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Abstract: The objective of this paper is to complete certain issues from our recent contribution
(Calatayud, J.; Cortés, J.-C.; Jornet, M.; Villafuerte, L. Random non-autonomous second order linear
differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ.
2018, 392, 1–29, doi:10.1186/s13662-018-1848-8). We restate the main theorem therein that deals with
the homogeneous case, so that the hypotheses are clearer and also easier to check in applications.
Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of
mean square analytic solution and a numerical example. We also prove the uniqueness of mean
square solution via a habitual Lipschitz condition that extends the classical Picard theorem to mean
square calculus. In this manner, the study on general random non-autonomous second order linear
differential equations with analytic data processes is completely resolved. Finally, we relate our
exposition based on random power series with polynomial chaos expansions and the random
differential transform method, the latter being a reformulation of our random Fröbenius method.

Keywords: random non-autonomous second order linear differential equation; mean square analytic
solution; random power series; uncertainty quantification
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1. Introduction

The important role played by differential equations in dealing with mathematical modeling is
beyond discussion. They are powerful tools to describe the dynamics of phenomena appearing in
a variety of distinct realms, such as engineering, biomedicine, chemistry, social behavior, etc. [1–3].
In this paper, we concentrate on a class of differential equations that have played a distinguished role in
a variety of applications in science, in particular in physics and engineering, namely second order linear
differential equations. Indeed, these equations have been successfully applied to describe, for example,
vibrations in springs (free undamped or simple harmonic motion, damped vibrations subject to a
frictional force, or forced vibrations affected by an external force), the analysis of electric circuits
made up of an electromotive force supplied by a battery or a generator, a resistor, an inductor, and a
capacitor. In the former type of problems, second order linear differential equations are formulated
by applying Newton’s second law, while in the latter case, this class of equations appears via the
application of Kirchhoff’s voltage law. In these examples, the formulation of second order linear
differential equations to describe the aforementioned physical problems appears as direct applications
of important laws of physics. However, this class of equations also arises indirectly when solving
significant partial differential equations in physics. In this regard, Airy, Hermite, Laguerre, Legendre,
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or Bessel differential equations are non-autonomous second order linear differential equations that
emerge in this way. For example, the Airy equation appears when solving Schrödinger’s equation with
triangular potential and for a particle subject to a one-dimensional constant force field [4]; the Hermite
equation emerges in dealing with the analysis of Schrödinger’s equation for a harmonic oscillator in
quantum mechanics [5]; the Laguerre equation plays a main role in quantum mechanics for the study
of the hydrogen atom via Schrödinger’s equation using radial functions [6] (Ch. 10); the Legendre
equation appears when solving the Laplace equation to compute the potential of a conservative
field such as the space gravitational potential using spherical coordinates [7]; and finally, the Bessel
equation is encountered, for example, when solving the Helmholtz equation in cylindrical or spherical
coordinates by using the method of the separation of variables [6] (Ch. 9).

In all the previous examples, two important features can be highlighted to motivate our
subsequent analysis. First, the coefficients of the differential equations are analytic (specifically
polynomials). Second, these coefficients depend on physical parameters that, in practice, need to
be fixed after measurements; therefore, they involve uncertainty. Both facts motivate the study of
random non-autonomous second order linear differential equations, whose coefficients and initial
conditions are analytic stochastic processes and random initial conditions, respectively. The aim of
our contribution is to advance the analysis (both theoretical and practical) of this important class of
equations. In our subsequent development, we mainly focus on the theoretical aspects of such an
analysis with the conviction that it can become really useful in future applications where randomness is
considered in that class of differential equations. In this sense, some numerical experiments illustrating
and demonstrating the potentiality of our main findings are also included. The study of random
non-autonomous second order linear differential equations has been carried out for particular cases,
such as Airy, Hermite, Legendre, Laguerre, and Bessel equations (see [8–13], respectively), and the
general case [14–17]. Alternative approaches to study this class of random/stochastic differential
equations include the so-called probabilistic transformation method [18] and stochastic numerical
schemes [19,20], for example.

For the sake of clarity in the presentation, the layout of the paper is as follows: In Section 2,
we study the homogeneous random non-autonomous second order linear differential. The analysis
includes a result (Theorem 2) that simplifies the application of a recent finding by the authors that is
particularly useful in practical cases. This issue is illustrated via several numerical examples where
both the random Airy and Hermite differential equations are treated. In Section 3, the analysis is
extended to a random non-autonomous second order linear differential equation with a forcing term.
In this study, we have included conditions under which the solution is unique in the mean square
sense. This theoretical study is supported with a numerical example as well. Section 4 is addressed to
enrich our contribution by comparing the random Fröbenius method proposed in this paper against
other alternative approaches widely used in the extant literature, specifically generalized polynomial
chaos (gPC) expansions, Monte Carlo simulations, and the random differential transform method.
Conclusions and future research lines are drawn in Section 5.

2. Homogeneous Case

We consider the general form of a homogeneous random non-autonomous second order linear
differential equation in an underlying complete probability space (Ω,F ,P):

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,

X(t0) = Y0,

Ẋ(t0) = Y1.

(1)

It is assumed that the stochastic processes A(t) and B(t) are analytic at t0 in the mean square
sense [21] (p. 99):
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A(t) =
∞

∑
n=0

An(t− t0)
n, B(t) =

∞

∑
n=0

Bn(t− t0)
n, t ∈ (t0 − r, r0 + r),

with convergence in L2(Ω). The terms A0, A1, . . . and B0, B1, . . . are random variables. In fact, they are
related to A(t) and B(t), respectively, via Taylor expansions:

An =
A(n)(t0)

n!
, Bn =

B(n)(t0)

n!
,

where the derivatives are considered in the mean square sense. According to the Fröbenius method,
we look for a solution stochastic process X(t) also expressible as a mean square convergent random
power series on (t0 − r, t0 + r):

X(t) =
∞

∑
n=0

Xn(t− t0)
n.

mean square convergence is important, as it allows approximating the expectation (average) and
variance (dispersion) statistics of X(t) at each t [21] (Th. 4.2.1, Th. 4.3.1). This is one of the primary
goals of uncertainty quantification [22].

Proposition 1 ([21] (Th. 4.2.1, Th. 4.3.1)). Let {Zn}∞
n=1 and Z be second order random variables. If Zn

converges to Z as n→ ∞ in L2(Ω) (i.e., in the mean square sense), then the expectation and variance of Z can
be approximated as follows:

E[Z(t)] = lim
n→∞

E[Zn(t)], V[Z(t)] = lim
n→∞

V[Zn(t)].

In [17], some auxiliary theorems on random power series were stated and proven: differentiation
of random power series in the Lp(Ω) sense [17] (Th. 3.1) and Mertens’ theorem for random series in
the mean square sense [17] (Th. 3.2), which generalize their deterministic counterparts.

Proposition 2 (Differentiation of a random power series in the Lp(Ω) sense [17] (Th. 3.1)). Let A(t) =
∑∞

n=0 An(t− t0)
n be a random power series in the Lp(Ω) setting (p ≥ 1), for t ∈ (t0 − r, t0 + r), r > 0.

Then, the random power series ∑∞
n=1 nAn(t− t0)

n−1 exists in Lp(Ω) for t ∈ (t0 − r, t0 + r), and moreover,
the Lp(Ω) derivative of A(t) is equal to it: Ȧ(t) = ∑∞

n=1 nAn(t− t0)
n−1, for all t ∈ (t0 − r, t0 + r).

Proposition 3 (Mertens’ theorem for random series in the mean square sense [17] (Th. 3.2)).
Let U = ∑∞

n=0 Un and V = ∑∞
n=0 Vn be two random series that converge in L2(Ω). Suppose that one of

the series converges absolutely, say ∑∞
n=0 ‖Vn‖L2(Ω) < ∞. Then:(

∞

∑
n=0

Un

)(
∞

∑
n=0

Vn

)
=

∞

∑
n=0

Wn,

where:

Wn =
n

∑
m=0

Un−mVm,

and ∑∞
n=0 Wn is understood in L1(Ω). The series ∑∞

n=0 Wn is known as the Cauchy product of the series
∑∞

n=0 Un and ∑∞
n=0 Vn.

With these two auxiliary results, the main theorem of [17] was stated as follows:

Theorem 1 ([17] (Th. 3.3)). Let A(t) = ∑∞
n=0 An(t− t0)

n and B(t) = ∑∞
n=0 Bn(t− t0)

n be two random
series in the L2(Ω) setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Assume that the initial
conditions Y0 and Y1 belong to L2(Ω). Suppose that there is a constant Cr > 0, maybe dependent on r, such that
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‖An‖L∞(Ω) ≤ Cr/rn and ‖Bn‖L∞(Ω) ≤ Cr/rn, n ≥ 0. Then, the stochastic process X(t) = ∑∞
n=0 Xn(t− t0)

n,
t ∈ (t0 − r, t0 + r), where:

X0 = Y0, X1 = Y1, (2)

Xn+2 =
−1

(n + 2)(n + 1)

n

∑
m=0

[(m + 1)An−mXm+1 + Bn−mXm] , n ≥ 0, (3)

is the unique analytic solution to the random initial value problem (1) in the mean square sense.

This theorem is a generalization of the deterministic Fröbenius method to a random framework.
As was demonstrated in [17], Theorem 1 has many applications in practice. It supposes a unified
approach to study the most well-known second order linear random differential equations: Airy [8],
Hermite [9], Legendre [10,11], Laguerre [12], and Bessel [13]. The results established in these
articles [8–13] are particular cases of Theorem 1. The main reason why this fact occurs is explained
in [17] (Section 3.3): given a random variable Z, the fact that its centered absolute moments grow at
most exponentially, E[|Z|n] ≤ HRn for certain H > 0 and R > 0, is equivalent to Z being essentially
bounded, ‖Z‖L∞(Ω) ≤ R.

Notice that Theorem 1 does not require any independence assumption about the random input
parameters. Moreover, from Theorem 1, [17] obtained error estimates for the approximation of the
solution stochastic process, its mean, and its variance.

Let us see that Theorem 1 may be put in an easier to handle form. We substitute the growth
condition on the coefficients A0, A1, . . . and B0, B1, . . . by the L∞(Ω) convergence of the random power
series that define A(t) and B(t). In this manner, in practical applications, one does not need to find
any constant Cr; see the forthcoming Examples 1–4.

Theorem 2. Let A(t) = ∑∞
n=0 An(t− t0)

n and B(t) = ∑∞
n=0 Bn(t− t0)

n be two random series in the L∞(Ω)

setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Assume that the initial conditions Y0 and Y1

belong to L2(Ω). Then, the stochastic process X(t) = ∑∞
n=0 Xn(t− t0)

n, t ∈ (t0− r, t0 + r), whose coefficients
are defined by (2) and (3), is the unique analytic solution to the random initial value problem (1) in the mean
square sense.

Proof. By [11] (Lemma 2.3),

∞

∑
n=0
‖An‖L∞(Ω)|t− t0|n < ∞,

∞

∑
n=0
‖Bn‖L∞(Ω)|t− t0|n < ∞,

for t ∈ (t0 − r, t0 + r). Thus, for each 0 ≤ r1 < r,

∞

∑
n=0
‖An‖L∞(Ω)r

n
1 < ∞,

∞

∑
n=0
‖Bn‖L∞(Ω)r

n
1 < ∞.

Since the sequences {‖An‖L∞(Ω)rn
1}∞

n=0 and {‖Bn‖L∞(Ω)rn
1}∞

n=0 tend to zero, they are both
bounded by a number Cr1 > 0:

‖An‖L∞(Ω) ≤
Cr1

rn
1

, ‖Bn‖L∞(Ω) ≤
Cr1

rn
1

, n ≥ 0.

Then, Theorem 1 is applicable with r1: the stochastic process X(t) = ∑∞
n=0 Xn(t− t0)

n whose
coefficients are given by (2) and (3) is a mean square solution to (1) on (t0 − r1, t0 + r1). Now, since r1

is arbitrary, we can extend this result to the whole interval (t0 − r, r0 + r).

Notice that we have proven that Theorem 1 from [17] entails Theorem 2. However, the other way
around also holds: Theorem 2 implies Theorem 1. Thus, both theorems are equivalent and offer the
same information. Indeed, if we assume the hypotheses from Theorem 1, then:
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‖An‖L∞(Ω)r
n
1 ≤ Cr

( r1

r

)n
, ‖Bn‖L∞(Ω) ≤ Cr

( r1

r

)n
,

for any 0 ≤ r1 < r, and since ∑∞
n=0(

r1
r )

n < ∞, by comparison, we derive that:

∞

∑
n=0
‖An‖L∞(Ω)r

n
1 < ∞,

∞

∑
n=0
‖Bn‖L∞(Ω)r

n
1 < ∞,

which entails that the series of A(t) = ∑∞
n=0 An(t− t0)

n and B(t) = ∑∞
n=0 Bn(t− t0)

n converge L∞(Ω),
by [11] (Lemma 2.3), for t ∈ (t0 − r1, t0 + r1). As r1 is arbitrary, the L∞(Ω) convergence holds for
t ∈ (t0 − r, t0 + r). This is exactly the hypothesis used in Theorem 2.

Let us see that Theorem 2 has an easier to handle form by checking the hypotheses in the examples
from [17]. We refer the reader to [17] (Section 4) for approximations of the expectation and variance
statistics of the solution stochastic process to each one of the examples.

Example 1. Airy’s random differential equation is defined as follows:
Ẍ(t) + AtX(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(4)

where A, Y0, and Y1 are random variables. We suppose that Y0 and Y1 have centered second order absolute
moments. In [8], the hypothesis used in order to obtain a mean square analytic solution X(t) was E[|A|n] ≤
HRn, n ≥ n0. See [8] (expr. (18)–(19)) for the explicit expression of the solution process X(t). Notice that this
growth assumption is equivalent to ‖A‖L∞(Ω) ≤ R, by [17] (Section 3.3). In our general notation, A(t) = 0
and B(t) = At. Due to the boundedness of the random variable A, the L∞(Ω) convergence of the series that
define A(t) and B(t) holds, so Theorem 2 (and Theorem 1) is applicable: there is an analytic solution stochastic
process X(t) to (4) on R, whose coefficients are defined by (2) and (3).

Example 2. Hermite’s random differential equation is given as follows:
Ẍ(t)− 2tẊ(t) + AX(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(5)

where A, Y0, and Y1 are random variables. We suppose that Y0, Y1 ∈ L2(Ω). In [9], the hypothesis utilized to
derive a mean square analytic solution X(t) was E[|A|n] ≤ HRn, n ≥ n0. See [9] (expr. (26)–(27)) for the
explicit expression of the solution process X(t). This growth hypothesis is equivalent to ‖A‖L∞(Ω) ≤ R, by [17]
(Section 3.3). Under the boundedness of the random variable A, the input stochastic processes A(t) = −2t and
B(t) = A are expressible as L∞(Ω) convergent random power series. Hence, both Theorem 2 and Theorem 1
are applicable and guarantee the existence of a mean square solution process X(t) on R, whose coefficients are
defined by (2) and (3).

Example 3. We consider the following random linear differential equation with polynomial data processes:
Ẍ(t) + (A0 + A1t)Ẋ(t) + (B0 + B1t)X(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1.

(6)

If the initial conditions Y0 and Y1 belong to L2(Ω) and the random input parameters A0, A1, B0, and B1

are bounded random variables, then the hypotheses of Theorem 2 (and Theorem 1) are fulfilled, and we derive
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that there is a mean square solution process X(t) on R, with coefficients defined by (2) and (3). In contrast to
Example 1 and Example 2, the partial sums of the series X(t) are not obtained explicitly. One computes the
partial sums computationally via the recursion (2) and (3); see [17] (Example 4.3) for further details.

Example 4. We consider (1) with the non-polynomial analytic stochastic process:
Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(7)

where An ∼ Beta(11, 15), for n ≥ 0, Bn = 1/n2, for n ≥ 1, and Y0, Y1 ∈ L2(Ω). Since
∑∞

n=0 ‖An‖L∞(Ω)|t|n = ∑∞
n=0 |t|n is finite for t ∈ (−1, 1), and analogously for B(t), Theorem 2 (and

consequently, Theorem 1) implies that there is a mean square solution X(t) to (7) on (−1, 1), with coefficients
expressed by (2) and (3). Unlike Example 1 and Example 2, the partial sums of the series X(t) are not obtained
explicitly, and one acts computationally by means of the recursion (2) and (3); see [17] (Example 4.4) for details.

We raise the following open problem, which would imply that the hypotheses used in Theorem 2
are necessary: “If there exists a point t1 ∈ (t0 − r, t0 + r) such that A(t1) /∈ L∞(Ω) or B(t1) /∈ L∞(Ω),
then there exist two initial conditions Y0, Y1 ∈ L2(Ω) such that (1) has no mean square solution on
(t0 − r, t0 + r)”. Although we have not been able to prove this statement (which might be false), we
think that the proof might be based on the reasoning used in [23] (Example, pp. 4–5).

This open problem, despite being of theoretical interest, does not contribute in practical
applications. In numerical experiments, one usually truncates the stochastic processes A(t) and
B(t) (that is, works with a partial sum instead of the whole Taylor series). This is not uncommon when
dealing with stochastic systems computationally, as one requires a dimensionality reduction of the
problem. If the coefficients of A(t) and/or B(t) have unbounded support, one may truncate them
so that the hypotheses of Theorems 1 and 2 are fulfilled, and the probabilistic behavior of the data
processes does not change much.

3. Non-Homogeneous Case

In this section, we generalize (1) by adding a stochastic source term:
Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = C(t), t ∈ R,

X(t0) = Y0,

Ẋ(t0) = Y1.

(8)

This new term C(t) is analytic at t0 in the mean square sense [21] (p. 99), with Taylor series:

C(t) =
∞

∑
n=0

Cn(t− t0)
n, t ∈ (t0 − r, t0 + r).

The coefficients C0, C1, . . . are random variables. For this new model (8), we want to find conditions
under which X(t) is an analytic mean square solution on (t0 − r, t0 + r). This work was not done
in [17], and it completes the study on the random non-autonomous second order linear differential
equation with analytic input processes.

The following theorem is a generalization of Theorem 2:

Theorem 3. Let A(t) = ∑∞
n=0 An(t− t0)

n and B(t) = ∑∞
n=0 Bn(t− t0)

n be two random series in the L∞(Ω)

setting, for t ∈ (t0 − r, t0 + r), r > 0 being finite and fixed. Let C(t) = ∑∞
n=0 Cn(t− t0)

n be a random series
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in the mean square sense on (t0 − r, t0 + r). Assume that the initial conditions Y0 and Y1 belong to L2(Ω).
Then, the stochastic process X(t) = ∑∞

n=0 Xn(t− t0)
n, t ∈ (t0 − r, t0 + r), whose coefficients are defined by:

X0 = Y0, X1 = Y1, (9)

Xn+2 =
1

(n + 2)(n + 1)

{
−

n

∑
m=0

[(m + 1)An−mXm+1 + Bn−mXm] + Cn

}
, n ≥ 0, (10)

is the unique analytic solution to the random initial value problem (8) in the mean square sense.

Proof. Suppose that X(t) = ∑∞
n=0 Xn(t− t0)

n is a solution to (8) in the L2(Ω) sense, for t ∈ (t0 − r, t0 + r).
By Proposition 2 with p = 2, the mean square derivatives of X(t) are given by:

Ẋ(t) =
∞

∑
n=1

nXn(t− t0)
n−1 =

∞

∑
n=0

(n + 1)Xn+1(t− t0)
n,

Ẍ(t) =
∞

∑
n=2

n(n− 1)Xn(t− t0)
n−2 =

∞

∑
n=0

(n + 2)(n + 1)Xn+2(t− t0)
n.

By Proposition 3,

A(t)Ẋ(t) =
∞

∑
n=0

(
n

∑
m=0

An−m(m + 1)Xm+1

)
(t− t0)

n,

B(t)X(t) =
∞

∑
n=0

(
n

∑
m=0

Bn−mXm

)
(t− t0)

n,

where these two random series converge in L1(Ω). From Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = C(t),

∞

∑
n=0

[
(n + 2)(n + 1)Xn+2 +

n

∑
m=0

(An−m(m + 1)Xm+1 + Bn−mXm)

]
(t− t0)

n =
∞

∑
n=0

Cn(t− t0)
n,

where the infinite series converge in L1(Ω). By Proposition 2 with p = 1, differentiating over and over
again in the L1(Ω) sense and evaluating at t = t0 yield:

(n + 2)(n + 1)Xn+2 +
n

∑
m=0

(An−m(m + 1)Xm+1 + Bn−mXm) = Cn.

Isolating Xn+2, we obtain the recursive expression (10).
Thus, it only remains to prove that the random power series X(t) = ∑∞

n=0 Xn(t− t0)
n, whose

coefficients are defined by (9) and (10), converges in the mean square sense.
From the hypothesis Y0, Y1 ∈ L2(Ω) and by induction on n in Expression (10), we obtain that

Xn ∈ L2(Ω) for all n ≥ 0. On the other hand, by [11] (Lemma 2.3),

∞

∑
n=0
‖An‖L∞(Ω)s

n < ∞,
∞

∑
n=0
‖Bn‖L∞(Ω)s

n < ∞,
∞

∑
n=0
‖Cn‖L2(Ω)s

n < ∞,

for 0 < s < r. As the general term of a convergent series tends to zero, we have the following bounds:

‖An‖L∞(Ω) ≤
Ds

sn , ‖Bn‖L∞(Ω) ≤
Ds

sn , ‖Cn‖L2(Ω) ≤
Ds

sn , n ≥ 0, (11)

for a certain constant Ds > 0 that depends on s. Then, from (10), if we apply L2(Ω) norms and (11),
we obtain:
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‖Xn+2‖L2(Ω) ≤
1

(n + 2)(n + 1)

{
n

∑
m=0

[
(m + 1)‖An−mXm+1‖L2(Ω) + ‖Bn−mXm‖L2(Ω)

]
+ ‖Cn‖L2(Ω)

}

≤ 1
(n + 2)(n + 1)

Ds

sn

{
n

∑
m=0

sm
(
(m + 1)‖Xm+1‖L2(Ω) + ‖Xm‖L2(Ω)

)
+ 1

}
.

(12)

Define H0 := ‖Y0‖L2(Ω), H1 := ‖Y1‖L2(Ω), and:

Hn+2 :=
1

(n + 2)(n + 1)
Ds

sn

{
n

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1

}
, n ≥ 0. (13)

From (12) and (13), by induction on n, it is trivially seen that ‖Xn‖L2(Ω) ≤ Hn, for n ≥ 0. If we
check that ∑∞

n=0 Hnρn
1 < ∞, for all 0 < ρ1 < s < r, then the random series that defines X(t) converges

in the mean square sense on (t0 − r, t0 + r), as wanted.
We rewrite (13) so that Hn+2 is expressed as a function of Hn+1 and Hn (second order recurrence

equation). By assuming n ≥ 1, we perform the following operations:

Hn+2 =
1

(n + 2)(n + 1)
Ds

sn

(
n−1

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1 + sn ((n + 1)Hn+1 + Hn)

)

=
1

(n + 2)(n + 1)
Ds

sn
(n + 1)n

Ds
sn−1

(
1

(n + 1)n
Ds

sn−1

{
n−1

∑
m=0

sm ((m + 1)Hm+1 + Hm) + 1

}
︸ ︷︷ ︸

=Hn+1

)

+
Ds

n + 2
Hn+1 +

Ds

(n + 2)(n + 1)
Hn

=

(
n

(n + 2)s
+

Ds

n + 2

)
Hn+1 +

Ds

(n + 2)(n + 1)
Hn.

(14)

This difference equation of order two has as initial conditions:

H2 =
Ds

2
(H1 + H0 + 1) , H1 = ‖Y1‖L2(Ω), H0 = ‖Y0‖L2(Ω).

Notice that H2 is obtained from (13). Expression (14) coincides with [17] (expr. (12)) (although
with different initial conditions). Then, the method of proof for ∑∞

n=0 Hnsn < ∞ is identical to the last
part of the proof of [17] (Th. 3.3). Indeed, fixing 0 < ρ1 < ρ < s, we have:

Hn+2ρn+2 =

(
nρ

(n + 2)s
+

Dsρ

n + 2

)
Hn+1ρn+1 +

Dsρ2

(n + 2)(n + 1)
Hnρn.

Let Mn = max0≤m≤n Hmρm. We have:

Hn+2ρn+2 ≤
(

nρ

(n + 2)s
+

Dsρ

n + 2
+

Dsρ2

(n + 2)(n + 1)

)
Mn+1.

Since:

lim
n→∞

nρ

(n + 2)s
+

Dsρ

n + 2
+

Dsρ2

(n + 2)(n + 1)
=

ρ

s
< 1,

it holds Mn+2 = Mn+1 for all large n, and call the common value M. Hence, Hnρn ≤ M for all
large n, therefore, Hnρn

1 ≤ M(ρ1/ρ)n. Since ∑∞
n=0(ρ1/ρ)n < ∞, by comparison, the series ∑∞

n=0 Hnρn
1

converges, and we are done.

Example 5. Let us consider Hermite’s random differential equation with a stochastic source term:
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
Ẍ(t)− 2tẊ(t) + AX(t) = Ct2, t ∈ R,

X(0) = Y0,

Ẋ(0) = Y1,

(15)

where A, C, Y0, and Y1 are random variables. Due to the non-homogeneity of the equation, this example cannot
be addressed with [17]. We have set the following probability distributions:

A ∼ Bernoulli(0.35), Y0 ∼ Gamma(2, 2), (Y1, C) ∼ Multinomial(3, {0.2, 0.8})

(for the Gamma distribution, we use the shape-rate notation) where A, Y0 and (Y1, C) are independent.
Notice that we are considering both discrete and absolutely continuous random variables/vectors and also
both independent and non-independent random variables/vectors. Thus, the Fröbenius method covers a wide
variety of situations in practice. Since A is bounded and Y0, Y1, C ∈ L2(Ω), Theorem 3 ensures that the random
power series X(t) = ∑∞

n=0 Xn(t− t0)
n defined recursively by (9) and (10) is a mean square solution to (15) on

R. By considering the partial sums XN(t) = ∑N
n=0 Xn(t− t0)

n, we approximate the expectation and variance
of X(t) as:

E[X(t)] = lim
N→∞

E[XN(t)], V[X(t)] = lim
N→∞

V[XN(t)],

see Proposition 1. The computations have been performed in the software Mathematica R©. Our code to build the
partial sum XN(t) was the following one:

X[n_?NonPositive] := Y0;
X[1] = Y1;
X[n_] := 1/(n*(n - 1))*(-Sum[(m + 1)*A[n - 2 - m]*X[m + 1] +
B[n - 2 - m]*X[m], {m, 0, n - 2}] + CC[n - 2]);
seriesX[t_, t0_, N_] := X[0] + Sum[X[n]*(t - t0)^n, {n, 1, N}];

This implementation in the computer is necessary, as no closed-form expression for XN(t) is available due
to the complexity of (15). For each numeric value of N, the functions t 7→ E[XN(t)] and t 7→ V[XN(t)] have
been calculated with the built-in function Expectation applied to seriesX[t, 0, N] (with symbolic t), by
setting the desired probability distributions to A[n], B[n], and CC[n]. In Tables 1 and 2, we show E[XN(t)]
and V[XN(t)] for N = 19, N = 20, and 0 ≤ t ≤ 1.5. Both orders of truncation produce similar results, which
agrees with the theoretical convergence. Observe that, as we move away from the initial condition t0 = 0, larger
orders of truncation are needed. This indicates that the Fröbenius method might be computationally inviable for
large t. The results have been compared with Monte Carlo simulation (with 100,000 and 200,000 realizations).

t E[X19(t)] E[X20(t)] MC 100,000 MC 200,000

0.00 1 1 0.995893 1.00266
0.25 1.14231 1.14231 1.13899 1.14544
0.50 1.28890 1.28890 1.28672 1.29236
0.75 1.49183 1.49183 1.49130 1.49547
1.00 1.85892 1.85892 1.86087 1.86246
1.25 2.62573 2.62574 2.63173 2.62863
1.50 4.34772 4.34784 4.36111 4.34892

Table 1. Approximation of E[X(t)] with N = 19, N = 20, and Monte Carlo simulations. Example 5.

t V[X19(t)] V[X20(t)] MC 100,000 MC 200,000

0.00 0.5 0.5 0.493124 0.504501
0.25 0.520298 0.520298 0.514702 0.524803
0.50 0.597008 0.597008 0.593603 0.601376
0.75 0.790556 0.790556 0.790161 0.794549
1.00 1.27425 1.27425 1.27702 1.27759
1.25 2.60694 2.60694 2.60987 2.60982
1.50 6.94095 6.94100 6.92663 6.94787

Table 2. Approximation of V[X(t)] with N = 19, N = 20, and Monte Carlo simulations. Example 5.
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Notice that the theoretical error estimates from [17] (Section 3.6) apply in this case as well, since
all estimates rely on the majorization ‖Xn‖L2(Ω) ≤ Hn and the recursive Equation (14), which also
hold in [17].

An important issue that was not treated in the recent contribution [17] is the uniqueness of the
mean square solution. To deal with uniqueness, we use a habitual extension of the classical Picard
theorem to mean square calculus [21] (Th. 5.1.2); see Theorem 4. Notice that, in our setting of analyticity
for A(t) and B(t) in the L∞(Ω) sense, one has that A(t) and B(t) are continuous in L∞(Ω), so the
uniqueness from Theorem 4 is applicable.

Theorem 4. If A(t) and B(t) are continuous stochastic processes in the L∞(Ω) sense, then the mean square
solution to (8) is unique.

Proof. We write (1) as a first order random differential equation, which is the setting under study
in [21]: (

Ẋ(t)
Ẍ(t)

)
︸ ︷︷ ︸

Ż(t)

=

(
0 1

−B(t) −A(t)

)
︸ ︷︷ ︸

M(t)

(
X(t)
Ẋ(t)

)
︸ ︷︷ ︸

Z(t)

+

(
0

C(t)

)
︸ ︷︷ ︸

q(t)

.

We work in the space L2
2(Ω) of two-dimensional random vectors whose components belong to

L2(Ω). Given Z = (Z1, Z2) ∈ L2
2(Ω), its norm is defined as:

‖Z‖L2
2(Ω) = max{‖Z1‖L2(Ω), ‖Z2‖L2(Ω)}.

On the other hand, given a random matrix B = (Bij), we define the following norm:

|||B||| = max
i

∑
j
‖Bij‖L∞(Ω).

In the case of the random matrix M(t), it holds:

|||M(t)||| = max{1, ‖A(t)‖L∞(Ω) + ‖B(t)‖L∞(Ω)}. (16)

Given Z, Z′ ∈ L2
2(Ω), we have:

‖(M(t)Z + q(t))− (M(t)Z′ + q(t))‖L2
2(Ω) = ‖M(t)(Z− Z′)‖L2

2(Ω) ≤ |||M(t)|||︸ ︷︷ ︸
k(t)

·‖Z− Z′‖L2
2(Ω).

Since A(t) and B(t) are continuous stochastic processes in the L∞(Ω) sense, the real maps:

t ∈ (t0 − r, t0 + r) 7→ ‖A(t)‖L∞(Ω), t ∈ (t0 − r, t0 + r) 7→ ‖B(t)‖L∞(Ω)

are continuous. By (16), the deterministic function k(t) is continuous on (t0 − r, t0 + r). This implies
that k ∈ L1([t0− r1, t0 + r1]) for each 0 < r1 < r. By [21] (Th. 5.1.2), there is the uniqueness of the mean
square solution for (1) on [t0 − r1, t0 + r1]. Since r1 is arbitrary, there is the uniqueness of the solution
on (t0 − r, t0 + r).

4. Comparison with Other Methods

A final objective of this paper is to relate our method based on [17] (which is based on the
deterministic Fröbenius method) to other well-known techniques to tackle (8). In [17], the random
power series method was compared, both theoretically and in numerical experiments, with Monte
Carlo simulations and the dishonest method [24]. It was demonstrated that Monte Carlo simulations
imply a more expensive computational cost to calculate accurately the expectation and variance
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statistics for t near t0, due to the slow rate of convergence. However, Monte Carlo simulations usually
allow validating the numerical results obtained, as they always present convergence with a similar
rate for every stochastic system [25] (p. 53).

The article [17] does not compare the Fröbenius method with generalized polynomial chaos (gPC)
expansions [25–30], although it has been proven to be a powerful technique to deal with general
continuous and discrete stochastic systems with absolutely continuous random input coefficients.
Due to the spectral mean square convergence of the Galerkin projections, the expectation and variance
statistics of the response process can be approximated with small orders of truncation. In the particular
setting of random second order linear differential equations, only [31,32] analyzed the application
of gPC expansions to Airy’s random differential equation, by assuming independence between the
random input parameters. Recently, we have also studied the application of gPC expansions to the
Legendre random differential equation with statistically-dependent inputs in an arXiv preprint [11].
The application of gPC expansions to general random second order linear differential equations (8)
could be part of a future work. We believe that this is important because both the Fröbenius method
and gPC expansions may validate each other in applications, since they provide good approximations
of the expectation and variance statistics rapidly. Moreover, we believe that the gPC approach may
provide better approximations of the statistics in the case of large times; see for example [33], where
for the classical continuous epidemic models (SIS, SIR, etc.) uncertainty quantification is performed
via gPC up to Time 60 with chaoses bases of order just two and three, producing very similar results;
or [30], where an analogous study was performed for the corresponding discrete epidemiological
models up to Time 30. Nonetheless, an excessively large number of input parameters may pose
problems to the gPC-based method: if the chaos order is p and the degree of uncertainty is s, then
the length of the basis for the gPC expansions is (p + s)!/(p!s!) [25], which may make the method
computationally inviable. Another drawback of the gPC technique is that catastrophic numerical
errors usually appear for large chaos orders, specially when dealing with truncated distributions ([11]
(Example 4.3) and [34]).

In [17], we did not compare our methodology with the random differential transform method
proposed in [35]. Given a stochastic process U(t), its random differential transform is defined as:

Û(k) =
U(k)(t0)

k!
.

Its inverse transform is defined as:

U(t) =
∞

∑
k=0

Û(k)(t− t0)
k.

Notice that we are actually considering Taylor series in a random calculus setting. It is formally
assumed that the series ∑∞

k=0 Û(k)(t− t0)
k is mean square convergent on an interval (t0 − r, t0 + r),

r > 0. The computations with the random differential transform method were analyzed in [35]
(Th. 2.1).

Proposition 4 ([35] (Th. 2.1)). Let F(t) and G(t) be two second order stochastic processes, with mean square
derivatives of k order F(k)(t) and G(k)(t). Then, the following results hold:

(i) If U(t) = F(t)± G(t), then Û(k) = F̂(k)± Ĝ(k).
(ii) If U(t) = λF(t), where λ is a bounded random variable, then Û(k) = λF̂(k).

(iii) If U(t) = G(m)(t), then Û(k) = (k + 1) · · · (k + m)Ĝ(k + m) (here, m is a nonnegative integer).
(iv) If U(t) = F(t)G(t), then Û(k) = ∑k

n=0 F̂(n)Ĝ(k− n).

Notice that (iii) and (iv) can be seen as consequences of differentiating random power series [17]
(Th. 3.1) (Proposition 2) and multiplying random power series [17] (Th. 3.2) (Proposition 3), respectively.
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Thereby, the random transform method is actually the random Fröbenius method. The recursive
equations found for X̂(k) are as in (3). Our Theorems 1–3 give the conditions under which the inverse
transform ∑∞

k=0 X̂(k)(t− t0)
k converges.

Thus, we believe that our recent contribution [17] together with the notes presented in this paper
give an excellent approach to tackle (1) and/or (8) with analytic random input processes. Apart from
obtaining a mean square analytic solution to (1) and/or (8), the expectation and variance of it can be
calculated for uncertainty quantification.

5. Summary, Conclusions, and Future Lines of Research

In this paper, we have written some notes and comments to complete our recent contribution [17]
on the random non-autonomous second order linear differential equation. The main theorem from [17],
which deals with the homogeneous case, has been restated in a more convenient form to deal
with practical applications. We addressed the non-homogeneous case, by proving an existence
theorem of the mean square solution and performing a numerical example. On the other hand,
the uniqueness of the solution has been established by using the Picard theorem for mean square
calculus. A comparison of the extant techniques for uncertainty quantification (Monte Carlo, gPC
expansions, random differential transform method) with respect to the random Fröbenius method
was studied.

This paper is a contribution to the field of random differential equations, as it completely generalizes
to a random framework the deterministic theory on second order linear differential equations with
analytic input data. To carry out the study, mean square calculus and, in general, Lp random calculus
become powerful tools to establish the theoretical results and perform uncertainty quantification.

Some future research lines related to the contents of this paper are the following:

• Solve the open problem raised in this paper at the end of Section 2, concerning the necessity of the
hypotheses of Theorem 2.

• Apply the technique of gPC expansions and stochastic Galerkin projections to general random
second order linear differential equations.

• Extend Theorem 3 to higher order random linear differential equations. Probably, one would need
to require all input stochastic processes to be random power series in an L∞ sense, in analogy
with the hypotheses of Theorem 3.

• Apply the random Fröbenius method to the random Riccati differential equation with the analytic
input processes. In [35] (Section 3), the authors applied the random differential transform method
(which is equivalent to a formal random Fröbenius method) to a particular case of the random
Riccati differential equation with a random autonomous coefficient term. It would be interesting
to apply the random Fröbenius method in the situation in which all input coefficients are analytic
stochastic processes, by proving theoretical results and performing numerical experiments.
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