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Extensions to “Stability Analysis of Fuzzy Control Systems
Subject to Uncertain Grades of Membership”

Carlos Ariño and Antonio Sala, Member, IEEE

Abstract—In the December 2005 issue of this journal, Lam and Leung
proposed stability results for fuzzy control systems where the membership
functions in the controller were not the same as those from the process
one, but some multiplicative bounds were known. The main practical
context where that situation arises is the uncertain knowledge of the
memberships of a Takagi–Sugeno model. This correspondence presents
further extensions of those results, allowing for a richer description of the
membership uncertainty, in terms of affine inequalities.

Index Terms—Fuzzy control, linear matrix inequalities (LMIs), parallel
distributed compensation (PDC), quadratic stability, relaxed condition,
Takagi–Sugeno (TS) fuzzy systems.

I. INTRODUCTION

Fuzzy control has reached maturity and acceptance nowadays via a
formalization of the performance requirements and controller design
techniques. In particular, there is a vast literature on control design
for continuous, discrete, and delayed Takagi–Sugeno (TS) [2] fuzzy
systems via linear matrix inequalities (LMIs) [3]–[7]. There may be
other (possibilistic) interpretations of fuzziness in a control context
[8]. The reader is referred to [9] and [10] for a review of the current
trends and open issues in fuzzy modeling, identification, and control.

The majority of works on the fuzzy control for TS models assume
the parallel distributed compensation (PDC) paradigm [3], i.e., the
membership functions of the controller, e.g., ηi, are the same as the
ones from the process, e.g., µi. Furthermore, the proposed stability
and performance conditions are shape-independent, i.e., valid for
any membership function set conforming a fuzzy partition (µi ≥ 0,∑

i
µi = 1).

Recent contributions in the non-PDC case (ηi �= µi) are [1], [11],
and [12]. In particular, in [1], LMI stability conditions were given for
non-PDC fuzzy systems with uncertain degrees of membership ex-
pressed as a multiplicative uncertainty inequality ρm

i µi ≤ ηi ≤ ρM
i µi.

Lam and Leung’s conditions are shape-dependent in the sense that they
achieve a reduction of conservativeness by setting up conditions which
are only valid for membership functions having a constrained shape. In
the same spirit, we [13], [14] present some shape-dependent conditions
for the PDC case.

The main objective of this correspondence is to present shape-
dependent LMI conditions to design controllers for the TS fuzzy
systems with uncertain memberships. The allowed uncertainty descrip-
tion is more general than that in [1], which did consider only the
multiplicative uncertainty; such setup will be cast as a particular case
of the one proposed here.

The structure of this correspondence is as follows. Section II de-
scribes the fuzzy systems and closed-loop equations to be discussed.
Section III presents the main result which extends the uncertainty
descriptions in literature. Section IV applies it to particular cases of
additive and multiplicative uncertainties. Section V will show numeri-
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cal examples illustrating the possibilities of the approach. A conclusion
section closes this correspondence.

II. PRELIMINARIES AND NOTATION

Stability of Closed-Loop TS Fuzzy Systems: Consider a TS fuzzy
system [2] of order n with r rules

ẋ =

r∑
i=1

µi(z)(Aix + Biu)

r∑
i=1

µi(z) = 1, µi(z) ≥ 0. (1)

The aforementioned fuzzy system will be controlled via a state-
feedback fuzzy controller (possibly non-PDC, where ηi is a member-
ship function that is different to µi, at least in principle)

u = −
r∑

i=1

ηi(z
′)Fix

r∑
i=1

ηi(z
′) = 1, ηi(z

′) ≥ 0 (2)

where z′ denotes measurable scheduling variables (possibly coincident
with z). The controller yields a closed-loop [1]

ẋ =

r∑
i=1

r∑
j=1

µi(z)ηj(z
′)(Ai − BiFj)x. (3)

In the following, µi and ηj will be used as shorthands for µi(z) and
ηj(z

′), respectively.
By considering a Lyapunov function V (x) = xTPx, P > 0, it is

straightforward to prove that (3) is a stable system with a decay
rate α (i.e., ‖x‖ ≤ Me−αt for some M ) if (dV/dt) + 2αV ≤ 0 for
nonzero x [3]. Such inequality, in the case of (3), amounts to the well-
known expression [1], [3]

−
(
dV

dt
+ 2αV

)
=−xT

×

(
r∑

i=1

r∑
j=1

µiηjG
T
ijP + PGij + 2αP

)
x ≥ 0 ∀x �= 0

(4)

where Gij = Ai − BiFj .
General Case: In a general case, many conditions for stability and

performance of the closed-loop system (3) may be cast as positivity of
fuzzy summations in the form

ψTΘψ = ψT

(
r∑

i=1

r∑
j=1

µiηjQij

)
ψ ≥ 0 ∀ψ �= 0 (5)

where Qij is a symmetric R
n×n matrix, possibly including unknown

decision variables to be found via optimization algorithms (usually
LMI [3], [15]). For instance, (4) is a particular case of (5) with
ψ = x and

Qij = −
(
(Ai − BiFj)

TP + P (Ai − BiFj) + 2αP
)
. (6)

As another example of a performance-related condition from [16],
which is later used in Section V, we have

Qij =

(
Ξ11 B1i PCT

i + RT
j DT

12i

BT
1i −γI DT

11i

CiP + D12iRj D11i −γI

)
(7)
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with Ξ11 = PAT
i + RT

j BT
2i + AiP + B2iRj , which may be used to

prove that there exists a stabilizing state-feedback controller such that
the H∞ norm (i.e., L2-to-L2 induced norm) of a TS fuzzy system
given by

ẋ =

r∑
i=1

µi(z)(Aix + B1iv + B2iu) (8)

y =

r∑
i=1

µi(z)(Cix + D11iv + D12iu) (9)

is lower than γ. In [3], [9], [10], [12], and [13] other expressions of
Qij for continuous and discrete TS systems are considered.
Remark: Most of the cited literature considers Qij for cases where

ηi = µi, i.e., PDC controllers u = −
∑

µiFix with a closed loop
ẋ =

∑r

i=1

∑r

j=1
µi(z)µj(z)xT(Ai − BiFj)x, i.e., resulting in con-

ditions such as

ψT

(
r∑

i=1

r∑
j=1

µiµjQij

)
ψ ≥ 0 ∀ψ �= 0 (10)

where the only difference with (5) is that µiµj appears instead of µiηj .
In order to check the stability and performance of the non-PDC loop
(3), it is straightforward to prove that, in most cases, the Qij proposed
in PDC literature appears unaltered in (5).

The difference between the PDC and the non-PDC cases lies in the
LMIs needed to prove (5), which may be different to those needed
for (10).

1) Indeed, in the PDC case (10), widely used sufficient conditions
are the adaptation of [4, Th. 2], which may be generalized to a
family of asymptotically necessary and sufficient ones [7].

2) In the non-PDC case (5), if µi and ηj may be arbitrary, (5) holds
if and only if the shape-independent conditions

Qij > 0 ∀ i, j (11)

do as, for instance, µ3 = η5 = 1 (the rest being zero) involves
Θ = Q35 in (5) and the numbers three and five may be arbitrarily
replaced by any i or j.

Of course, all LMIs proving (5)—such as the ones in this
correspondence—prove (10) as well, but they may be very conserv-
ative for the latter case, as numerical examples will show: that is the
price to pay for imperfect knowledge of the plant memberships.
Shape-Dependent Cases: There are intermediate cases where the

membership functions µi are not perfectly known (i.e., ηi �= µi yield-
ing non-PDC setups) but some knowledge on them is available. In that
case, ηi may be intentionally designed to be as similar as possible
to µi, and conditions which are less conservative than (11) may be
stated. Indeed, Lam and Leung [1] state improved shape-dependent
conditions which guarantee closed-loop stability1 of (3) when

ρm
i ≤ ηi

µi

≤ ρM
i (12)

given known values of the bounds ρm
i and ρM

i .
The following lemma is the generalization of that in [1] removing

the need of a symmetric Xij , requiring only Xji = XT
ij , and replacing

2Xij by Xij + Xji, in the same way as Liu and Zhang [4] generalize
[17]. Details of the proof are omitted for brevity.

1The cited work discussed only one particular case of Qij , but it is, trivially,
generalizable to any other performance-related expression for Qij .

Lemma 1: Given the bounds (12), (5) holds if there exist P > 0 and
matrices Xji = XT

ij such that

ρM
i Qii − Xii > 0, ρm

i Qii − Xii > 0 (13)

ρM
j Qij + ρM

i Qji − (Xij + Xji) > 0 (14)

ρm
j Qij + ρm

i Qji − (Xij + Xji) > 0 (15)

ρm
j Qij + ρM

i Qji − (Xij + Xji) > 0 (16)

ρM
j Qij + ρm

i Qji − (Xij + Xji) > 0 (17)
X11 . . . X1r

...
. . .

...
Xr1 . . . Xrr


 > 0. (18)

The developments in the next section will present additional re-
sults for a more general class of constraints than the “multiplicative
uncertainty” (12). Numerical examples in Section V will show that,
apart from allowing for more general uncertainty descriptions, the new
conditions provide better results than those in [1] with multiplicative
uncertainty, at least in some cases.

III. MAIN RESULT

Consider a set of p constraints on the shape of the membership
functions of the plant µi and the controller ηi given by the affine
inequalities

cT
k η + aT

k µ + bk ≤ 0, k = 1, . . . , p (19)

where η and µ denote the membership functions arranged as a column
vector, ck and ak are also column vectors, and bk is a scalar. ck, ak,
and bk are assumed to be known. Notations aik and cik will denote
the ith component of vectors ak and ck, respectively. For instance,
the constraint µ2 + µ1 ≤ 2η1 + 0.05, in a three-rule fuzzy system, is
trivially expressed in (19) with c = (−2 0 0)T, a = (1 1 0)T, and
b = −0.05. Constraint η1 ≤ 2µ1 (the particular case contemplated in
[1]) requires c = (1 0 0)T, a = (−2 0 0)T, and b = 0.
Theorem 1: If (19) is known to hold, (5) holds if there exist matrices

Xij = XT
ji, i, j = 1, . . . , 2r, and symmetric definite positive matrices

Rjk and R†
jk such that for all j = 1, . . . , r and k = 1, . . . , p

p∑
k=1

(ajkRik + aikRjk) ≥ Xij + Xji (20)

Qij +

p∑
k=1

(
cjkRik + aikR†

jk + bk

(
Rik + R†

jk

))
≥ Xi(j+r) + X(j+r)i (21)

p∑
k=1

(
cikR†

jk + cjkR†
ik

)
≥ X(I+r)(j+r) + X(j+r)(i+r) (22)


 X11 . . . X1(2r)

...
. . .

...
X(2r)1 . . . X(2r)(2r)


 > 0. (23)

If Qij is linear in some matrix decision variables, then Theorem 1
provides LMI conditions.
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Proof: Expression (19) may be written as

r∑
i=1

cikηi + aikµi + bk ≤ 0, k = 1, . . . , p. (24)

Consider now, for a particular fixed k, the matrix Γk =∑r

j=1
(µjRjk + ηjR

†
jk). Evidently, Γk ≥ 0 because it is a sum

with positive coefficients of positive definite matrices. For a particular
k, multiplying (24) by Γk, we get

r∑
i=1

r∑
j=1

(
cikRjkηiµj + cikR†

jkηiηj + aikRjkµiµj

+ aikR†
jkµiηj

)
+ bk

r∑
j=1

(
µjRjk + ηjR

†
jk

)
≤0. (25)

Subsequently, by using the equalities
∑r

i=1
µi = 1 and∑r

i=1
ηi = 1 in

bkΓk = bk

r∑
j=1

(
r∑

i=1

ηiµjRjk +

r∑
i=1

µiηjR
†
jk

)

we get a negative-semidefinite matrix to be denoted as Hk given by

Hk =

r∑
i=1

r∑
j=1

(
cikRjkηiµj +cikR†

jkηiηj +aikRjkµiµj

+ aikR†
jkµiηj + bk

(
ηiµjRjk+µiηjR

†
jk

))
≤ 0. (26)

As (26) holds for each k, denoting by H =
∑p

k=1
Hk, evidently

H ≤ 0, i.e.,

H =

p∑
k=1

r∑
i=1

r∑
j=1

(
cikRjkηiµj +cikR†

jkηiηj +aikRjkµiµj

+ aikR†
jkµiηj + bk

(
ηiµjRjk+µiηjR

†
jk

))
≤ 0. (27)

By taking H from the aforementioned equation and Θ from (5),
it is evident that if Θ + H > 0 can be proved, then Θ > 0. Then,
conveniently grouping terms

Θ + H

=

r∑
i=1

r∑
j=1

(
µiµj

(
p∑

k=1

aikRjk

)
+ ηiηj

(
p∑

k=1

cikR†
jk

)

+ µiηj

(
Qij +

p∑
k=1

(
cjkRik + aikR†

jk

+ bk

(
Rik + R†

jk

))))

=

r∑
i=1

(
µ2

i

p∑
k=1

aikRik + η2
i

p∑
k=1

cikR†
ik

)

+
∑

i<j≤r

(
µiµj

(
p∑

k=1

(aikRjk + ajkRik)

)

+ ηiηj

(
p∑

k=1

cikR†
jk + cjkR†

ik

))

+

r∑
i=1

r∑
j=1

µiηj

(
Qij +

p∑
k=1

(
cjkRik + aikR†

jk

+ bk

(
Rik + R†

jk

)))
.

(28)

Consider now the variables Xij = XT
ji, i, j = 1, . . . , r, which fulfill

(20)–(22). By suitably grouping terms and associating (20) to the terms
where µiµj appears, (21) to those with µiηj , and (22) to those with
ηiηj , we have2

Θ + H ≥
r∑

i=1

(
µ2

i Xii + η2
i Xii

)

+

r∑
i=1

∑
i<j≤r

(µiµj(Xij + Xji) + ηiηj

× (X(i+r)(j+r) + X(j+r)(i+r))
)

+

r∑
i=1

r∑
j=1

(
µiηj(Xi(j+r) + X(j+r)i)

)
. (29)

Considering now the original fuzzy summations of matrix Θ in (5) and
defining

ξ = µ ⊗ ψ = [µ1ψ
T, . . . , µrψ

T η1ψ
T, . . . , ηrψ

T ]T

we have, from (29)

ψTΘψ ≥ ψT(Θ + H)ψ ≥ ξT


 X11 . . . X1(2r)

...
. . .

...
X(2r)1 . . . X(2r)(2r)


 ξ.

Hence, if (23) holds, ψT(Θ + H)ψ > 0 for ψ �= 0, and therefore,
(5) holds. �

IV. PARTICULAR CASES

Let us now consider some particular cases of Theorem 1.

A. Multiplicative Uncertainty

Consider now the multiplicative uncertainty case, which is also
discussed in [1]

ρm
i ≤ ηi

µi

≤ ρM
i . (30)

2Note that (20) implies
∑p

k=1
aikRik ≥ Xii, and an analogous considera-

tion may be made with (22): the diagonal terms µ2
i and η2

i need not be explicitly
written in the theorem statement.
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Corollary 1: If (30) is known to hold, (5) holds if there exist
matrices Xij = XT

ji, i, j = 1, . . . , 2r, and symmetric definite positive

matrices Rij , Nji, R†
ij , and N†

ji such that for all i, j = 1, . . . , r

Rijρ
m
j − Nijρ

M
j + Rjiρ

m
i − Njiρ

M
i ≥ Xij + Xji (31)

Qij − (Rij − Nij) −
(
R†

ij − N†
ij

)
≥ Xi(j+r) + X(j+r)i (32)

R†
ij

ρM
i

−
N†

ij

ρm
i

+
R†

ji

ρM
j

−
N†

ji

ρm
j

≥ X(i+r)(j+r) + X(j+r)(i+r) (33)
 X11 . . . X1(2r)

...
. . .

...
X(2r)1 . . . X(2r)(2r)


 > 0. (34)

Proof: The uncertainty description can be expressed as

ηk − ρM
k µk ≤ 0 − ηk + ρm

k µk ≤ 0. (35)

Hence, the theorem will be proved by using Theorem 1 with 2r
constraints, which is divided into two groups (both with bk = 0).

1) One with akk = −ρM
k , aik = 0 for i �= k and ckk = +1,

cik = 0 for i �= k; Theorem 1 will be applied using Mik and
M†

ik as relaxation variables.
2) Another group (consider a′

k = ak+r , c′k = ck+r) with a′
kk =

ρm
k , a′

ik = 0 for i �= k and c′kk = −1, c′ik = 0 for i �= k;
Theorem 1 will be applied using Tik and T †

ik as relaxation
variables.

Note that (20)–(22) in this case reduce to

ajjMij + aiiMji + a′
jjTij + a′

iiTji ≥ Xij + Xji (36)

Qij +
(
cjjMij +aiiM

†
ji + c′jjTij + a′

iiT
†
ji

)
≥ Xi(j+r) + X(j+r)i

(37)

ciiM
†
ji + cjjM

†
ij + c′iiT

†
ji + c′jjT

†
ij ≥ X(i+r)(j+r) + X(j+r)(i+r)

(38)

because aik, cik, a′
ik, and c′ik are zero for i �= k.

The conditions for the theorem being proved arise immediately
once the aforementioned particular values of aik, cik, a′

ik, and c′ik
are substituted in (36)–(38), and the following changes of variable
are made:

Mij = Nij Tij = Rij ρM
i M†

ij = R†
ij ρm

i T †
ij = N†

ij

�

B. Additive Uncertainty

Consider a set of known additive bounds on the membership func-
tion δk so that, given (5), it is known that

|µk − ηk| ≤ δk, k = 1, . . . , r. (39)

Corollary 2: If the membership functions satisfy (39), (5) holds
if there exist matrices Rij , Nij , Xij = XT

ji, and Xi(j+r) =
XT

(j+r)i, i, j = 1, . . . , r, such that

Mij = Rij − Nij M+
ij = Rij + Nij (40)

Mij + Mji ≥ Xij + Xji (41)

Qij−2Mij −
r∑

k=1

δk

(
M+

ik+M+
kj

)
≥Xi(j+r)+X(j+r)i (42)

for all i = 1, . . . , r and j = 1, . . . , r and

Y11 =


X11 . . . X1r

...
. . .

...
Xr1 . . . Xrr




Y12 =


X1(r+1) . . . X1(2r)

...
. . .

...
Xr(r+1) . . . Xr(2r)


 (

Y11 Y12

Y T
12 Y11

)
> 0. (43)

Proof: The uncertainty description can be expressed as

ηk − µk − δk ≤ 0 − ηk + µk − δk ≤ 0. (44)

Hence, the theorem will be proved by using Theorem 1 with 2r
constraints, which is divided into two groups.

1) One with bk = −δk, akk = 1, aik = 0 for i �= k and ckk = −1,
cik = 0 for i �= k; Theorem 1 will be applied using Rik and R†

ik

as relaxation variables.
2) Another one with b′k = −δk, a′

kk = −1, a′
ik = 0 for i �= k and

c′kk = +1, c′ik = 0 for i �= k; Theorem 1 will be applied using
Nik and N†

ik as relaxation variables.

By noting that most aik’s and cik’s are zero and defining ai(k+r) =
a′

ik, etc., Theorem 1 results in

Rij + Rji − Nij − Nji ≥ Xij + Xji (45)

Qij +
(
−Rij + R†

ji + Nij − N†
ji

)
+

r∑
k=1

(
−δk

(
Rik + R†

jk + Nik + N†
jk

))
≥ Xi(j+r) + X(j+r)i (46)

− R†
ji − R†

ij + N†
ji + N†

ij

≥ X(i+r)(j+r) + X(j+r)(i+r) (47)

and the corollary results once the following equalities are enforced:
R†

ij = Nji and N†
ij = Rji. �

The next two lemmas show the following: 1) the PDC case is
recovered from the above corollaries under no uncertainty; and 2) as
expected, the conditions proposed with the additive or multiplicative
uncertainty bounds are less conservative than the trivial ones Qij > 0.
Lemma 2: When the membership error bound δi is equal to zero

or the multiplicative bounds are equal to one (i.e., µi = ηi), a feasible
set of variables for Corollaries 1 and 2 may be obtained if [4, Th. 2]
(which applies to the PDC case) is feasible.

Proof: Note first that, when δ = 0 and ρm
i = ρM

i = 1, enforcing
R†

ij = Rij , N†
ij = Nij , and X(i+r)(j+r) = Xij in Corollary 1 leaves

(31)–(34) identical to (41)–(43) in Corollary 2; thus, a unified analysis
is possible, considering only Corollary 2 in the sequel.

If δi = 0 for all i’s, then (42) can be rewritten as

Qij − 2Mij ≥ Xi(j+r) + X(j+r)i. (48)

By taking Mij = Qij/2 and Xi(j+r) = 0, which fulfill (48), the
inequality (41) gets converted into

Qij/2 + Qji/2 ≥ Xij + Xji (49)

and the matrix Y12 is equal to zero. Finally, (43) is(
Y11 0
0 Y11

)
> 0 (50)
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TABLE I
DECAY RATE α ACHIEVABLE AS A FUNCTION OF THE UNCERTAINTY δ

equivalent to Y11 > 0. This condition and (49) are the ones in
[4, Th. 2]: if the latter is feasible, Corollaries 1 and 2 without
uncertainty will be feasible as well. �

Lemma 3: If Qij > 0 for all i, j = 1, . . . , r, then Corollaries 1 and
2 are satisfied.

Proof: Regarding Corollary 2, take all Nij = 0 and all
X(i+r)j = Xi(j+r) = 0. Then, take Rij = 0 for i �= j and Rii = εiI
for i = 1, . . . , r, choosing a small enough εi > 0 so that Qii � 2εiI
(I denotes the identity matrix). Then, Xij = 0, i �= j, fulfills (41) and
(42), and for i = j, Xii = εiI fulfills (41). Finally, all Xij’s form a
diagonal positive matrix that satisfies (43) if ε is small enough.

Corollary 1 is also satisfied with the same choice of Nij and Rij

plus N†
ij = Nij and R†

ij = Rij . Details are analogous to those above
for Corollary 2. �

EXAMPLES

This section presents several examples which illustrate the pos-
sibilities of the methodology with the additive and multiplicative
uncertainties, in decay-rate and H∞ settings.

Example 1: Let us consider a three-rule TS system ẋ =∑3

i=1
µi(x)(Aix + Biu) where

A1 =

(
0.39 0.85 0.48
0.81 0.010 0.34
0.51 0.28 0.078

)
B1 =

(
0.1 0.58

0.016 0.32
0.80 0.58

)

A2 =

(
0.0089 0.35 0.96
0.76 0.54 0.38
0.14 0.85 0.25

)
B2 =

(
0.031 0.036
0.87 0.53
0.75 0.78

)

A3 =

(
0.84 0.094 0.8
0.19 0.2 0.13
0.82 0.58 0.33

)
B3 =

(
0.054 0.16
0.21 0.84
0.47 0.64

)
.

A state-feedback fuzzy controller with the structure

u = −
3∑

j=1

ηj(x)Fjx

is proposed, where function ηj(x) is an approximation of µj(x)
fulfilling (39), for a shared δk = δ. Several values of the uncertainty
δ will be tested, ranging from δ = 0 (which is the well-known PDC
case ηi = µi) to δ = 1 (indicating an absolute ignorance on the
shape of µi).

The control objective will be to find the Fj maximizing the achiev-
able quadratic decay rate α by checking (5) with

Qij = −AiY − Y AT
i + BiMj + MT

j Bi − 2αY (51)

arising from (4) with the usual change of variables Y = P−1 and
Mj = FjY . The sufficient conditions provided in Corollary 2 will
be used, searching for the maximum value of α for which a feasible
LMI solution exists. The maximum α achieved for different values of
δ appears in Table I.

The results in the referred table show that the more precise the
knowledge of µ is (i.e., the lower δ is), the faster decay rates can be
achieved. The results for δ = 0 are coincident with those [4, Th. 2] for
the PDC case, as discussed in Lemma 2. Furthermore, the results for

δ = 1 are coincident with the ones obtained by using a plain, nonfuzzy,
and linear regulator u = −Kx robustly stabilizing a polytopic system
via the LMI conditions [15]

Qi = −AiY − Y AT
i + BiM + MTBi − 2αY > 0.

Such conditions are, in fact, equivalent to the shape-independent ones
Qij > 0 (indeed, conditions for M1 in (51) are the same as those for
M2, etc.; therefore, there is no loss of generality by assuming that
M1 = M2 = · · · = M ).

In summary, with the methodology in this correspondence, a smooth
transition between a full-PDC fuzzy controller and a robust linear
one is achieved: as uncertainty increases, the feasible performance
decreases. If the uncertainty in memberships is greater than 0.3, the
performance of fuzzy and nonfuzzy (i.e., plain linear) controllers is
the same. For lower uncertainty levels, the fuzzy control outperforms
linear regulators, as expected.

The aforementioned model has also been tested with the multiplica-
tive uncertainty bounds. In particular, with ρM

j = 3 and ρm
j = 1/3,

application of the procedure in [1] yields an achievable decay rate of
0.304, application of Lemma 1 yields a decay rate of 0.308 (i.e., the
additional decision variables achieve a marginal improvement), and
Corollary 1 produces the best result, proving that a decay 0.322 is
achievable.
Example 2: The same model from the previous example, with the

multiplicative uncertainty bounds ρM
j = 3 and ρm

j = 1/3, has been
used for the state-feedback H∞ control, with Qij as given in (7). If
a disturbance input with B1i = (−1 1 − 1)T is considered and an
output y = (0 1 0)x, the following results are obtained: 1) a robust
linear regulator obtains an induced-norm bound of 6.988; 2) a full
PDC results in 6.437, i.e., a better disturbance rejection, as expected;
and 3) uncertainty in memberships yields intermediate values, which
are better than the linear controller but worse than the PDC one:
6.726 for the original result in [1], 6.699 for Lemma 1, and 6.593 for
Corollary 1.
Example 3: Let us now discuss the same example as in [1] regarding

the multiplicative uncertainty. Consider a TS fuzzy system with two
rules, with matrices

A1 =

(
2 −10
1 0

)

A2 =

(
a −10
1 1

)

B1 =

(
1
0

)

B2 =

(
b
0

)
.

Analogously to [1], a two-rule state-feedback fuzzy controller is
built by designing the Fi, i = 1, 2, by pole placement so that the
closed-loop poles of Ai − BiFi are at −1 and −15 (unique solution).
Then, stability of the overall closed-loop system (3) is tested for
different values of a and b and different values of ρM

i and ρm
i

in (30).
Fig. 1 shows the values of a and b for which the closed loop

can be proved stable for different uncertainty levels: The left plot
presents the results with Corollary 1, whereas the right one presents
the results3 with Lemma 1; the tested uncertainty values were ρM

i = ε
and ρm

i = 1/ε for ε taking values in {2, 1.5, 1.2, 1.1, 1}. All points

3In this example, Lemma 1 obtained results which were coincident with those
obtained using the original decision variables in [1].
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Fig. 1. Feasible values of parameters a and b for Example 2. (Left) Corollary 1
and (right) Lemma 1. Legend: [� symbol]: ρM

i = 2, ρm
i = 1/2; [© symbol]:

ρM
i = 1.5, ρm

i = 1/1.5; [× symbol]: ρM
i = 1.2, ρm

i = 1/1.2; [+ symbol]:
ρM

i = 1.1, ρm
i = 1/1.1; [• symbol]: ρM

i = ρm
i = 1, i.e., PDC controller.

feasible for a particular value of ε were also feasible for lower
values of it.

Clearly, Corollary 1 in this correspondence achieves better results
than [1] in all tested uncertain cases, i.e., it finds a larger set of
values for a and b yielding a stable closed loop. As expected, for
no uncertainty in memberships (ρM

i = ρm
i = 1), the PDC case is

recovered in both cases (denoted with • in the figure), with results
coincident to those from [4, Th. 2].

V. CONCLUSION

This correspondence presents an extension of the methodology in
[1] to consider arbitrary affine constraints in the shape of uncertain
membership functions in a non-PDC fuzzy control setup. The pro-
posed extensions apply to various stability and performance require-
ments in continuous and discrete systems by making different choices
for Qij .

With the same type of restrictions than [1], numerical examples il-
lustrate that performance improvements over [1] may also be achieved,
at least in some cases. The examples in this correspondence also
illustrate the gradual loss of performance from a “full-PDC” fuzzy
controller to a “robust linear” one as uncertainty in the memberships
increases.
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