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Abstract: This paper presents a methodology to quantify computationally the uncertainty in a class of
di�erential equations often met in Mathematical Physics, namely random non-autonomous second-order
linear di�erential equations, via adaptive generalized Polynomial Chaos (gPC) and the stochastic Galerkin
projection technique. Unlike the random Fröbenius method, which can only deal with particular random
linear di�erential equations and needs the random inputs (coe�cients and forcing term) to be analytic, adap-
tive gPC allows approximating the expectation and covariance of the solution stochastic process to general
random second-order linear di�erential equations. The random inputs are allowed to functionally depend
on random variables that may be independent or dependent, both absolutely continuous or discrete with
in�nitely many point masses. These hypotheses include a wide variety of particular di�erential equations,
which might not be solvable via the random Fröbenius method, in which the random input coe�cients may
be expressed via a Karhunen-Loève expansion.
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1 Introduction and Preliminaries
Many laws of Physics are formulated via di�erential equations. In practice, input parameters (coe�cients,
forcing/source term and initial/boundary conditions) of these equations are set from experimental data, thus
containing the uncertainty involved in measurement errors. Furthermore, input parameters are often not
exactly known because of insu�cient information, limited understanding of some underlying phenomena,
inherent uncertainty, etc. All these facts motivate that input parameters of classical di�erential equations
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are treated as random variables or stochastic processes rather than deterministic constants or functions,
respectively. This approach leads to random di�erential equations (RDEs) [1, 2]. The random behavior of the
solution stochastic process can be understood if one obtains its main statistical features, say expectation,
variance, covariance, etc.

A powerful tool to dealwithRDEs is generalized Polynomial Chaos (gPC) [3, 4]. Let (Ω,F, P) be a complete
probability space. We will work in the Hilbert space (L2(Ω), 〈·, ·〉) that consists of second-order random
variables, i.e., random variables with �nite variance, where the inner product is de�ned by 〈ζ1, ζ2〉 = E[ζ1ζ2],
being E[·] the expectation operator. In its classical formulation, gPC consists in writing a random vector
ζ : Ω → Rn as a limit of multivariate polynomials evaluated at a random vector Z : Ω → Rn: ζ ≈∑P

i=0 ζ̂iϕi(Z).
Here {ϕi(Z)}∞i=0 is a sequence of orthogonal polynomials in Z: E[ϕi(Z)ϕj(Z)] =

∫
Rn ϕi(z)ϕj(z) dPZ(z) = γiδij,

where PZ = P ◦ Z−1 is the law of Z and δij is the Kronecker delta symbol. A stochastic Galerkin method can be
applied to approximate the solution to RDEs [3, Ch. 6]. For some applications of this theory, see for example
[5, 6].

Given the random vector Z, the sequence {ϕi(Z)}∞i=0 of orthogonal polynomials is taken from the Askey-
Wiener scheme of hypergeometric orthogonal polynomials, by taking into account the density function fZ of
Z (if Z is absolutely continuous) or the discrete masses of Z (if Z is discrete), [3, 4].

In the recent articles [7–9], an adaptive gPC method has been developed to approximate the solutions
of RDEs. Instead of taking the orthogonal polynomials from the Askey-Wiener scheme, the authors construct
them directly from the random inputs that are involved in the corresponding RDE’s formulation.

More explicitly, in [7], it is considered the RDE F(t, y, ẏ) = 0, y(t0) = y0, where F : R2q+1 → Rq and y(t) =
(y1(t), . . . , yq(t))>, where> denotes the transpose operator. The set {ζ1, . . . , ζs} represents independent and
absolutely continuous random input parameters in the RDE.

For each 1 ≤ i ≤ s, it is considered the canonical basis of polynomials in ζi of degree at most p: Cpi =
{1, ζi , (ζi)2, . . . , (ζi)p}. One de�nes the following inner product, with weight function given by the density of
ζi: 〈g(ζi), h(ζi)〉ζi =

∫
R g(ζi)h(ζi)fζi (ζi) dζi. Using a Gram-Schmidt orthonormalization procedure, one obtains

a sequence of orthonormal polynomials in ζi with respect to 〈, 〉ζi : Ξ
p
i = {ϕi0(ζi), . . . , ϕip(ζi)}. The authors

build a sequence of orthonormal multivariate polynomials in ζ = (ζ1, . . . , ζs)> of degree at most p with
respect to the inner product 〈g(ζ ), h(ζ )〉ζ =

∫
Rs g(ζ )h(ζ )fζ (ζ ) dζ . To do so, they build the simple tensor product

ϕj(ζ ) = ϕ1
p1 (ζ1) · · ·ϕsps (ζs), 1 ≤ j ≤ P, where j is associated in a bijectivemanner to themulti-index (p1, . . . , ps)

in such a way that 1 corresponds to (0, . . . , 0) (for example, a graded lexicographic ordering [3, p. 66]) and
P = (p+ s)!/(p!s!). By the independence between ζ1, . . . , ζs, the built sequence Ξ = {ϕj(ζ )}Pj=1 is orthonormal
with respect to 〈, 〉ζ .

Once the basis is constructed, one looks for an approximate solution y(t) ≈ ∑P
j=1 yj(t)ϕj(ζ ). Then,

F(t,∑P
j=1 yj(t)ϕj(ζ ),

∑P
j=1 ẏj(t)ϕj(ζ )) = 0. To obtain the deterministic coe�cients yj(t), one computes the

inner products 〈F(t,∑P
j=1 yj(t)ϕj(ζ ),

∑P
j=1 ẏj(t)ϕj(ζ )), ϕk(ζ )〉ζ = 0, k = 1, . . . , P. In this manner, one arrives

at a deterministic system of P di�erential equations, which may be solved by standard numerical techniques.
Once y1(t), . . . , yP(t) have been computed, the expectation of the actual solution y(t) is approximated by y1(t)
and the covariance matrix is approximated by∑P

i=1 yi(t)yi(t)>.
In [8], the authors use the Random Variable Transformation technique [10, Th. 1] in case that some

random input parameters appearing in the RDE come from mappings of absolutely continuous random
variables, whose probability density function is known.

In [9], the authors focus on the case that the random inputs ζ1, . . . , ζs are not independent. They consider
the canonical bases C

p
i = {1, ζi , (ζi)2, . . . , (ζi)p}, for 1 ≤ i ≤ s, and construct a sequence of multivariate

polynomials in ζ , via a simple tensor product: ϕj(ζ ) = ζ p11 · · · ζ pss , where 1 ≤ j ≤ P corresponds to the multi-
index (p1, . . . , ps) and P = (p + s)!/(p!s!). Notice that this new sequence {ϕj(ζ )}Pj=1 is not orthonormal
with respect to 〈, 〉ζ . However, one proceeds with the RDE as in [7] and, in practice, one obtains good
approximations of the expectation and covariance of y(t).

Basedonamplenumerical evidence, the gPC-basedmethodsdescribed in [3, 4, 7–9] converge in themean
square sense at spectral rate. Some theoretical results that justify this assertion are presented in [3, pp. 33–35,
p. 73], [11, Th. 2.2], [12–15].
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In this paper we deal with an important class of di�erential equations with uncertainty often met in
Mathematical Physics, namely general random non-autonomous second-order linear di�erential equations:

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = C(t), t ∈ R,
X(t0) = Y0,
Ẋ(t0) = Y1.

(1)

Our goal is to obtain approximations of the solution stochastic process X(t) as well as of its main statistical
features, by taking advantage of the adaptive gPC techniques [7, 9]. Here, A(t), B(t) and C(t) are stochastic
processes and Y0 and Y1 are random variables in an underlying complete probability space (Ω,F, P). The
term X(t) is the solution stochastic process to the random IVP (1) in some probabilistic sense. We will detail
conditions for existence and uniqueness of solution in the following section.

Particular cases of (1) (with no random forcing term, C(t)) have been treated in the extant literature by
using the random Fröbenius method. Speci�cally, Airy, Hermite, Legendre, Laguerre and Bessel di�erential
equations have been randomized and rigorously studied in [16–21], respectively. The study includes the
computation of the expectation and the variance of the solution stochastic process.

In our recent contributions [22, 23], we have studied the general problem (1) when A(t), B(t) and C(t)
are analytic stochastic processes in the mean square sense. As it has been proved there, the random power
series solution converges in the mean square sense when A(t) and B(t) are analytic processes in the L∞(Ω)
sense, C(t) is a mean square convergent random power series, and the initial conditions Y0 and Y1 belong to
L2(Ω). Under those assumptions, the expectation and variance statistics of the solution process X(t) can be
rigorously approximated.

In [24] the authors study RDEs by taking advantage of homotopy analysis and they provide a complete
set of illustrative examples dealing with random second-order linear di�erential equations.

In this paper, we want to go one step further and we will perform a computational analysis based upon
adaptive gPC, by showing its capability to deal with the general random IVP (1) that comprises Airy, Hermite,
Legendre, Laguerre and Bessel di�erential equations, or any other formulation of (1) based on analytic data
processes, just as particular cases.Wewill thus resolve the future line of research brought up in [23, Section 5].

The paper is organized as follows. Section 2 describes the application of adaptive gPC to solve the random
IVP (1) and the computation of the expectation and covariance of X(t). The study is split into two cases
depending on the probabilistic dependence of the random inputs. In Section 3, we show the algorithms
corresponding to the theory previously developed in Section 2. Section 4 is addressed to show particular
examples of (1) where adaptive gPC, Fröbenius method and Monte Carlo simulation are carried out to obtain
approximations for the expectation, variance and covariance of the solution stochastic process. It is evinced
that adaptive gPC provides the same results as the Fröbenius method with small orders of basis p, and,
moreover, in cases where the Fröbenius method is not applicable, adaptive gPC might be successful. Finally,
in Section 5, conclusions are drawn.

2 Method
Consider the random IVP (1), where

A(t) = a0(t) +
dA∑
i=1

ai(t)γi , B(t) = b0(t) +
dB∑
i=1

bi(t)ηi , C(t) = c0(t) +
dC∑
i=1

ci(t)ξi , (2)

being γ1, . . . , γdA , η1, . . . , ηdB and ξ1, . . . , ξdC random variables (not necessarily independent) and
a0(t), . . . , adA (t), b0(t), . . . , bdB (t) and c0(t), . . . , cdC (t) real functions. Representation (2) for the input
stochastic processes includes truncated random power series [2, p. 99] and Karhunen-Loève expansions [3,
Ch. 4], [25, Ch. 5]. This is an improvement with respect to the random Fröbenius method used in [16–23], in
which A(t), B(t) and C(t) are only expressed as random power series.
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Aswe are interested in constructive computational aspects of uncertainty quanti�cation, we will assume
that there exists a unique solution stochastic process X(t) to IVP (1) in some probabilistic sense, for instance,
sample path [1, SP problem] [2, Appendix A], or Lq(Ω) sense [2], in such a way that E[X(t)2] < ∞ for each t.
We detail the conditions under which there exists a unique solution X(t) to (1) in the following propositions.
The proofs are simple consequences of the references cited therein. Proposition 2.1, which is concerned with
sample path solutions, is a direct consequence of the deterministic theory on ordinary di�erential equations
(Carathéodory theory on the existence of absolutely continuous solutions [26, pp. 28–30]). Proposition 2.2
takes advantage of a natural generalization to Lq(Ω) random calculus of the classical Picard theorem for
deterministic ordinary di�erential equations [2, Th. 5.1.2].

Proposition 2.1 (Sample path solution). [26, pp. 28–30] If A(t), B(t) and C(t) have real integrable sample
paths, then there exists a unique solution stochastic process X(t) to (1) with C1 sample paths and derivative
Ẋ(t) with absolutely continuous sample paths (i.e., X(t) is a classical solution that belongs to the Sobolev space
W2,1). Moreover, if A(t), B(t) and C(t) have continuous sample paths, then X(t) has C2 sample paths.

Proposition 2.2 (Lq(Ω) solution). [2, Ch. 5], [23] If A(t) and B(t) are continuous stochastic processes in the
L∞(Ω) sense, and the source term C(t) is continuous in the Lq(Ω) setting, then there exists a unique solution X(t)
to (1) in the Lq(Ω) sense.

Our goal is to approximate the solution stochastic process X(t) to the random IVP (1) by using adaptive
gPC, which is described in [7, 9] and has been reviewed in Section 1. In the case that the random inputs
γ1, . . . , γdA , η1, . . . , ηdB , ξ1, . . . , ξdC , Y0 and Y1 are independent, we will use the method from [7], whereas
in the case that they are not independent, [9] will be utilized. In [7, 9], the random inputs are assumed to
be absolutely continuous, so that the weights in the inner products are given by density functions. Notice,
however, that a discrete distribution with in�nitely many point masses can be given to the random inputs.
Indeed, the corresponding inner product becomes an integral with respect to a discrete law, which is a series
with weights being the probabilities of the point masses. Moreover, since the support has in�nite cardinality,
the corresponding canonical basis of polynomials has in�nite dimension, so that its length p can grow up to
in�nity.

For ease of notation and to identify the notation with the one used in Section 1, we denote the random
inputs γ1, . . . , γdA , η1, . . . , ηdB , ξ1, . . . , ξdC , Y0 and Y1 as ζ1, . . . , ζs, where s = dA + dB + dC +2. The random
variables ζ1, . . . , ζs are not necessarily independent, and they are absolutely continuous or discrete random
variables with in�nitely many point masses. We will denote ζ = (ζ1, . . . , ζs)>. The space of polynomials
evaluated at ζi of degree at most pwill be denoted byPp[ζi]. The space of multivariate polynomials evaluated
at ζ of degree at most P will be written as PsP[ζ ].

In the next development, we distinguish two cases depending on whether the random inputs ζ1, . . . , ζs
are independent or not.

2.1 The random inputs are independent

In the notation from [7] and Section 1, let Cpi = {1, ζi , . . . , ζ
p
i } be the canonical basis ofPp[ζi], for i = 1, . . . , s.

Let Ξpi = {ϕi0(ζi), . . . , ϕip(ζi)} be the orthonormalization of Cpi with respect to the inner product de�ned by
the lawPζi , via a Gram-Schmidt procedure. Let Ξ = {ϕ1(ζ ), . . . , ϕP(ζ )} be the orthonormal basis ofPsP[ζ ] with
respect to the law Pζ = Pζ1 × · · · × Pζs , where P = (p + s)!/(p!s!).

We approximate the solution stochastic process X(t) ≈ ∑P
i=1 xi(t)ϕi(ζ ) by imposing the right-hand side

to be a solution to random IVP (1):

P∑
i=1

ẍi(t)ϕi(ζ ) +
(
a0(t) +

dA∑
i=1

ai(t)γi

)( P∑
i=1

ẋi(t)ϕi(ζ )
)
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+
(
b0(t) +

dB∑
i=1

bi(t)ηi

)( P∑
i=1

xi(t)ϕi(ζ )
)
= c0(t) +

dC∑
i=1

ci(t)ξi . (3)

We apply the stochastic Galerkin projection technique. By multiplying by ϕk(ζ ), k = 1, . . . , P, applying
expectations, using the orthonormality of Ξ and the fact that ϕ1 = 1, we obtain:

ẍk(t) + a0(t)ẋk(t) +
dA∑
i=1

P∑
j=1

ai(t)ẋj(t)E[γiϕj(ζ )ϕk(ζ )] + b0(t)xk(t)

+
dB∑
i=1

P∑
j=1

bi(t)xj(t)E[ηiϕj(ζ )ϕk(ζ )] = c0(t)δ1k +
dC∑
i=1

ci(t)E[ξiϕk(ζ )]. (4)

Let us put this equation in matrix form. Consider the P × P matrices M and N de�ned by

Mkj(t) =
dA∑
i=1

ai(t)E[γiϕj(ζ )ϕk(ζ )], Nkj(t) =
dB∑
i=1

bi(t)E[ηiϕj(ζ )ϕk(ζ )], (5)

for k, j = 1, . . . , P. Consider the vector q of length P with

qk =
dC∑
i=1

ci(t)E[ξiϕk(ζ )], (6)

for k = 1 . . . , P. We rewrite (4) as a deterministic system of P di�erential equations:

ẍ(t) + (M(t) + a0(t)IP)ẋ(t) + (N(t) + b0(t)Ip)x(t) = q(t) + c0(t)e1, (7)

where x(t) = (x1(t), . . . , xP(t))>, IP is the P × P identity matrix and e1 is the �rst vector of the canoni-
cal basis: (1, 0, . . . , 0)>. It remains to �nd the initial condition for (7). From ∑P

i=1 xi(t0)ϕi(ζ ) = Y0 and∑P
i=1 ẋi(t0)ϕi(ζ ) = Y1, we obtain that xk(t0) = E[Y0ϕk(ζ )] and ẋk(t0) = E[Y1ϕk(ζ )], for k = 1, . . . , P. Thus,

the initial conditions become x(t0) = y and ẋ(t0) = y′, where y = (y1, . . . , yP)> and y′ = (y′1, . . . , y′P)>,

yk = E[Y0ϕk(ζ )], y′k = E[Y1ϕk(ζ )], (8)

for k = 1, . . . , P.
The system of deterministic di�erential equations can be solved by using standard numerical techniques.

Once we have computed the solution (x1(t), . . . , xP(t)), we have obtained the approximation∑P
i=1 xi(t)ϕi(ζ )

for the solution stochastic process X(t). Moreover, one can approximate the expectation and covariance of
X(t):

E[X(t)] ≈ x1(t), Cov[X(t1), X(t2)] ≈
P∑
i=2

xi(t1)xi(t2). (9)

2.2 The random inputs may not be independent

In the notation from [9] and Section 1, let Cpi = {1, ζi , . . . , ζ
p
i } be the canonical basis ofPp[ζi], for i = 1, . . . , s.

We construct the basis Ξ = {ϕ1, . . . , ϕP} of PsP[ζ ] as in [9]. This basis is not orthonormal with respect to the
law Pζ .

We approximate the solution stochastic process X(t) ≈ ∑P
i=1 xi(t)ϕi(ζ ) by imposing the right-hand side

to be a solution to random IVP (1). One obtains (3). By multiplying by ϕk(ζ ) and applying expectations, k =
1, . . . , P, we derive that

P∑
i=1

ẍi(t)E[ϕi(ζ )ϕk(ζ )] + a0(t)
P∑
i=1

ẋi(t)E[ϕi(ζ )ϕk(ζ )]
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+
dA∑
i=1

P∑
j=1

ai(t)ẋj(t)E[γiϕj(ζ )ϕk(ζ )] + b0(t)
P∑
i=1

xi(t)E[ϕi(ζ )ϕk(ζ )]

+
dB∑
i=1

P∑
j=1

bi(t)xj(t)E[ηiϕj(ζ )ϕk(ζ )]

= c0(t)E[ϕk(ζ )] +
dC∑
i=1

ci(t)E[ξiϕk(ζ )]. (10)

De�ne the P × P matrix R and the vector h of length P as

Rik = E[ϕi(ζ )ϕk(ζ )], hk = E[ϕk(ζ )], (11)

for i, k = 1, . . . , P. Expression (10) can be written in matrix form as a deterministic system of P di�erential
equations:

Rẍ(t) + (M(t) + a0(t)R)ẋ(t) + (N(t) + b0(t)R)x(t) = q(t) + c0(t)h. (12)

The initial conditions are given by Rx(t0) = y and Rẋ(t0) = y′.
This system of deterministic di�erential equations is solvable by standard numerical techniques. Once

we have computed the approximation∑P
i=1 xi(t)ϕi(ζ ) of the solution stochastic process X(t), the expectation

and covariance of X(t) can be approximated as follows:

E[X(t)] ≈
P∑
i=1

xi(t)E[ϕi(ζ )], Cov[X(t1), X(t2)] ≈
P∑
i=1

P∑
j=1

xi(t1)xj(t2)Cov[ϕi(ζ ), ϕj(ζ )]. (13)

3 Algorithm
In this section we present the algorithm corresponding to Section 2. From the random inputs A(t), B(t) and
C(t) having expression (2) and the initial conditions Y0 and Y1, we will show the steps to be followed in order
to approximate the expectation and covariance of the solution stochastic process X(t). As in Section 2, denote
the random input parameters by ζ1, . . . , ζs.

Case ζ1, . . . , ζs are independent:
Step 1. De�ne the canonical basis Cpi = {1, ζi , . . . , ζ

p
i }, i = 1, . . . , s.

Step 2. Via a Gram-Schmidt procedure, orthonormalize C
p
i to a new basis Ξpi = {ϕi0(ζ ), . . . , ϕip(ζ )} with

respect to the probability law Pζi of ζi. In the software Mathematica®, this can be readily done with the
built-in function Orthogonalize. For example, if p=3 and the probability distribution is dist, then the
command could be:
Expand[Orthogonalize[{1, Z, Z^2, Z^3},
Integrate[#1 #2 PDF[dist, Z], {Z, -Infinity, Infinity}] &]]

Step 3. By using a simple tensor product, de�ne the orthonormal basis with respect to the joint law Pζ =
Pζ1 × · · · × Pζs , Ξ = {ϕ1(ζ ), . . . , ϕP(ζ )}.

Step 4. Construct the matrices M(t) and N(t) given by (5), the vector q(t) de�ned by (6), and the initial
conditions y and y′ given by (8). All the involved expectations can be calculatedwith the built-in function
Expectation from Mathematica®.

Step 5. Solve numerically the deterministic system of P di�erential equations given by (7) with initial condi-
tions x(t0) = y and ẋ(t0) = y′. This system does not pose serious numerical challenges. We thus integrate
the equations over time with the standard NDSolve routine from Mathematica®: write the instruction
NDSolve[eqns,function,{t,t0,T}]
with automatic method, step size, etc. (the built-in function will automatically try to estimate the best
method for a particular computation).
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Step 6. Approximate the expectation and covariance of the unknown solution stochastic process by using (9).

Case ζ1, . . . , ζs are not independent:
Step 1. De�ne the canonical basis Cpi = {1, ζi , . . . , ζ

p
i }, i = 1, . . . , s.

Step 2. By using a simple tensor product, de�ne the basis Ξ = {ϕ1(ζ ), . . . , ϕP(ζ )}.
Step 3. Construct the matrices M(t) and N(t) given by (5), the vector q(t) de�ned by (6), the matrix R(t) and

the vector h given by (11), and the vectors y and y′ expressed by (8). All the involved expectations can be
calculated with the built-in function Expectation from Mathematica®.

Step 4. Solve numerically the deterministic system of P di�erential equations given by (12) with initial
conditions Rx(t0) = y and Rẋ(t0) = y′. This system does not pose serious numerical challenges. We
thus integrate the equations over time with the standard NDSolve routine from Mathematica® with the
option
Method -> {"EquationSimplification" -> "Residual"}
(to deal with the corresponding system of di�erential-algebraic equations): write the instruction
NDSolve[eqns,function,{t,t0,T},
Method -> {"EquationSimplification" -> "Residual"}]
with automaticmethod, step size, etc. (the built-in functionwill automatically try to pick the bestmethod
for a particular computation).

Step 5. Approximate the expectation and covariance of the unknown solution stochastic process by using (13).

4 Examples
In this section we show particular examples of the random IVP (1) to which we apply adaptive gPC to
approximate the expectation and covariance of the solution stochastic process X(t).

We will compare the results with Monte Carlo simulation. This method is based on sampling. Sample
from the probability distributions of A(t), B(t), C(t), Y0 and Y1 to obtain, say m realizations, for m large:

A(1)(t), . . . , A(m)(t), B(1)(t), . . . , B(m)(t), C(1)(t), . . . , C(m)(t),

Y (1)0 , . . . , Y (m)0 , Y (1)1 , . . . , Y (m)1 .

Then we solve the m deterministic initial value problems
Ẍ(i)(t) + A(i)(t)Ẋ(i)(t) + B(i)(t)X(i)(t) = C(i)(t), t ∈ R,
X(i)(t0) = Y (i)0 ,
Ẋ(i)(t0) = Y (i)1 ,

so thatweobtainm realizations of X(t): X(1)(t), . . . , X(m)(t). The Lawof LargeNumbers permits approximating
E[X(t)] and V[X(t)] by computing the sample mean and sample variance of X(1)(t), . . . , X(m)(t):

E[X(t)] ≈ µm(t) = 1
m

m∑
i=1

X(i)(t), V[X(t)] ≈ 1
m − 1

m∑
i=1

(X(i)(t) − µm(t))2.

The results of adaptive gPC agree with Monte Carlo simulation, although the convergence rate of Monte
Carlo is much slower (its error convergence rate is inversely proportional to the square root of the number
of realizations [3, p. 53]).

The result of the expectation will also be compared with the dishonest method [27, p. 149]. It consists in
estimating E[X(t)] by substituting A(t), B(t), C(t), Y0 and Y1 in (1) by their corresponding expected values.
Denoting µX(t) = E[X(t)], the idea is that, since E[Ẍ(t)] = d2

dt2 (µX(t)) and E[Ẋ(t)] = d
dt (µX(t)), because of the
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commutation between the mean square limit and the expectation operator (see [2, Ch. 4]), one solves:
d2
dt2 (µX(t)) + E[A(t)] ddt (µX(t)) + E[B(t)]µX(t) = E[C(t)], t ∈ R,
µX(t0) = E[Y0],
d
dt (µX(t0)) = E[Y1].

In our context, the dishonest method will work on cases where Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] are small,
but in general, there is no certainty that this may hold. Thus, this method is a naive approximation to the true
expectation, with no theoretical support, although with a certain use in the literature [27].

When possible, the results obtained via adaptive gPC for the expectation and variance will be compared
with the random Fröbenius method. The convergence of the random Fröbenius method will be guaranteed
by previous studies, see [22, 23].

Several conclusions are drawn from these examples. Adaptive gPC allows for random inputs (2) more
general than the random Fröbenius method: A(t), B(t) and C(t) may not be analytic, theymay be represented
via a truncated Karhunen-Loève expansion, etc. Moreover, with a small length p of the bases, accurate
results are obtained (this is due to the well-known spectral convergence of gPC-based methods). In practical
applications, a disadvantage of adaptive gPC is that random parameter inputs cannot have a �nite number of
point masses (otherwise the space of polynomials evaluated at them would have �nite dimension). From
a computational standpoint, a large number s of random input parameters may make the computations
inviable, as the order P of the basis increases as P = (p + s)!/(p!s!).

Example 4.1. Airy-type di�erential equations appear in a variety of applications to Mathematical Physics,
such as the description of the solution to the Schrödinger equation for a particle con�ned within a triangular
potential, in the solution for the one-dimensionalmotionof a quantumparticle a�ectedbya constant force, or
in the theory of di�raction of radio waves around the Earth’s surface [28]. Airy’s random di�erential equation
is given by [16]: 

Ẍ(t) + AtX(t) = 0, t ∈ R,
X(0) = Y0,
Ẋ(0) = Y1,

(14)

where A, Y0 and Y1 are random variables. It is well-known that the solution to the deterministic Airy’s
di�erential equation is highly oscillatory, hence it is expected that, in dealing with its stochastic counterpart,
di�erences between distinct methods will be highlighted.

Existence and uniqueness of sample path solution is guaranteed by Proposition 2.1. Concerning the exis-
tence and uniqueness of mean square solution, we refer to [16, 22] or Proposition 2.2, under the assumption
that A is a bounded random variable. This assumption on boundedness is not a restriction in practice, as one
may truncate the random variable A with a support as large as desired.

In [16], the following distributions for A, Y0 and Y1 are set: A ∼ Beta(2, 3), Y0 ∼ Normal(1, 1) and
Y1 ∼ Normal(2, 1). They are assumed to be independent. Approximations for the expectation and variance
via the random Fröbenius method and Monte Carlo simulation are obtained in [16]. We use adaptive gPC
(independent case) with p = 3, p = 4, ζ1 = A, ζ2 = Y0 and ζ3 = Y1, η1 = A, A(t) = 0, C(t) = 0 and b1(t) = t.
The results obtained are shown in Table 1 (expectation), Table 2 (variance) and Table 3 (covariance). The order
of truncation in the random Fröbeniusmethod is denoted by N. Observe that gPC expansions have converged
for t ∈ [0, 2] with order p = 3. This rapid convergence shows the potentiality of this approach.

In Figure 1, we focus on the convergence of gPC expansions. The solid line re�ects the expectations, while
the dashed lines represent con�dence intervals constructed with the rule mean ± deviation (the standard
deviation stands for the square root of the variance). Observe that, as we move away from t = 0, larger
orders of p are required to achieve good approximations of the statistics of X(t). Indeed, Galerkin projections
deviate from the exact solution after a certain time. Realize also that larger orders of p are needed to get
accurate results of the standard deviation than for the expectation (statistical moments of order 2 are harder
to approximate than moments of order 1). For p = 3 and p = 4, the approximate expectations agree up to
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time t = 7, whereas the standard deviations up to t = 4.5. For p = 2 and p = 3, similar means are obtained
until t = 6, and similar standard deviations up to t = 4. Notice that the convergence deteriorates for p = 1:
the results for p = 1 and p = 2 agree until t = 4 for the expectation, but up to instant t = 1.5 for the standard
deviation. As p grows, the approximation of the statistics will improve for larger t.

Table 1: Approximation of E[X(t)]. Example 4.1, assuming independent random data.

t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 5 dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.99701 1.00138
0.25 1.49870 1.49870 1.49870 1.49870 1.49870 1.49519 1.49976
0.50 1.98752 1.98752 1.98752 1.98752 1.98752 1.98353 1.98829
0.75 2.45108 2.45108 2.45108 2.45108 2.45102 2.44667 2.45160
1.00 2.86856 2.86856 2.86856 2.86856 2.86818 2.86383 2.86893
1.25 3.21494 3.21494 3.21494 3.21494 3.21339 3.21008 3.21534
1.50 3.46310 3.46310 3.46310 3.46310 3.45812 3.45831 3.46376
1.75 3.58660 3.58660 3.58660 3.58660 3.57340 3.58215 3.58784
2.00 3.56335 3.56335 3.56336 3.56335 3.53286 3.55948 3.56552

Table 2: Approximation of V[X(t)]. Example 4.1, assuming independent random data.

t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 5 MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.99610 0.99530
0.25 1.06035 1.06035 1.06035 1.06035 1.05902 1.05642
0.50 1.23142 1.23142 1.23142 1.23142 1.23408 1.22793
0.75 1.49261 1.49261 1.49261 1.49261 1.50041 1.48944
1.00 1.81392 1.81392 1.81392 1.81392 1.82744 1.81127
1.25 2.15870 2.15870 2.15870 2.15870 2.17768 2.15721
1.50 2.49379 2.49379 2.49379 2.49379 2.51690 2.49462
1.75 2.80560 2.80560 2.80560 2.80560 2.83029 2.81030
2.00 3.11530 3.11530 3.11530 3.11530 3.13783 3.12559

Table 3: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3 and p = 4. Example 4.1, assuming independent random
data.

t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 1. 0.998959 0.991684 0.972072 0.934436 0.873965 0.787323 0.673299 0.533429

0.25 0.998959 1.06035 1.11507 1.15586 1.17516 1.16565 1.12103 1.03694 0.911972
0.5 0.991684 1.11507 1.23142 1.33242 1.40874 1.45067 1.44906 1.39647 1.28856
0.75 0.972072 1.15586 1.33242 1.49261 1.62561 1.7196 1.76286 1.74509 1.65909
1 0.934436 1.17516 1.40874 1.62561 1.81392 1.96032 2.05099 2.07321 2.01713

1.25 0.873965 1.16565 1.45067 1.7196 1.96032 2.1587 2.2997 2.3688 2.35387
1.5 0.787323 1.12103 1.44906 1.76286 2.05099 2.2997 2.49379 2.61793 2.65822
1.75 0.673299 1.03694 1.39647 1.74509 2.07321 2.3688 2.61793 2.8056 2.91699
2 0.533429 0.911972 1.28856 1.65909 2.01713 2.35387 2.65822 2.91699 3.1153

By using the random Fröbenius method from [16], an example of Airy’s di�erential equation with
dependent random inputs is performed. It is set (A, Y0, Y1) to have amultivariate Gaussian distribution, with
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Figure 1: Expectation and con�dence interval for the solution stochastic process, for orders of basis p = 1, 2, 3, 4. Example 4.1,
assuming independent random data.
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mean vector and covariance matrix given by

µ =

0.41
2

 , Σ =

 0.04 0.0001 −0.05
0.0001 1 0.5
−0.005 0.5 1

 ,

respectively. In Table 4, Table 5 and Table 6, the results obtained via adaptive gPC with p = 3, p = 4
(dependent case) and [16] are shown. Adaptive gPC converges for small order of basis p.

In Figure 2, we analyze the convergence of gPC expansions by depicting the expectation (solid line) and
con�dence interval (dashed lines) for X(t), where the con�dence interval is constructed as mean ± deviation.
Analogous comments to those from Figure 1 apply in this case again. For orders p = 3 and p = 4, the
expectations agree up to time t = 6, while the standard deviations coincide until t = 4.6. For p = 2 and
p = 3, the means are similar until t = 6, whereas the dispersion estimates start separating from t = 3.8.
Finally, for p = 1 and p = 2, the approximations for the average statistic coincide till t = 4.5, and for the
deviation statistic until t = 2.5.

Table 4: Approximation of E[X(t)]. Example 4.1, assuming dependent random data.

t gPC p = 3 gPC p = 4 Fröb. N = 4 Fröb. N = 5 dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 1 1 1.00188 1.00597
0.25 1.49870 1.49870 1.49870 1.49870 1.49870 1.50166 1.50581
0.50 1.98755 1.98755 1.98755 1.98755 1.98752 1.99156 1.99575
0.75 2.45121 2.45121 2.45121 2.45121 2.45102 2.45622 2.46041
1.00 2.86895 2.86895 2.86895 2.86895 2.86818 2.87485 2.87900
1.25 3.21589 3.21589 3.21589 3.21589 3.21339 3.22247 3.22656
1.50 3.46503 3.46503 3.46503 3.46503 3.45812 3.47198 3.47601
1.75 3.59010 3.59010 3.59010 3.59010 3.57340 3.59700 3.60101
2.00 3.56914 3.56914 3.56915 3.56914 3.53286 3.57546 3.57949

Example 4.2. Consider the random di�erential equation
Ẍ(t) + (γ1 + γ2t)Ẋ(t) + (η1 + t)X(t) = ξ1 cos(t) + g(t), t ∈ R,
X(0) = Y0,
Ẋ(0) = Y1,

(15)

where γ1 ∼ Poisson(3), γ2 ∼ Uniform(0, 1), η1 ∼ Gamma(2, 2), Y0 = −1, Y1 ∼ Exponential(4), ξ1 ∼
Uniform(−8, 2) and g(t) = e−1/t1(0,∞)(t).
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Table 5: Approximation of V[X(t)]. Example 4.1, assuming dependent random data.

t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 4 MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.999223 0.99992
0.25 1.30997 1.30997 1.30997 1.30997 1.30713 1.30991
0.50 1.72535 1.72535 1.72535 1.72535 1.71989 1.72525
0.75 2.21241 2.21241 2.21241 2.21241 2.20395 2.21230
1.00 2.72122 2.72122 2.72122 2.72122 2.70957 2.72125
1.25 3.19236 3.19236 3.19236 3.19236 3.17745 3.19283
1.50 3.57361 3.57361 3.57361 3.57361 3.55537 3.57484
1.75 3.84459 3.84459 3.84454 3.84458 3.82262 3.84669
2.00 4.04087 4.04087 4.04090 4.04086 4.01420 4.04342

Table 6: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3 and p = 4. Example 4.1, assuming dependent random
data.

t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 1. 1.12389 1.24064 1.34181 1.41793 1.45914 1.45614 1.40144 1.29068

0.25 1.12389 1.30997 1.48771 1.64683 1.77533 1.86031 1.88919 1.85125 1.7394
0.5 1.24064 1.48771 1.72535 1.94152 2.12187 2.25061 2.31202 2.29226 2.18163
0.75 1.34181 1.64683 1.94152 2.21241 2.4431 2.61534 2.71062 2.71235 2.60832
1 1.41793 1.77533 2.12187 2.4431 2.72122 2.93619 3.06742 3.09609 3.00785

1.25 1.45914 1.86031 2.25061 2.61534 2.93619 3.19236 3.36219 3.42552 3.36639
1.5 1.45614 1.88919 2.31202 2.71062 3.06742 3.36219 3.57361 3.68135 3.66862
1.75 1.40144 1.85125 2.29226 2.71235 3.09609 3.42552 3.68135 3.84459 3.89856
2 1.29068 1.7394 2.18163 2.60832 3.00785 3.36639 3.66862 3.89856 4.04087

Figure 2: Expectation and con�dence interval for the solution stochastic process, for orders of basis p = 1, 2, 3, 4. Example 4.1,
assuming dependent random data.
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Proposition 2.1 ensures the existence and uniqueness of a sample path solution. To apply Proposition 2.2,
one would need to truncate the supports of γ1 and η1. These truncations can be constructed on intervals as
large as desired, in order to maintain the results.

The input random variables ζ1 = γ1, ζ2 = γ2, ζ3 = η1, ζ4 = ξ1 and ζ5 = Y1 are assumed to be independent.
The involved functions are a1(t) = 1, a2(t) = t, b1(t) = 1, b2(t) = t, c0(t) = g(t) and c1(t) = cos(t). Notice that
C(t) is not an analytic stochastic process, because g(t) is not a real analytic function. The random Fröbenius
method isnot applicable for the randomIVP (15).However,weare going to see that adaptive gPC (independent
case) with p = 6 and p = 7 provides reliable approximations of the expectation and covariance of X(t). We
will compare the results with Monte Carlo simulation. In Table 7, Table 8 and Table 9 we show the estimates
obtained.
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In Figure 3, we focus on the convergence of gPC expansions. We depict the estimates of the expectations
(solid line) and con�dence intervals (dashed lines), with the rule mean ± deviation, for orders p = 4, 5, 6, 7.
Note that convergence is achieved for t ∈ [0, 10].

Table 7: Approximation of E[X(t)]. Example 4.2, assuming independent random data.

t gPC p = 6 gPC p = 7 dishonest MC 50, 000 MC 100, 000
0.00 −1 −1 −1 −1 −1
0.25 −0.930972 −0.930972 −0.931372 −0.931035 −0.930364
0.50 −0.855779 −0.855779 −0.852372 −0.855937 −0.854386
0.75 −0.780021 −0.780021 −0.759103 −0.780573 −0.778022
1.00 −0.700758 −0.700758 −0.647653 −0.702042 −0.698437
1.25 −0.609156 −0.609156 −0.518169 −0.611266 −0.606832
1.50 −0.496445 −0.496446 −0.374486 −0.499156 −0.494407
1.75 −0.359632 −0.359635 −0.222874 −0.362532 −0.358036
2.00 −0.203726 −0.203737 −0.070806 −0.206408 −0.202560

Table 8: Approximation of V[X(t)]. Example 4.2, assuming independent random data.

t gPC p = 6 gPC p = 7 MC 50, 000 MC 100, 000
0.00 0 0 0 0
0.25 0.0114271 0.0114271 0.0115378 0.0114953
0.50 0.0897916 0.0897916 0.0904703 0.090160
0.75 0.236135 0.236136 0.237288 0.237066
1.00 0.371625 0.371639 0.372899 0.373058
1.25 0.426921 0.427021 0.428690 0.428342
1.50 0.388485 0.388899 0.391305 0.38978
1.75 0.289622 0.290720 0.293631 0.291429
2.00 0.182954 0.184922 0.187906 0.185917

Table 9: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 7. Example 4.2, assuming independent random data.

t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 0 0 0 0 0 0 0 0 0

0.25 0 0.0114271 0.0310997 0.0486065 0.0585142 0.0597207 0.0537473 0.042977 0.0295893
0.5 0 0.0310997 0.0897916 0.14431 0.176903 0.182770 0.165621 0.132554 0.0905903
0.75 0 0.0486065 0.14431 0.236136 0.293929 0.307634 0.281495 0.226547 0.154877
1 0 0.0585142 0.176903 0.293929 0.371639 0.394991 0.366485 0.29839 0.206021

1.25 0 0.0597207 0.182770 0.307634 0.394991 0.427021 0.403260 0.334311 0.235733
1.5 0 0.0537473 0.165621 0.281495 0.366485 0.403260 0.388899 0.330575 0.241178
1.75 0 0.042977 0.132554 0.226547 0.29839 0.334311 0.330575 0.29072 0.223109
2 0 0.0295893 0.0905903 0.154877 0.206021 0.235733 0.241178 0.223109 0.184922
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Figure 3: Expectation and con�dence interval for the solution stochastic process, for orders of basis p = 4, 5, 6, 7. Example 4.2,
assuming independent random data.
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Example 4.3. Consider the random di�erential equation
Ẍ(t) + B(t)X(t) = C, t ∈ [0, 1],
X(0) = Y0,
Ẋ(0) = Y1,

(16)

where B(t) is a standard Brownianmotion on [0, 1], C ∼ Poisson(2), and the initial conditions are distributed
as Y0 ∼ Beta(1/2, 1/2) and Y1 = 0. These random inputs are assumed to be independent.

This stochastic system has a unique solution in the sample path sense, by Proposition 2.1. In principle,
one cannot ensure the existence of a mean square solution, since the sample paths of Brownian motion are
not bounded.

Consider the Karhunen-Loève expansion of Brownian motion [25, p. 216]:

B(t) =
∞∑
j=1

√
2(

j − 1
2
)
π
sin
((

j − 1
2

)
πt
)
ξj ,

where ξ1, ξ2, . . . are independent and Normal(0, 1) random variables. The series is understood in L2([0, 1] ×
Ω). We truncate the Karhunen-Loève expansion so that B(t) will have the form in (2). If we take dB = 7, we
are capturing more than 97% of the total variance of X. Thus, we take

B(t) =
7∑
j=1

√
2(

j − 1
2
)
π
sin
((

j − 1
2

)
πt
)
ξj .

The random inputs become ζ1 = ξ1, . . . , ζ7 = ξ7, ζ8 = C and ζ9 = Y0, with functions bj(t) =
√
2

(j−1/2)π sin((j −
1/2)πt), 1 ≤ j ≤ 7, and c1(t) = 1.

Notice that, if one truncates ξ1, . . . , ξ7 to a large but bounded support, Proposition 2.2 entails that there
exists a solution stochastic process in the mean square sense.

In Table 10, Table 11 and Table 12, we show the results obtained by adaptive gPC with p = 2, p = 3
and Monte Carlo simulation. Similar estimates are obtained for p = 2 and p = 3, which agrees with the
convergence of gPC-based representations.

In Figure 4, we show graphically the convergence of gPC expansions on [0, 1]: we plot the approximate
expectations (solid line) and con�dence intervals (dashed lines) for X(t), where the con�dence interval is
constructed as mean ± deviation. For p = 1, 2, 3, no di�erences in the estimates are observed.

5 Conclusions
In this paper, we have quanti�ed computationally the uncertainty of random non-autonomous second-order
linear di�erential equations via adaptive gPC.After reviewingadaptive gPC from the extant literature,wehave
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Table 10: Approximation of E[X(t)]. Example 4.3, assuming independent random data.

t gPC p = 2 gPC p = 3 dishonest MC 50, 000 MC 100, 000
0.00 0.5 0.5 0.5 0.499302 0.499056
0.25 0.562504 0.562504 0.5625 0.561732 0.561438
0.50 0.75014 0.75014 0.75 0.749196 0.748740
0.75 1.06365 1.06365 1.0625 1.06245 1.06179
1.00 1.50536 1.50536 1.5 1.50396 1.50311

Table 11: Approximation of V[X(t)]. Example 4.3, assuming independent random data.

t gPC p = 2 gPC p = 3 MC 50, 000 MC 100, 000
0.00 0.125 0.125 0.124849 0.124826
0.25 0.126974 0.126974 0.126883 0.126841
0.50 0.157008 0.157008 0.157267 0.157033
0.75 0.290263 0.290265 0.291811 0.290766
1.00 0.664551 0.664592 0.670067 0.666466

Table 12: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3. Example 4.3, assuming independent random data.

t–s 0 0.25 0.5 0.75 1
0 0.125 0.125001 0.125033 0.125248 0.126043

0.25 0.125001 0.126974 0.132949 0.143104 0.157885
0.5 0.125033 0.132949 0.157008 0.197634 0.255578
0.75 0.125248 0.143104 0.197634 0.290265 0.422829
1 0.126043 0.157885 0.255578 0.422829 0.664592

Figure 4: Expectation and con�dence interval for the solution stochastic process, for orders of basis p = 1, 2, 3. Example 4.3,
assuming independent random data.
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provided amethodology and an algorithm to approximate computationally the expectation and covariance of
the solution stochastic process. The hypotheses from our algorithm allow both independent and dependent
random parameter inputs, being both absolutely continuous or discrete with in�nitely many point masses.
The generality of our computational results allows the random input coe�cients to be truncated random
power series or truncated Karhunen-Loève expansions. The former case permits comparing ourmethodology
with the random Fröbenius method, an approach already used in the literature with particular random
second-order linear di�erential equations, and Monte Carlo simulation. A wide variety of examples show
that adaptive gPC becomes successful quantifying the uncertainty of random non-autonomous second-order
linear di�erential equations, even when the random Fröbenius method is not applicable.
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