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a b s t r a c t

This study explores whether and to what extent cryptocurrency ecosystem network connectivity
predicts Bitcoin returns across quantiles of the return distribution. The facets of cryptocurrency
ecosystem network connectivity we consider include connectivity between the on- and off-chain
segments of the Bitcoin market, the intensity and synchronization of social and traditional crypto-
focused media activity, the intensity of network correlations between cryptocurrencies. We identify
tail behaviour predictors employing a quantile regression approach. The results demonstrate the
effectiveness of several connectivity measures in predicting both price spikes and downfalls, but in
a different way before and during the COVID-19 outbreak.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent models of crypto-currency valuation1 admit multiple
equilibria in crypto-currency markets. In the model put forth
by Cong et al. (2020), the source of equilibriummultiplicity is net-
work externalities: transactional benefits2 that accrue to holders
of cryptocurrency increase with platform productivity, and this
fact amplifies the impact of exogenous productivity shocks. This
impact can be further amplified by the demand–supply spirals
admitted by Pagnotta and Buraschi (2018). The model of Bi-
ais et al. (2019) emphasizes that transactional benefits (unlike,
say, stock dividends) depend on the cryptocurrency purchasing
power, and thus on its price. This generates the possibility of
equilibria in which the price crashes to zero. Such equilibria occur
if exogenous ‘‘sunspot’’ events trigger an extrinsic change in be-
liefs about both future prices and transactional benefits such that
the current equilibrium price is zero. In the model of Biais et al.
(2019), moreover, the time-varying probability of the sunspot can
generate excess-volatility of the cryptocurrency price.

∗ Corresponding author at: M. Smurfit School of Business, University College
ublin (UCD), Ireland.

E-mail addresses: rocco.caferra@uniba.it, al401530@uji.es (R. Caferra),
ndrea.morone@uniba.it (A. Morone), valerio.poti@ucd.ie (V. Potì).
1 See Liu et al. (2022) for a review.
2 These include censorship resistance and the ability afforded to the holder

o engage in trustless exchange, as emphasized by Pagnotta and Buraschi (2018).
ttps://doi.org/10.1016/j.econlet.2022.110734
165-1765/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
If these mechanisms are at play in crypto-markets, and if we
view such markets and the broader ecosystem in which they
operate as a network, then connectivity among the nodes of such
network should influence tail returns. The relevant connectivity
according to Cong et al. (2020) is between the on-chain and the
off-chain segment of the cryptocurrency market. In the model
of Biais et al. (2019)), this is complemented by connectivity
between market participants provided by the media, through
its role in the coordination of their expectations. To the extent
that coordination of expectations occurs, at least to some extent,
across the whole cryptocurrency market, measures of connectiv-
ity among the markets of different cryptocurrencies should also
exhibit predictive ability for tail returns.

To test these predictions, we employ quantile autoregressions
of Bitcoin returns augmented by measures of activity and con-
nectivity of cryptocurrency markets and of the media that covers
them. Our empirical results help identify the role of investors’
connectivity and attention as drivers of market behaviour, high-
lighting however a change of dynamics between before and dur-
ing the COVID pandemic.

2. Methodology

The quantile autoregressive model we employ is the following:

qτ (rt | Ω) = ατ + βτ rt−1 + δτQt−1 + λτPCRt−1 + ητMIt−1

+ θτMSt−1 + ζτNTt−1 (1)
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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n what follows, we first define the variables included in (1) and
hen explain the rationale for their inclusion. In (1), qτ () is the
uantile function conditioned to the τ ∈ (0,1) quantile, t is the
ime and Ω indicates the available information set. Returns (rt )
re calculated as the log differences of prices. We focus on Bit-
oin as the representative cryptocurrency. Hence, the dependent
ariable is the Bitcoin log-return and the regression estimates are
or the quantiles of the Bitcoin log-return distribution. Results
ith altcoin returns as dependent variables are available upon
equest. The parameters βτ , δτ , λτ , ητ , θτ , ζτ are the quantile
oefficients associated to past returns (rt−1), which we include
o control for possible time-varying risk premia and/or slow
rocessing of information, and the additional predictive variables.
t denotes the amount of Bitcoin on-chain transactions (Qt−1).
CRt is defined as PCRt ≡

Qe,t
Qt−Qe,t

, where Qe,t is the amount of
on-chain Bitcoin transactions involving exchanges (i.e., in which
one of the addresses is the wallet of an exchange).3 MIt stands for
media incidence, referring to incidence of crypto-related topics in
the media. MSt denotes synchronization of attention to crypto-
currency markets across the media. Regarding NTt , it is defined
as the probability that the nodes of the cryptocurrency network
to which Bitcoin belongs are connected, akin to the transitivity
(or clustering coefficient) in a graph (Csardi et al., 2006).4 This
probability is estimated using a DCC-GARCH network correlation
model, as explained in Appendix A.

In the models of both Cong et al. (2020) and Biais et al. (2019),
beliefs about transactional benefits play a key role, akin to the
role of beliefs about fundamentals in the valuation of other assets
classes (e.g., dividends in the case of stocks). The rationale for the
inclusion among the regressor of Qt−1 is thus that it is a proxy
for the amount of (expected) transactional benefits. That is, Qt−1
controls for the value of the Bitcoin as a medium of exchange.

If the switch between different possible equilibria5 takes place
on the on-chain segment of the cryptocurrency market rather
than the off-chain one, as essentially implied by the model of
Cong et al. (2020), we expect a measure of their connectivity,
namely PRCt , to predict returns in either tail. This corresponds to
the anecdotal evidence that high flows between the on-chain and
off-chain segments of the market predict extreme returns. This is
the rationale for the inclusion of the lag of this variable in (1).

In the model of Cong et al. (2020), beliefs about transactional
benefits are anchored by beliefs about platform productivity,
whereas in the model of Biais et al. (2019) they depend on beliefs
about future prices and, therefore, on how investors’ expecta-
tions coordinate driven by (beliefs about) sunspots, as in the
‘‘temporary equilibria" emphasized by Brunnermeier et al. (2021).
Thus, coordination of expectations plays essentially no role in the
model of Cong et al. (2020), even in the event of interaction with
the demand–supply spirals considered by Pagnotta and Buraschi
(2018), whereas it plays a crucial role in the model of Biais et al.
(2019). Therefore, the model of Biais et al. (2019) implies that
tail thickness should depend also on media attention, as this is
indicative of turning points in coordination of expectations. This
is the rationale for the inclusion of MIt , which measures media
attention towards cryptos. For similar reasons, it may depend also

3 Exchanges are the interface between the on-chain and off-chain portion of
he crypto-market. Thus, a large value of PCRt means intense flow (hence, high
onnectivity) between the off-chain and on-chain segments of the Bitcoin market
etwork. For example, if PCRt = 0 (PCRt = 1) it means that no (all) transactions

on the cryptocurrency blockchain involve a crypto exchanges, implying no (full)
connectivity between the blockchain and the off-chain market.
4 A value closer to 0 indicate a disconnected graph, while approaching to 1

it indicates the full graph connection.
5 Whether coordination of expectations play a role in addition to

demand–supply spirals.
 Q

2

on MSt , which measures the extent to which media attention is
synchronized across different media.

Beliefs about sunspots arguably change in similar ways across
cryptocurrencies. For example, beliefs about changes to the reg-
ulatory stance are likely to affect beliefs about transactional ben-
efits to holders of all cryptocurrencies. We thus expect measures
of connectedness of cryptocurrency markets to correlate with
equilibrium shifts, and thus to predict tail events, especially under
the model of Biais et al. (2019).6 In the quantile autoregression
model, we thus include among the predictors NTt−1, a measure
of the extent to which the price changes of the cryptocurrencies
are connected.

If the quantile coefficient of a given variable is positive for
a certain range of quantiles, it means that the variable predicts
higher values for those quantiles. Thus, a variable predicts fat
tails in either direction if its quantile coefficients are negative on
the downside (for low quantiles) and positive in the upside (for
high quantiles). For example, under the model put forth by Biais
et al. (2019), the coefficients of MIt−1 (ητ ) should be significantly
ositive (negative) for high (low) quantiles, implying that high
low) media intensity predicts returns in the positive (negative)
ail. That is, the quantile coefficient should be increasing in the
uantile. By the same logic, in the case of MSt−1, the pattern we
xpect under the model of Biais et al. (2019) is different. We can
xpect attention to cryptocurrencies in the social and traditional
edia to converge on the upside and to diverge on the downside,

n line with anecdotal accounts that Bitcoin raises enjoying the
oordinated attention of all the media, but falls neglected by the
raditional media. This is because market participants directly
enerate the content of social media like Twitter, hence their
ttention to crypto-related topics is likely not to fall (or even in-
rease) when cryptocurrency markets fall, whereas the attention
f traditional media likely fades in these circumstances. Coordina-
ion of expectation operated by the media can thus be expected to
roduce a U-shaped pattern in the quantile coefficients of MSt−1,
ith positive and large coefficients especially for the lowest and
ighest quantiles.

. Data

We obtain Bitcoin (BTC/USD) daily price index from www.
oinmarketcap.com from the 02/02/2018 to the 17/04/2022. This
ives a total amount of 1537 observations, though we treat
he pre-COVID (02/02/2018 to 31/12/19) and the COVID (from
1/01/2020 onward) periods as distinct. We consider two dis-
inct sample periods because of the evidence provided by earlier
iterature that the pandemic had a substantial effect on cryto-
urrency markets (e.g., Goodell and Goutte, 2021). To construct
he network we then collect daily data on other 49 cryptocur-
encies from the same website.7 We also collect daily data on
lockchain on-chain Bitcoin transactions from www.blockchain.
om. We use this data to compute both Qt , as the total volume
f daily transactions in Bitcoin, and PCRt , which is the fraction
f these transactions that involve the 100 largest addresses. It is
ell known that these 100 largest addresses are mostly crypto-
xchanges. Hence, PCRt is an excellent proxy for the fraction
f on-chain transactions in which one of the counterparties is

6 Borri (2019) found that crypto-currency returns are driven, in the tail of
heir joint distribution, by each other much more than by the returns on other
sset classes.
7 These cryptocurrencies are: BitShares, BlackCoin, Dash, Diamond, DigiByte,
igixDAO, DNotes Dogecoin, DopeCoin, Emercoin, Ethereum, Expanse, Factom,
eathercoin, Goldcoin, Golem, Gulden, LBRY Credits, Lisk,Litecoin, Megacoin,
onaCoin,Navcoin, Neo, Nxt, Omni, Peercoin, Primecoin, Siacoin, Stealth, Steem,
tellar, Stratis, Syscoin, Terracoin, Vertcoin, Viacoin, Waves, WhiteCoin, Augur,
uark, XRP, Zcash, bitCNY, GameCredits, Gridcoin, NEM, NuBits, Verge.

http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.coinmarketcap.com
http://www.blockchain.com
http://www.blockchain.com
http://www.blockchain.com
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Table 1
Descriptive statistics.
Variable Mean Standard Deviation Minimum Maximum AC1

Returns (Rt ) 0.00 0.04 −0.46 0.17 −0.059
On-chain Transactions (Qt ) 294519.70 46475.84 124640 452646 0.953
PCRt 0.03 0.02 0.00 0.24 0.876
Tweets (TWt ) 61565.66 52698.04 13294 363566 0.916
Press incidence (PIt ) 0.10 0.04 0.03 0.40 0.751
Media synchronization (MSt ) 0.20 0.17 −0.25 0.58 0.932
Network transitivity (NTt ) 0.77 0.07 0.47 0.92 0.932
COVID-19 deaths 7537.14 3706.21 0 18144 0.90
p
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the wallet of a crypto-exchange. Our proxy for MIt is either
he number of crypto-related Tweets, denoted by TWt , or the
ncidence of crypto-related articles in the traditional (i.e., non
ocial media) press, denoted by PIt . Our proxy for MSt is the DCC-
GARCH correlation between the measure of socialmedia attention
towards cryptos, TWt , and the measure of traditional media atten-
tion towards cryptos, PIt , as better explained in Appendix A. We
obtain the number of tweets from www.bitinfocharts.com,8 while
data on the international media incidence of the ‘‘cryptocurrency"
theme have been sourced from the GDelt Project https://www.
gdeltproject.org/.9 Table 1 reports descriptive statistics.10 We
proxied for the COVID-19 severity considering the worldwide
number of COVID-related deaths from https://ourworldindata.
org/.

4. Results

We report here below estimates of (1) using daily data, for
both the 2018–2019 and 2020–2022 sample periods. For the lat-
ter, we augment (1) with the COVID-19 deaths variable. Estimates
with data at the weekly frequency are available as supplementary
material.

4.1. Network effects across quantiles

We estimate the quantile regression in (1) with the quantile
threshold ranging from τ = 0.05 to τ = 0.95. We report the
estimates across quantiles of all the coefficients of the model
where the proxy for media incidence is the number of relevant
tweets, namely the case where MIt−1 = TWt−1. For the case
in which MIt−1 = PIt−1, they are very similar and available
upon request. Robust standard errors have been estimated using
the bootstrap method.11 In the estimated regression model, the
variables Qt−1, TWt−1 and the number of covid related deaths are
normalized by dividing them by their respective maximum value
over the sample period, in order to render the order of magnitude
of their coefficients more easily comparable.

Fig. 1 reports results for both periods, before and after the
outbreak of the COVID-19 pandemic. The reported results show
that measures of connectivity predict Bitcoin returns in the tails
of their distribution, but not always in a way consistent with the
models of either (Cong et al., 2020) or (Biais et al., 2019).

8 We impute the previous observation in case of missing data.
9 See also Caferra (2020) who uses the same source. As explained in the
ebsite (https://www.gdeltproject.org/), this project is supported by Google
nd it monitors the world daily news. We selected the ’’Global Online News
overage’’ database, and then queried the keyword ‘‘cryptocurrency’’. The output
hus obtained is the number of daily news containing the topic identified by
he keyword, normalized by the number of all the news monitored by the
DELT. The resulting value is then the share of the news items containing the
ryptocurrency word over the total news scraped by the website.
10 For the sake of robustness, we control for the trend stationarity of the
ependent variable, i.e. for Bitcoin returns.
11 We used the default method in the R function ‘‘boot.rq’’. This is the so
alled ‘‘xy-pair’’ method described by Kocherginsky et al. (2005)
3

In the pre-COVID period, the proxy for on-chain activity, Qt
does not predict tails returns to any appreciable extent. In the
COVID period, it does but in an opposite way to the one com-
patible with the demand–supply spirals of Cong et al. (2020).
In fact, the estimated quantile coefficients imply that higher on-
chain activity shortens the tails, in either direction. Regarding
PCRt , the results are more supportive of the model of Cong et al.
(2020): the estimates imply that it predicts longer tails both on
the downside and the upside, though on the upside the effect
is statistically significant only in the COVID period. Coming to
MIt , the results are supportive of the model of Biais et al. (2019):
the estimates imply that media attention predicts returns in both
the upper and lower tail, pointing to an important role of the
media12 in driving coordination of expectations. The U-pattern in
the quantile coefficients of MSt−1 is also exactly what we would
expect under the type of coordination of expectations operated by
the media, under the assumed different role of the traditional and
social media. The lack of a monotonically increasing pattern in the
plot of the quantile coefficients of NTt−1, however, is not what we
would expect if coordination of expectations plays the key role in
determining market switches across possible equilibria.

Our results for the COVID-period show that the pandemic
affected both the upper and the lower tail. During this time, at-
tention to pandemic-related developments might have replaced,
at least to some extent, attention to crypto-market variables.

4.2. Coordination of expectations and price jumps

The lack of predictive ability of NTt−1 is, as noted in the
revious sub-section, somewhat surprising. To investigate fur-
her, we propose a predictive quantile regression including as
ependent variable the Bitcoin return at time t + 1 and, among
he regressors, the interaction between the market regime at
ime t and the transitivity measure at time t . Specifically, we
onsider three different regimes: (i) a low regime, corresponding
o returns falling in the first quartile of the distribution, (ii) an
ntermediate state, referring to the second and third quartile,
nd finally (iii) a higher state, considering the last quartile of
he returns distribution. Results are reported in the heatmap in
ig. 2. The areas in blue denote large estimates for the interaction
oefficient. Thus, the figure shows that the predictive ability of
he transitivity measure, NTt , is especially strong in low market
tates, and that high NTt in low market states predicts a shift
f the upper quantiles to the right, hence increasing skewness
f the return distribution. Comparing the top and bottom panel,
t can be observed that the effect is strong in low market states
re-COVID but largely vanishes during the pandemic. In a trading
trategy this prediction could be exploited by purchasing at-the-
oney and out-of-the-money call options on Bitcoin when, in

he low market return regime, NTt increases, hence following low
arket returns and high values of NTt .

12 Tweets, in this case, but also traditional media, as shown by the unreported
results that are available upon request.

http://www.bitinfocharts.com
https://www.gdeltproject.org/
https://www.gdeltproject.org/
https://www.gdeltproject.org/
https://ourworldindata.org/
https://ourworldindata.org/
https://ourworldindata.org/
https://www.gdeltproject.org/
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Fig. 1. Coefficients (y-axis) across quantiles (x-axis).
As it can be seen, while the effect of network transitivity is
ot statistically significant in the intermediate and high state, it
urns statistically significant to explain price hikes following pre-
ious low market regimes. Hence, it is important to explain price
umps, consistent with the notion that increasing coordination of
xpectations leads to price jumps on the upside, a phenomenon
ometimes associated with herding and bubbles.
4

5. Conclusions

By employing an approach based on quantile autoregressions,
we have identified the role of network linkages in explaining
Bitcoin tails behaviour. Our results are especially supportive of
the possibility that coordination of expectations, as predicted
by the model of Biais et al. (2019), plays an important role in
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Fig. 2. Transitivity coefficients conditional on the three different market states at time t . ‘‘High’’ regime is the reference coefficient of the interaction. To help interpret
the results, coefficients not statistically different from 0 (p-value > 0.10) have been reported as 0, hence showing non-zero estimates only for statistically significant
coefficients.
explaining tail returns. We also show that Bitcoin returns on the
upside are anticipated by increasing network connectivity, which
we interpret as a proxy for convergence of expectations (the syn-
chronization of the price dynamics) within the crypto ecosystem.
We leave for future research to ascertain whether these empirical
traits are unique to cryptocurrency markets, perhaps due to their
relatively lower depth, lesser presence of professional investors,
and/or absence of the stabilizing influence of a central bank, or
are shared by financial markets more widely.
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Appendix A

A.1. Network connectivity

In asset correlation networks, the vertices are connected by
weighted links, with weights given by the correlation coefficients
between the returns of each pair of vertexes (i.e. assets), af-
ter defining a threshold above which ties (i.e., correlations) are
deemed to be significant, indicating that a link exists. Follow-
ing Lyócsa et al. (2012), we specify these correlation as condi-
tionally time-varying, and estimate them using a dynamic con-
ditional correlation (DCC) GARCH model of log-returns on the
cryptocurrencies in our dataset. Our network is thus a Dynamic
Correlation Network based on the daily log-returns of 50 cryp-
tocurrencies (hence, with 50 vertexes) and weighted links based
on the pairwise DCC, estimated using the full sample period.
Among all the possible model specifications, after extensive spec-
ification tests (available upon request), we opt for a DCC-AR(1)-
EGARCH(1,1) model. Following Vidal-Tomás (2021), we set a cor-
relation threshold of 0.5013 above (below) which a link is deemed
to exists (does not exist). Our measure of global connectivity
among cryptocurrencies is network transitivity (or the clustering

13 We consider also different higher thresholds. The results are similar and
available upon request.
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oefficient), NTt , which is the probability that adjacent vertices
of a network are connected (Csardi et al., 2006).14 A value close
o 0 indicates a disconnected graph while, if approaching 1, it
ndicates full graph connection.

.2. Media synchronization

In a similar vein, we estimate the DCC over time of the two
edia attention measures we consider in our study, namely the
umber of Tweets (TW) and press incidence (PI). We estimate
he DCC using a DCC-AR(1)-EGARCH(1,1) model based on the
irst differences of both variables (to ensure their stationarity).
ncreasing DCC indicates increasing synchronization between the
wo media types. This captures how social media (i.e., Tweets)
nd traditional media beliefs about bitcoin converge.
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