∑

1≤m≤m(k)

αmphmym

⎞
⎠

for all k ∈ N.
Now, since we have chosen each element xm with the maximal possible height, it follows that s ≤ hm for 

all 1 ≤ m ≤ m(k), and k ∈ N. Therefore

π[1,dk](psz) = π[1,dk]

⎛
⎝ps

∑
αmphm−sym

⎞
⎠ ,
1≤m≤m(k)



M.V. Ferrer, S. Hernández / Journal of Pure and Applied Algebra 227 (2023) 107305 11
for all k ∈ N, which yields

π[1,dk]

⎛
⎝ps(z −

∑
1≤m≤m(k)

αmphm−sym)

⎞
⎠ = 0

for all k ∈ N.
Set

v = lim
k→∞

∑
1≤m≤m(k)

αmphm−sym ∈ G

where the limit exists, and therefore v is well defined, because ym(i) = 0 for all m > m(ni). Then we have 
z = v + (z − v), where order(z − v) ≤ ps. By the inductive hypothesis, there is a sequence

(μm) ∈
∏
m∈N

Z(phm+1)

such that

z − v = lim
k→∞

∑
1≤m≤m(k)

μmym.

Therefore

z = lim
k→∞

∑
1≤m≤m(k)

(αmphm−s + μm)ym.

This completes the proof of the inductive argument. Therefore, it is proved that

G ∩ (⊕Gi) ⊆ tor(G) ⊆
∑
m∈N

〈ym〉.

Since G is closed and order controllable, it follows

G ∩ (⊕Gi) = G =
∑
m∈N

〈ym〉.

This completes the proof of the Claim.
We now proceed with the proof of the three assertions formulated in this theorem.

(i) We will now prove that G is topologically generated by the set {ym | m ∈ N}.
First, observe that the finite subgroup 〈ym〉, generated by ym in G, is isomorphic to Z(phm+1) for every 

m ≥ 1. Thus, without loss of generality, we may replace the group 〈ym〉 by Z(phm+1) in the sequel. Consider 
now the group 

∏
m∈N

Z(phm+1), equipped with the product topology and its dense subgroup 
⊕

m∈N
Z(phm+1). 

Set

Φ :
⊕
m∈N

Z(phm+1) −→ G ∩ (⊕Gi) ≤ G

defined by
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Φ[(k1, . . . , km, . . . )] =
∑
m∈N

kmym.

Since only finitely many km are non-null, the map Φ is clearly well defined. We will prove that Φ is also a 
topological group isomorphism on its image.

In order to verify that Φ is one-to-one, suppose there is a sequence

(k1, · · · , kr, 0, · · · ) ∈ ker f, 0 ≤ kj < phj+1,

with some kj �= 0. Then we have

k1y1 + · · · + kryr = 0.

Expressing every kj �= 0 in base p, we obtain kj = a
(j)
hj

phj + · · · + a
(j)
1 p + a

(j)
0 , 0 ≤ a

(j)
i < p, 0 ≤ i ≤ hj , 

1 ≤ j ≤ r. Let psj the minimal power of p that appears in the expression of kj �= 0. Since yj has order phj+1

the order of kjyj is phj−sj+1.
Defining d := max{hj − sj | kj �= 0, 1 ≤ j ≤ r} and multiplying by pd the equality above, we obtain an 

expression as follows

pd
(
(a(i1)

hi1
phi1 + · · · + a

(i1)
hi1−d

phi1−d)yi1 + · · · (a(il)
hil

phil + · · · + a
(il)
hil−s

phil
−d)yil

)
= 0,

where we have only considered those elements {yij}lj=1 such that hi1 − si1 = · · ·hil − sil = d. Since 

phij yij = xij has order p, we have

a(i1)
si1

xi1 + · · · a(il)
sil

xil = 0.

Since the elements {xi1 , · · · , xil} are all independents, it follows that

a(i1)
si1

= · · · a(il)
sil

= 0.

This is a contradiction which completes the proof. Therefore Φ is 1-to-1.
The sequence (ym) that we have defined above verifies that ym(i) = 0 for all m > m(ni). As a consequence, 

we have that lim
m→∞

ym(i) = 0 for all i ∈ N, which implies the continuity of Φ. Indeed, let (zα) be a sequence 

in 
⊕

m∈N
Z(phm+1) converging to 0. If Vi = (0, · · · 0) ×

∏
j>i

Gj is an arbitrary basic neighborhood of 0 in 
∏
j∈N

Gj , since (0, · · · 0) ×
∏

j>m(ni)
Z(phj+1) is a neighborhood of 0 in 

∏
j∈N

Z(phj+1), then there is αi such that 

zα|[1,m(ni)] = 0 for all α ≥ αi. Therefore zα = (0, · · · , 0, km(ni)+1,α, · · · ) and Φ(zα) =
∑

m>m(ni)
km,αym ∈ Vi, 

for all α ≥ αi and for all i ∈ N. Thus, the sequence (Φ(zα)) converges to Φ(0) = 0, which verifies the 
continuity of Φ.

As a consequence, there is a continuous extension

Φ :
∏
m∈N

Z(phm+1) −→ G

that we still denote by Φ for short, which is continuous and onto. Furthermore, it is easily seen that it holds

Φ[(km)] =
∑
m∈N

kmym.

Remark that, since ym(i) = 0 for all m > m(ni), it follows that
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∑
m∈N

kmym(i)

reduces to a finite sum for all i ∈ N. Therefore Φ is well defined. This proves that {ym | m ∈ N} is a 
generating set for G.

(ii) Next we prove that if G has finite exponent then Φ is 1-to-1 on 
∏

m∈N
Z(phm+1) and, as a consequence, 

that Φ is an isomorphic encoder and G is weakly rectangular.
For that purpose, it will suffice to check that kerΦ = {0}.
We proceed by induction on the order ps of the elements v := (λm) ∈ kerΦ.
Suppose order(v) = p, which means λm = αmphm , 0 ≤ αm < p, for all m ∈ N. We have

Φ(v) =
∑
m∈N

αmphmym =
∑
m∈N

αmxm = 0.

For every l ∈ N, set vl := (μm), where μm = λm if 1 ≤ m ≤ m(l) and μm = 0 if m > m(l). It follows that 
lim
l→∞

vl = v. By the continuity of Φ we obtain

lim
l→∞

∑
1≤m≤m(l)

αmxm =
∑
m∈N

αmxm = 0.

Thus, for every k ∈ N, there is lk ∈ N such that

π[1,dk](Φ(vl)) = π[1,dk]

⎛
⎝ ∑

1≤m≤m(l)

αmxm

⎞
⎠ =

∑
1≤m≤m(l)

αmπ[1,dk](xm) = 0

for all l ≥ lk. On the other hand

Φ(vl) =
∑

1≤m≤m(l)

αmxm +
m(2)∑

m = m(1) + 1︸ ︷︷ ︸
π[1,d1](xm)=0

αmxm + · · ·
m(l)∑

m = m(k) + 1︸ ︷︷ ︸
π[1,dk](xm)=0

αmxm,

where 0 ≤ αm < p, then for l ≥ lk, we have

π[1,d1](Φ(vl)) =
∑

1≤m≤m(1)

αmπ[1,d1](xm) = 0

and since π[1,d1](B1) = {π[1,d1](x1), · · · , π[1,d1](xm(1))} is a basis for π[1,d1](G[p]) we obtain that α1 = · · · =
αm(1) = 0.

In like manner, from

π[1,d2](Φ(vl)) =
m(2)∑

m=m(1)+1

αmπ[1,d2](xm) = 0,

we deduce that αm(1)+1 = · · · = αm(2) = 0. Therefore, iterating this argument, we obtain α1 = · · · =
αm(k) = 0. Since λm = αmphm for all 1 ≤ m ≤ m(l), it follows that λm = 0 for all 1 ≤ m ≤ m(k). Since 
this holds for every k ∈ N, it follows that λm = 0 for all m ∈ N. This completes the proof for s = 1.

Now, suppose that the assertion is true when order(v) ≤ ps and pick an arbitrary element v = (λm) ∈
ker Φ such that order(v) = ps+1. Then psv ∈ ker Φ and has order p. Therefore, the arguments above applied 
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to psv yield that psv = 0, which is a contradiction. By the inductive assumption, it follows that v = 0, 
which completes the proof.

Therefore, we have proved that

Φ :
∏
m∈N

Z(phm+1) −→ G

is 1-to-1. The compactness of the domain implies that Φ is a topological group isomorphism onto G.

(iii) Assume that 
∑

m∈N
〈xm〉 is weakly observable. This means

∑
m∈N

〈xm〉 ∩
⊕

Gi =
∑
m∈N

〈xm〉.

We have to verify that the map

Φ :
⊕
m∈N

Z(phm+1) −→ G ∩
⊕

Gi

is onto. Reasoning by contradiction, suppose there is an element

z ∈ G ∩
⊕

Gi \
∑
m∈N

〈ym〉,

which has the smallest possible order, ps+1, s ≥ 0, of an element with this property. Since, by the foregoing 
Claim, we have that

G[p] ∩
⊕

Gi ⊆
∑
m∈N

〈xm〉,

it follows that

G[p] ∩
⊕

Gi =
∑
m∈N

〈xm〉.

Therefore, since psz ∈ G[p] ∩
⊕

Gi, there must be a finite subset J ⊆ N such that

psz =
∑
m∈J

αmxm =
∑
m∈J

αmphmym, 0 < αm < p.

We have already proved that s ≤ hm for all m ∈ J , which yields

psz = ps
∑
m∈J

αmphm−sym.

Set

v :=
∑
m∈J

αmphm−sym = f((αmphm−s)).

Then ps(z − v) = 0.
If s = 0, we obtain z = v and we are done.
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So, assume that s > 0. In this case, we have an element z − v ∈ G ∩
⊕

Gi, whose order is ps. By our 
initial assumption, this means that z − v = f((λm)) for some element (λm) ∈

⊕
m∈N

Z(phm+1). Therefore

z = v + f((λm)) = f((αmphm−s + λm)),

which is a contradiction. This completes the proof. �
Example 3.3. Let G ⊆

∏
i∈N

Gi, where Gi = Z(22), be the subgroup generated by the set {yn | n ∈ N}, where 

y1 ∈ G[1,2] with y1(1) = 2 and y1(2) = 1, and yn ∈ G[n,n+1] with yn(n) = yn(n + 1) = 1 for n > 1.
The group G is not order controllable. Indeed, for any block [1, m], pick y ∈ G such that y(n) = 2

for all 1 ≤ n ≤ m + 1, which only admits the sum y = zm + z with the first part zm ∈ G[1,m+1], where 
zm(n) = y(n) = 2, 1 ≤ n ≤ m and zm(m + 1) = 1, m ≥ 1. Then order(y|[1,m+1]) = 2 but order(zm) = 4.

On the other hand, it is easily seen that G
∏

Gi is an implicit direct product of the family {Gi | i ∈ N}. 
Therefore, the choice of an appropriate generating set is essential in order to determine whether a subgroup 
of a product is weakly rectangular or an implicit direct product.

4. Main result

Let G be a closed subgroup of X =
∏
i∈N

Gi (a countable product of finite abelian groups). Since each 

group Gi is finite and abelian, by the fundamental structure theorem of finite abelian groups, we have that 
every group Gi is a finite sum of finite p-groups, that is Gi

∼=
⊕
p∈Pi

(Gi)p and Pi = PGi
is finite, i ∈ N. Note 

that PX = ∪Pi. We have
∏
i∈N

Gi
∼=

∏
i∈N

(
∏
p∈Pi

(Gi)p) ∼=
∏

p∈PX

(
∏
i∈Np

(Gi)p)

where Np = {i ∈ N | Gi has a nontrivial p − subgroup}.
Thus

(X)p ∼=
∏
i∈Np

(Gi)p.

Consider the embedding

j : G ↪→
∏

p∈PG

(
∏
i∈Np

(Gi)p)

and the canonical projection

πp :
∏

p∈PG

(
∏
i∈Np

(Gi)p) →
∏
i∈Np

(Gi)p.

Set G(p) = (πp ◦ j)(G), that is a compact group. We have

(G)p ∼= G(p).

Now, it is easily seen that if G is order controllable then (G)p has this property for each p ∈ PG. Taking 
this fact into account, we obtain the following result that answers to Question 1.3 for products of finite 
abelian groups.
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We can now prove Theorem A.

Proof of Theorem A. . Since G ∩ (
⊕
i∈N

Gi) is dense in G, we have that

(πp ◦ j)(G ∩ (
⊕
i∈N

Gi)) = G(p) ∩
⊕
i∈Np

(Gi)p

is dense in G(p). Thus (a) is a direct consequence of Theorem 3.2. That is, for each p ∈ PG, there is a 
sequence

{y(p)
m |m ∈ N} ⊆ G(p) ∩

⊕
i∈Np

(Gi)p

such that {y(p)
m | m ∈ N} is a generating set for G(p). Furthermore, observe that if p ∈ PG, then G(p) ∩⊕

i∈Np

(Gi)p ∼= (G ∩ (
⊕
i∈N

Gi))p. Thus, using this isomorphism, we may assume with some notational abuse 

that

{y(p)
m |m ∈ N} ⊆ (G ∩ (

⊕
i∈N

Gi))p

Therefore, the sequence

{y(p)
m |m ∈ N, p ∈ PG, p ∈ PG} ⊆ G ∩ (

⊕
i∈N

Gi)

is a generating set for G.
In order to prove (b), we apply Theorem 3.2 again and, since G has finite exponent, for each p ∈ PG, we 

have that G(p) ∼=
∏

m∈N
〈y(p)

m 〉, which yields (b).

Finally, If 
⊕

m∈N
〈y(p)

m 〉[p] is weakly observable for each p ∈ PG, then G(p) is an implicit direct product for 

every p ∈ PG, which again implies that G is an implicit direct product. �
Question 4.1. Under what conditions is it possible to extend Theorem A to non-Abelian groups?
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