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Abstract

In this paper the authors investigate the energy harvesting in railway bridges and analyse the performance

under different operational conditions. An approximation based on modal superposition is proposed for the

computation of the energy harvested from train-induced bridge vibration. This approach is consistent with

the analytical modal solutions of the simply-supported Bernouilli-Euler beam transverse response under

moving loads. The influence of the bridge maximum dynamic response and cancellation phenomena, the

tuning effect of the harvester device and the relevance of different modal contributions on the harvested

energy are studied using a single-degree of freedom system as a simplistic mechanical approach. Later, a

piezoelectrically coupled lumped parameter model is used to investigate the available energy due to High-

Speed train passages at different circulating speeds. Finally, the feasibility of energy harvesting is evaluated

from the experimental data measured by the authors in a railway bridge from the Madrid-Sevilla High-Speed

line. The obtained results allow quantifying the harvested energy in a time window of three and a half hours

and twenty train passages.

Keywords: Energy harvesting, railway bridges, High-Speed train, cantilever bimorph beam, piezoelectric

device

1. Introduction

The construction of the trans-European network, including the railway network, is of utmost importance

for a balanced and sustainable development of the European Union (EU). The European Commission [1]

has adopted a strategy to promote the development of an effective EU rail infrastructure, establishing an

attractive and truly open rail market in order to increase by 30 to 50 per cent the passenger transport by
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2050 [2]. The increase of railway traffic will require adequate maintenance of the infrastructure to ensure

the required levels of quality, safety, and reliability. Moreover, this increment and the ageing of the railway

lines will lead to the need of further development of monitoring systems and maintenance procedures to

prevent damages associated to the dynamic effects on the infrastructure.

In particular, the dynamic effects in railway bridges have become an issue of interest and concern for

scientists and engineers in the last decades, especially since the advent of High-Speed lines (HSL) [3–6]. An

excessive level of vertical accelerations at the deck platform (greater than 3.5 or 5 m/s
2

in ballast or slab

track bridges, respectively), can lead to misalignment of the rails as a result of premature deconsolidation

of the ballast layer, to the loose of contact between wheel and rail, with the subsequent increase of the risk

of derailment, to structural fatigue problems in the long term or to an increase of the maintenance costs in

the best scenario. Specifically, the Spanish railway network currently has a total of 135 km of track that

runs over more than 6000 bridges. The infrastructure maintenance includes the auscultation of 250 bridges

and conducting 25 to 30 load tests every year. This situation may also apply to other EU countries.

Nowadays, the number of R&D&i projects addressing the development of new management systems

permitting preventive and efficient maintenance of the infrastructure grows every year. Many of them

aim a real-time monitoring of the conservation state. These management models extensively make use of

microelectromechanical systems (MEMS) that include accelerometers, gyroscopes, inclinometers, pressure

sensors, among others. Increasingly, remote and distributed detection systems are used to perform this task

[7–9]. One of the most limiting factors for sensor networks used in railway monitoring applications is the

lack of a long-term and low maintenance power supply. Most existing systems require battery changes, and

the impossibility of access and infrequent maintenance operations can limit their practical implementation.

Energy harvesting is becoming an alternative to provide energy supply for nodes and sensors of monitoring

systems in remote areas [10, 11]. The piezoelectric energy harvesting systems are a widespread and popular

energy source to overcome the high degree of uncertainty in some applications caused by weather conditions

as occurs in photovoltaic power systems. Many investigations have proposed mechanical devices to produce

the necessary electrical energy from its own response to be used in small power devices and sensors based

on the piezoelectric (PZT) effect. Common realizations of piezoelectric energy harvesters are the bimorph

cantilever or end–end clamped beams, consisting of rectangular plates with two PZT layers. These systems

have a power generation capability from micro to milliwatts from ambient vibrations in a frequency range

of 5− 100 Hz as referenced in [12]. Peigney and Siegert [13] studied energy harvesting from traffic-induced

vibrations in bridges. A piezoelectric harvester was developed and tested, and the mean power due to traffic

load was 0.03 mW for a voltage between 1.8 and 3.6 V. The authors concluded that the harvested energy

could be used to feed health monitoring sensor nodes. Also, Song [29] studied the application of energy

harvesting systems in railway bridges and found the root-mean-squared value of the output voltage varying

in the range 0.7 − 6 V in single-span bridges. Takeya et al. [30] proposed a two-degree of freedom energy
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harvester that enhanced the single-mass system for power generation.

In this context, the research presented herein deals with the application of energy harvesting from railway

induced vibrations at the bridge structure. Previous works [14–16] have aimed to evaluate the feasibility

of using piezoelectric devices for energy harvesting from track vibration. Nelson et al. [17] developed an

inductive voice coil harvesting device directly excited by the rail vertical displacement. The power found in

a field test was near to 1 mW for a train passage at 20 km/h. Tianchen et al. [18] tested a drum transducer

installed under the sleeper for energy harvesting in railway tracks. The power obtained in a laboratory test

was 0.1 mW (2.31 mJ) for a moving load travelling at 0.5 km/h. An important drawback of energy harvesting

systems is related to the fact that the devices performance is limited to very narrow frequency bands around

the resonance frequency, as mentioned by Erturk and Inman [19]. The output power drastically reduces if

the excitation frequency slightly deviates from the resonance condition when the generator is not adequately

tuned. More specifically, Ali et al. [20] investigated the feasibility of energy harvesting in highway bridges,

taking into account that structural vibrations due to a vehicle passage can be considered as a source of energy.

The analysis was based on the bridge modal decomposition in the frequency domain using the solution of a

simply supported beam. The natural frequency of the harvester was tuned to the fundamental frequency of

the bridge. Gatti et al. [21] studied the possibility of energy harvesting from track vibration during train

passage using a mechanical single degree of freedom model. The authors found that the optimum energy

harvested was proportional to the square of the amplitude and duration of the acceleration. They found

an energy level related to the mass device of 0.25 J/kg tuned to 17 Hz from sleeper vibration. Milne et al.

[22] studied the properties of the train load frequency that optimised the collected energy. The identified

peaks mainly depend on the geometry of the train type, axle and bogie distances. Similarly, Cleante et al.

[23] analysed the frequency content of experimental track vibration data, concluding that the train wheelset

acts as a bandpass filter and limits the sleeper response at low frequencies for energy harvesting. Cahill

et al. [24] investigated the possibility of energy harvesting from train-induced vibration in bridges and its

application in structural health monitoring. The power found in train passages was below one milliwatt.

Later, Cahill et al. [25] investigated the feasibility of damage detection directly from harvested energy,

considering that power varies from the undamaged to the damaged state of the bridge. The authors studied

the sensitivity of the harvester to the road surface, bridge-vehicle interaction, and damage level. The analysis

concluded that variations in the long-term of the harvested energy can be indicative of changes in the bridge

flexural stiffness. Also, Cahill et al. [26] presented an experimental procedure to verify a piezoelectric energy

harvester for railway bridges under operational conditions based on theoretical benchmarking, fabrication,

calibration, and experimental validation. The voltage was found below one volt during the test for a harvester

connected to a resistive load of 1 MΩ. Moreover, Cahill et al. [27] developed an energy harvester device

for monitoring a full-scale railway bridge under operational conditions from voltage output data. The train

passage was identified from data of harvested energy. Similarly, Fitzgerald et al. [28] proposed a damage
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detection procedure using only a cantilever energy harvester device rather than an accelerometer to avoid

the power consumption in the measurement. Then, the energy requirement is related to the storage and

transmission of voltage data. The proposed procedure was tested in a laboratory-scale bridge to detect

frequency changes due to structural damage. Although the power requirement can be ideally fulfilled by

the harvester, the authors pointed out the need to investigate the energy available in the vibration of the

bridge.

The novelty of this work includes the study of energy harvesters performance on railway bridges under

different train circulating conditions. An approach based on modal superposition in the frequency domain

is proposed for the estimation of the energy harvested from train-induced bridge vibration. This approach

is consistent with the modal decomposition used in Reference [20] for the solution of bridge response under

moving loads but, moreover, it founds that energy harvesting due to train passage can be obtained as

the superposition of energy modal contributions. This approach is advantageous since the railway bridge

response is generally governed by the contribution of only a few modes of vibration. Some of the issues in

the previously referred works are investigated. The influence of the train speed and the bridge and harvester

dynamic properties are analysed in-depth in the following sections to assess the energy harvested from train-

induced vibration. The formulation and the approach adopted for the analysis are presented in Section 2.

The governing equations of a coupled lumped parameter model for a cantilever bimorph beam are briefly

described. Later, the proposed approach is used in Section 3 to study energy harvesting in simply-supported

bridges. Maximum free vibration, cancellation phenomena, and energy harvesting under a single moving

load are analysed. This analysis is complementary to the results presented by Ali et al. [20] for the response

of highway bridges due to a single moving load. In this work, the results can be related to the amplification

of the structure at resonance when traversed by a set of equidistant loads. Finally, a case study is presented

and investigated in Section 4 using experimental data of an existing railway bridge. The main results and

conclusions drawn from this research are summarised in Section 5.

2. Formulation and approach adopted for the analysis

The proposed approach considers an energy harvesting device attached to the bridge at a section defined

by the x coordinate (see Figure 1). This device is subjected to the vertical vibration of the bridge zb(x, t)

induced by a moving load p travelling at constant speed V . Following, the equilibrium equations of both

systems, bridge and harvester, are formulated, and an approach based on modal superposition is proposed

to assess the available energy in different conditions. Two strategies are presented to represent the device

behaviour: i) an uncoupled mechanical model to evaluate the energy associated to the bridge vibration, and

ii) a piezoelectric-mechanical coupled model to compute the electrical energy. In both cases, an equivalent

lumped model is used to represent the bimorph device.
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Figure 1: Scheme of bridge/harvester system.

2.1. The mechanical lumped parameter model

Typically, a lumped mass model is used to represent the dynamic behaviour of a cantilever beam with

a tip mass for piezoelectric energy harvesting (Figure 1). The natural frequency ω of a uniform cantilever

beam in transverse vibrations can be approximated from an equivalent mass m (sum of the beam effective

mass and the mass of the tip) and the beam stiffness k computed from the distributed parameter model

[31]. Then, the equilibrium equation of the harvester device represented as a single degree of freedom with

base excitation is:

ÿ(t) + 2ζωẏ(t) + ω2y(t) = −z̈b(x, t) (1)

where y(t) denotes the vertical displacement of the lumped mass, ζ the damping factor, and z̈b(x, t) the

support excitation which coincides with the bridge acceleration at coordinate x where the harvester is

attached. In what follows an upper dot denotes time derivative.

In this section, a linear viscous damping coefficient c = 2ζ
√
km is considered to model both mechanical

and electrical energy dissipation of the device. The damping coefficient is used to represent the energy

transfer from the base vibration into the harvester system [32]. Then, the instantaneous power corresponds

to the power absorbed by the harvester plus the kinetic energy. The mechanical energy in the system at

period T is a function of the vibration velocity:

E = c

∫ T

0

|ẏ(t)|2 dt (2)

The energy absorbed or dissipated by the damper (second term of the first member of Equation 1) is

considered harvested energy. This approach is valid only for harvesters in which the electrical damping

term is proportional to the velocity as occurs in electromagnetic converters [33, 34]. However, the approach

adopted in this section facilitates understanding the energy transfer from the structure to the harvester as

it is referred in [32, 34].
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The previous equation can be expressed in terms of the Fourier transform of the harvester velocity

according to the Parseval’s theorem as:

E = c

∫ ∞
−∞
|ẏ(ω)|2 dω (3)

where the system is assumed to be idle outside the time interval T to fulfil this identity. Also, Equation 3

can be rewritten in terms of the displacement as:

E = c

∫ ∞
−∞
|ιωy(ω)|2 dω (4)

where the unit imaginary number is denoted by the Greek letter ι to prevent confusion with subscript i used

in posterior derivations.

The displacement of the harvesting device is given by the vertical displacement of the bridge at location

x:

y(ω) = mω2H(ω)zb(x, ω) (5)

where H(ω) is the frequency response function of the device, that depends on the frequency ratio β = ω/ω:

H(ω) =
1

k

[
1

(1− β2) + 2ιζβ

]
(6)

Then, the system response is properly defined when the bridge displacement zb(x, ω) is known. In what

follows, modal coordinates Zbj are used to represent the bridge modal amplitudes in order to express the

bridge vertical displacement as the superposition of the first N modes of vibration φbj(x):

zb(x, ω) =

N∑
j=1

φbj(x)Zbj(ω) (7)

Thus, the harvester displacement is obtained by substituting Equation 7 into Equation 5 in terms of the

bridge transfer function Hbj and the moving load spectrum pbj for the jth mode:

y(ω) = mω2H(ω)

N∑
j=1

φbj(x)Zbj(ω)

= mω2H(ω)

N∑
j=1

φbj(x)Hbj(ω)pbj(ω)

(8)
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Therefore, the energy in the system is obtained by substituting the previous definition into Equation 4:

E = c

∫ ∞
−∞

∣∣∣∣∣∣ιω3mH(ω)

N∑
j=1

φj(x)Hbj(ω)pbj(ω)

∣∣∣∣∣∣
2

dω

= c

∫ ∞
−∞

∣∣∣∣∣∣
N∑
j=1

Cj(ω)

∣∣∣∣∣∣
2

dω

(9)

where Cj denotes the contribution of the jth mode shape to the total energy. This expression can be

rewritten for a discrete-time signal of length M that would be helpful for experimental studies as follows:

E =
c

M

M∑
i=1

∣∣∣∣∣∣
N∑
j=1

Cj(ωi)

∣∣∣∣∣∣
2

(10)

Following, the total energy is approximated as the superposition of modal contributions Cj . Equation

10 can be expanded as:

E =
c

M

M∑
i=1

 N∑
j=1

Cj(ωi)

 N∑
j=1

C∗j (ωi)


=

c

M

M∑
i=1

 N∑
j=1

|Cj(ωi)|2 + 2

N∑
k>j

<(Cj(ωi)Ck(ωi))

 (11)

where an asterisk denotes the complex conjugate of a variable. The modal contribution given by the cross

product Cj(ωi)Ck(ωi) is much lower than the squared contribution of the jth mode as it is shown in the

following section. This assumption is easily understood since these products involve the bridge transfer

functions that reach a maximum value in the vicinity of the resonant frequencies and, then, decay rapidly.

Thus, neglecting these terms, the total energy can be approximated with the expression:

E =
c

M

M∑
i=1

 N∑
j=1

|Cj(ωi)|2
 (12)

and, equivalently:

E =
c

M

N∑
j=1

[
M∑
i=1

|Cj(ωi)|2
]

(13)

Equation 13 states that the total harvested energy can be computed as the superposition of the modal

contribution Cj , that is proportional to the instantaneous power related to each mode. This approach is

advantageous since the railway bridge response is generally governed by the contribution of only a few modes

of vibration.
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2.2. The piezoelectric-mechanical coupled lumped parameter model

In this work, a cantilever bimorph beam with a tip mass Mt is considered (Figure 2) to assess the energy

harvested from railway bridge vibration. The system is composed by two piezoelectric plates bonded to a

brass substructure. The piezoelectrics are polarized in opposite directions along the plate thickness, and are

connected in series. The system feeds a load resistance Rl. The beam dimensions are length Ls, width b, and

the substructure and piezoelectric plates thicknesses are hs and hp, respectively. The material properties of

both parts are defined by the Young’s modulus (Es and Ep) and the density (ρs and ρp).

Mt

y

zb

Ls

Lp

Rlv

+

−

m

zb

y

+

−

vk c

F

Rp Cp Rl

α : 1

Figure 2: Cantilever bimorph beam and equivalent coupled lumped parameter model of a piezolectric energy harvester.

The lumped parameter model of the cantilever bimorph beam is defined by the equivalent mass per unit

length m and the equivalent bending stiffness EI as is described in [35, 36]:

m =
33

140
mLs +Mt k =

3EI

L3
s

(14)

where,
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m = b (2ρphp + ρshs) (15)

I =
2b
[
(hp + hs/2)

3 − (hs/2)
3
]

3
+
bh3s
12

(16)

E =
Ep(2b

[
(hp + hs/2)

3 − (hs/2)
3
]
/3) + Es(bh

3
s/12)

I
(17)

Moreover, an electromechanical coupling coefficient α, relating the electrical and mechanical energy, and

the internal electrical capacitance Cp are defined for the bimorph beam [36]:

α =
b(hs + hp)

2Lp
e31 Cp =

bLp

2hp
εs33 (18)

where e31 is the stress constant of the PZT material and εs33 its absolute permittivity. Also, an equivalent

resistance Req can be computed from the load Rl and the piezoelectric leakage Rp resistances (Figure 2) in

parallel.

Then, the governing equations of the piezoelectrically coupled lumped model are obtained from the

equilibrium condition and the Kirchhoff laws applied to the system depicted in Figure 2 [34]:

ÿ(t) + 2ζωẏ(t) + ω2y(t)− α

m
v(t) = −κ1z̈b(x, t) (19)

Cpv̇(t) +
v(t)

Req
+ αẏ(t) = 0 (20)

where v is the voltage output, ζ the mechanical damping ratio, ω the natural frequency of the device, and

κ1 a correction factor for the piezoelectrically coupled lumped model [37]. The correction factor takes into

account the energy loss due to the error in predicting the natural frequency using the equivalent mass m

and stiffness k given by Equation 14. The governing equations can be evaluated in terms of the amplitude

and phase assuming a harmonic base excitation in the form zb(x, t) = z0(x, ω) exp(ιωt):

(−ω2 + 2ιωζω + ω2)y0(ω)− α

m
v0(ω) = κ1ω

2z0(x, ω) (21)(
ιωCp +

1

Req

)
v0(ω) + ιωαy0(ω) = 0 (22)

The solution to the previous equations allows the computation of the displacement and voltage complex

amplitudes of the beam:

y0(ω) =
κ1ω

2z0(x, ω)

2ιωζω + ω2 − ω2 + ιωα2/m (ιωCp + 1/Req)
(23)

v0(ω) = − ιωαy0(ω)

(ιωCp + 1/Req)
(24)

9



The instantaneous power becomes then P0(ω) = v20(ω)/Rl for the resistive load, and the harvested energy

is obtained from power integration. Moreover, the bridge displacement in Equation 23 can be defined in

terms of Equation 7 accounting for the jth modal contribution. Thus, Equation 23 stands for the modal

contributions yj(ω) and vj(ω) to the system displacement and voltage, respectively. Therefore, the energy

can be approximated similarly to Equation 13 considering the modal contribution to the instantaneous power

Pj(ω) = v2j (ω)/Rl:

E =
1

M

N∑
j=1

[
M∑
i=1

Pj(ωi)

]
(25)

Then, Equation 25 allows to approximate the energy computation as the superposition of modal contributions

to the instantaneous power. Next, this approximation is used for energy harvesting analysis in simply

supported beams. The scope of the proposed method is later evaluated from experimental records measured

in a real railway bridge from a High-Speed line.

3. Energy harvesting in simply supported beams

The equation of motion of a simply supported beam subjected to a moving load p travelling at constant

speed V , under the assumptions of the Bernoulli-Euler theory, can be expressed as:

mb
∂2zb(x, t)

∂t2
+ cb

∂zb(x, t)

∂t
+ EbIb

∂4zb(x, t)

∂x4
= p(x, t) (26)

where,

p(x, t) = P0δ(x− V t)
[
U(t)− U

(
t− Lb

V

)]
(27)

and mb and cb are the bridge mass and damping per unit length, respectively, EbIb the bending stiffness, and

Lb the span length. The force term is defined by the amplitude P0, the Dirac delta δ(t) and the Heaviside

U(t) unit functions.

The bridge displacement is obtained by mode superposition according to Equation 7. The jth mode

shape of a simply supported beam is expressed as φbj(x) = sin(jπx/Lb) and the angular frequency is given

by ωbj = (jπ)2
√
EbIb/mbL4

b . The generalised coordinate Zbj is defined in terms of the transfer function Hbj

and the moving load spectrum pbj [38]:

Hbj(ω) =
2L3

b

(jπ)4EbIb

[
1

(1− β2
bj) + 2ιζbjβbj

]
(28)

pbj(ω) = P0
Ωj

ω2 − Ω2
j

[
(−1)j exp

(
−ιjπω

Ωj

)
− 1

]
(29)
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where βbj = ω/ωbj and Ωj = jπV/Lb represent the dimensionless frequency and the forcing frequency,

respectively. Then, the contribution of the jth mode to the harvested energy is fully defined by substituting

the above expressions into Equations 13 and 25.

Following, the results of a sensitivity analysis are presented to determine the influence of: i) modal con-

tributions, ii) maximum free vibration and cancellation phenomena, and iii) tuning effect on the harvested

energy.

3.1. Sensitivity analysis

Bridges of lengths from 12.5 to 25 m in increments of 2.5 m are considered in this analysis covering usual

short-to-medium span lengths prone to experience important vibration levels. The fundamental frequencies

for each span are selected from the band prescribed by Eurocode 1 (EC1) [39] for the application of simplified

methods, as the majority of existing simply supported bridges are expected to fall within these limits. Four

evenly-spaced sample values between the lower and the upper frequency limits have been analysed (see

Figure 3). These frequencies are referred to as f1,000, f1,035, f1,075 and f1,100. The linear mass for each

length is adopted as mb = Lb×1000 kg/m
2

[40]. Damping ratios prescribed by EC1 for pre-stressed concrete

bridges as a function of the span length are assigned (see Figure 3). Each bridge is denoted by its span

length and fundamental frequency, i.e., [Lb = 17.5 m; f1,035].

(a) (b)

Figure 3: (a) EC1 lower and upper frequency limits for simplified dynamic analysis. Circles: Bridges under study. (b) Damping

ratio according to EC1.

The energy harvester consists on two PZT-5A piezoelectric layers 50.8 mm× 31.8 mm bonded to a brass

substructure as it is described in Figure 2. The system feeds a load resistance Rl = 1 kΩ. The device is

located in all the cases at x = 0.35Lb to avoid points of zero amplitude of the first two mode shapes. The

remaining properties are summarised in Table 1.

11



Table 1: Material and geometric properties of the energy harvester.

Property Symbol Value

Piezoelectric density ρp [kg/m3] 7800

Substructure density ρs [kg/m3] 9000

Piezoelectric Young’s modulus Ep [GPa] 66

Substructure Young’s modulus Es [GPa] 105

Stress constant e31 [C/m] 10.5

Vacuum permittivity ε0 [F/m] 8.854× 10−12

Absolute permittivity εs33 [F/m] 1500ε0

Plate length Lp [mm] 50.8

Plate width bp [mm] 31.8

Beam length Ls [mm] see Equation 30

Beam width bs [mm] bs = bp

Piezoelectric thickness hp [mm] 0.26

Substructure thickness hs [mm] 0.14

Damping ratio ζ [%] 2

Tip mass Mt [kg] see Equation 30

Leakage resistance Rp [Ω] 5× 109

Load resistance Rl [Ω] 103

Correction factor κ1 [−] 1.0968

In the harvester tuning procedure the following is admitted: i) the natural frequency of the harvester

matches the fundamental frequency of the bridge, ωb1, and is calculated as
√

(k/m), with k and m defined

by Equation 14, and ii) the damping coefficient c = 2ζ
√
km of the harvester is the same for all the bridges.

This last condition allows a comparable analysis of the energy harvesting for all the bridges according to

Equation 13. This condition defines a constant value r = km. All the above allows the definition of the

beam length and the tip mass in the tuning procedure for each bridge admitting the same cross section in

all cases:

Ls =
3

√
3EI

ωb1r0.5
Mt =

3
√
r2 − (33/140m) 3

√
3EIω2

b1

ωb1
3
√
r0.5

(30)

Thus, the PZT plates (or the damping coefficient for the mechanical approach) do not change from one bridge

to another and, therefore, it can be assumed that the energy performance only depends on the bridge and
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the harvester dynamic behaviour. An analysis on the influence of parameter r on the harvester behaviour

shows that, although the beam length decreases and the tip mass increases with increasing r (see Equation

30), the harvested energy does not vary since the damping coefficient does not change.

A representative value r = 16 kgN/m is estimated from the material and geometric properties of a

bimorph beam of equal length as the piezolectric plates in Table 1 and a tip mass Mt = 0.012 kg. This

device is similar to those found in References [34, 36, 37]. Figure 4 shows the cantilever beam length Ls

and the tip mass for the bridges of study. The beam length and the tip mass increase with the bridge span

length to reach low natural frequencies, and are larger for the lowest frequency bands. The changes of slope

in Figure 4 at Lp = 20 m are related with the fundamental frequency function prescribed by EC1. The beam

length varies from 7.5 to 12 cm, and the tip mass takes values from 40 to 176 g depending on the bridge

length and frequency band. Figure 4 can be used in the design of energy harvesters for railway bridges based

on EC1 and under the assumptions adopted for the tuning procedure.

(a) (b)

Figure 4: (a) Cantilever beam lengths and (b) tip masses for bridges of study.

The harvested energy is obtained according to the mechanical approach presented in Section 2.1. The

frequency step for this analysis is set to define the time span as tf = κtLb/V . Also, the maximum frequency

is chosen to ensure a minimum time step ∆t = min(2π/κωωb1, Lb/κvV ) allowing a proper representation

of the dynamic behaviour of the structure and the load excitation [40]. The values κt = 8, κω = 60 and

κv = 60 are found to be optimum for this analysis.

As an example, Figure 5 shows the results for the bridge [Lb = 17.5 m; f1,035] and a moving load of

amplitude P0 = 210 kN travelling at V = 250 km/h. The modal contribution to the mechanical energy

shows maximum amplitude close to the bridge natural frequencies. The frequency content exhibits an

undulatory behaviour throughout the frequency range alternating peaks and valleys each Ωj due to the

load spectrum defined by Equation 29. The maximum value of the modal contribution is reached for the
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fundamental mode due to the tuning of the harvesting device to this frequency.

Figure 5: Modal energy contribution in the bridge [Lb = 17.5 m; f1,035] due to a moving load travelling at V = 250 km/h.

This result confirms the assumptions adopted in the computation of the energy contributions in the

previous section. It is clear that the product Cj(ω)Ck(ω) in Equation 13 is lesser than |Cj(ω)|2, since it

involves the product between transfer functions that reach maximum values in the vicinity of the natural

frequencies (Figure 5). The harvested energy obtained from Equation 11 for N = 10 was E = 4.36 mJ, while

the approximation given by Equation 13 is 4.35 mJ. Therefore, the proposed approach for estimating the

energy harvesting as modal superposition seems adequate. Furthermore, the contribution of the first mode

of vibration exceeds 99% of the total energy. For this reason, in a first approach higher modal contributions

are disregarded when the harvesting device is tuned to the first natural frequency of the bridge. In this case,

the proposed procedure is simpler and is computationally efficient. Only the contribution of the fundamental

mode will be considered in further analysis.

3.2. Maximum free vibration, cancellation phenomena and energy harvesting under a single moving load

In this section, energy harvesting is analysed in the simple case of a bridge traversed by a single load

and the subsequent free vibration phase. In particular, the free vibration response of a beam after the

passage of a single load has been analysed in the past as it is related with the amplification of the structure

at resonance. When a resonant velocity coincides with a speed of maximum free vibration, an important

amplification of the bridge response should be expected. On the contrary, if it is close to a cancellation

condition, the resonant peak may become imperceptible [41]. Typically, the analytical solution for the

maximum free vibration of a beam after de passage of a load at constant speed is expressed in terms of the

non-dimensional speed K1 = Ω1/ωb1 = πV/(ωb1Lb) and the amplification of the displacement R1 referred

to the static in the first mode of vibration. In the undamped case, the analytical relation between R1 and

K1 is given by:

R1 =
K1

√
2

1−K2
1

√
1− cosπ cos

π

K1
(31)
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Figure 6.(a) (top) shows the analytical solution of R1 and the results for bridges with span length

Lb = 17.5 m and fundamental frequency indicated in Figure 3.(a). The analytical solution shows local

maxima at Km
1i = [0.76 , 0.26 , 0.17 , 0.13] that correspond to velocities leading to maximum free vibration,

and zero displacement at the cancellation speeds Kc
1i = [0.33 , 0.20 , 0.14 , 0.11]. The computed results for

the four bridges of 17.5 m coincide with the analytical solution with just a small difference due to the

presence of damping as referred in [40]. Figure 6.(b) (top) shows these results represented as the maximum

displacement versus the load speed. The displacements in the case of the bridges with lower fundamental

frequencies are higher than those with higher frequency for the same speed, due to their lower flexural

stiffness. Equivalently, local maxima shift towards higher speeds as the frequency of the bridges increases.

The energy harvested under the single load passage (including the forced vibration phase in this case)

shows a trend similar to that of the bridge, exhibiting successive maxima between cancellation speeds (see

Figure 6.(a) (bottom)). The speeds for maximum and minimum energy levels are slightly lower than the

speeds for maximum free vibration response and cancellation, Km
1n and Kc

1n respectively, due to the harvester

damping. This phenomenon is expected to happen under the passage of trains of several axle loads as well.

The harvested energy decreases as the bridge frequency increases or, equivalently, as the bridge response is

lower. The maximum energy is reached for higher speeds in the case of stiffer bridges following the tendency

of the maximum bridge amplitude (Figure 6.(b) (bottom)).

(a) (b)

Figure 6: R1 and maximum displacement in free vibration, and energy harvested at x = 0.35Lb due to a moving load circulating

in bridges of span length Lb = 17.5 m for different frequency bands vs. (a) K1 and (b) load passage speed V . Maximum dynamic

response and cancellation speeds are denoted by red and blue dashed lines, respectively.
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Similarly, the dynamic response of the bridge decreases as the span length increases for a fixed frequency

band, as can be seen in Figure 7. Moreover, the maximum dynamic and cancellation speeds are higher for

the longest bridges. The same behaviour is observed in the energy harvested. Therefore, it is expected that

the energy harvesting in bridges of the same span length will be lower for increasing stiffness in the current

range of commercial speeds. Also, the energy harvested will decrease as the span length increases for the

same frequency band.

(a) (b)

Figure 7: R1 and maximum displacement in free vibration, and energy harvested at x = 0.35Lb due to a moving load circulating

in bridges of different span length with natural frequency f1,035 vs. (a) K1 and (b) load passage speed. Maximum dynamic

response and cancellation speeds are denoted either by red and blue dashed lines, respectively.

Once the dynamic behaviour of the bridge and the energy harvesting have been investigated, two ad-

ditional conditions are studied: the energy loss in detuned systems and the effect of tuning the harvester

to a higher bridge frequency. This analysis is limited to a bridge of span length Lb = 17.5 m and natural

frequency f1,035.

Figure 8.(a) shows the detuning effect as a reduction of the natural frequency of the harvesting device

with respect to the fundamental frequency of the bridge. The harvested energy is drastically reduced as a

result of the detuning. Also, the speeds for maximum and minimum harvested energy are slightly reduced

with respect to Km
1i and Kc

1i. This result highlights both the importance of adequately identifying the

bridge dynamic properties and, subsequently, the correct tuning of the harvesting device. On the other

hand, further studies show that the effect of tuning to the bridge natural frequency instead of the resonance

frequency does not significantly affect the harvested energy, since these structures are slightly damped.
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The energy harvested by two different devices tuned to the natural frequencies of the first and second

modes of the bridge is shown in Figure 8.(b). The device location remains at x = 0.35Lb. The energy

harvested by the systems tuned to the second natural frequency is considerably lower than in the case

previously studied due to the lower contribution of the second mode. Similar results are obtained for

systems tuned to higher frequencies. Therefore, it can be concluded that the harvesting devices should be

paired to the fundamental frequency of the bridge and, consequently, would be most effective close to mid-

span in simply-supported bridges where the modal amplitude reaches its maximum value. This configuration

is chosen in following sections.

(a) (b)

Figure 8: Tuning effect on energy harvesting in a bridge [Lb = 17.5 m; f1,035] at x = 0.35Lb. (a) Energy harvested by a

detuned device to the first natural frequency. Maximum dynamic response and cancellation speeds are denoted either by red

and blue dashed lines, respectively. (b) Energy harvested by a tuned device to the second mode frequency.

3.3. Energy harvesting under trains of moving loads

This section studies the energy harvesting during a train passage according the coupled approach pre-

sented in Section 2.2. The HSLM-A universal train model defined in EC1 is considered in what follows. This

family of trains are used to evaluate the dynamic effects induced in HSL bridges by European commercial

trains. In this sense, the analysis presented in this section allows a characterization of the available energy

in high-speed bridges during the train passages. The HSLM-A trains have different number and length of

carriages, bogie distances and axle loads. Table 2 shows a scheme of the train load and the properties for

each type of train.

The trains are described by the axle loads Pk and their geometrical distribution. The modal load ptrbj(ω)

can be computed as the superposition of L single loads given by Equation 29, with a time shift tk defined

by the axle position:

ptrbj(ω) =

L∑
k=1

[pbj(Pk, ω) exp (−ιωtk)] (32)
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Table 2: Definition of HSLM train series.

Train name N a [m] d [m] b [m] P [kN]

HSLM-A1 18 3.525 18 2.0 170

HSLM-A2 17 3.525 19 3.5 200

HSLM-A3 16 3.525 20 2.0 180

HSLM-A4 15 3.525 21 3.0 190

HSLM-A5 14 3.525 22 2.0 170

HSLM-A6 13 3.525 23 2.0 180

HSLM-A7 13 3.525 24 2.0 190

HSLM-A8 12 3.525 25 2.5 190

HSLM-A9 11 3.525 26 2.0 210

HSLM-A10 11 3.525 27 2.0 210

The maximum bridge response due to a train passage depends both on the periodicity of the loads and

on the amplitude of the free vibrations induced by each single axle, as referred in [40, 41]. It is well known

that the successive passage of equally spaced loads can cause a resonant behaviour of the bridge when the

train speed is V r
jn = ωbjd/(2πn), where j corresponds to the excited frequency and n is the number of cycles

between loads pass in free vibration or, equivalently, a non-dimensional resonance speed can be defined

as Kr
jn = jd/(2Lbn). The amplitude at resonance is related with the level of free vibration caused by a

single moving load at the resonant velocity. The amplitude will be very amplified when the non-dimensional

resonance speed matches one of the local maxima Km
1i and may become imperceptible at a cancellation

speed Kc
1i.

Figure 9 shows curves of non-dimensional resonance speeds Kr
1n (n = 1, . . . 4) as a function of the ratio

Lb/d. Each curve represents the dimensionless speed at which resonance of the fundamental mode occurs for

a bridge span length Lb and a characteristic distance d. The velocities for maximum free vibration Km
1i and

cancellation Kc
1i are marked in dashed red and blue lines, respectively. As an example, the resonance speeds

for the HSLM train series are marked in black asterisks for the bridge [Lb = 17.50 m; f1,035], that can be read

from left to right for trains HSLM-A1 to HSLM-A10 according to the increasing car length (see Table 2).
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Figure 9: Non-dimensional resonance speed curves Kr
1n. Maximum dynamic response and cancellation speeds are denoted by

red and blue dashed lines, respectively. Resonance speeds for HSLM series are marked in black asterisks for bridges of length

Lb = 17.50 m.

Only resonance speeds corresponding to n > 1 are indicated in order to represent realistic velocities (note

that K1 = 0.5 corresponds to 432.8 km/h for this bridge). Also, note that the non-dimensional resonance

speed does not depend on the natural frequency of the bridge and, therefore, this representation is valid for

all bridges with span length Lb = 17.50 m.

The energy harvesting is investigated in two cases selected from the representation of the resonance

speed curves: i) HSLM-A1 passage at the resonance speed V r
12 = 222.6 km/h (Kr

12 = 0.2571) and ii) HSLM-

A6 passage at V r
12 = 284.4 km/h (Kr

12 = 0.3286). The first case is close to the point Km
12 of maximum

amplitude in free vibration, whereas the second case almost matches the first cancellation at Kc
11. These

conditions should produce a maximum resonance and the cancellation of resonance in the bridge response.

The harvester device is tuned to the fundamental frequency of the bridge and is located at midspan.

Figure 10 and Figure 11 show the computed results in both cases. The frequency content of the acceler-

ation shows a main peak at the resonance frequency of the fundamental mode. The difference in amplitudes

is justified by the conditions of maximum and cancellation of resonance, respectively. Moreover, the fre-

quency content shows peaks at the bogie passage frequency given by V/d (3.4 Hz in both cases), and its

related high-order harmonics. No additional peaks are found since only the contribution of the first mode is

considered. The time history also shows two very different behaviours: a strong resonance in the first case in

comparison to the second case, where no amplification is detected under each successive bogie passage. The

harvesting device is highly excited due to the tuning effect to the fundamental frequency, and its maximum

acceleration is found to be much higher than the bridge response.

The voltage exhibits a similar behaviour to the harvester response reaching a maximum of 4.5 V due

to the HSLM-A1 passage and 0.5 V in the second case. The time period T used to compute the harvested
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Figure 10: Bridge and harvester vertical acceleration, voltage and normalised power under HSLM-A1 train passage travelling

at V = 222.6 km/h [Lb = 17.50 m; f1,035].

energy is set to the part of the instantaneous power with a significant level. The standard DIN 45672 [42] is

used to fix the time period T as the part of the signal where the root mean square value exceeds a noise level

defined by a heuristic algorithm. The instantaneous power and the average power computed as Pav = E/T

in the time period T are shown in Figure 10. The total energy reaches 139.3 mJ and the average power

5.54 mW for the first case. The energy and the average power are drastically reduced to 1.2 mJ and 0.05 mW

in the second case when the resonance is cancelled.

Any modification of the train speed defines new points in Figure 9 according to the dimensionless speed

K1 with a constant Lb/d ratio. The new points do not necessarily belong to a resonance velocity curve Kr
1n.

In that case, the bridge response is expected to be lower than in the resonance regime as well as the energy

harvested. The energy and the average power due to the HSLM-A1 passage at K1 = 0.3 (V = 259.7 km/h)

decreases to E = 0.87 mJ and Pav = 0.035 mW. The computed results for the HSLM-A6 at the same

dimensionless speed are E = 2.77 mJ and Pav = 0.110 mW, slightly higher than at cancellation of the

resonance. These results emphasize the need to understand the influence of the bridge dynamic behaviour

on energy harvesting.

Figure 12 summarises the computed results for maximum bridge acceleration and harvested energy in

the non-dimensionless speed range from 0.1 to 0.5 for all trains of the HSLM series. Two types of plots

are represented: i) maximum acceleration and energy versus the non-dimensionless speed, and ii) a contour

map of those quantities as a function of Lb/d and K1. The second type of plot is complementary to Figure
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Figure 11: Bridge and harvester vertical acceleration, voltage and normalised power under HSLM-A6 train passage travelling

at V = 284.4 km/h [Lb = 17.50 m; f1,035].

9, with the same meaning of lines but with a different range of Lb/d. The maximum accelerations are

found between the cancellation speeds with amplifications close to the resonance speeds. Local maxima are

not observed when the resonance velocity coincides with cancellation, as occurred with the HSLM-A6 train

travelling at Kr
12 = 0.3286. The harvested energy shows a similar pattern but the levels collected around

the resonance velocities are much higher than at other velocities. This behaviour is due to the tuning effect

of the harvester device to the fundamental frequency that highly amplifies the bridge response as shown in

Figure 10 and Figure 11. This effect is also observed in the contour map in Figure 12, where the maximum

harvested energy is obtained around the resonance curves described in Figure 9.

The results for all the bridges shown in Figure 3 are studied to investigate the available energy in railway

bridges due to train passage. The total number of analysed cases is 84.000 (6 bridge lengths, 4 frequency

bands, 10 train types and 350 passages in the non-dimensionless speed range from 0.1 to 0.5). Figure 13

shows the harvested energy superimposed for all the cases versus K1. Although the vast number of cases

makes the analysis difficult, it can be observed that the results follow a similar trend to the previous studies.

The maximum energy is found around the maximum dynamic response speeds and is close to zero at the

cancellation speeds. The energy values may be described by a normal distribution with mean µ = 115.696 mJ

and standard deviation σ = 658.193 mJ in the complete speed range. The high standard deviation is related

to the dynamic behaviour of the bridge-harvester system depending on the load speed. The analysis of

the harvested energy below Kc
11 resulted in [µ, σ] = [2.970, 15.385] mJ which could be more relevant for
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Figure 12: Maximum bridge acceleration and energy harvesting due to HSLM train passages at x = 0.5Lb [Lb = 17.50 m;

f1,035]. Maximum dynamic response and cancellation speeds are denoted by red and blue dashed lines, respectively.

commercial speeds in current railway lines.

Moreover, Table 3 summarises the normal distribution of the energy at resonance speeds Kr
1n (corre-

sponding to cases belonging to the resonance curves in Figure 9), the maximum dynamic speed Km
1i , and

the cancellation speeds Kc
1i for all the cases. From these results, it can be concluded that the maximum

available energy in the bridge dynamic response is due to trains travelling close to a resonance speed far

from a cancellation condition and the energy levels are much lower in other cases.

Figure 13: Energy harvesting due to HSLM train passages at x = 0.5Lb for all bridges. Maximum dynamic response and

cancellation speeds are denoted red and blue dashed lines, respectively.
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Table 3: Mean and standard deviation of energy harvesting from HSLM-A passage in different conditions.

Kr
12 Kr

13 Kr
14 Km

12 Km
13 Km

14 Kc
11 Kc

12 Kc
13 Kc

14

µ [mJ] 24.51 4.03 1.38 14.94 2.76 1.76 0.12 0.05 0.05 0.07

σ [mJ] 137.96 18.73 5.94 46.52 8.06 7.43 0.23 0.08 0.09 0.13

4. Case study

Next, the possibility of energy harvesting is analysed from experimental records of a real bridge to

support the conclusions of previous sections. The authors performed an experimental campaign on several

railway bridges, including the identification of the bridge modal parameters and the recording of vibration

levels under operational conditions [43]. A portable acquisition system Brüel & Kjaer LAN-XI and Endevco

model 86 piezoelectric accelerometers were used in the experimental tests (Figure 14). Measurements were

filtered to carry out data analysis in the frequency range of interest (0− 30 Hz). The modal parameters of

the bridges were identified from ambient vibration data by the stochastic subspace identification technique

[44]. The vertical response of the structure was recorded under the circulation of passenger trains crossing

the bridge at different speeds.

Jabalón HSL Bridge (Figure 14) is selected from the experimental campaign. This bridge is composed

by three identical simply supported bays of equal span lengths Lb = 24 m. The structure crosses Jabalón

River with a 134◦ skew angle. Each deck consists of a cast-in-situ concrete slab with dimensions 11.6 m ×

0.3 m (width × thickness). The slab rests over five prestressed concrete I girders with a height of 2.05 m

separated 2.625 m. The girders lean on the supports through laminated rubber bearings. The slab carries

two ballasted tracks with UIC gauge (1435 mm), UIC60 rails and mono-block concrete sleepers every 0.60 m.

Figure 14 shows the measurement points, all of them located at span 1. The fundamental mode corresponds

to the first longitudinal bending mode shape with natural frequency 6.3 Hz and modal damping 3.2 %. 20

passenger trains circulations were recorded on May 8th 2019 between 11.52 and 15.24 hours. All the trains

were RENFE High-Speed services, and the identified travelling velocities, average axle loads of the passenger

coaches and the circulating track are included in Table 4. More details can be found in Reference [43].

The bridge response is used as the input in the coupled model described in Section 2.2. The right-

hand side of Equation 23 concerning the frequency content of the bridge acceleration is obtained by Fourier

transform of the recorded vibrations. The harvester properties adopted are the same as in the previous

section, and the device is tuned to the bridge fundamental frequency. The energy harvested in the load

resistance is obtained once the system of equations has been solved in the frequency range. Table 4 shows

the energy and average power obtained from the bridge response at accelerometer 7 for all train passages

(see Figure 14). The dimensionless speed is shown as a reference.
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Figure 14: HSL bridge over Jabalón River (38◦53’51.3”N 3◦57’53.0”W), location of the sensors and experimental setup.

The energy levels vary in a wide range from almost zero to 0.84 mJ for train passage #9. Two circulations

are analysed to bring out these differences in the harvested energy. Passage #3 is one of the almost zero

energy circulations, corresponding to a Renfe S104 train travelling on track 2 at V = 251 km/h. Figure 15

shows the experimental bridge and harvester accelerations, voltage and instantaneous power induced by this

train. The harvester acceleration is similar to the bridge acceleration (Figure 15). The frequency content of

the acceleration shows little amplification of the bridge response around the first natural frequency, meaning

that the fundamental mode was not excited during the train passage. The frequency content of the harvester

acceleration is almost identical to that of the bridge for frequencies higher that 10 Hz. This behaviour causes

that the harvester is not properly excited by the bridge vibration. Consequently, the energy levels are almost

zero since the harvester deformation is very small. The voltage across the resistor is around two volts, and

the average power below one milliwatt.

On the other hand, a Renfe S102 train circulating on the same track at V = 274 km/h (passage #11)

leads to a high energy level. In this case, the frequency content of the bridge acceleration is mainly found
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Table 4: Train passages recorded at Jabalón HSL Bridge.

Passage Train Track V [km/h] K1 Pk [kN] E [mJ] Pav [mW]

1 S102 1 290 0.27 165 0.18 0.0082

2 S102 2 266 0.24 165 0.03 0.0011

3 S104 2 251 0.23 153 0.00 0.0001

4 S112-Duplex 1 267 0.25 172 0.46 0.0184

5 S102 1 240 0.22 165 0.01 0.0002

6 S102-Duplex 2 263 0.24 165 0.64 0.0253

7 S100 1 290 0.27 156 0.02 0.0008

8 S112 1 269 0.25 172 0.18 0.0080

9 S102-Duplex 2 265 0.24 165 0.84 0.0334

10 S130 1 236 0.22 165 0.01 0.0003

11 S102 2 274 0.25 165 0.35 0.0151

12 S102-Duplex 1 267 0.25 165 0.44 0.0175

13 S130 2 237 0.22 165 0.02 0.0010

14 S104 1 249 0.23 153 0.00 0

15 S100 2 262 0.24 156 0.04 0.0015

16 S130 1 236 0.22 165 0.01 0.0002

17 S100 1 290 0.27 156 0.02 0.0007

18 S102 2 273 0.25 165 0.35 0.0148

19 S104 1 255 0.23 153 0.00 0

20 S104 2 236 0.22 153 0.00 0.0001

around the fundamental frequency to which the harvester is tuned. The system response is highly amplified

exhibiting a resonant behaviour, as it is also observed in the voltage and power time histories. The maximum

acceleration level of the harvester reaches 10 m/s2, the maximum voltage 0.35 V and the average power

0.0151 mW. This behaviour can be considered as optimal performance of the harvester.

Consistent results are obtained for the rest of the train passages. The maximum harvested energy is

obtained from duplex configurations in comparison to simple configurations of the trains. There is not a

clear influence of the circulating track or the train speed on the energy levels. The total energy harvested

by the system is 3.6 mJ for 20 train passages in the measurement time of approximately three and a half

hours.
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Figure 15: Bridge and harvester acceleration, voltage and power at point 7 induced by Renfe S104 train circulating on track 2

at V = 251 km/h (passage #3).

Figure 16: Bridge and harvester acceleration, voltage and power at point 7 induced by Renfe S102 train circulating on track 2

at V = 274 km/h (passage #11).
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5. Conclusions

The aim of this research is the analysis of energy harvesting performance in railway bridges, taking into

account the influence of the bridge dynamic behaviour under different train circulating conditions. This

research includes both a theoretical analysis of simply-supported beams and the experimental application

using the acceleration data on a real bridge from the Madrid-Sevilla HSL.

The theoretical analysis to compute the energy harvested by the train load passage is based on a modal

superposition approach. This approximation allows computing the energy as the sum of modal contributions.

The fundamental mode contribution is found to be much larger than the related to higher-order frequencies.

The results of this analysis show that the energy harvesting performance is very related to the bridge dynamic

behaviour under train passages. The influence of maximum dynamic response and cancellation condition is

studied in the harvested energy under a single moving load. The maximum and minimum harvested energy

are found at passage speeds related to these two phenomena. This conclusion is also applicable to the energy

harvested from train-induced vibrations.

The amount of harvested energy depends on the intensity of the rail traffic and the design of the harvester.

In this work, a device with fixed design parameters has been considered to obtain comparable energy levels in

the studied bridges. The conclusions drawn from the experimental case study show that the harvested energy

in three and a half hours and 20 train passages could have been 3.6 mJ. This result is similar to other energy

scavenge investigations in bridges [13, 26] but lower than previous studies in which the harvester device is

attached to the railway track where the vibration is higher [17]. Although the available power is small, this

energy source can be used in intermittent storage and measurement operations. The amount of energy can

be increased using several harvesters according to the output required power of a monitoring system. Then,

it is expected that the results of this analysis could be helpful for energy harvesting applications on railway

bridges to feed low power consumption devices, nodes, and sensors of monitoring systems in remote areas,

and also for the development of harvesters as direct structural health monitoring devices [27, 28].
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alitat Valenciana under research project [AICO2019/175] and the Andalusian Scientific Computing Centre

(CICA).

27



References

[1] European Commission, Communication from the commission concerning the development of a Single European Railway

Area, Tech. rep. (2010).

[2] European Commission, Transport in the European Union. Current Trends and Issues, Tech. rep. (March 2019).
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