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aEscuela Técnica Superior de Ingenieŕıa, Universidad de Sevilla, Camino de los Descubrimientos s/n, ES-41092 Sevilla,
Spain

bUniversitat Jaume I, Department of Mechanical Engineering and Construction, Avda. Sos Baynat s/n, ES-12071 Castelló,
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Abstract

Single-track railway bridges are susceptible of experiencing high levels of vertical acceleration on the deck

that may be dangerously accentuated at resonance. This is especially critical for short-to-medium span sim-

ply supported bridges. This problem can compromise the safety of the trains and increase the maintenance

costs of the track. The main objective of this work is to investigate the influence of the ballasted track on

the dynamic behaviour of these structures. The present contribution provides a detailed sensitivity analysis

over a wide single-track bridge catalogue covering span lengths from 10 to 25 m and considering two common

deck sructural typologies: girder-deck and slab-deck bridges. The effect of the vertical stiffness of the neo-

prene bearings is also evaluated. A 2D Finite-Element track-bridge interaction model is implemented and

used to analyse the effect of the track on the modal parameters, harmonic response and vertical acceleration

of the bridges under train passages. Additionally, the weak coupling exerted by the track is studied for

structures with an increasing number of consecutive spans. The results obtained reveal a notable influence

of the mobilised ballast shear transfer mechanism on the dynamic response of the structures, especially

for the shortest girder bridges. Finally, a track-bridge interaction model of an existing short girder bridge

from a conventional railway line is updated and used to predict the experimental response measured under

operating conditions. The adequacy of the numerical tool and influence of the ballast shear parameters on

the dynamic response are shown.
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1. Introduction

The need for personal and freight mobility around the world has increased dramatically in recent decades.

Along with it, transportation systems have experienced a sustained development. In particular, railway

transport has proved to be essential for the development of modern societies, due to its numerous advantages

such as high transportation capacity, competitive travelling times, adequate levels of security and comfort5

for the passengers and its potential as a sustainable way of mobility.

For the European Union, the establishment of a single European railway space is a long-term strategic

priority [1]. Thus, it is fair to expect a progressive increase in the number of railway lines, the number of

trains, the transportation capacity of the vehicles and their operating speeds. In terms of design, monitoring,

and maintenance, this constitutes a challenge for the infrastructures, which will have to operate under more10

demanding conditions while fulfilling the required levels of quality, security and reliability. In the case of

the Spanish network, it is structured along 16000 km of operating lines, of which 3000 km are High Speed

(HS) lines [2]. In total, more than 6000 bridges are part of the railway system.

The dynamic effects on railway bridges are considered of major interest and concern for scientists and

engineers, especially since the opening of the first HS lines [3], as these phenomena generally aggravate with15

increasing velocities. According to Eurocode (EC), the verification of maximum peak deck acceleration shall

be regarded as a traffic safety requirement checked at the serviceability limit state for the prevention of

track instability. The maximum acceleration is limited to 3.5 m/s2 in ballasted track bridges and to 5 m/s2

in slab-track bridges [4, 5], and these two limits are related to the possible deconsolidation of the ballast

and to the risk of losing wheel-rail contact, respectively. An excessive level of vertical vibrations may cause20

passenger discomfort, a raise in the maintenance costs of the track, the premature deconsolidation of the

ballast layer and the resulting misalignment of the rails in ballasted track bridges, a possible loss of contact

between the wheels and the rails, and an increasing risk of derailment in the worst-case scenario. In this

regard, single track short-to-medium span (10 – 25 m) simply-supported (SS) railway bridges are prone to

exhibit important acceleration levels due to their usually associated low mass, especially at resonance [6, 7].25

Train induced vibrations in railway bridges is a rather complex interaction problem affected by several

factors. The most obvious ones are the geometrical and mechanical properties of the bridge, the scheme of the

train axles and the circulation speed. In addition, other much more uncertain interaction mechanisms may

also significantly affect the response of the bridge such as vehicle-structure, track-structure and soil-structure

interaction, which are currently under investigation [8]. Moreover, the computational cost of representing30

accurately these interaction mechanisms is considerable and time-consuming. This is why simplified models
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that often disregard them are regularly used in engineering consultancies.

This investigation is dedicated to the study of the effect exerted by the ballasted track on the vertical

dynamic response of SS railway bridges. This is a matter of interest since, according to some authors,

the contribution of the ballasted track on the dynamic response of the bridge is not yet fully understood35

[9, 10], and constitutes one of the reasons for the discrepancies found between calculated and measured

modal parameters in short-to-medium span bridges [10]. Several publications can be found in the literature

dedicated to the investigation of the vertical track-bridge interaction and its effect on the modal parameters

and on the dynamic response of railway bridges. Among them, Liu et al. [11] compared the prediction

of the dynamic response of a multi-span railway viaduct using moving loads and vehicle-bridge interaction40

models. The authors found that the track creates a connection between statically decoupled spans that

directly affects the dynamic behaviour of the bridge and its modal properties. Chellini et al. [12] identified

the modal parameters of two composite isostatic multi-span railway bridges and analysed the dynamic

response under operating conditions. As a result, the authors identified a clear dynamic interaction between

consecutive spans. Moreover, they pointed out the importance of including the continuous rails and the45

ballast layer in the numerical models to obtain a realistic representation of the dynamic response. Liu et

al. [13] evaluated the influence of the weak coupling exerted by the track between consecutive SS spans on

the dynamic response of the multi-span Sesia railway viaduct using two models: (i) a single-span FE model

of the bridge with modified boundary conditions, and (ii) a reduced-order model of the whole viaduct or

Component Synthesis Model (CMS). The authors concluded that the CMS technique offered good results at50

reasonable computational cost, although the single-span model could be used as well to obtain an agreeable

approximation of the dynamic response of the structure. Matsuoka et al. [14] studied the dynamics of the

same viaduct focusing on the influence of local deck vibrations. They pointed out that high-order resonances

associated to local deformation modes could cause larger accelerations than those that would be predicted by

considering only global deformation modes. In addition, in relation with the work of Liu et al. [13], results55

in [14] highlighted that the influence of the weak coupling between adjacent spans had a negligible effect on

the acceleration response of the bridge, especially at resonance. Bornet et al. [10] investigated the influence

of the ballasted track in a single-span steel truss railway bridge, concluding that the track provided an

additional stiffness of about 22 – 27 % in the three lowest modes. Furthermore, they revealed that the effect

of the ballast stiffness and the track continuity does not manifest significantly on the first vertical bending60

and torsional modes, whereas, in contrast, have an important influence on the second vertical bending

mode. Seemingly, the addition of the ballast provided an extra weight on the structure that prevented the
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translation of the bearings and affected significantly the stiffness for the first and third vertical bending

modes. Other authors as Galv́ın et al. [15] presented the results of an experimental campaign carried out

on five railway bridges. In this contribution, the authors investigated the load transfer between loaded and65

unloaded adjacent decks sharing a continuous ballast layer, and pointed out the importance of taking into

account this coupling effect.

The work presented herein is driven by the results obtained in a preliminary study by the authors [16], in

which a high dispersion was detected in the values employed for the track parameters in the literature, even

for similar track infrastructures. Additionally, a sensitivity analysis was carried out on the vertical stiffnesses70

and damping of the rail pads and the ballast. The results proved that these parameters affected the response

of the bridge mainly at resonance, but still, the influence of these parameters was very small compared to

the ballast shear transfer mechanisms. The present contribution aims to go further and broaden the focus

with respect to previous contributions. To this end, three main objectives are defined to investigate how the

presence of the ballasted track affects the dynamic response of railway bridges: (i) to evaluate the influence75

of the main track parameters on the modal properties and on the harmonic and dynamic response of the

bridges; (ii) to analyse the weak coupling effect exerted by the continuity of the ballasted track between

successive spans in the vertical acceleration response under railway traffic and, additionally, to check the

adequacy of models that disregard this effect; and (iii) to assess the suitability of simplified discrete track-

bridge interaction models to predict the response of real structures.80

The main novelty of this paper is the definition of a vast bridge catalogue of single-track multi-span

bridges that is meant to cover some of the most representative bridge typologies found in the European

railway network for span lengths from 10 to 25 m: girder and slab bridges [17]. This represents an important

newness, since previous publications usually focus on particular case studies, which prevents the derivation

of general conclusions. Girder bridges are structures with precast decks composed of concrete slabs resting85

on pre-stressed longitudinal girders with or without transverse diaphragms at the supports. Slab bridges

are made up of solid or voided concrete slabs, filler beams encased in concrete pseudo-slabs, etc. Other

typologies found in short-span bridges such as prefabricated twin box girder decks or portal frames are less

prone to experience vibration problems due to their inherently higher stiffness or damping, and are not

included in the study. A 2D Finite-Element (FE) track-bridge interaction model including a three-layer90

discretisation of the track, based on that proposed by Zhai et al. [18], is implemented and used to perform

an extensive sensitivity analysis to accomplish the three aforementioned objectives.

Among the particularities of this study, it is worth mentioning that the results are obtained for the
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structures at resonance but also at non resonance and cancellation situations. Plus, the solution for the

dynamic problem is obtained through direct integration of the equations of motion using the full FE model95

(i.e., modal superposition is not applied to avoid its associated simplifications). In addition, objective (i)

is meant to fill a gap of knowledge that could lead to a better undertsanding of the dynamic problem in

railway bridges. Objective (ii) adresses the problematic of simplified single-span models, which are widely

used in engineering consultancies and due to the weak coupling exerted by the ballast, they may not be

able to predict the maximum vertical response of a multi-span structure. Finally, regarding objective (iii),100

a numerical-experimental comparison is performed on a short girder bridge from a Spanish conventional

railway line under operating conditions and the influence of the ballast shear parameters on the fitting of

the response is shown.

This paper is organised as follows. In section 2, the bridge catalogue is presented and the FE track-bridge

interaction model is described in detail. In section 3, a sensitivity analysis is carried out and the influence105

of the track parameters on the natural frequencies and on the harmonic response of the bridges under study

is evaluated. Additionally, the dynamic response of multi-span bridges under the passage of trains and the

influence of certain track parameters at resonance, cancellation and other conditions is analysed. In section

4, the weak coupling exerted by the continuity of the track is investigated in bridges with an increasing

number of spans. In section 5, experimental measurements on a two-span conventional bridge are compared110

to numerical predictions, and eventually, in section 6, the main conclusions are summarised.

2. Bridge catalogue and numerical model

2.1. Bridge catalogue definition

A representative catalogue of single-track SS railway bridges is defined covering short-to-medium span

lengths, since these are the most susceptible to experience high vertical acceleration levels under operating115

conditions. The span lengths of interest vary from 10 to 25 m, and they have been studied in 2.5 m intervals.

For each length, two common typologies are considered: (i) girder bridges (i.e. pre-stressed concrete girder

decks); and (ii) slab bridges (i.e. solid or voided concrete slabs, filler beam pseudo-slabs, etc.), as shown in

Fig. 1. As for the deck vertical supports, infinitely rigid supports (SS) and elastic supports (ES) accounting

for the vertical flexibility of laminated neoprene bearings are differentiated. Only this type of bearing120

is considered as (i) it is widely used for simply-supported, short-to-medium span length railway bridges

[19] and (ii) it is an adequate solution used to absorb small horizontal displacements of the bridge deck

at the supports as the ones expected in railway bridges under normal operating conditions according to
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the Spanish and European standards [5, 20]. Other types of bearings, capable of absorbing much higher

horizontal displacements, such as lead rubber bearings or friction pendulum bearings are usually found on125

longer bridges located in highly seismic zones and are out of the scope of this paper, as it is not intended to

evaluate seismic action on the structures considered.

(a)

(d)

(b)

(c)

Figure 1: Left: (a) pre-stressed concrete girder deck; (b) solid concrete slab; (c) voided concrete slab; (d) filler beam pseudo-slab.
Right: photographs of a girder deck (top) and a pseudo-slab deck (bottom) in Madrid-Sevilla HS line.

Fig. 2 shows, for the 28 bridges of the catalogue, the total mass of the deck per span Mbi and the

fundamental frequency f1. These values are selected on the basis of the study performed by Doménech et

al. [21]. For the girder decks, the mass of reported single-track existing bridges approaches the inferior limit130

in Fig. 2(a). This limit is selected because, additionally, corresponds to the most unfavourable case for

the acceleration criterion. The fundamental frequency for this typology is selected as 50% of the difference

between the EC [5] limits for application of the simplified method, based on the data of the bridges presented

in reference [21].

As for the slab decks, the mass is selected as 25% of the difference between the upper and lower limits135

for each length. This corresponds to an average value for the mass of existing single-track slab bridges.

Regarding the fundamental frequency for this typology, the same criterion is applied. Finally, an ES version

of each deck is also defined admitting that the ratio κ between the bridge bending stiffness and the supports

vertical stiffness equals approximately 0.05, as shown in Eq. 1, which leads to a reduction in the fundamental

frequency less than 3% with respect to the SS case, as indicated in [17]. This value is considered a reasonable140
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averaged flexibility ratio to be expected in the structures under consideration which usually rest on neoprene

bearings. Other types of elastic supports, such as pot bearings, which are more frequent in longer spans,

offer higher vertical stiffness than neoprene bearings. Therefore κ=0.05 can be seen as an upper limit for

these cases.

In Eq. 1, EbiIybi stands for the bridge bending stiffness, while K̄
n
bi,dyn indicates the vertical stiffness of145

the neoprene bearings for dynamic loads and Lbi the span length.

κ =
Ebi Iybi π

3
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bi,dyn L

3
bi

≈ 0.05 (1)

 M
 (

k
g

)
b

i

Girder decks 

ES SS

Slab decks 

(a)2M  = 45000L  + 200L  bi UPPER bi bi

2M   = 6000L  + 200L  bi LOWER bi bi

double-track

single-trackMbi UPPER

Mbi LOWER

5×10
16

12

8

4

0
7.5 10 12.5 15 17.5 20 22.5 25 27.5

 f
 (

H
z)

1

 L  (m)bi

(b)-0.748f   = 94.76L  1 UPPER bi

{80/L           if 4 ≤ L  ≤ 20 m bi bi

-0.59223.58L  if 20 ≤ L  ≤ 100 m bi bi

f     1 LOWER =

f    1 UPPER

f    1 LOWER

7.5 10 12.5 15 17.5 20 22.5 25 27.5

20

15

10

5

0

 L  (m)bi

Figure 2: (a) Mass per span and (b) fundamental frequency of the bridges under study. Mass and frequency limits selected
according to [21] and [5], respectively.

In Tables 1 and 2, the mechanical properties for the girder and the slab bridges of the catalogue are

included. Additionally, an identification code is assigned to each bridge according to these characteristics

(e.g. the GD-ES-10 bridge corresponds to a girder deck bridge, with elastic supports and 10 m of span

length).150
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Lbi [m] f1 [Hz] Mbi [kg] EbiIybi [MNm2] K̄
n
bi,dyn [MN/m] Designation

10 11.28 80000 3556 ∞ GD-SS-10
10.61 80000 3178 3124 GD-ES-10

12.5 9.42 106250 6449 ∞ GD-SS-12.5
8.86 106250 5808 2868 GD-ES-12.5

15 8.14 135000 10600 ∞ GD-SS-15
7.65 135000 9631 2698 GD-ES-15

17.5 7.21 166250 16440 ∞ GD-SS-17.5
6.77 166250 14970 2578 GD-ES-17.5

20 6.48 200000 24140 ∞ GD-SS-20
6.09 200000 22020 2492 GD-ES-20

22.5 5.99 236250 35050 ∞ GD-SS-22.5
5.63 236250 32030 2494 GD-ES-22.5

25 5.58 275000 49270 ∞ GD-SS-25
5.25 275000 45110 2504 GD-ES-25

Table 1: Mechanical properties of girder bridges.

Lbi [m] f1 [Hz] Mbi [kg] EbiIybi [MNm2] K̄
n
bi,dyn [MN/m] Designation

10 9.80 177500 6628 ∞ SD-SS-10
9.22 177500 6063 4671 SD-ES-10

12.5 8.03 228125 10910 ∞ SD-SS-12.5
7.55 228125 9971 4028 SD-ES-12.5

15 6.83 281250 16600 ∞ SD-SS-15
6.43 281250 15290 3588 SD-ES-15

17.5 5.97 336875 24010 ∞ SD-SS-17.5
5.61 336875 22060 3268 SD-ES-17.5

20 5.30 395000 33190 ∞ SD-SS-20
4.99 395000 30540 3027 SD-ES-20

22.5 4.91 455625 46910 ∞ SD-SS-22.5
4.61 455625 43230 2987 SD-ES-22.5

25 4.58 518750 64090 ∞ SD-SS-25
4.31 518750 59470 2958 SD-ES-25

Table 2: Mechanical properties of slab bridges.

2.2. Track-bridge interaction model

A 2D FE track-bridge interaction model is implemented for subsequent analyses (see Fig. 3). The

decision of using a planar model is based on the following: (i) the main interest are the vertical vibrations

induced by railway traffic. Lateral vibrations, which may be relevant in the case of viaducts with high155

piers in combination with wind loads, curved bridges or multi-track decks with eccentric traffic [22], fall out

of the scope of this study; (ii) the bridges under study are straight single-track bridges and the track is

centered in the deck width. Consequently, the contribution of modes different from the longitudinal bending

ones (torsion or transverse bending modes, typical in multi-track or skewed bridges) is not expected to be

relevant at low frequencies; (iii) it is intended to cover a vast catalogue of bridges considering different span160
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lengths, linear masses, fundamental frequencies, and boundary conditions. Therefore, computational time

is a relevant factor and using a planar model for this application is considered appropriate.

The track is simulated by means of a three-layer discrete model based on the one proposed in reference

[18], and couples a series of elastically supported bridge spans. From top to bottom, Er, Iyr and mr stand

for the rail Young modulus, cross-section moment of inertia with respect to the Y axis, and linear mass.165

Below, the vertical damping and stiffness of the rail pads, Cp and Kp, of the mobilised ballast, Cb and Kb,

and of the subgrade Cf and Kf , are included at the sleepers locations. Also, to account for the continuity

and the coupling effects of the interlocking ballast granules, a couple of linear shear stiffness Kw and shear

damping Cw is introduced connecting the vertical displacement of adjacent ballast masses. The lumped

masses Msl and Mb stand for the mass of each sleeper and the vibrating mass of ballast under a sleeper170

support, respectively. Regarding Kb
f and Cbf , they correspond to the subgrade stiffness and damping on the

bridge deck, which in this study are set to 100 × Kf and 0, respectively, admitting that the ballast rests

directly on the slab. As indicated in Fig. 3, the rail and track parameters are multiplied by a factor of

two, as only one rail is explicitly included in the model. The track model admits Ahlbeck hypothesis [23],

which states that the load transmitted from a sleeper to the ballast approximately coincides with a cone175

distribution with an inclination defined by the ballast stress pervasion angle corresponding to the Poisson’s

ratio.

As per the bridge, it is represented by Nsp isostatic uniform Bernoulli−Euler (BE) beams, where Nsp

stands for the number of spans. In the present work, Nsp is set to a value of 2, as two identical spans are

considered for each bridge, except in section 4, where the influence of the track weak coupling is evaluated180

in bridges with a different number of spans. The laminated rubber bearings of the bridge are represented as

vertical linear springs in the numerical model. Therefore, their vertical stiffness is introduced through the

constant equivalent vertical dynamic stiffness K̄
n
bi,dyn at each end section of the i-th bridge span (e.g. the

sum of the individual bearing stiffnesses at each support). The parameters Lbi, Ebi, Iybi and mbi correspond

to the length, the Young modulus, the cross-section moment of inertia with respect to the Y axis and the185

linear mass of the i-th bridge deck, respectively. With this configuration, the vertical interaction between

successive spans is only provided by the continuity of the ballasted track. In the simulations, a track length

of Lr,prev = 20 m is included before and after the bridge. This length represents more than 30 times the

sleeper distance Dsl, which is adequate attending to previous studies [24, 25]. The track model used in

this work focuses on the vertical interaction of the track-bridge system, while the longitudinal interaction190

is neglected. In the absence of braking forces or temperature gradients, the coupling effects in the vertical
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direction prevail over those in the longitudinal direction, and thus they may be evaluated in a decoupled

manner [26, 27]. This is consistent with recent publications devoted to transverse vibrations in railway

bridges [22, 28, 29].

Moreover, the track longitudinal stiffness is very high when compared to the vertical stiffness of the195

track-bridge systems. In addition, the natural frequencies of the modes that mobilise a significant amount

of mass in the longitudinal direction exceed the maximum frequency of interest of 30 Hz related to the

destabilization of the ballast layer associated with vertical vibrations according to EC. This fact has been

verified by means of a modal analysis performed with a detailed 3D numerical model of an existing railway

bridge implemented for this purpose in ANSYS(R)17.1. The model, similar than the one proposed in [30],200

considers a continuous discretisation of the ballasted track with solid FE, and reproduces with reasonable

accuracy the first 5 experimentally identified natural frequencies and mode shapes of Old Guadiana bridge,

an existing structure that belongs to a conventional railway line in Spain. This bridge corresponds to the

case study that is documented in section 5 of this paper. A comprehensive modal analysis was carried out

considering frequencies up to 200 Hz, with the aim of detecting modes with a significant deformation of the205

track with respect to the slab in the longitudinal direction (X ). The results of the numerical simulations

showed that modes with a high participation of the track deforming in the longitudinal direction present

frequencies much higher (over 100 Hz) than twice the maximum frequency of interest (30 Hz) according to

EC limit.

A constant moving load model is selected to represent the train excitation, therefore neglecting vehicle-210

structure interaction effects (VBI). The reasons for this are: (i) it is intended to isolate the effect of the track

components affecting the dynamic response of the bridge in order to investigate their separate influence;

(ii) it is an objective of this work to determine the adequacy of this type of models, as they may be useful

and valuable in engineering and technical consultancies; and (iii) as indicated in references [21, 31], the

effects of the VBI when the track is included are relevant mainly at resonance. Track irregularities are not215

included as, despite they have a noticeable contribution on the vertical response of the vehicle itself and are

perceptible in the soil far away from the track, they are less important for the infrastructure at the bridge

site [32, 33]. The adequacy of the aforementioned simplifications is justified in section 5.

As for the track parameters, an important dispersion has been detected among different publications.

Based on a review presented by the authors in reference [16], those included in Table 3 are adopted now as220

a reference set, expressed per rail seat. Mb, Kb and Kf are calculated applying equations (2a), (2b) and

(2c), respectively, according to [18]. Regarding the rail, the rail pads and the sleepers, their properties are
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Figure 3: 2D track-bridge interaction model.

selected from Spanish and European Standards [20, 34–36].

The ballast shear stiffness Kw and damping Cw are not always included in discrete track models. The

authors have found that the information about reasonable values for these parameters is scarce. References225

[37–41] admit the values proposed by the Chinese Railways included in the work by Zhai [18]. Only Wang

et al. [42] propose a lower level of shear damping for similar track characteristics but no experimental

justification is provided. In the absence of more information, the reference values used for these parameters

are those proposed in reference [18]: Kw = 7.84 × 107 N/m and Cw = 8.00 × 104 Ns/m.

h0 = hb −
Dsl − lb
2 tan α

Mb = ρb

[
lbhb(le + hb tan α) + le(h

2
b − h20) tan α+

4

3
(h3b − h30) tan2 α

]
(2a)

Kb =
Kb1Kb2

Kb1 + Kb2
Kb1 =

2(le − lb) tan α

ln
[

leDsl

lb(le+Dsl−lb)

] Kb2 =
Dsl(Dsl − lb + 2le + 2hb tan α) tan α

lb −Dsl + 2hb tan α
Eb (2b)

Kf = Dsl(le + 2hb tan α)Ef (2c)

The model is implemented in ANSYS v.17.1.0. Mass, stiffness and damping matrices are exported to230
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MATLAB v.2017b, and the equations of motion of the full model are integrated in the time domain applying

the Newmark-beta constant acceleration algorithm. The time step for numerical integration is established

as the minimum between 1/50 times the smaller period of interest and 1/20 times the load travelling time

between two consecutive sleepers.

Notation Parameter Value Unit Reference
Er Rail UIC 60 elastic modulus 2.100 × 1011 Pa [35]
Iyr Rail UIC 60 moment of inertia 3038.3 × 10−8 m4 [35]
mr Rail UIC 60 mass per unit of length 60.21 kg/m [35]
Kp Rail pad vertical stiffness 1.000 × 108 N/m [34, 36]
Cp Rail pad damping 7.500 × 104 Ns/m [18]
Msl Sleeper mass 300 kg [20]
Dsl Sleeper distance 0.600 m [20]
le Half sleeper effective supporting length 0.950 m [18]
lb Sleeper width 0.300 m [20]
α Ballast stress distribution angle 35 ◦ [18]
hb Ballast thickness 0.300 m [20]
ρb Ballast density 1800 kg/m3 [18]
Mb Ballast vibrating mass 317.910 kg [18]
Eb Ballast elastic modulus 1.100 × 108 Pa [18]
Kb Ballast vertical stiffness 1.933 × 108 N/m [18]
Cb Ballast damping 5.880 × 104 Ns/m [18]
Ef Subgrade K30 modulus 9.000 × 107 Pa/m [18]
Kf Subgrade vertical stiffness 7.399 × 107 N/m [18]
Cf Subgrade damping 3.115 × 104 Ns/m [18]
Kw Ballast shear stiffness 7.840 × 107 N/m [18]
Cw Ballast shear damping 8.000 × 104 Ns/m [18]

Table 3: Parameters of the track model, per rail seat.

3. Sensitivity analysis on modal parameters, harmonic and dynamic responses235

3.1. Adopted approach: key parameters

In this section, the key parameters for this study are determined. For this purpose, a preliminary

sensitivity test is carried out to evaluate how the independent variation of the track parameters affects the

modal frequencies of the bridges in the catalogue. Fig. 4 shows twelve of the mode shapes present in the

structures considered. Figs. 4(a-f) correspond to lower frequency global deformation modes of the bridge,240

while Figs. 4(g-l) represent higher modes with a predominant participation of the track. In both cases,

modes appear in pairs with close frequency values (e.g., for the GD-ES-10 bridge, f1 = 10.61 Hz and f2 =

10.66 Hz ; f3 = 33.89 Hz and f4 = 34.13 Hz).

For the sake of conciseness, the results of this preliminary test are presented only for the GD-ES-10

bridge, as due to its length and natural frequency, is the most affected by the presence of the track, as will245
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Figure 4: Left (a-f): first six modes of vibration for the bridges of the catalogue. Right (g-l): frequency modes with a clear
participation of the track.

be shown later. The results for the remaining bridges exhibit the same trend. The next individual variations

are applied to the stiffness of the ballast (for its shear and vertical components), subgrade and rail pads: [0.5,

1.0, 1.5, 2.0] × Kw, [0.5, 1.0, 1.5, 2.0] × Kb, [0.5, 1.0, 1.5, 2.0] × Kf , [0.5, 1.0, 1.5, 2.0] × Kp, respectively.

Fig. 5 shows the alteration caused in the first and third natural frequencies of the bridge by the variations

of the aforementioned track parameters. On the Y axis, the frequency variation is expressed in relation to250

the nominal case. A stands for the factor that multiplies the nominal value of the stiffness, while Ki stands

for the stiffness of any of the track parameters. As can be seen, only the ballast shear stiffness significantly

affects the natural frequencies. In this regard, a maximum frequency variation of almost 10% is reached for

the first mode when Kw is doubled. The variations caused by the other parameters are negligible, all being

lower than 1%. This is consistent with the preliminary conclusions presented in reference [16] for a case255

study and justifies the focus of this work on the ballast shear parameters and their influence on bridges of
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different lengths and typologies.

Despite the obvious influence of this parameter (and of the ballast shear damping), they are often

disregarded in the discrete track models presented in the literature, and their influence on the bridge dynamic

response has not been investigated with generality. As stated before, in the cases where included, the260

values admitted for these parameters correspond, most of the times, to those calculated for the Chinese.

Railways and used in the work presented by Zhai et al. in reference [18]: Kw = 7.84 × 107 N/m and

Cw = 8.00× 104 Ns/m.
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Figure 5: Natural frequency variations for GD-ES-10 bridge with track parameters Kw, Kb, Kf and Kp.

For the previously said, in what follows, the influence of the ballast vertical shear coupling effect is

investigated over the bridges of the catalogue. Subsection 3.2 adresses the influence of the ballast shear265

stiffness in the modal parameters. The effect of the ballast shear stiffness and damping on the bridges

harmonic response is evaluated in subsection 3.3 and the dynamic response of the structures under train

passages is analysed in subsection 3.4

3.2. Influence of Kw on the modal parameters of the bridges

In this section, the influence of the ballast vertical shear stiffness Kw on the bridge normal modal270

parameters is evaluated. Because of the natural frequencies of the bridges appearing in pairs, the first, third

and fifth longitudinal bending modal frequencies are determined for variations of the ballast shear stiffness:

[0.0, 0.5, 1.0, 1.5, 2.0] × Kw. Fig. 6 shows the results for all the bridges in the catalogue. The results are

grouped per bridge length. Each graph shows the variation in the natural frequency fi for i = 1, 3, 5 relative

to the reference case 1.0 × Kw.275
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Figure 6: Variation of f1, f3 and f5 with respect to the frequency in the nominal case as a function of Kw.

The following is observed:

• Natural frequencies increase with Kw. Bridges with the shortest spans in a certain typology are the

most affected by the variation of this parameter.

• The fundamental frequency f1 corresponding to the first longitudinal bending mode is significantly

more affected than higher frequencies. The effect of Kw reduces with increasing frequencies.280
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• Regarding the typology, girder bridges, with lower longitudinal bending stiffness, are affected to a

higher extent than slab bridges.

• As per the bridge supports, elastically-supported bridges are slightly more affected by Kw than simply-

supported bridges. Nevertheless, the difference is not relevant, especially for modes higher than the

fundamental one.285

These results are consistent throughout the bridge catalogue. Short-span elastically-supported girder-deck

bridges are the most sensitive ones to the variation of Kw. On this matter, the maximum frequency ranges

of variation for the first, third and fifth modes obtained are 20%, 6% and 3%, respectively, for the shortest

girder bridge considered (GD-ES-10), and 11%, 3% and 1.5%, respectively, for the longest one (GD-ES-25).

3.3. Influence of Kw and Cw on the harmonic response of the bridges290

In this section, the influence of the ballast shear stiffness and damping on the harmonic response of the

bridges is analysed. A vertical harmonic force with amplitude F0 = 210 kN is applied to the rail in the center

of the first span. The maximum absolute vertical displacement of the rail in the same section is determined

for forcing frequencies in the range ff ∈ [1,250] Hz in steps of ∆ff = 0.01 Hz. This wide frequency range has

been chosen to properly capture at least the resonant response of the lowest structural modes in frequency295

order with high participation of the track, although European Standards [4] limit the maximum frequency

of interest for the verification of the Serviceability Limit State for traffic safety up to the greater of (i) 30

Hz, (ii) 1.5 times the frequency of the fundamental mode of vibration or (iii) the frequency of the third

one. The analysis is repeated for individual variations of the ballast vertical shear stiffness and damping of

[0.0, 0.5, 1.0, 1.5, 2.0] × Kw and [0.5, 1.0, 1.5, 2.0] × Cw, being Cw and Kw the reference values of these300

parameters (see Table 3).

In Fig. 7, results of the harmonic analysis are represented for each bridge length. In Figs. 7(a-d) and in

Figs. 7(e-h), individual variations of Kw and Cw are applied, respectively. For the sake of brevity, only the

results for the ES girder bridges are presented in this section for Lbi = 10, 15, 20 and 25 m, as no relevant

differences were detected in the trends between typologies or support conditions. No structural damping is305

added apart from that of the discrete track elements. The rail is discretised into two beam elements between

consecutive sleepers, and so are the bridges.
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Figure 7: Harmonic analysis over the girder-deck elastically-supported bridges for individual variations of Kw and Cw.
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The following is observed:

• A prominent narrow peak appears in the vicinity of the bridge fundamental frequency (see Table 1)

corresponding to resonance of this mode. Due to the separation between the first and the second310

natural frequencies, for some lengths (Lbi = 15, 20 and 25 m), two peaks are perceptible instead of

one. This relates to the slight variations in the number of sleepers between both spans, which makes

the structure not perfectly symmetric. A wider maximum is also visible close to 150 Hz associated to

modes with a high participation of the track. Smaller peaks appear along the curves with not-zero

modal amplitude at mid-span of the first span.315

• As Kw increases, so does the resonant frequency associated to the fundamental mode, consistently with

the variations observed in the natural frequencies of the bridges (Fig. 6). The amplitude variation of

this peak with Kw depends on the relative properties of the track and bridge systems.

• The response at resonance of the fundamental mode and of subsequent bridge modes at low frequencies

reduces monotonically with Cw. The effect of this parameter at higher frequencies is negligible.320

3.4. Influence of Kw and Cw on the maximum acceleration of the bridges under moving loads

In this section, the influence of Kw and Cw on the vertical response of the bridges under passing trains

is investigated. To this aim, several dynamic analyses are carried out on the GD-ES-10 bridge under the

circulation of the HSLM-A1 Universal Train presented in the EC. Only the results for this bridge are shown

for the sake of conciseness and because it is the most influenced by the ballast shear stiffness and damping325

properties. The vertical acceleration is calculated with the aforementioned train in the speed range [40,

117] m/s (i.e. [144, 420] km/h) every 1 m/s at a quarter, mid-span and three quarters of both spans. A

Chebyshev filter is applied to the response between 1 Hz and 60 Hz. Then, maximum response envelopes

are obtained for each speed. The following individual variations of the track parameters are imposed: [0.0,

0.5, 1.0, 1.5, 2.0] × Kw and [0.5, 1.0, 1.5, 2.0] × Cw. Furthermore, Rayleigh damping is admitted according330

to EC for pre-stressed concrete bridges as 1.70% for the GD-ES-10 bridge. This ratio is applied on the first

and fifth natural frequencies, being f1 = 10.61 and f5 = 62.86 Hz.

Figs. 8(a-b) show an envelope of the maximum acceleration in the most critical section of the bridge

deck, which corresponds to the center of the second span. The maximum acceleration level is not relevant,

as an unrealistically high design velocity is considered in order to capture low order and clear resonances of335

the bridge fundamental mode. Also, and in order to visualise how the variations of Kw and Cw affect the
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bridge response in different situations, the acceleration time-history at the same section is represented for

three different velocities.

In the first place, the second resonance speed of the first frequency mode (i.e. j = 2, n = 1) is calculated

according to Eq. 3 as 345 km/h. In this expression, d stands for the characteristic distance of the HSLM-A1340

train (d = 18 m), Tn is the n-th natural period of the bridge and j corresponds to the resonance order.

The resulting time-histories presented in Figs. 8(c-d) show a clear second resonant response of the bridge

leading to high amplification, especially for the lowest Cw value.

V rnj =
d

j Tn
=
d ωn
2πj

(3)

The acceleration time-history is also calculated for a speed of 275 km/h (see Figs. 8(e-f)), which is far from

resonance or from a theoretical condition of cancellation. Finally, the response is computed for a speed345

nearing cancellation of resonance (see Figs. 8(g-h)). Cancellation conditions are given in Eq. 4 and depend

on the span length of the bridge and the characteristic distance of the train. Besides, λn stands for the

root of the frequency equation of a beam with elastic supports at both ends, and Kc
ni is a parameter related

to the phenomenon of cancellation, as indicated in reference [43]. In this sense, when the relation (Lbi/d)

approaches the i-th cancellation ratio (Lbi/d)
c
nji, the annulment of resonance is produced and the vibration350

level gets significantly attenuated. For the GD-ES-10 bridge traversed by the HSLM-A1 train, the third

resonance speed of the first mode, V r1,3 = 230 km/h, approaches the first theoretical condition of cancellation

((Lbi/d) = 0.56 and (Lbi/d)
c
1,3,1 = 0.49), although it is not coincident (the difference is approximately 12.5%).

However, the phenomenon is visible, leading to a noticeable attenuation of the resonant peak.

(
Lbi
d

)c
nji

=

(
λn
nπ

)2
n

2jKc
ni

, n, j, i ≥ 1 (4)

355
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Figure 8: GD-ES-10 bridge: acceleration at x = 1.5L under HSLM-A1 train. (a-b): amax vs. V ; (c-d): a(t) near resonance (V
= 345 km/h); (e-f): a(t) for V = 275 km/h; (g-h): a(t) near cancellation (V = 230 km/h).
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In summary, the following observations can be made:

• As the ballast shear stiffness increases, so does the speed at which resonance takes place, in the same

proportion as the natural frequency is altered by this parameter (in this particular case, neglecting or

doubling Kw entails variations of -14.5% to +9.5% of the resonant velocity with respect to the nominal360

case). This affects similarly higher-order resonances.

• For the range of Kw values considered, resonance at a certain speed may or may not take place

depending on the value of Kw (see Figs. 8(c-e)).

• Regarding the effect of the ballast shear damping, it is only relevant at resonance, leading to a pro-

nounced reduction of the acceleration. In this particular case, if Cw doubles with respect to its nominal365

value, the vertical acceleration reduces by 25.5%. The effect of this parameter on the second reso-

nant peak (V r1,2 = 345 km/h) is much higher than the effect on the third one (V r1,3 = 230 km/h).

Nevertheless, this last peak is close to cancellation and no conclusions can be extracted in this regard.

• Finally, for the resonance speed approaching a cancellation condition, a notable attenuation of the ac-

celeration level is observed with a small influence of the track parameters. As can be seen, cancellation370

of resonance takes place in the presence of the track despite the track parameters considered.

4. Weak coupling of the ballasted track between successive spans

4.1. Influence of the number of spans in the numerical models

A study on the effect of including an increasing number of identical structurally independent spans in the

numerical models of the bridges is presented in this section. The maximum level of predicted acceleration

and the section where it occurs may differ depending on the number of spans considered due to the vertical

weak coupling exerted by the track in these structures. The results are included for both girder and slab

bridges considering span lengths of Lbi = 10, 15, 20 and 25 m. The two versions of each bridge, considering

(ES) and neglecting (SS) the vertical flexibility of the neoprene bearings, are investigated. The structures

are analysed under the passage of a particular train in the speed range [40, 117] m/s in 1 m/s steps (see

Table 4). As shown below, a different Universal Train is selected for each bridge in order to obtain a clear

resonant response and avoid cancellation of resonance conditions. Then, the maximum acceleration and

displacement responses are computed at nine sections per span with a 0.1 × Lbi spacing. Envelopes of

maximum response are obtained considering single-span, two-span and three-span models for each bridge.
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Bridge Train d [m]
GD-ES/SS-10 HSLM-A1 18
GD-ES/SS-15 HSLM-A6 23
GD-ES/SS-20 HSLM-A4 21
GD-ES/SS-25 HSLM-A9 26
SD-ES/SS-10 HSLM-A3 20
SD-ES/SS-15 HSLM-A10 27
SD-ES/SS-20 HSLM-A4 21
SD-ES/SS-25 HSLM-A5 22

Table 4: Passing trains and corresponding characteristic distances d selected for the girder and slab bridges.

The results are shown in Fig. 9 for the girder bridges, and in Fig. 10 for the slab bridges. In both graphs,

the amplification ratio amax(x) is represented to compare the results of the three models. This parameter

represents the quotient between the maximum acceleration predicted in the complete range of velocities at a

particular section x of the bridge with the two or the three-span models (amax(x)) and the overall maximum

acceleration predicted by the single-span model a
Nsp=1
max . A similar amplification ratio dmax(x) is defined for

the displacement.

amax(x) =
amax(x)

a
Nsp=1
max

dmax(x) =
dmax(x)

d
Nsp=1
max

(5)

In both figures, solid gray columns represent the acceleration amplification amax(x): dark grey indicates

ES bridges and light grey SS ones. Over these columns, the displacement amplification dmax(x) is represented375

using hollow black-contours. Notice that values standing above the dashed line indicate that the response

predicted by the two or the three-span model exceeds the maximum overall response predicted by the single-

span model.
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Figure 9: Girder bridges: amplification acceleration amax(x) and displacement dmax(x) ratios at each bridge x coordinate
considering models with two spans (left) and three spans (right).
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Figure 10: Slab bridges: amplification acceleration amax(x) and displacement dmax(x) ratios at each bridge x coordinate
considering models with two spans (left) and three spans (right).
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From the results obtained, the following remarks can be made:380

• In all the cases, maximum acceleration and displacement responses predicted with the single-span

model occur at mid-span. However, when more than one span is considered, the maximum response

does not necessarily take place in the center of the first span.

• For the girder bridges, when Nsp = 2, the maximum response takes place at the center of the second

span when neoprenes are included (ES case) and when Lbi = 10, 15 and 20 m. Peak deviations of385

+15% and +1%, in terms of acceleration and displacement (amax(x) = 1.15 and dmax(x) = 1.01),

respectively, are achieved for the GD-ES-15 bridge. This implies that the two-span model predicts

a higher response than the single-span model. In the SS case, except for the Lbi = 10 m case, the

differences are negligible. When Nsp = 3, the maximum response occurs at the center of the third

span in the two shortest bridges: Lbi = 10 and 15 m. This is especially clear for the ES case, although390

it also happens to a lower extent in the SS case. The highest disparities are found in the GD-ES-15

bridge, reaching +16% and +2% with respect to the predictions of the single-span model in terms

of acceleration and displacement, respectively. For the longest bridges (Lbi = 20 and 25 m), the

response is also higher than that calculated with the single-span model. However, the differences are

not relevant in these cases.395

• For the slab bridges, when Nsp = 2, the maximum response occurs at the center of the second span

when Lbi = 15 and 25 m in the ES case. Higher divergences are found in the SD-ES-15 bridge, reaching

+8% for acceleration and +7% for displacement, in comparison to the single-span model predictions.

For the SS case, differences are negligible. When Nsp = 3, the maximum response occurs at the center

of the third span for Lbi = 10, 15 and 25 m in the ES case. The highest deviation is found in the400

SD-ES-15 bridge with +9% and +7% higher levels of acceleration and displacement, respectively. For

the SS case, even if the predicted response may be greater with the three-span model, the divergences

with respect to the single-span model are not relevant.

Finally, in Figure 11 maximum acceleration envelopes are represented to show the origin of the differences

detected in the previous analyses. For the sake of conciseness, only resonance curves for the Lbi = 15 m405

girder and slab deck bridges are provided, as the differences with respect to the one-span model are more

evident in this case. The maximum acceleration at the most critical section of the bridge is represented

versus the nondimensional speed V/f1d of the corresponding HSLM-A trains for the one and three-span

bridges. Resonances of the same order appear aligned vertically. Notice that V/f1d = j−1, for j being the
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resonance order. In both GD-ES/SS-15 and SD-ES/SS-15 bridges, the acceleration at the second resonance,410

which causes the maximum response, predicted with the three-span model is higher than that predicted

with the single-span model. This amplification in the response is higher in the girder bridges and in the ES

case.
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Figure 11: Resonance curves of the (a) GD-ES/SS-15 and (b) SD-ES/SS-15 bridges.

5. Case study: numerical-experimental comparison on a real bridge

5.1. Old Guadiana Bridge description and model calibration415

In what follows, the response of an existing railway bridge under operating conditions is reproduced

numerically and compared to experimental measurements. A short girder bridge with moderate flexural

stiffness is selected as these bridges have proven to be the most affected by the ballast shear effects. The

structure is located in a non-seismic zone in the conventional railway line Madrid - Cádiz, in the Alcázar de

San Juan - Manzanares section. It crosses the Old Guadiana watercourse (see Fig. 12) with two identical420

SS spans of 11.93 m each. The structure is a double-track bridge composed by two structurally independent

adjacent decks (one for each ballasted track). The decks consist of a reinforced concrete slab on top of

five pre-stressed concrete rectangular girders (see Fig. 13) which rest on two abutments and on a central

support by means of laminated neoprene bearings. The tracks present Iberian gauge with UIC 60 rails and

mono-block concrete sleepers every 0.60 m.425

The authors performed an experimental campaign on the bridge in May 2019, with the aim to determine

the modal parameters and the dynamic response of the structure under operating conditions. 18 accelerom-

eters were installed underneath the girders according to the layout shown in Fig. 14. The dynamic response
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Figure 12: Bridge over the Old Guadiana watercourse images.

Figure 13: Old Guadiana bridge cross-section.

of the bridge was measured under ambient vibration to identify the modal parameters. Also, the vertical430

acceleration of the structure was recorded under the passage of several trains, and, additionally, modal

damping ratios were identified from the free vibrations left by them. For additional information about this

campaign the reader is referred to reference [15]. The fundamental mode of the structure corresponds to

the first longitudinal bending mode of both decks vibrating in phase. Subsequent modes below 30 Hz are

related to the torsional and transverse bending deformation of the structure. Table 5 contains the natural435

frequencies (fexp) and the damping ratios (ζexp) identified experimentally for the first five modes.

Mode 1 2 3 4 5
fexp [Hz] 9.84 11.03 12.84 21.43 28.74
ζexp [%] 2.8 2.6 1.5 1.5 1.0

Table 5: First five natural frequencies and the corresponding damping ratios identified experimentally.

The numerical model of the bridge described in section 2 is calibrated by means of an optimisation

iterative procedure based on a Genetic Algorithm (GA) [44] implemented in MATLAB v.2017b and ANSYS

v.17.1.0. In the updating process, an objective function involving the numerical-experimental difference of
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Figure 14: Sensors layout in Old Guadiana bridge.

the fundamental frequencies, the MAC residuals and the static displacement at mid-span during a proof-load

test is minimised. The data for this last comparison are extracted from [45].

Fobj(P ) =

∣∣∣∣∣f1 exp − f1num(P )

f1 exp

∣∣∣∣∣+ (1−MAC1(P )) +

∣∣∣∣∣δexp − δnum(P )

δexp

∣∣∣∣∣ (6a)

P = (EbiIbi,mbi,Kw, R) (6b)

Four parameters are selected for calibration (Eq. 6b) on the basis of preliminary sensitivity tests and of

the level of knowledge and certainty on the track-bridge system properties. These correspond to the bridge

bending stiffness EbiIybi, the linear mass of the deck mbi, the ballast shear stiffness Kw and the neoprene

dynamic coefficient R, defined by Eq. 7.

R =
K̄n
bi,dyn

K̄n
bi,st

(7)

Both spans are considered identical. Initial values and optimisation ranges are chosen on the basis of

engineering considerations and from applicable data from previous publications. For EbiIybi and mbi, the

initial values are calculated from the structural description and technical drawings in [45]. As the information

about Kw in the literature is scarce, the reference value Kw = 7.84 × 107 N/m from Table 3 is selected440

as initial guess and a wide range of variation for this parameter is admitted. In relation to R, the initial

value is set to 2, as commonly admitted for dynamic loads. The range of variation is selected between this
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same value and 1.10, as indicated in [46]. The static vertical stiffness of the neoprene bearings is set to

K̄n
bi,st = 5.5825 × 108 N/m from a pre-design based on the bridge available information. The rest of the

parameters of the model are those listed in Table 3. Rayleigh damping is admitted as 1.56% for the first445

and fifth frequency modes on the basis of EC.

The updated values for the four parameters are included in Table 6. This table shows the results

after running the GA several times to ensure the stability of the solution and the updating procedure. A

population size of 40 (10 times the number of calibration parameters) and 200 generations are considered.

Mutation and crossover rates are set to 0.02 and 0.8, respectively, while the probability of tournament is450

set to 0.7 and the scale of mutation to 0.1. The final variation of the parameters is well contained in the

calibration ranges, obtaining a satisfactory optimised solution.

Notation Parameter Initial value Optimisation range Final value Unit
EbiIybi Bridge bending stiffness 7086.760 [−20, +20]% 7012.859 MNm2

ρA Bridge linear mass 7031.411 [−5, +5]% 7002.779 kg/m
Kw Ballast shear stiffness 7.840 × 107 [−40, +40]% 9.271 × 107 N/m
R Neoprene dynamic coefficent 2.0 [1.1, 2.0] 1.652 −

Table 6: Model initial and updated parameters.

Table 7 shows the performance of the updated solution provided by the GA. The experimental and

numerical values for the fundamental frequency of the bridge are expressed as f1exp and f1num, respectively,

while ef100 stands for the fundamental frequency difference (first term in Eq. 6a) as a percentage. The455

next columns indicate the maximum experimental (δexp) and numerical (δnum) deflection at the center of

the first span during the proof-load test, and also the corresponding difference, eδ100 (last term in Eq. 6b)

as a percentage. Finally, the last column shows the MAC for the fundamental mode. The low differences

and the MAC number indicate that a good agreement is achieved with the updating procedure in terms of

modal parameters and static deflection.

Parameter f1exp [Hz] f1num [Hz] ef100[%] δexp [mm] δnum [mm] eδ100[%] MAC1 [−]
Updated solution 9.8400 9.8406 0.0061 -1.9055 -1.9053 0.0094 0.9871

Table 7: Experimental and numerical values for the fundamental frequency, static deflection and MAC number after calibration.

460

5.2. Acceleration response under train passages

The passages considered for the analysis are those corresponding to the commercial RENFE medium

distance trains S449 and Altaria Talgo. Table 8 includes the track number and travelling direction (J:

Jaén, M: Madrid), coaches configuration (L: locomotive, C: carriage), circulating speed and axles scheme
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and load values. S449 is an articulated train with distributed power, composed of two integrated driver-465

passenger cars at both ends and three passenger coaches in between. The distance between shared bogies

is d = 17.75 m. Altaria Talgo is a regular train made up of a Talgo 252 locomotive and 9 passenger coaches

with a characteristic distance d = 13.14 m.

S449

d4.21 2.5 l1 2.7

2 · P1 2 · P1 2 · P12 · P1 2 · P1

Altaria Talgo

 4 · P1  4 · P1  P2  P3  P3  P3  P2

l1 3 7 3 l1 l2

d N·d d

S449

d4.21 2.5 14.8 2.7

2    P1 2    P1 2    P12    P1 2    P1

Altaria Talgo

 4    P1  P2  P3  P3  P3  P2

3.44 3 7 3 3.44 3.3

d N    d d

N      d

N    d

Train Track Ride Scheme V [km/h] N d [m] P1 [kN] P2[kN] P3[kN]
S449 2 J-M L-3C-L 160.2 3 17.75 161 − −

Altaria Talgo 1 M-J L-9C 154.8 7 13.14 225 70 140

Table 8: RENFE S449 and Altaria Talgo passages information.

The experimental response is extracted from the sensors located at the center of each span in the

direction of motion: A5 (first span) and A12 (second span) for the S449, which circulated heading to

Madrid along track 2; and A13 (first span) and A17 (second span) for the Altaria Talgo, which circulated

in the opposite direction along track 1 (see Fig. 14). Both the numerical and the experimental responses

are filtered applying two Chebyshev filters with high-pass and low-pass frequencies of 1 Hz and 30 Hz,

respectively. To appropriately reproduce the dynamic response of the bridge, an additional calibration step

is performed for the ballast shear damping Cw, using the Frequency Amplitude Assurance Criterion (FAAC)

and the Frequency Response Assurance Criterion (FRAC) [47, 48]. These correlation criteria are evaluated

at a particular sensor i according to Eq. 8a and Eq. 8b, respectively, where H(ω)
exp

corresponds to the

value of the experimental Frequency Response Function (FRF) at a certain frequency ω and H(ω)
num

to its

numerically predicted equivalent. The superscript H stands for the Hermitian conjugate of the corresponding

matrices. FAAC and FRAC criteria are sensitive to inconsistencies in the amplitude and in the shape of the

FRFs, respectively. They both work in the frequency domain and return a real number in the range [0, 1],

where unity indicates perfect correlation.

FAACi =
2|(Hexp

i (ω))HHnum
i (ω)|

((Hexp
i (ω))HHexp

i (ω)) + ((Hnum
i (ω))HHnum

i (ω))
(8a)
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FRACi =
|(Hexp

i (ω))HHnum
i (ω)|2

((Hexp
i (ω))HHexp

i (ω)) (Hnum
i (ω))HHnum

i (ω))
(8b)

470

Based on these criteria, a preliminary analysis is performed with the updated model while applying

variations for the ballast shear damping. Fig. 15 shows the computed values for FAAC and FRAC numbers

as a function of Cw at the center of each span of the bridge. As can be seen, FAAC values are higher than

FRAC ones. This is understandable, as the planar characteristics of the numerical model and the moving

load train representation may impede a very accurate prediction of the whole complexity of the FRF shape.475

Also, the proximity of the actual velocity of the Altaria Talgo train to a third theoretical resonance speed

V r1,3 = 154 km/h may explain to some extent the divergence level in the FAAC and FRAC numbers. In any

case, an updated value of Cw = 6.00 × 105 Ns/m is selected based on the progression of both parameters

under operating conditions, as at that point, the average difference between previous values for the FAAC

and FRAC numbers falls under 10%. The corresponding values for these parameters are listed in Table 9.

Train FAAC 1st span FRAC 1st span FAAC 2nd span FRAC 2nd span
S449 0.66 0.57 0.74 0.56

Altaria Talgo 0.68 0.50 0.66 0.45

Table 9: FAAC and FRAC criteria applied to sensors A5 and A12 for the S449 train and A13 and A17 for the Altaria Talgo
train for Cw = 6.00 × 105 Ns/m.
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Figure 15: FAAC and FRAC coefficients as a function of Cw, which is expressed per rail seat.

480

Finally, the vertical response of the bridge under the passage of the S449 and Altaria Talgo trains
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is computed and compared with the experimental data at the center of each span in Figs. 16 and 17,

respectively. In both figures, the vertical acceleration is represented in the time domain (a-b) and in the

frequency domain (c-d). The gray line represents the experimental data and the black one the numerical

response. From the results shown in these figures, the following is concluded:485
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Figure 16: Train S449: Time history (a-b) and frequency content of the acceleration (c-d) at the center of each span.

• The 2D planar track-bridge interaction model and the calibration strategy seem correct as, in general,

the experimental response is adequately reproduced in the frequency range of interest. The integration

of the dynamic equations using the full FE model, and the consideration of distributed damping

along the track, lead to a better numerical-experimental matching when compared to applying Modal

Superposition and using modal damping coefficients.490

• The response is adequately reproduced both in the time and frequency domains, with an even better

adjustment in the second span in the traveling direction. The numerical model overpredicts the

response close to the fundamental frequency of the bridge. It is highly probable that the reason for
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Figure 17: Train Altaria Talgo: Time history (a-b) and frequency content of the acceleration (c-d) at the center of each span.

this discrepancy is caused by the fact that VBI is not included in the model. The train suspension

systems interact with the bridge vibrations and absorb part of the energy, altering the structural495

response, especially when resonance occurs and when the interaction between both systems is relevant

([49],[21]). This is more important in the Altaria Talgo case, because of the proximity of the circulating

velocity to a theoretical third resonance. However, in general, both curves have a good resemblance.

• Given the relevance of the track parameters in the bridge model updating and dynamic response,

especially as far as ballast shear mechanisms are concerned, reliable values for these properties to be500

used in discrete track-bridge interaction models should be obtained for different track characteristics

and states of conservation, based on experimental studies.
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6. Conclusions

This contribution provides a detailed sensitivity analysis about the influence of the ballasted track on

the dynamic response of single-track railway bridges of different characteristics. For this purpose, a planar505

track-bridge interaction model is employed. In the first place, the effect caused by ballast shear mechanisms,

represented through the discrete stiffness and damping parameters Kw and Cw, is studied on the modal

parameters, on the harmonic response and on the vertical acceleration of the bridges under train passages.

Then, the effect of the weak coupling exerted by the continuity of the ballasted track is evaluated through a

series of analyses in order to assess the necessity of including more than one span in the discrete numerical510

models of multi-span SS bridges. Finally, the numerical model is updated applying an iterative procedure

based on a Genetic Algorithm with experimental data from an existing bridge and an experimental-numerical

comparison is presented under operating conditions.

The main conclusions derived regarding the influence of the main track parameters on the dynamic

response of the bridges are:515

• When using discrete track-bridge interaction models as the one presented, Kw and Cw are the pa-

rameters that affect the most the bridge dynamic response in the frequency range of interest. The

remaining parameters have a negligible influence compared to these two.

• Kw exerts a notable influence on the modal parameters of the bridges, which is stronger in shorter

structures. With respect to the typology, girder-deck bridges are the most affected due to their initially520

lower bending stiffness. The correlation of this effect with the flexibility of the elastic supports is minor.

• The influence of Kw and Cw on the harmonic response is relevant only at low frequencies. An increase

in Kw causes a rise in the fundamental frequency of the bridges. Its influence is less relevant on higher

modes. The increment of Cw provokes a pronounced reduction of the corresponding amplitude, as

could be expected. Higher frequencies related to track deformation modes are not especially affected525

by these parameters.

• The effect of Kw and Cw on the vertical acceleration response of the bridges under passing trains

is important, especially at resonance. An increment of Kw leads to a raise in the resonance speeds,

proportional to the variation of the bridge natural frequencies, while an increment of Cw results into a

reduction of the resonant a amplitude. However, the influence of Cw far from resonance is negligible.530

Furthermore, the cancellation phenomenon still occurs when the track is included regardless of the
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track properties. Therefore, in general terms the consideration of the ballast shear transfer mechanisms

could be beneficial for the assessment of the dynamic performance of short span bridges located in

railway lines in which an increase of the maximum circulating speed is envisaged, since the critical

circulating speeds leading to inadmissible acceleration levels might exceed the maximum design speed535

and the resonant acceleration levels could be lower due to the additional damping associated to the

ballast track-bridge interaction.

With respect to the analysis involving the weak coupling of the track in numerical models of multi-span

bridges, it is concluded that:

• Discrete track-bridge simplified single-span models may not predict the maximum response in multi-540

span structures due to the effect caused by the weak coupling of the track, and, therefore, they may

not be on the safe side. Plus, the maximum response may not take place in the center of the first span.

This is especially clear in the case of shorter girder bridges when the neoprene bearings are included.

As for the numerical-experimental comparison included in the case study:

• The numerical results have an agreeable concordance with the experimental data. Discrete track-bridge545

interaction models can be an adequate solution that allows us to solve the dynamic equations of motion

in the time domain performing a full analysis in a reasonable amount of time, which can be useful for

conceptualization, design and decision-making purposes in engineering and technical consultancies.

This investigation addresses the gaps and explores the complexity of the train induced vibration phe-

nomenon, which is a key aspect in order to develop a better and safer railway infrastructure. In this study,550

general conclusions are derived from a multi-level analysis carried out on a comprehensive bridge catalogue

of different lengths and typologies. However, future investigations are required to fully understand the effect

of the ballasted track on the dynamic behaviour of railway bridges involving more complex analyses. It is

required to fully understand the influence of the ballast shear parameters and to find clear ways to quantify

them, since their influence on the bridge dynamics is relevant and the information about it found in the555

literature is scarce. Reliable values for these parameters to be used in discrete track-bridge interaction mod-

els should be obtained for different track characteristics and states of conservation, based on experimental

studies.
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