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Abstract. Both classical linear and multilinear isometries defined between subalgebras of bounded

continuous functions on (complete) metric spaces are studied. Particularly, we prove that certain

such subalgebras, including the subalgebras of uniformly continuous, Lipschitz or locally Lipschitz

functions, determine the topology of (complete) metric spaces. As consequence, it is proved that

the subalgebra of Lipschitz functions determines the Lipschitz in the small structure of a complete

metric space.

Furthermore, we provide a weighted composition representation for multilinear isometries from

similar subalgebras on (not necessarily complete) metric spaces. We apply this general representa-

tion to obtain more specific ones for subalgebras of uniformly continuous and Lipschitz functions.

1. Introduction

According to the classical Banach-Stone theorem, C(X) and C(Y ) are linearly isometric if and

only if the underlying compact spaces X and Y are homeomorphic, which is to say that the geometric

structure of C(X) determines the compact space X. Furthermore, any such linear isometry is given

by a composition with that homeomorphism, followed by a multiplication by a unimodular function.

Generalizations of the Banach-Stone theorem have been intensely investigated; we now know that

similar results are valid for various other function and operator spaces and algebras. Even in the

nonsurjective case, which is clearly more involved and, consequently, less studied, the weighted

composition representation is available, at least, on certain nonempty subspaces of the underlying

spaces (see [2]).

Almost all of these results assume that the spaces X,Y are either compact or, at least, locally

compact. The reason might be that if no conditions on compactness are required, the existence of

a linear isometry between the spaces Cb(X) and Cb(Y ) of bounded continuous functions (endowed

with the supremum norm) does not imply that the Tychonoff spaces X and Y are homeomorphic
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but only that their Stone-Čech compactifications are homeomorphic, that is, the geometric structure

of Cb(X) determines the topology of the Stone-Čech compactifiction of X but not the one of X.

Indeed it is known that the algebra, the lattice, and the geometric structures of Cb(X) altogether are

still not enough to determine X. We should remark here that, surprisingly, the vector-valued setting

is different from that scalar-valued one in the sense that Cb(X,E), E a Banach space, determines

X in certain general cases, as was shown in [1].

However, if X is a metric space, then the geometric structure of Cb(X) does determine X and

a question arises naturally: is it required to consider the whole Cb(X)? That is, can we recover

the topology of a metric space X from a (proper) subalgebra of Cb(X)? This does not seem an

easy question since, for example, the subalgebra of Cb(X) consisting of the uniformly continuous

functions on X coincides with the same subalgebra on its completion.

The literature on linear isometries in a noncompact framework is reduced compared to the plethora

of results treating the compact (or locally compact) case. Indeed, as far as we know, non-surjective

linear isometries and multilinear isometries have not been addressed in this noncompact context

yet. So, in this paper we address these questions by dealing with isometries, both classical linear

(1-linear) and multilinear, defined between subalgebras of Cb(X) being X a (complete) metric space.

In Section 3, we deal with classical 1-linear isometries and we prove that certain subalgebras

of Cb(X) determine the topology of a (complete) metric space X. The subalgebras of uniformly

continuous, Lipschitz and locally Lipschitz functions belong to this class of subalgebras. As a

consequence, it is shown that the subalgebra of Lipschitz functions determines the Lipschitz in the

small structure of a complete metric space.

In Section 4, we provide a weighted composition representation for multilinear isometries from

certain subalgebras of Cb(X)-spaces, where X is a (not necessarily complete) metric space. We apply

this general representation to obtain more specific ones for subalgebras of uniformly continuous and

Lipschitz functions.

2. Preliminaries

Let X be a metric space and let Cb(X) stand for the space of scalar-valued bounded continu-

ous functions defined on X. Let f̂ denote the unique extension of f ∈ Cb(X) to the Stone-Čech

compactification, βX, of X.

Given a subalgebra A of Cb(X), we denote Â := {f̂ : f ∈ A}, which turns out to be a subalgebra

of C(βX) too. For such A, we can define an equivalence relation on βX as follows: given x1, x2 ∈

βX, x1 ∼ x2 if f̂(x1) = f̂(x2) for all f ∈ A. It is apparent that the quotient γX := βX
∼ is a

compactification of X.
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Let A be a subalgebra of continuous functions defined on a compact Hausdorff space X . It is

said that A separates (resp. strongly) the points of X if given two distinct points x, y ∈ X , then

there exists f ∈ A with f(x) 6= f(y) (resp. |f(x)| 6= |f(y)|). We denote the uniform closure of A by

A. The unique minimal closed subset of X with the property that every function in A assumes its

maximum modulus on this set, which exists by [4], is called the Šilov boundary for A and is denoted

by ∂A. The Choquet boundary Ch(A) of A is the set of all x ∈ X for which δx, the evaluation

functional at the point x, is an extreme point of the unit ball of the dual space of (A, ‖ · ‖), where

‖ · ‖ denotes the uniform norm. So it is apparent that Ch(A) = Ch(A). Besides, note that for each

point-separating algebra A, ∂A is the closure of Ch(A) [4, Theorem 1].

We say that a subalgebra A of Cb(X) is normal if given two subsets, M and N , of X with

d(M,N) > 0, then there exists f ∈ A such that |f|M | > 3
4 and |f|N | < 1

4 .

We say that a subalgebra A of Cb(X) peaks at X is for every x ∈ X, there is a function f ∈ A

such that f̂ peaks at x, that is, |f̂(x)| > |f̂(y)| for all y ∈ βX.

The subalgebras of bounded uniformly continuous, UC(X), and bounded Lipschitz functions,

Lip(X), on X are examples of normal subalgebras of Cb(X) peaking at X (see, e.g. [13, Section

7.3]). Let us also point out that if X is a closed unit ball of a normed space, then each uniformly

continuous function is bounded.

3. Linear isometries on subalgebras of Cb(X)

Despite we are working in a noncompact context, classical 1-linear isometries still produce inter-

esting results. Indeed, for a complete metric space X, the metric structure of normal subalgebras of

Cb(X) determines the topology of X. First, we need the following result:

Lemma 3.1. Let A be a subalgebra of Cb(X).

(a) Every x ∈ X is a Gδ-point in γX.

(b) If X is complete and A is normal, then no point in γX \X is a Gδ-point.

Proof. (a) As X is dense in γX and each x ∈ X has a countable local base {Un} in X, then it is

known (see, e.g., [8, 9.7]) that {clγXUn} is a countable local base at x in γX.

(b) Let us suppose that there exists x0 ∈ γX \X which has a countable local base. Then, since X

is dense in γX, there exists a sequence (xn) in X converging to x0. Hence, since X is complete, no

subsequence of (xn) is Cauchy. Consequently, there is ε > 0 and a subsequence (xnj
) of (xn) such

that d(xnj
, xnk

) > ε for j 6= k. The normality of A allows us to find f ∈ A such that f(xn2j
) > 3

4

and f(xn2j+1) < 1
4 . It is apparent that such f cannot be extended continuously to γX, which is a

contradiction. �
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Theorem 3.2. Let A and B be unital normal subalgebras of Cb(X) and Cb(Y ), for X and Y

complete metric spaces, respectively.

(1) If there exists T : A −→ Cb(Y ) a linear isometry whose range has finite codimension in

Cb(Y ), then there exist a nonempty subset Y00 of Y , a continuous surjective map ϕ : Y00 −→

X and a unimodular continuous function a : Y00 −→ T such that T (f)(y) = a(y)f(ϕ(y)) for

all f ∈ A and y ∈ Y .

(2) If there exists T : A −→ B a surjective linear isometry, then X and Y are homeomorphic.

Proof. (1) Let us first check that Â separates strongly the points of γX. To this end, let x and y be

two distinct points in γX. It is clear that there is a function f ∈ A such that f̂(x) 6= f̂(y). If |f̂(x)| 6=

|f̂(y)|, then we are done. Otherwise, choose α ∈ C such that |αf̂(x) + f̂(x)2| 6= |αf̂(y) + f̂(y)2|,

which implies that Â separates strongly the points of γX.

It is apparent that the range of the induced mapping T̂ : Â −→ C(βY ) has also finite codimension

in C(βY ). Let n be this finite codimension.

Claim. A subset B of βY which cannot be separated strongly with functions of the range of T̂

has, at most, n+ 1 elements.

Assume, contrary to what we claim, that there exist n+ 2 elements of βY , say y1, ..., yn+2, which

cannot be separated strongly with functions of the range of T̂ . Let us take n+ 1 functions in C(βY )

such that

fl(yj) =

 1 l = j

0 l 6= j

for l ∈ {1, 2, ..., n+ 1} and j ∈ {1, 2, ..., n+ 2}. From our assumption, it is clear that {f1, ..., fn+1}∩

T̂ (Â) = ∅. It is also apparent that such n + 1 functions are linearly independent. Hence, since the

codimension of the range of T̂ is n, we can find n+ 1 constants (not all zero), α1, ..., αn+1 such that

the function

F := α1f1 + ...+ αn+1fn+1

belongs to T̂ (Â). Again from our assumption, we infer |F (y1)| = ... = |F (yn+2)|, which yields

α1 = ... = αn+1 = 0, a contradiction.

By [2, Theorem 3.1], there exist a nonempty subset Y0 of βY , a continuous surjective map

ϕ : Y0 −→ ∂0Â and a continuous map a : Y0 −→ T such that T̂ f̂(y) = a(y)f̂(ϕ(y)) for all f ∈ A and

y ∈ Y0, where ∂0Â = ∂Â ∩ {x ∈ γX : ∃f ∈ Awith f̂(x) 6= 0}. Since A is unital, we have ∂0Â = ∂Â.

Fix x0 ∈ X and a neighborhood U of x0 in γX. Since d({x0}, X \U) > 0 and A is normal, there

exists f ∈ A such that |f(x0)| > 3
4 and |f | < 1

4 on X \ U . From the density of X in γX, we infer
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that |f̂ | ≤ 1
4 on γX \U . Hence, by [2, Lemma 2.1], we infer that X is a subset of the Šilov boundary,

∂Â ⊆ γX, of Â. Moreover, since ∂Â is a closed subset of γX and X is dense in γX, we conclude

that ∂Â = γX.

By the above representation of T̂ and the Claim, we deduce that ϕ−1(x) has, at most, n + 1

elements for each x ∈ γX, in particular for each x ∈ X. By Lemma 3.1, we know that if we take

x ∈ X, then it is a Gδ-point in γX. Hence, since ϕ is continuous, ϕ−1(x) is a finite Gδ-set in

βY , which implies that each element of ϕ−1(x) is a Gδ-point in βY . This fact yields ϕ−1(x) ⊆ Y

since the only points in βY which are Gδ are those in Y ([8, 9.7]). As a consequence, we infer that

Y00 := Y0 ∩ ϕ−1(X) is a nonempty subset of Y .

(2) Let T̂ : Â −→ B̂ be the surjective linear isometry induced by T : A −→ B. Hence, by [2,

Theorem 4.1], there exist a homeomorphism ϕ : ∂0B̂ −→ ∂0Â and a continuous map a : ∂0B̂ −→ T

such that T̂ f̂(y) = a(y)f̂(ϕ(y)) for all f ∈ A and y ∈ ∂0B̂.

Hence, from the reasonings in (1), we infer that ϕ : γY −→ γX is a homeomorphism and that its

restriction to Y is a homeomorphism from Y onto X since homeomorphisms preserve Gδ-sets. �

We can compare Theorem 3.2 with Corollary 3.1 in [5], where similar results for the surjective case

are obtained in a noncompact framework for certain function spaces which satisfy several technical

conditions.

Since the uniformly continuous functions of a metric space and its completion are the same, we

infer that the above theorem is not true for noncomplete metric spaces. Indeed, it is not true either

if we do not assume both X and Y to be metric spaces as the following example shows:

Example 3.3. ([8, 4M]) Let X = N, the natural numbers, and let Y = N ∪ {σ} (σ ∈ βN \N). It is

clear that any f ∈ Cb(X) can be extended uniquely to a function fσ ∈ Cb(Y ). Then, we can define

a bijective isometry, T (f) = fσ, between Cb(X) and Cb(Y ) but X and Y are not homeomorphic.

Remark 3.4. Note that if Â (resp. B̂) separates the points of βX (resp. βY ), taking into account

the fact that no point in βX \X and βY \ Y is Gδ, with a proof similar to above, we can deduce

that the completeness of metric spaces can be removed from Theorem 3.2. In particular, one can

obtain this known result that metric spaces X and Y are homeomorphic if and only if Cb(X) and

Cb(Y ) are isometrically isomorphic.

Meantime, the above situation happens in the context of locally Lipschitz function spaces. First,

let us recall that a map f : X −→ Y is called locally Lipschitz if each point of X has a neighborhood

on which f is Lipschitz. Meantime, if f is a bijection and f and f−1 are locally Lipschitz, then X

and Y are said to be locally Lipschitz homeomorphic.
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Furthermore, let Liploc(X) denote the space of all bounded scalar-valued functions on X which

are locally Lipschitz. It is known that a bounded scalar-valued function f belongs to Liploc(X) if

and only if f is Lipschitz on each compact subset of X (see [12, Corollary 2.2]). Now, we can state

our next result on isometries of Liploc(X)-spaces (compare with [6, Theorem 3.16]).

Corollary 3.5. Two metric spaces X and Y are locally Lipschitz homeomorphic if and only if

Liploc(X) and Liploc(Y ) are isometrically isomorphic.

Proof. If h : Y −→ X is a locally Lipschitz homeomorphism, it is easy to check that Tf = f ◦ h is

a linear isometry from Liploc(X) onto Liploc(Y ), which yields the sufficiency. To see the necessity,

assume that T : Liploc(X) −→ Liploc(Y ) is a surjective linear isometry. Taking into account that

Liploc(X) and Liploc(Y ) are uniformly dense in Cb(X) and Cb(Y ), respectively (see, e.g., [6]), from

Theorem 3.2 and Remark 3.4 we conclude that there exists a homeomorphism h : Y −→ X such

that Tf = f ◦ h for every f ∈ Liploc(X). Hence, by [6, Lemma 3.15], h is a locally Lipschitz

homeomorphism. �

Next, we concentrate on the algebra of bounded Lipschitz functions. First we state the concept

of Lipschitz in the small functions which is due to Luukkainen [11].

Definition 3.6. A function f : (X1, d1) −→ (X2, d2) is said to be Lipschitz in the small (abbreviated

LS) if there exist r > 0 and k > 0 such that d2(f(x), f(x′)) ≤ kd1(x, x′) for any x, x′ ∈ X1 with

d1(x, x′) ≤ r. Moreover, X1 and X2 are called LS-homeomorphic if f is a bijection and f and f−1

are Lipschitz in the small.

It is worth mentioning that a bounded function is Lipschitz if and only if it is Lipschitz in the

small.

The space of all scalar-valued functions defined on a metric space X which are Lipschitz in the

small is denoted by LS(X). It is clear that the space of all bounded functions in LS(X) coincides

with Lip(X). We also note that, in general, the space of all scalar-valued Lipschitz functions on X

is a subset of LS(X), but when X is quasi-convex or precompact these spaces coincide (for more

details, see [7]).

The next result says that Lip(X) determines the LS-structure of complete metric spaces as follows

(see also [7, Theorem 2] and [11, Corollary 3.9]):

Corollary 3.7. Let X and Y be complete metric spaces. Then the following are equivalent:

(a) X and Y are LS-homeomorphic.

(b) Lip(X) and Lip(Y ) are isometrically isomorphic.
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Proof. (a)⇒ (b) Let h : Y −→ X be an LS-homeomorphism. Define

Tf = f ◦ h (f ∈ Lip(X)).

Let f ∈ Lip(X). Since f is Lipschitz, there is a constant k > 0 such that d(f(x), f(x′)) ≤ kd(x, x′)

for all x, x′ ∈ X. On the other hand, since h is Lipschitz in the small, there exist r > 0 and m > 0

such that d(h(y), h(y′)) ≤ md(y, y′) for any y, y′ ∈ Y with d(y, y′) ≤ r. Hence

d(f(h(y)), f(h(y′))) ≤ kmd(y, y′),

which, taking into account that f ◦ h is bounded, shows that f ◦ h ∈ Lip(Y ). Now, it is easy to see

that T is a surjective linear isometry, as desired.

(b)⇒ (a) Let T : Lip(X) −→ Lip(Y ) be a surjective linear isometry. From Theorem 3.2, there is

a homeomorphism h : Y −→ X such that Tf = f ◦ h for every f ∈ Lip(X). Now the result follows

immediately from [7, Lemma 1]. �

It is worth pointing out we cannot replace LS-homeomorphic with Lipschitz-homeomorphic in the

sense that there is a bijection h such that h and h−1 are Lipschitz. Let us state a simple example

borrowed from [6]. Suppose that (X, d) is a metric space with infinite diameter and d′ = min{1, d}

(note that (X, d′) is complete whenever (X, d) is). Hence (X, d) and (X, d′) are LS-homeomorphic

but, despite Lip(X, d) = Lip(X, d′), they are not Lipschitz-homeomorphic.

Taking into account [7] and Corollary 3.7, we may obtain easily the next result.

Corollary 3.8. Let X and Y be complete quasi-convex metric spaces or complete precompact metric

spaces. Then X and Y are Lipschitz-homeomorphic if and only if Lip(X) and Lip(Y ) are isomet-

rically isomorphic.

4. Multilinear isometries on subalgebras of Cb(X)

Let X1, ..., Xk and Z be metric spaces. Let A1, ..., Ak be subalgebras of Cb(X1), ..., Cb(Xk),

respectively. A k-linear map T : A1 × ... × Ak −→ Cb(Z) is called a multilinear (or k-linear)

isometry if

‖T (f1, ..., fk)‖ =

k∏
i=1

‖fi‖ ((f1, ..., fk) ∈ A1 × ...×Ak).

First note that it is not difficult to extend T : A1 × ... × Ak −→ Cb(Z) to a k-linear isometry

T : A1 × ...×Ak −→ Cb(Z), where Ai is the uniform closure of Ai (i = 1, ..., k). So, without loss of

generality, we can assume each Ai (i = 1, ..., k) is uniformly closed.
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Theorem 4.1. Assume that Ai peaks at Xi for i = 1, ..., k. Let T : A1 × ... × Ak −→ Cb(Z) be a

k-linear isometry such that the linear span of its range has finite codimension in Cb(Z). Then there

exist a nonempty subset Z00 of Z, a continuous surjective map ϕ : Z00 −→ X1 × ... × Xk and a

unimodular continuous function a : Z00 −→ T such that T (f1, ..., fk)(z) = a(z)
k∏
i=1

fi(πi(ϕ(z))) for

all (f1, ..., fk) ∈ A1 × ...×Ak and z ∈ Z00, where πi is the ith projection map.

Proof. It is apparent that the linear span of the range of the induced mapping T̂ : Â1× ...× Âk −→

C(βZ) has also finite codimension in C(βZ). Let n be this finite codimension. By an argument

similar to the proof of Theorem 3.2, we can obtain the following claim:

Claim A subset B of βZ which cannot be separated strongly with functions of the range of T̂

has, at most, n+ 1 elements.

By [9, Theorem 4.5], there exist a nonempty subset Z0 of βZ, a continuous surjective map

ϕ : Z0 −→ Ch(Â1) × ... × Ch(Âk), a unimodular continuous function a : Z0 −→ T, such that

T̂ (f̂)(z) = a(z)
k∏
i=1

f̂i(πi(ϕ(z))) for all (f1, ..., fk) ∈ A1 × ... × Ak and z ∈ Z0, where πi is the ith

projection map.

By the above representation of T̂ and the Claim, we deduce that ϕ−1(x1, ..., xk) has, at most,

n+ 1 elements for each (x1, ..., xk) ∈ Ch(Â1)× ...× Ch(Âk).

Since, for each i = 1, ..., k, Ai peaks at Xi and Ch(Âi) is a boundary for Âi, it is apparent that

Xi ⊆ Ch(Âi). By Lemma 3.1, we know that if we take xi ∈ Xi ⊆ Ch(Âi), then it is a Gδ-point

in γXi. Hence, since ϕ is continuous, ϕ−1(x1, ..., xk) is a finite Gδ-set in βZ, which implies that

each element of ϕ−1(x1, ..., xk) is a Gδ-point in βZ. This fact yields ϕ−1(x1, ..., xk) ⊆ Z since

the only points in βZ which are Gδ are those in Z ([8, 9.7]). As a consequence, we infer that

Z00 := Z0 ∩ ϕ−1(X1 × ...×Xk) is a nonempty subset of Z. �

If we focus on the context of uniformly continuous functions, Theorem 4.1 can be sharpened

as follows. Let X1, ..., Xk and Z be metric spaces. Also let A1, ..., Ak be normal subalgebras of

UC(X1), ..., UC(Xk) which peak at X1, ..., Xk, respectively.

Theorem 4.2. Let T : A1 × ... × Ak −→ UC(Z) be a k-linear isometry such that the linear

span of its range has finite codimension in UC(Z). Then there exist a nonempty subset Z00 of Z, a

continuous surjective map ϕ : Z00 −→ X1× ...×Xk and a unimodular uniformly continuous function

a : Z00 −→ T such that T (f1, ..., fk)(z) = a(z)
k∏
i=1

fi(πi(ϕ(z))) for all (f1, ..., fk) ∈ A1 × ...×Ak and

z ∈ Z00, and each πi ◦ ϕ is uniformly continuous (i = 1, ..., k).
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Proof. The representation of T follows from Theorem 4.1 having into account that we can mimic the

proof of the Claim to prove that a subset of γZ which cannot be separated strongly with functions

of the linear span of the range of T̂ has, at most, n+ 1 elements.

Let us next prove that the weight function a(z) is uniformly continuous. Consider, contrary to

what we claim, that there exist two sequences, (zn) and (z′n), in Z00 with limn→∞ d(zn, z
′
n) = 0 such

that |a(zn)− a(z′n)| ≥ ε for a certain ε > 0 and for every n ∈ N. Since A1, ..., Ak are normal, we can

choose (f1, ..., fk) ∈ A1 × ...×Ak such that

|fi(πi(ϕ(zn)))| < 1/4 and |fi(πi(ϕ(z′n)))| ≥ 3/4 (i = 1, ..., k). (1)

Since T preserves uniformly continuous functions, we infer that

lim
n→∞

(
a(zn)

k∏
i=1

fi(πi(ϕ(zn)))− a(z′n)

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0. (2)

Hence, multiplying by f1(π1(ϕ(zn))), we get

lim
n→∞

(
a(zn)f21 (π1(ϕ(zn)))

k∏
i=2

fi(πi(ϕ(zn)))− a(z′n)f1(π1(ϕ(zn)))

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0.

On the other hand, we also have

lim
n→∞

(
a(zn)f21 (π1(ϕ(zn)))

k∏
i=2

fi(πi(ϕ(zn)))− a(z′n)f21 (π1(ϕ(z′n)))

k∏
i=2

fi(πi(ϕ(z′n)))

)
= 0.

Consequently, we infer

lim
n→∞

(
a(z′n)

k∏
i=1

fi(πi(ϕ(z′n)))(f1(π1(ϕ(zn)))− f1(π1(ϕ(z′n)))

)
= 0

or equivalently by (1),

lim
n→∞

(f1(π1(ϕ(zn)))− f1(π1(ϕ(z′n)))) = 0.

Similarly, for every i = 2, ..., k we can claim

lim
n→∞

(fi(π1(ϕ(zn)))− fi(π1(ϕ(z′n)))) = 0.

Hence

lim
n→∞

(
a(zn)

k∏
i=1

fi(πi(ϕ(zn)))− a(zn)f1(π1(ϕ(z′n)))

k∏
i=2

fi(πi(ϕ(zn)))

)
= 0,

lim
n→∞

(
a(zn)f1(π1(ϕ(z′n)))

k∏
i=2

fi(πi(ϕ(zn)))− a(zn)f1(π1(ϕ(z′n)))f1(π2(ϕ(z′n)))

k∏
i=3

fi(πi(ϕ(zn)))

)
= 0

...

lim
n→∞

(
a(zn)fk(π1(ϕ(zn)))

k−1∏
i=1

fi(πi(ϕ(zn)))− a(zn)

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0.
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Summing up,

lim
n→∞

(
a(zn)

k∏
i=1

fi(πi(ϕ(zn)))− a(zn)

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0.

From (2) above,

lim
n→∞

(
a(zn)

k∏
i=1

fi(πi(ϕ(z′n)))− a(z′n)

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0,

which is to say,

lim
n→∞

(
(a(zn)− a(z′n))

k∏
i=1

fi(πi(ϕ(z′n)))

)
= 0.

From (1), we obtain

lim
n→∞

((a(zn)− a(z′n)) = 0,

which contradicts our assumption.

In order to prove that 1
a(z) is also uniformly continuous, suppose that limn→∞ d(zn, z

′
n) = 0. Then

lim
n→∞

∣∣∣∣ 1

a(zn)
− 1

a(z′n)

∣∣∣∣ = lim
n→∞

∣∣∣∣a(zn)− a(z′n)

a(zn)a(z′n)

∣∣∣∣ = lim
n→∞

|a(zn)− a(z′n)| = 0

since a(z) is uniformly continuous.

If we assume that T is 1-linear, then

1

a(z)
Tf(z) =

1

a(z)
a(z)f(ϕ(z)) = f(ϕ(z))

is uniformly continuous for every f ∈ A1, so ϕ is uniformly continuous by an argument similar to

[3, Lemma 4.1] and [10, Theorem 2.3 and its Remark].

If we assume that T is k-linear, k ≥ 2, then we can choose (f2, ..., fk) ∈ A2 × ... × Ak such that

fi(πi ◦ ϕ(z)) = 1 for i = 2, ..., k. Then

1

a(z)
T (f1, ..., fk)(z) =

1

a(z)
a(z)f1(π1 ◦ ϕ(z)) · 1 · ... · 1 = f1(π1 ◦ ϕ(z))

is uniformly continuous for every f1 ∈ A1, so π1 ◦ ϕ is uniformly continuous as in the preceding

paragraph. Similarly we infer πi ◦ ϕ is uniformly continuous for every i = 2, ..., k. �

Using Theorems 4.2 and 3.2, we easily obtain the following result which is a known result in the

context of uniformly continuous function spaces.

Corollary 4.3. Let X and Y be complete metric spaces. Then X and Y are uniformly homeomor-

phic if and only if UC(X) and UC(Y ) are isometrically isomorphic.

Similarly to the case of uniformly continuous functions, we can obtain an improved version of

Theorem 4.1 for algebras of bounded Lipschitz functions.
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Theorem 4.4. Let T : Lip(X1) × ... × Lip(Xk) −→ Lip(Z) be a k-linear isometry such that the

linear span of its range has finite codimension in Lip(Z). Then there exist a nonempty subset Z00

of Z, a continuous surjective map ϕ : Z00 −→ X1 × ...×Xk and a Lipschitz function a : Z00 −→ T

such that πi ◦ ϕ is Lipschitz in the small (i = 1, ..., k), and T (f1, ..., fk)(z) = a(z)
k∏
i=1

fi(πi(ϕ(z)))

for all (f1, ..., fk) ∈ Lip(X1)× ...× Lip(Xk) and z ∈ Z00.

Proof. Taking into account that Lip(X)-spaces are normal subalgebras peaking at X, as mentioned

in the proof of Theorem 4.2, we can obtain the representation of T . Moreover, it is evident that a

is a Lipschitz function on Z00 because a = T (1, ..., 1)|Z00 .

Now, we show that πi ◦ ϕ is Lipschitz in the small (i = 1, ..., k). We assume, without loss of

generality, that i = 1. Let f ∈ Lip(X1). From the representation of T we have

(f1 ◦ (π1 ◦ ϕ))(z) =
T (f1, 1, ..., 1)(z)

a(z)
(z ∈ Z00),

which easily shows that f1 ◦ (π1 ◦ ϕ) belongs to Lip(Z00). Next, taking into account [7, Lemma 1],

we deduce that π1 ◦ ϕ is Lipschitz in the small. �

Remark 4.5. Although in most of the results provided in this manuscript, surjectivity is not

assumed, a question arises naturally: is it possible to prove a Holsztynski theorem in a noncompact

framework? That is, can we obtain a representation of the isometry on a nonempty subset of the

underlying spaces with no assumption on its range?
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