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Abstract. It is a Theorem of W. W. Comfort and K. A. Ross that if G is a subgroup
of a compact Abelian group, and S denotes those continuous homomorphisms from G
to the one-dimensional torus, then the topology on G is the initial topology given by
S. Assume that H is a subgroup of G. We study how the choice of S affects the
topological placement and properties of H in G. Among other results, we have made
significant progress toward the solution of the following specific questions: How many
totally bounded group topologies does G admit such thatH is a closed (dense) subgroup?
If CS denotes the poset of all subgroups of G that are S-closed, ordered by inclusion, does
CS have a greatest (resp. smallest) element? We say that a totally bounded (topological,
resp.) group is an SC-group (topologically simple, resp.) if all its subgroups are closed
(if G and {e} are its only possible closed normal subgroups, resp.) In addition, we
investigate the following questions. How many SC-(topologically simple totally bounded,
resp.) group topologies does an arbitrary Abelian group G admit?

1. Introduction

Let (G, τ) be an Abelian Hausdorff topological group. In their 1964 seminal paper
[16], Comfort and Ross assigned a Hausdorff group topology τS to each point-separating

subgroup S of the character group Ĝ of G, consisting of all group-homomorphisms from
G into the unit circle T as follows: τS is the weakest topology on G that makes the

elements of S continuous. (By [16, Theorem 1.9 ] a subgroup of the compact group Ĝ is

point-separating if and only if it is dense.) Let Sτ := {ϕ ∈ Ĝ : ϕ is τ -continuous}. Then

Sτ is a subgroup of Ĝ. By [16, Theorem 1.2 and Theorem 1.3] the following holds: (i)
(G, τ) is totally bounded if and only if τ = τSτ ; (ii) if S is a point-separating subgroup of

Ĝ, then SτS = S. (We call this assertion the Comfort-Ross Theorem.) Let B(G) be the
set of all totally bounded group topologies on G. By the Comfort-Ross Theorem there is
an order-preserving bijection from B(G) onto the set of all point-separating subgroups of

Ĝ.
In this paper we consider τS for arbitrary subgroups S of Ĝ and Sτ if τ is not

necessarily Hausdorff. For an Abelian group G let PK(G) be the lattice of all precompact

group topologies on G, and let Σ(Ĝ) be the lattice of all subgroups of Ĝ. By using the
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Comfort-Ross Theorem, Remus in [34] showed that f : PK(G) −→ Σ(Ĝ) is a lattice-
isomorphism, where f(τ) = Sτ and f−1(µ) = τµ hold. (For a generalization to arbitrary
groups see [34, (3.7)] and [31].)

Fast forward to 1983 and 1985 when Remus in [34] (see also [32]) and Berhanu,

Comfort and Reid in [1] proved that ifG is infinite, then Ĝ has 22
|G|
-many dense subgroups.

It follows that an infinite group accepts 22
|G|
-many totally bounded (precompact and

Hausdorff) group topologies. Concerning the number of totally bounded (in particular
pseudocompact) group topologies on non-necessarily Abelian groups we refer to [33], [9],
[35], [10], [11] and [12].

Many examples regarding the interplay between precompact or totally bounded

group topologies between G and subgroups of Ĝ have been studied by several colleagues.
The following list is by no means complete or exhaustive:

(1) The authors of [18] showed that if τ1 ( τ2 are (Hausdorff) group topologies on
G such that (G, τ1) is compact and (G, τ2) is pseudocompact, then there are τ2-
closed subgroups of G that are not τ1-closed. They also proved that if (G, τ1) is
a totally disconnected Abelian compact group of uncountable weight, then there
is a pseudocompact group topology τ2 such that τ1 ( τ2. Eventually, the authors
in [15] generalize this result by removing the requirement of (G, τ1) being totally
disconnected.

(2) The authors of [26] focus on an infinite compact (Hausdorff) totally disconnected
Abelian group (G, τ) and try to obtain finer totally bounded group topologies τ ′

such that every τ ′-closed subgroup is τ -closed.
(3) In [38], the author focuses on totally bounded topological groups in which every

subgroup is closed.
(4) In [24, Proposition 3.4], the following is proved: Let G be a totally bounded

Abelian group with character group S. If L is a subgroup of S, let LG denote L
equipped with the weakest topology that makes the elements of G (acting on L)
continuous. Then, G is pseudocompact if and only if the topology inherited by
each countable subgroups of SG is its corresponding largest totally bounded group
topology.

(5) In [4], the following is proved: Let G be a precompact, bounded torsion Abelian
group with character group S. If G is Baire (resp., pseudocompact), then all com-
pact (resp., countably compact) subsets of SG are finite. Also, G is pseudocompact
if and only if all countable subgroups of SG are closed.

In this paper we further investigate the topological properties of precompact and
totally bounded abelian groups via its dual group. More precisely, if H is a subgroup of a
precompact Abelian group G, what are the topologies of the form τS, with S a subgroup

of Ĝ such that

(1) H is τS-closed?
(2) H is τS-dense?

(3) How many subgroups S of Ĝ are there such that each of the above happens?

(4) How many subgroups of Ĝ produce the same closed (dense) subgroups in G?

Similarly, we want to know those subgroups of Ĝ producing the same closed (dense)
subgroups in G.
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We now formulate our main results.

Theorem A. If G is an infinite Abelian group and {Hi : i ∈ I} is a family of subgroups of

G such that |I| < 2|G|, then G admits exactly 22
|G|
-many totally bounded group topologies

µ such that Hi is closed in (G,µ) for all i ∈ I.

By Proposition 6.6 this result is not true if |I| = 2|G|.

Let G be an Abelian group and let S be a subgroup of Ĝ. We denote by CS the
poset of all subgroups of G that are S-closed. Hence CS is the poset of all subgroups of
G which are closed in the precompact group (G, τS).

It is natural to ask whether there exists a greatest precompact group topology τMS

on G with CMS = CS. The next result gives a positive answer, since PK(G) and Σ(Ĝ)
are isomorphic as lattices.

Theorem B. Let G be an Abelian group and let S be a subgroup of Ĝ. Then there exists
a greatest subgroup MS containing S and such that

CMS = CS.

We remember that a totally bounded Abelian group is an SC group if all its sub-
groups are closed (see Remark 6.9. Although this seems to be a very restrictive property,
the following result shows that if G is an Abelian group that is not of bounded order,
then the number of SC-group topologies is huge.

Theorem C. The following statements hold:

(a) Let G be an Abelian group which is not of bounded order. Then G admits at least
2c-many SC-group topologies.

(b) Every countable Abelian group which is not of bounded order admits exactly 2c-
many SC-group topologies.

We remember that a topological group (G, τ) is topologically simple if G and {e}
are its only possible closed normal subgroups. The anti-discrete topology on a space X
is defined as {∅, X}. Hence, if G is a topologically simple topological group, then G is
Hausdorff unless G carries the anti-discrete topology ([25, (5.4)]).

By Corollary 7.2 every infinite Abelian totally bounded group which is topologically
simple is algebraically a subgroup of R. The next results clarifies the question of the
existence of topologically simple for subgroups of the real line.

Theorem D. Let G be a non-trivial subgroup of R. Then G admits exactly 2c-many
totally bounded group topologies τ such that (G, τ) is topologically simple. The topologies
τ can be chosen such that w(G, τ) = c.

To prove the foregoing, we develop some technical results we believe are interesting
on its own. For example, we characterize the subgroups of the compact character group

Ĝ of an Abelian group G, producing the same closed subgroups in G. This is Theorem
5.1.
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This paper is organized as follows: Sections 1, 2 and 3 consist of the introduction,
notation and results about dense subgroups of precompact groups. In Section 4, we are
concerned with the number of totally bounded group topologies on an Abelian group G
such that each member of a previously fixed family of subgroups of G is closed on all
those topologies. The goal of Section 5 is somewhat different as we deal with the poset of

all subgroups S of the big dual group Ĝ having a previously fixed subgroup H of G closed
in the weak topology τS. In Section 6, we characterize and then calculate the number of
totally bounded group topologies on G such that all subgroups of G are closed. In Section
7, we go in the opposite direction as we investigate the existence of topologies without
producing closed non-trivial subgroups. In Section 8, we apply previous results to one
specific example: The integers. In Section 9 we conclude with final remarks.

2. Notation

By Z we denote the group of integers and by Z(n) the cyclic group of order n.
Sometimes we look at Z as a topological, discrete group, and some others as the under-
lying group of it as a topological group but without any topology. Set ω := {0, 1, 2, ...}
and N := {1, 2, ...}. P denotes the set of prime numbers. Our model for T is the group
([0, 1),+ mod 1) with the topology inherited from R, when we need to see it as a topolog-
ical group. Let G be an Abelian group. If A ⊆ G, the subgroup generated by A, namely
⟨A⟩, is the smallest subgroup containing A; if A is the singleton {a}, we write just ⟨a⟩.
When writing H ≤ G, we signify that H is a subgroup of G. The symbols r(G), r0(G) and
rp(G) stand respectively for the rank, torsion-free rank, and p-rank of the group G [21,
§16]. tG denotes the torsion subgroup of G. If L andM are groups which are algebraically
isomorphic, then we write L ∼= M . If the topological groups G and H are topologically

isomorphic, we write G ≃ H. For an Abelian group G we will denote by Ĝ the set of all

homomorphisms ϕ : G −→ T, which we will also refer to as the characters of G. Ĝ be-
comes a group by defining (ϕ1ϕ2)(g) := ϕ1(g) + ϕ2(g) ∈ T whenever g ∈ G, and equipped

with the finite-open topology σ(Ĝ, G), Ĝ becomes a compact topological group. We know

Ẑ ≃ T. When (G, τ) is a topological Abelian group, then (G, τ )̂ , or simply Ĝ if there is

no room for confusion, denotes the subgroup of Ĝ consisting of the τ -continuous elements.

If S is a subgroup of Ĝ, denote by GS the topological group obtained by equipping G
with the weakest topology τS that makes the elements of S continuous. It follows that GS

is Hausdorff if and only if S separates the elements of G (i.e., S is point-separating.) We
have pointed out above that the Comfort-Ross Theorem establishes an order-preserving
bijection between the set of all totally bounded group topologies on G and the set of all

point-separating subgroups of Ĝ. Therefore, taking S = Ĝ, yields the finest precompact
group topology on G. This topology is called the Bohr topology of G and it is designated
by τb(G) here. It is a well-known fact that the Bohr topology is Hausdorff (see [6]).

As usually, if Y is a subspace of the topological space X we let Y
X

denote the
closure of Y in X; wX and χX stand respectively for the weight and character of X [6,

§3]. Also, given a subgroup S of Ĝ, we let H|S denote the group H equipped with the
topology inherited from GS, and A(S,H) := {ϕ ∈ S : ϕ[H] = {0}}. A(S,H) is called the
annihilator of H in S and is a subgroup of S. Similarly, A(H,S) := {g ∈ H : φ(g) =
0 ∀φ ∈ S} is called the annihilator of S in H and is a subgroup of H.
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A topological group G is precompact if whenever U is an open subset of G, there is a
finite subset F ⊂ G such that G = FU . If in addition to be precompact, G is Hausdorff,
then we say that G is totally bounded. It is a Theorem of A. Weil [39] that the completion
of the totally bounded group G is a compact group G, which we call its Weil completion.
(The notion compact space is used as in [3, Definition 1, p. 83].)

Given a topological group G, it follows that the closure N of its identity is a (normal)
subgroup of G [25, (5.4)], hence G/N is a Hausdorff topological group [25, (5.21)]. We
refer to the map ϕ : G −→ G/N , or simply to G/N , the Hausdorff modification of G.

When the topology of G stems from a subgroup S of Ĝ, it follows that N = A(G,S) if G
is Abelian. A topological group G is precompact if and only if its Hausdorff modification
is totally bounded. By [3, chapter III, p. 248] this means that the Hausdorff completion
of G is compact.

Often we will have to use the following.

Lemma 2.1. Let G be an infinite Abelian group, H a subgroup of G and S a subgroup of

Ĝ. Then ĜS/H and Ĥ|S, resp., are group-isomorphic to A(S,H) and S/A(S,H), resp.

Proof: We sketch the proof that ĜS/H is group-isomorphic to A(S,H). Set N := A(G,S).
We then have

H −−−→ NH/N −−−→ Yy y y
GS −−−→ GS/N −−−→ Γy y y

GS/H −−−→ GS/NH −−−→ Γ/Y

where the groups in the middle column are the Hausdorff modifications of the groups on
the left column, Γ is the Weil completion of GS/N and Y the closure of NH/N in Γ. The
first vertical arrows are containments whereas the second vertical arrows are projections.
It follows that A(S,H) = A(S,NH), Γ is a compact Hausdorff group and each of the
groups in the middle column is dense in the corresponding group on the right column. To
see, for example, that A(S,NH/N) ∼= A(S,NH), one readily sees that the map ϕ 7→ ϕ◦π
is an isomorphism, where π : NH −→ NH/N is the natural map. We then have that

ĜS/H ∼= ̂GS/(NH) ∼= Γ̂/Y ∼= A(S, Y ) (by [25, (24.5)]) ∼= A(S,NH/N) ∼= A(S,NH) ∼=
A(S,H).

That Ĥ|S is group-isomorphic to S/A(S,H) can be done in a similar fashion �

3. Dense Subgroups

In the following let G be an Abelian group. Let H be a subgroup of G. Obviously,
if H is dense as a topological group in GS, then φ[H] will be dense in φ[G] ⊆ T, whenever
φ ∈ S. We would like to prove that the latter condition is also sufficient.

Theorem 3.1. Let H be a subgroup of G and S a subgroup of Ĝ. Then H is dense in
GS if and only if φ[H] is dense in φ[G] ⊆ T, whenever φ ∈ S.
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Proof: We must show that if V is an open neighborhood in GS, there exists h ∈ H ∩ V .
Let g ∈ V . By definition, there exist ϕ1, ..., ϕk ∈ S and ϵ > 0 such that

∩k
j=1ϕ

−1
j [Vϵ(ϕj(g))] ⊆ V,

where Vϵ(ζ) := {t ∈ T : |ζ − t| < ϵ}. Consider SH , the completion of the Hausdorff
modification of S equipped with the weakest topology that makes the elements of H

continuous, the latter viewed as characters on Ĝ. Let ϕ1, ϕ2 ∈ S. If ϕ1(h) = ϕ2(h)
for all h ∈ H, then ϕ1ϕ

−1
2 (h) = 0, which implies ϕ1ϕ

−1
2 [H] = {0}. Since ϕ1ϕ

−1
2 ∈ S,

our hypothesis implies that ϕ1ϕ
−1
2 [G] = {0}, hence we would have ϕ1 = ϕ2. Therefore,

ϕ1 ̸= ϕ2 implies there is h ∈ H such that ϕ1(h) ̸= ϕ2(h), and thus it follows that SH is
compact. By [25, (26.16)], given ϕ1, ..., ϕk ∈ SH ⊆ SH , and g ∈ G, there exists h ∈ H
such that

|ϕj(h)− ϕj(g)| < ϵ, (j = 1, 2, 3, ..., k).

Hence h ∈ ∩k
j=1ϕ

−1
j [Vϵ(ϕj(g))] ⊆ V , as required. �

Let S be a subgroup of Ĝ. Obviously, H|S is closed in GS if and only if whenever H|S
is dense in N|S, then H|S = N|S, for all H ≤ N ≤ G. Set T := {f|N : f ∈ S}. Obviously

T is a subgroup of N̂ ; if S separates the points of G, then T separates the points of N
and by Comfort-Ross’ theorem [16, Theorem 1.2], N|S = NT .

Lemma 3.2. The subgroup H ≤ G is closed in GS if and only if

A(Ĝ,H) = A(S,H)
Ĝ
= S ∩ A(Ĝ,H)

Ĝ

.

Proof: If H is closed in GS, then ĜS/H ∼= A(S,H) by Lemma2.1 and GS/H is Hausdorff.

Therefore A(S,H) is dense in A(Ĝ,H).

Conversely, since Ĝ/H ∼= A(Ĝ,H), for every g ∈ G \H, there is ϕ ∈ A(Ĝ,H) such

that ϕ(g) ̸= 0 [25, (A.7)]. Therefore, if A(S,H) is dense in A(Ĝ,H), there is χ ∈ A(S,H)
such that χ(g) ̸= 0. This implies that H is closed in GS by Lemma 4.1 . �

Corollary 3.3. If A(Ĝ,H) ⊆ S, then H is closed in GS. If H is of finite index in G,
then the converse is true.

Proof: The first assertion holds, since A(Ĝ,H) is closed in Ĝ by [25, (23.24)(c)] . Assume

that H is a closed subgroup of finite index in GS. Then H is open in GS. If φ ∈ A(Ĝ,H),
then φ|H = 0 is continuous on H, hence continuous on GS, hence φ ∈ S, as required. �

If H is not of finite index in G, the converse may be false:

Example 3.4. Consider the group G := ⊕ω⟨14⟩, where ⟨1
4
⟩ ⊂ T, and its subgroup H :=

⊕ω⟨12⟩. Then Ĝ ∼=
∏

ω Z(4) and A(Ĝ,H) ∼=
∏

ω{0, 2}. Consider the subgroup S :=

⊕ωZ(4) of Ĝ. Then H is closed in GS, yet A(Ĝ,H) ⊆ S is false. [If g ∈ G \ H, say

g = (gk), there is n < ω such that gn ̸∈ ⟨1
2
⟩. Consider ϕ = (tk) ∈ Ĝ defined as tk = 0 if

k ̸= n, and tn = 2. It follows that ϕ ∈ S, ϕ(g) = 2gn = 1
2
, yet ϕ[H] = {0}.] �

Theorem 3.5. A(Ĝ,H) ∩ S = {0} if and only if H is dense in GS.

Proof: (⇒) Deny. By Theorem 3.1, there would be ϕ ∈ S with ϕ[H] not dense in ϕ[G].
This would imply that |ϕ[H]| < ℵ0, hence closed in T, and there would be g ∈ G \ H
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with ϕ(g) ̸∈ ϕ[H]. But then, if π : T −→ T/ϕ[H] ≃ T denotes the canonical map, then

0 ̸= π ◦ ϕ ∈ A(Ĝ,H) ∩ S, a contradiction.

(⇐) Let ϕ ∈ A(Ĝ,H) ∩ S. By Theorem 3.1 {0} = ϕ[H] would be dense in ϕ[G],
implying that {0} = ϕ[G], hence ϕ = 0. �
Remark 3.6. When H is a maximal proper subgroup of G, then either H is necessarily
dense or closed in GS.

A subgroup E of an Abelian (resp. Abelian topological) group A is said to be
essential (resp. topologically essential) if E ∩ B ̸= {0} whenever B is a non-trivial (resp.
and closed) subgroup of A [21, p. 84]. By [21, Lemma 16.2] an independent system M
is maximal if and only if ⟨M⟩ is essential. if M is a maximal independent system in an
essential subgroup of A, then M is a maximal independent system in A. Note that in [7]
and [2] topologically essential groups in our sense are called “essential”.

The following result characterizes precompact group topologies without proper dense
subgroups. First we recall the following result [25, (24.10)].

Lemma 3.7. Let S be a subgroup of the compact Abelian group Ĝ. Then S is closed in

Ĝ if and only if S = A(Ĝ,A(G,S)).

Proposition 3.8. Given S ≤ Ĝ the group (G, τS) contains no proper dense subgroups if

and only if S is topologically essential in Ĝ.

Proof: Suppose that S is topologically essential in Ĝ and let H ≤ G be a proper subgroup

of G. Then {0} � A(Ĝ,H) by [25, (24.12)]. Therefore A(Ĝ,H) ∩ S ̸= {0}, which implies
that H is not dense in (G, τS) by Theorem 3.5.

Conversely, let L be a non-trivial closed subgroup of Ĝ. Then A(G,L) ̸= G by [25,
(22.17)], which means that A(G,L) is not dense in (G, τS). By Theorem 3.5, there is

0 ̸= ϕ ∈ S ∩ A(Ĝ,A(G,L)) which equals S ∩ L by the above result. This means that
S ∩ L ̸= {0} by Lemma 3.7. �

Corollary 3.9. Given S ≤ Ĝ the group (G, τS) is a totally bounded topological group
without proper dense subgroups if and only if S is topologically essential and dense in

Ĝ. �

Now we are ready to give a partial answer to the problem of finding totally bounded
group topologies withour proper dense subgroups.

Theorem 3.10. If G is a torsion-free Abelian group and S an essential subgroup of Ĝ,

then S is dense in Ĝ. As a consequence (G, τS) is a totally bounded topological group
without proper dense subgroups.

Proof: We know by the Comfort-Ross Theorem that (G, τS) is a totally bounded topo-

logical group if and only if S is dense Ĝ. On the other hand, in order to prove that S is

dense in Ĝ, it will suffice to show that if g ∈ A(G,S) then g = 0:

Take an arbitrary element g ∈ A(G,S) and define g : Ĝ −→ T by g(ϕ) := ϕ(g).

It follows that g is a continuous character of Ĝ [25, (24.8)]. Since S is essential in

Ĝ, for every ϕ ∈ Ĝ there is some m ∈ N such that mϕ = s ∈ S, which means that
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mg(ϕ) = mϕ(g) = s(g) = 0. Therefore g(Ĝ) ⊆ tT. Now, since G is torsion-free, it follows

that Ĝ is connected [25, (24.25)]. Thus g(Ĝ) is a torsion compact connected subgroup of

T, which implies that g(Ĝ) = {0}. In other words, we have that ϕ(g) = 0 for all ϕ ∈ Ĝ.
This yields by [25, (22.17)] that g = 0.

That (G, τS) contains no dense subgroups follows from Corollary 3.9. �
The converse is not true. If S is the torsion subgroup of T ≃ Ẑ, then S is not

essential in T (see Corollary 8.3 below.)

Not every Ĝ has proper essential subgroups [21, Corollary 16.4].

Remark 3.11. Theorem 3.10 does not hold in general. The requirement that G be torsion-
free cannot be dropped: Let m be an infinite cardinal, p ∈ P and n ∈ N with n > 1. For

G :=
⊕

m Z(p
n) we get Ĝ = (Z(pn))m. The socle of Ĝ is H :=

⊕
2m Z(p). Then [21,

Exercise 16.10] implies that H is an essential subgroup of Ĝ. The closure of H is a group

of order p. Hence H is not dense in Ĝ.

Example 3.12. For m ≥ ω and p ∈ P, let G :=
⊕

m Z(p). and S ̸= Ĝ. Then GS has
always non-trivial dense subgroups: For, if ϕ ̸∈ S, then G/ kerϕ ∼= U , where U is a
subgroup of tT with order p. Hence kerϕ is a maximal proper subgroup of G. Since ϕ is
not continuous on GS, kerϕ is not closed in GS. By Remark 3.6 it is dense.

On the other hand:

Example 3.13. If G is an infinite Abelian group of bounded order, then GS has always
non-trivial closed subgroups: For, if ϕ ∈ S, then kerϕ is a closed subgroup of GS. Then
G/ kerϕ ∼= U , where U is a subgroup of bounded order of tT . Hence U is finite. Thus
kerϕ is non-trivial.

Example 3.14. If |G| > c, then GS has always non-trivial closed subgroups. For, if ϕ ∈ S,
then ker ϕ is a closed subgroup of GS that is non-trivial since it has index at most c.

Theorem 3.15. Let (G, τ) be a compact Abelian group, and let H be a dense subgroup
of (G, τ) of finite index. Then there exists a totally bounded group topology τ ′ on G such
that:

(1) H is a closed subgroup of (G, τ ′).
(2) If X is the character group of (G, τ), and Y is the character group of (G, τ ′), then

Y is isomorphic to Hom(G/H,T)×X.
(3) The completion K of (G, τ ′) contains a copy of (G, τ) of index [G : H].
(4) There is a continuous epimorphism k : K −→ (G, τ), extending the identity from

(G, τ ′) onto (G, τ).
(5) The topological groups H as a subgroup of K, and H as a subgroup of (G, τ) are

the same.

Remark 3.16. Notice that this result, which is essentially [6, (4.15 ii)], is reminiscent of
Tarski’s Paradox, obtaining from one compact Hausdorff group, (G, τ), a bigger group,
but no much bigger, K, in which a copy of G is dense in K, but at the same time K is
the finite union of cosets of (G, τ). We offer a different proof than the one in [6, (4.15 ii)].

Proof of Theorem 3.15. Obviously Hom(G/H,T) is finite. Let π : G −→ G/H be the
natural map. Consider the finite subgroup of Hom(G,T) given by

F := {f ◦ π : f ∈ Hom(G/H,T)}.
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Notice that ψ ∈ F implies ψ[H] = {0}, and since H is a dense subgroup of (G, τ), it
follows from Theorem 3.5 that F ∩X = {0}. Set

Y := F +X.

Finally, set τ ′ := τY . Then Y is the character of (G, τ ′) which is algebraically isomorphic to
the character group of its compact Weil completionK. Since G/H is finite, it is immediate
to see that H = ∩{ker f : f ∈ F}, hence H is a closed subgroup of (G, τ ′), proving (1).
Since F ∩X = {0} and F is (clearly) isomorphic to Hom(G/H,T), (2) follows. Applying
Pontryagin-van Kampen duality to (2), it follows that K is isomorphic to G/H × (G, τ),
yielding (3), and (4) in turn. (5) follows since ψ ∈ F implies ψ[H] = {0}. �
Example 3.17. At the end of [37], the authors sketch a proof of the fact that, for any
finite group F and every non-principal ultrafilter U of ω, the (compact Hausdorff) group
G := F ω contains a dense subgroup GU such that G/GU is isomorphic to F , hence GU
is of finite index in G. It follows from [30] that G has 2c-many dense subgroups of finite
index.

4. Closure of subgroups

Our objective in this section is twofold:

(a) Let GS be a precompact Abelian group with character group S. Characterize the
closure of a given subgroup of G in terms of S.

(b) Let F be a family of subgroups of G. Find the number of totally bounded group
topologies τ on G such that every element of F is closed in (G, τ).

We start with a simple fact.

Lemma 4.1. A subgroup H of an Abelian group G is closed in GS if and only if for all
a ∈ G \H there is ϕ ∈ A(S,H) such that ϕ(a) ̸= 0.

Proof: (⇐). Obvious. To see (⇒), notice that GS/H is Hausdorff [25, (5.21)] and pre-
compact, hence totally bounded. By the Comfort-Ross Theorem, the character group of
GS/H separates points. Therefore, there is a continuous f : GS/H −→ T with f(aH) ̸= 0.
Then ϕ : g 7→ f(gH) is as required. �.

Notice we are not assuming that S is point-separating.

Corollary 4.2. Let H ≤ G and S ≤ Ĝ. Then the following assertions are equivalent:

(1) g ∈ H
GS

.
(2) φ(g) = 0 for all φ ∈ A(S,H).

(3) φ(g) ∈ φ[H]
T
, whenever φ ∈ S.

Proof: (1) ⇒ (2), (1) ⇒ (3) and (3) ⇒ (2) are obvious. On the other hand, (2) ⇒ (1) is
a straightforward consequence of Lemma 4.1. �

The next results are very similar to [25, (23.24(c)) and (24.10)] with very similar
proofs.

Theorem 4.3. Let S be a subgroup of Ĝ, and N := A(G,S).
(1) If T is a subgroup of S, then A(G, T ) is a closed subgroup of GS. In particular,

N = {0}
GS

.
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(2) If H ≤ G, then H
GS

= A(G,A(S,H)).
(3) If H is a closed subgroup of GS, then H = H +N = A(G,A(S,H)).

In particular, if H is a subgroup of G, then H = A(G,A(Ĝ,H)).

Proof: (1) If x ∈ G\A(G, T ), then there is φ ∈ T such that φ(x) ̸= 0. Then apply Lemma
4.1.
(2) (⊆) Let g and ϕ be arbitrary elements of H

GS
and A(S,H), respectively. Then

ϕ(g) ∈ ϕ[H] = {0}, which implies g ∈ A(G,A(S,H)).

(⊇) Suppose that g /∈ H
GS

. Set K := GS, the Weil completion of GS, which is a

compact group, and L := H
K
. We have that g ∈ K \ L and K̂= S. Therefore, by [25,

(23.26)] there is χ ∈ K̂≃ S such that χ[L] = {0} and χ(g) ̸= 0. Plainly, χ ∈ A(S,H)
and g /∈ A(G,A(S,H)).
(3) follows from (2).

The last statement follows by taking S = Ĝ since in this case all subgroups of G are
closed in GS (Lemma 4.6). �
Remark 4.4. One may be tempted to believe that if S is a point-separating subgroup of

Ĝ, then S = A(Ĝ,A(G,S)). This is false in general. Of course S ⊆ A(Ĝ,A(G,S)). But

if S is any non-torsion subgroup of T ≃ Ẑ, then A(Z, S) = {0} =⇒ A(Ẑ,A(Z, S)) = Ẑ;
see Corollary 8.3 below.

Corollary 4.5. Let H ≤ N be subgroups of G, and let S be a subgroup of Ĝ. The
following conditions are equivalent:

(1) N ⊆ H
GS

.
(2) H is τS-dense in N .
(3) A(G,A(S,N)) = A(G,A(S,H)).

In addition, N = H
GS

if and only if N = A(G,A(S,N)) = A(G,A(S,H)). �

Comfort and Saks were the first who gave examples of SC groups.

Lemma 4.6. ([17, Lemma 2.1]) Let G be an Abelian group with the Bohr topology τb.
Then every subgroup of G is closed in (G, τb).

By using this result the following is shown in [4, Lemma 2.5]: Let G be an Abelian
group of bounded order, and let τ be a totally bounded group topology on G. Then every
subgroup of G is closed in (G, τ) if and only if τ = τb.

Hence for such groups G the following is false: Let {Hi : i ∈ I} be a family of
subgroups of G. Then there is a totally bounded group topology τ ̸= τb on G such that
Hi is closed in (G, τ) for all i ∈ I.

In Theorem A we give the best possible result for |I| < 2|G|. The corresponding
proof needs some preparation.

Lemma 4.7. ([1, Theorem 4.3.]) Let (G, τ) be an infinite totally bounded group. Then

(a) χ(G, τ) = w(G, τ).
(b) If in addition G is Abelian, then χ(G, τ) = (G, τ )̂ .

Lemma 4.8. ([33, Lemma (2.9)]) Let G be a discrete group which is maximally almost
periodic. Then G admits a totally bounded group topology τ with w(G, τ) ≤ |G|.
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Lemma 4.9. ([34, Lemma (2.16)]) Let G be an infinite Abelian group. If r(G) is finite,
then G is countable. Otherwise, r(G) = |G| holds.

Lemma 4.10. Let G be an infinite group, and let {τi : i ∈ I} be a family of group
topologies on G such there is i0 ∈ I with χ(G, τi0) ≥ ω. Set τ :=

∨
i∈I τi in the lattice of

all group topologies on G. Then χ(G, τ) ≤ max {|I|, sup {χ(G, τi) : i ∈ I}}.

Proof: Let e be the identity of G. For all i ∈ I, let Bi be a neighborhood-basis of e with
respect to (G, τi) such that |Bi| = χ(G, τi). For any finite subset M = {i1, . . . , in} of I

let BM := {
∩in

j=i1
Uj : Uj ∈ Bj}. Let F be the set of all finite subsets of I. Then B :=∪

M∈F BM is a neighborhood-basis of e with respect to τ . Let α := sup {χ(G, τi) : i ∈ I}.
Then α ≥ ω, |BM | ≤ α for all M ∈ F , and |B{i0}| = |Bi0| ≥ ω. For |I| ≥ ω we have
|F| = |I|. Since B :=

∪
M∈F BM , finally [29, Proposition 4.4 and 4.5, Chapter III] implies

|B| ≤ max {|F|, α} = max {|I|, α}. �

We are ready for the proof of our first main result.

Proof of Theorem A. Let i ∈ I. By Lemma 4.8, G and G/Hi admit totally bounded
group topologies τ and νi, respectively, such that w(G, τ) ≤ |G| and w(G/H, νi) ≤
|G/HI | ≤ |G|. Let πi : G → G/Hi be the canonical epimorphism and ν̃i be the initial
topology on G with respect to πi and νi. Surely ν̃i is precompact. Then the quotient topol-
ogy of ν̃i on G/Hi is νi. Hence Hi is closed in (G, ν̃i). Now χ(G, ν̃i) = χ(G/H, νi) ≤ |G|.
Define µ0 := τ ∨ (

∨
i∈I ν̃i). Then µ0 is totally bounded, and Hi is closed in (G,µ0).

Lemma 4.10 implies χ(G,µ0) ≤ max {|I|, |G|}. By |I| < 2|G| we get χ(G,µ0) < 2|G|.
Finally, Lemma 4.7 implies w(G,µ0) = |(G,µ0) |̂ < 2|G|.

|Ĝ| = 2|G| holds by a result of Kakutani [27]. For M := (G,µ0)̂we have |Ĝ/M | =
2|G| since |M | < 2|G|. Lemma 4.9 implies r(Ĝ/M) = 2|G|. Thus Ĝ/M contains 22

|G|
-many

subgroups. Hence Ĝ has this number of subgroups containing M . Thus by the Comfort-
Ross Theorem there are 22

|G|
-many totally bounded group topologies µ on G being finer

then µ0. Surely Hi is closed in (G,µ). �
The argumentation in the first part of the proof of Theorem A (for |I| = 1) shows:

Theorem 4.11. Let G be an infinite group, and let H be a normal subgroup of G such
that G/H is maximally almost periodic in the discrete topology. If the finest precompact
group topology on G is Hausdorff, then there is a totally bounded group topology µ0 on G
with w(G,µ0) ≤ |G| such that H is closed in (G,µ0). �

By applying Theorem 4.11 and [10, Corollary 2.6(a)], we get

Theorem 4.12. Let G be an infinite group, and let H be a normal subgroup of G such
that G/H is maximally almost periodic in the discrete topology. If the finest precompact
group topology τf on G is Hausdorff with α := w(G, τf ) > |G|, then G admits at least
α-many totally group topologies µ such that H is closed in (G,µ). �
Remark 4.13. Remus showed in [35, Satz (2.2)] that if G is an Abelian group and H is
a subgroup of G, then for every τ ∈ PK(H) there is a finest precompact group topology
τHf on G which induces τ . If τ is totally bounded, then τHf has the same property. This

implies that all subgroups of G which contain H are closed in (G, τHf ), see [35, Folgerung
(2.6)(a)].
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In summary: If G is an Abelian group and H is an infinite subgroup of G, then
there are at least 22

|H|
-many totally bounded group topologies τ on G such that every

subgroup N of G with H ⊆ N is closed in (G, τ).

Let G be an infinite countable Abelian group with only countably many subgroups.
These groups are classified in [36]. Groups like

⊕
m Z ⊕

⊕
n Z(p

∞) with m,n < ω are
examples. By Theorem A these groups have exactly 2c many SC-group topologies.

5. Subgroups of Ĝ producing the same closed subgroups in G

In this section, we study the poset of all subgroups S ≤ Ĝ having a previously fixed
subgroup H ≤ G closed in the weak topology τS. We prove that there always exists a
greatest element (Theorem B) but not a smallest one in general.

We first characterize the subgroups of Ĝ producing the same closed subgroups of G.

Theorem 5.1. Let G be an Abelian group and let S1, S2 be subgroups of Ĝ. Then S1 and
S2 produce the same closed subgroups in G if and only if

L ∩ S1
Ĝ
= L ∩ S2

Ĝ

for all closed subgroups L of Ĝ, when equipped with σ(Ĝ, G).

Proof: (⇐) Suppose that

L ∩ S1
Ĝ
= L ∩ S2

Ĝ

for all closed subgroups L of Ĝ and let H be a τS1-closed subgroup of G. Then S1 ∩
A(Ĝ,H) = A(S1, H) is dense in A(Ĝ,H) by Lemma 3.2. As a consequence, S2∩A(Ĝ,H) =

A(S2, H) is dense in A(Ĝ,H) as well, which implies by Lemma 3.2 that H is τS2-closed.

(⇒) Reasoning by contradiction, suppose there is a closed subgroup L of Ĝ such that

S1 ∩ L
Ĝ * S2 ∩ L

Ĝ
. Observe that, by Lemma 3.7,

Si ∩ L
Ĝ
= A(Ĝ,A(G,Si ∩ L

Ĝ
)), 1 ≤ i ≤ 2.

Set H := A(G,S1 ∩ L
Ĝ
). Then H is τS1-closed by Theorem 4.3. However, Lemma 3.2

implies

A(S2, H)
Ĝ
= S2 ∩ A(Ĝ,H)

Ĝ

= S2 ∩ A(Ĝ,A(G,S1 ∩ L
Ĝ
))

Ĝ

= S2 ∩ S1 ∩ L
Ĝ

Ĝ

⊆

S2 ∩ L
Ĝ + S1 ∩ L

Ĝ
= A(Ĝ,A(G,S1 ∩ L

Ĝ
)) = A(Ĝ,H).

As a consequence, A(S2, H) is not dense in A(Ĝ,H), which means by Lemma 3.2
that H is not τS2-closed. This completes the proof. �

The latter result implies the following consequences. In the Corollary below, note
that G/A(G,R) is Hausdorff.

Corollary 5.2. Let S ≤ Ĝ and let R := S
Ĝ
. The following assertions are equivalent:

(1) L ∩ S Ĝ
= L ∩R for every closed subgroup L of Ĝ.
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(2) S and R produce the same closed subgroups in G.
(3) S and R produce the same closed subgroups in G/A(G,R).

Proof: (1)⇔ (2) is a straigtforward consequence of Theorem 5.1.
(2)⇔ (3) By Theorem 4.3 the closure of {0} in GS resp. GR is A(G,R). Now apply [25,
(5.34)] . �
Example 5.3. Fix different prime numbers p and q and consider S := Z(p∞). Of course,

R := S
Ẑ
= T. We will see below in Corollary 8.2 (or see [19, (3.5.4) and (3.5.5)]), that

the closed subgroups of ZS have the form pkZ. On the other hand, every subgroup of

Z is closed in ZR (Lemma 4.6. If L := ⟨1/q⟩, then L is a closed subgroup of Ẑ, but
L ∩ S Ẑ

= {0} ̸= L = L ∩R.

Corollary 5.4. Let R ≤ Ĝ be a closed subgroup of Ĝ. Then H ≤ G is τR-closed if and

only if H = H + A(G,R). In other words, H
GR

= H + A(G,R).

Proof: If R separates points in G, then R = Ĝ and the result follows from [17, Lemma

2.1]. So we may assume that R ̸= Ĝ. By Theorem 4.3, {0}
GR

= A(G,R). Take the
canonical continuous epimorphism π : (G, τR) → (G/A(G,R), τ qR), where τ

q
R is the Haus-

dorff quotient topology. Now A(G,R) ⊆ H
GR

implies H ⊆ H + A(G,R) ⊆ H
GR

. By
[25, (23.25)] the character group of G/A(G,R) endowed with the discrete topology is

topologically isomorphic to A(Ĝ,A(G,R)). Lemma 3.7 implies R = A(Ĝ,A(G,R)). The
topological isomorphism is definded by ρ(ψ) = ψ ◦ π. Thus τ qR is the Bohr topology on
G/A(G,R). As a consequence, every subgroup of the latter group is τR-closed by Lemma
4.6. In particular, the subgroup π[H] is τR-closed. Being the quotient map obviously
τR-continuous, it follows that

H + A(G,R) = π−1[π[H]]

is τR-closed in G. �

We can now use Theorem 5.1 as a main tool to prove that every subgroup S ≤ Ĝ is
contained in a greatest subgroup MS defining the same set of τS-closed subgroups.

Proof of Theorem B. Set

S := {T ≤ Ĝ : S ≤ T and CT = CS}.
We claim that the pair (S,⊆) is inductive if it is ordered by inclusion.

Indeed, let {Si : i ∈ I} be a chain in (S,⊆). Take S0 := ∪{Si : i ∈ I}. If L ≤ Ĝ is
closed, we have

S ∩ L Ĝ ⊆ S0 ∩ L
Ĝ
.

On the other hand

S0 ∩ L
Ĝ
= (∪{Si : i ∈ I}) ∩ L

Ĝ
= ∪{Si ∩ L : i ∈ I}

Ĝ
⊆

∪{Si ∩ L : i ∈ I}
Ĝ
= ∪{S ∩ L : i ∈ I}

Ĝ
= S ∩ L Ĝ.

The second to last equality above follows from Theorem 5.1. This implies that S0 ∈ S,
which completes the proof of the claim. Therefore, we have verified the existence of
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maximal elements in (S,⊆) by Zorn’s Lemma. In order to demonstrate that there is a
greatest element, it will suffice to prove that if S1 and S2 are in S, so is S1 + S2.

It is clear that every subgroup τS-closed is also τ(S1+S2)-closed. Therefore CS ⊆
C(S1+S2).

Conversely, suppose that H ≤ G is τ(S1+S2)-closed. By Lemma 4.1 we have that if
g /∈ H, there is χ1 ∈ S1 and χ2 ∈ S2 such that (χ1 + χ2)[H] = {0} and (χ1 + χ2)(g) ̸= 0.
Therefore

χ1|H = −χ2|H .

Set
K = H

GS

and observe that, since Si ∈ S, 1 ≤ i ≤ 2, it follows

K = H
GS

= H
GSi , 1 ≤ i ≤ 2.

Therefore both characters χ1 and χ2 can be extended to K continuously. Denoting these
extensions by χ1 and χ2 again for simplicity’s sake, we have that (χ1 + χ2)[H] = {0},
which implies (χ1 + χ2)[K] = {0}. This entails that g /∈ K. Hence K = H, which
completes the proof. �

Remark 5.5. Given an Abelian group G, it is not true in general that for each subgroup

S ≤ Ĝ, there exists a minimum subgroup mS ≤ Ĝ such that

CmS = CS

(see Theorem 8.10 below).

6. Totally bounded groups topologies in which every subgroup is closed

In this section we approach the following

Question 6.1. Let G be an infinite Abelian group.

(a) Characterize the subgroups S of Ĝ such that all subgroups of G are τS-closed.
(b) Find the number of SC-group topologies on G.

Consider the torsion subgroup tĜ of Ĝ, take ϕ ∈ tĜ and H := ker ϕ. We have then
that H is of finite index in G, hence if it were closed in GS, then it would be also open
and this would imply ϕ ∈ S. It follows

Lemma 6.2. If all the subgroups of G are τS-closed, then tĜ ≤ S. �

As a consequence, we have

Corollary 6.3. If G is of bounded order and all the subgroups of G are τS-closed, then

S = Ĝ and GS = (G, τb(G)). �

After this result, one might conjecture that all the subgroups of G are τS-closed if

and only if tĜ ≤ S. However this is wrong. Indeed, consider the group G = Z(p∞), p
prime. Since all proper subgroups of G are finite, we have that all subgroups are also

closed on every totally bounded group topology of G. Nevertheless, we have that Ĝ = ∆p,

which is a torsion-free group. This shows that tĜ can be trivial even though every totally
bounded topology on G has all its subgroups closed.
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Definition 6.4. ([19], p. 133) A subgroup H of a topological group (G, τ) is totally dense
in G if H ∩K is dense in K for every closed normal subgroup K of G.

Now Question 6.1(a) can be solved.

Proposition 6.5. Let G be an Abelian group and S be a subgroup of Ĝ. Then every

subgroup of (G, τS) is closed if and only if S is totally dense in Ĝ.

Proof: By Lemma 4.6 every subgroup of G is closed in (G, τĜ). Then apply Theorem 5.1

if we take S1 = S and S2 = Ĝ. �
Now [28, Corollary 2] and Propositon 6.5 imply

Proposition 6.6. Let G be an Abelian group equipped with the finest precompact group
topology, that is, the Bohr topology τb(G). Then the following assertions are equivalent:

(1) τb(G) is the only precompact group topology τ on G such that all subgroups of
(G, τ) are closed;

(2) G is of bounded order.

We notice that Corollary 6.3 yields the implication (2) ⇒ (1) in the above proposi-
tion that, incidentally, is proven in [4, Lemma 2.5]. On the other hand, Proposition 6.5
and [19, Exercise 5.5.6] imply

Proposition 6.7. Let G be an infinite Abelian group. Then the following assertions are
equivalent:

(1) For every totally bounded group (G, τ) each subgroup of (G, τ) is closed;
(2) There is a prime number p such that G is isomorphic to Z(p∞).

From Proposition 6.5, the solution to Question 6.1(b) for a given group G reduces

to the search of totally dense subgroups of Ĝ. In this direction, Comfort and Dikranjan
[7] have proven that the smallest (under inclusion) totally dense subgroup of a compact
Abelian group K is tK, when it is itself totally dense. Furthermore, according to their
Theorem 4.1, this happens if and only if K has no copies of ∆p. Therefore, we have the
following:

Proposition 6.8. Let G be an Abelian group such that Ĝ has copies of ∆p for no prime p.

Let S be a subgroup of Ĝ. All the subgroups of G are τS-closed if and only if tĜ ≤ S ≤ Ĝ.

Every totally bounded group topology on G = Z(p∞) has all its subgroups closed.
In this case of course there exist 2c-many such topologies. Hence we see that the number
of totally bounded group topologies making all the subgroups of G closed depends on G
and goes from 1 (groups of bounded order) all the way to 22

|G|
(G = Z(p∞)).

In relation with the above questions, we first list some observations.

Remark 6.9.

(a) Let G be an Abelian group which is not of bounded order. Then G admits at
least c-many totally bounded group topologies τ such that every subgroup of G

is closed in (G, τ). For, Ĝ = B(Ĝ), the set of compact elements of Ĝ. If Ĝ were

not admissible, i.e., if B(Ĝ) = tĜ, then Ĝ would be a torsion group, implying

that G is of bounded order [25, (25.9)], a contradiction. By [28, Corollary 3] Ĝ
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contains a totally dense subgroup H such that Ĝ/H ∼= Q. Since Q contains c-

many subgroups, we see that Ĝ contains c-many subgroups, each containing the
totally dense subgroup H. Now apply Proposition 6.5.

(b) In [38, p. 170] SC groups (see Section 1) and DSC groups are introduced: A
compact Abelian group having a dense SC group is called a DSC group, in other
words: it is the completion of a SC group.

Let G be any group. Then the finite-index topology τl on G is the finest linear

precompact topology on G. If G is Abelian, the character group of (G, τl) is tĜ.

Proposition 6.5 implies: (G, τl) is a SC group if and only if tĜ is totally dense in

Ĝ. Note that τl is the only possible linear precompact group topology µ such that
(G,µ) is a SC group.
Now the proof of [38, Theorem 1.15] implies the following: (G, τl) is a SC group

if and only if G has a free Abelian subgroup F of finite rank such that G/F is a
torsion group and for each prime p the p-component of G/F is of bounded order.
For the proof, take H = (G, τl), and G the completion of this H in the proof of
[38, Theorem 1.15]. Note that in the proof of [38, Theorem 1.15] it is allowed that
the rank of F is zero [Look at the end of the proof of [38, Proposition 1.14].].

First we will show that Abelian groups G with r0(G) > 0 have many SC-group
topologies.

Lemma 6.10. Let m > 0 be a cardinal. Then Tm contains (2c · 22
m
)-many totally dense

subgroups.

Proof: By [20, Theorem 3] or [23], the group (tT)m is totally dense in Tm. Let H :=
Tm/(tT)m. Then H is algebraically isomorphic to Rm and, therefore, has torsion-free
rank |H|. Hence there are 2|H|-many subgroups S of Tm containing the totally dense
group (tT)m. Thus each such S is a totally dense subgroup of Tm. Finally, it suffices to
notice that |H| = cm = c · 2m. �

Theorem 6.11. Let G be an Abelian group with r0(G) > 0. Then there are (2c · 22r0(G)
)-

many SC-group topologies on G.

Proof: Let K := Ĝ. By [9, Lemma 5.4], there is a continuous homomorphism from K
onto T r0(G). Now it suffices to apply [18, Lemma 4.1 (c)], Lemma 6.10 and Proposition
6.5 in order to complete the proof. �
Corollary 6.12. Let G be an infinite Abelian group. If r0(G) = |G|, then there are

exactly 22
|G|

-many SC-group topologies on G. �

Next we consider some Abelian torsion groups that are not of bounded order.

Theorem 6.13. Let G be an Abelian torsion group such that I = {p ∈ P : rp(G) ̸= 0} is
infinite. Then G admits at least 2c-many SC-group topologies.

Proof: Let H :=
∏

p∈I Z(p). By [18, Lemma 5.5], tH =
⊕

p∈I Z(p) is totally dense in

H. Since |tH| = ω < |H| = c, the group H/tH has 2c many subgroups by Lemma 4.8.

Hence H possesses the same number of totally dense subgroups. Let K := Ĝ. Then
by [9, Lemma 5.4] there is a continuous epimorphism from K onto

∏
p∈P(Z(p))

rp(G). In
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particular, there is a continuous epimorphism from K onto H. Now [18, Lemma 4.1(c)]
implies that K has 2c-many totally dense subgroups. Finally apply Proposition 6.5 to
complete the proof. �

We observe that Proposition 6.6 implies that the above result fails if I is finite.

Proposition 6.14. Let G be an infinite Abelian torsion group of cardinality α. Assume
cf(α) = ω and log(2α) = α. Let I := {p ∈ P : rp(G) ≥ ω} be infinite. If rp(G) < |G| for
all p ∈ I and all rp(G) with p ∈ I are distinct, then G admits exactly 22

|G|
-many SC-group

topologies.

Proof: Let αp := rp(G) for all p ∈ P. Consider K :=
∏

p∈I Z(p)
αp . Then tK =⊕

p∈I(
⊕

2αp Z(p)). Hence β := |tK| =
∑

p∈I 2
αp . Since G has infinite rank, by Lemma

4.9 we get α =
∑

p∈I αp. Then [14, Lemma 5.4] implies β < 2α. K is the character group

of H :=
⊕

p∈I(
⊕

αp
Z(p)). Thus |K| = 2α. Hence |tK| < |K|. By [18, Lemma 5.5], tK is

totally dense in K. Since |K/tK| = |K|, it follows that K has 2|K| = 22
|G|

many totally
dense subgroups. By [9, Lemma 5.4], there is a continuous epimorphism from G onto K.
Apply [18, Lemma 4.1(c)] and Proposition 6.5 to complete the proof. �
Remark 6.15. (a) We give an example for an application of Theorem 6.14:

Let m be an infinite cardinal. Define α0 := m and αn+1 := 2αn for all n ∈ ω.
Let (pn)n∈ω be a sequence of prime numbers which are pairwise different. Set G :=⊕

n∈ω(
⊕

αn
Z(pn)). Then |G| = α :=

∑
n∈ω αn > m. Clearly cf(α) = ω, and [14, Lemma

5.4] implies α = log(2α). Then Proposition 6.14 implies that G admits exactly 22
|G|
-many

SC-group topologies.
(b) Let K be the Abelian compact totally disconnected group of weight α defined

in the proof of the above Theorem. Then cf(α) = ω and α = log(2α) imply the crucial
fact |tK| < |K|. Now let L be any Abelian compact totally disconnected group of infinite
weight α with |tL| < |L|. Then [14, Theorem 5.8] implies cf(α) = ω and α = log(2α).

Now it is natural to pose the following

Question 6.16. Let G be an infinite Abelian group which is not of bounded order. Does
G admit exactly 22

|G|
-many SC-group topologies in the following cases:

(a) G is a torsion group,
(b) 0 < r0(G) < |G|.

We will show that in both cases the answer is “no”. For that we need several lemmas.

Lemma 6.17. For an infinite cardinal m and p ∈ P let G :=
⊕

m Z(p
∞). Then G admits

at least 22
m
-many SC-group topologies.

Proof: We have Ĝ = ∆m
p . By [28, Lemma 5] ∆p contains a dense subgroup H with

∆p/H ∼= Q. Then Hm is dense in Ĝ, and V := Ĝ/Hm ∼= Qm ∼=
⊕

2m Q. Let

f : ∆m
p −→

⊕
2m

Q

be the algebraic epimorphism

∆m
p −→ V −→ Qm −→

⊕
2m

Q.
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If S ⊆ 2m is nonempty, let πS :
⊕

2m Q −→
⊕

S Q be the natural projection and let
ΣS :

⊕
S Q −→ Q be the homomorphism that adds up the coordinates of elements in⊕

S Q:

ΣS(qj) =
∑
j∈S

qj <∞.

We then have

∆m
p

⊕
2m Q-

f ⊕
S Q-

πS
Q.-

ΣS

Let HS := kerΣS ◦πS ◦ f . Note that Hm ⊆ HS and by [28, Cor. 3] we have that HS

is totally dense in ∆m
p . We now show that if S1 and S2 are different subsets of 2m, then

HS1 ̸= HS2 . Suppose, say, that σ ∈ S1 \S2. Consider q ∈ Q, q ̸= 0, and define g ∈
⊕

2m Q
by

g(t) :=

{
q if t = σ,
0 otherwise.

Then we have that

πS1(g(t)) =

{
q if t = σ,
0 otherwise.

while

πS2(g(t)) = 0.

Pick x ∈ f−1(g). Then

Σ ◦ πS1 ◦ f(x) = Σ ◦ πS1(g) = q ̸= 0 ⇒ x /∈ HS1 ,

while

Σ ◦ πS2 ◦ f(x) == Σ ◦ πS2(g)Σ((0)) = 0 ⇒ x ∈ HS2 .

Hence HS1 ̸= HS2 .

In summary, we have constructed 22
m
-many dense subgroups HS of Ĝ such that

Ĝ/Wi
∼= Q. Now, applying Proposition 6.5, we obtain that G admits at least 22

m
-many

SC-group topologies. �

Lemma 6.18. Let G be an infinite Abelian group and H an infinite subgroup of it. If H
has m-many SC group topologies, then G admits at least m-many such group topologies.

Proof: By duality theory there is a continuous epimorphism from Ĝ onto Ĥ. Then Propo-

sition 6.5 implies that Ĥ has m-many totally dense subgroups. Thus Ĝ has also (at least)
m-many totally dense subgroups by [18, Lemma 4.1(c)]. Now apply again Proposition
6.5. �
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Lemma 6.19. Let α ≥ c be a cardinal, B an Abelian group of bounded order with |B| = α,
and H an infinite Abelian divisible group with 2|H| ≤ α. Then the Abelian group G :=
B ×H with |G| = α admits at most 22

|H|
< 22

α
many SC-group topologies.

Proof: We have Ĝ = B̂ × Ĥ. By duality theory we get that B̂ is of bounded order,

and Ĥ is torsion-free. Hence tĜ ∼= B̂ and Ĝ/tĜ ∼= Ĥ. Now let τ be a totally bounded
group topology such that every subgroup of G is closed in (G, τ). Then Lemma 6.2 gives

tĜ ⊆ (G, τ )̂ . A result of Kakutani [27] implies |Ĥ| = 2|H| ≥ c. By Lemma 4.9 we get

r(Ĥ) = 2|H|. Hence Ĥ has exactly 22
|H|

-many subgroups. Thus there is the same number

of subgroups of Ĝ containing tĤ. �
Now we are ready to give the announced negative answer to Question 6.16.

Theorem 6.20. Let α and β be infinite cardinals with 2β ≤ α. Then there is an Abelian
group G with |G| = α such that m = 22

β
< 22

|G|
holds for the number m of SC-group

topologies on G which can be chosen in the following ways:

(a) G is a torsion group.
(b) r0(G) = β < α.

Proof: We apply Lemma 6.19: Let B as defined there and (a) H :=
⊕

β Z(p
∞) resp. (b)

H :=
⊕

β Q. Then, in both cases (a) and (b), the subgroup H admits 22
β
-many SC-group

topologies. Indeed, it suffices to apply Lemma 6.17 in case (a), and and Corollary 6.12 in
case (b), respectively. Finally, applying Lemma 6.18, the proof is complete. �

Lemma 6.18 is a main tool for the proof of

Proposition 6.21. The following holds:

(a) Let G be a countable Abelian group which is not reduced. Then G admits exactly
2c-many SC-group topologies.

(b) Every infinite countable divisible Abelian group admits exactly 2c-many SC-group
topologies.

(c) Every Abelian group which is not reduced admits at least 2c-many SC-group topolo-
gies.

(d) Let G be a divisible Abelian group with cf(|G|) > ω. Then G admits exactly 22
|G|
-

many SC-group topologies.

Proof: (a) G contains Q or Z(p∞) for some p ∈ P. Then apply Lemma 6.18, Proposition
6.7 and Theorem 6.11.
(b) follows from (a).
(c) Apply Lemma 6.18 and (b).
(d) By Corollary 6.12 we may assume that r0(G) < |G|. Then [21, p. 85] implies
r(G) =

∑
p

rp(G). Hence |G| =
∑
p

rp(G) by Lemma 4.9. Since cf(|G|) > ω, there is p0 ∈ P

such that |G| = rp0(G). By [21, p. 105], |G| contains a subgroup isomorphic to
⊕
|G|

Z(p∞0 ).

Finally, it suffices to apply Lemma 6.17 and Lemma 6.18. �
Concerning the problem whether a countable Abelian group which is not of bounded

order admits exactly 2c-many SC-group topologies we notice the following facts.
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Set K :=
∏

n∈N Z(p
n) and let p be a free ultrafilter on N or, equivalently, a point

in the remainder βN \ N of the Stone-Čech compactification βN of N furnished with the
discrete topology. Every continuous function f : N −→ T can be extended to a continuous
function f̄ : βN −→ T (for more details see [8, §2]). If F is a filter on N such that the
filter with the basis {f(F ) : F ∈ F} converges in T to t, we write t = lim

F
f(n). Now p

converges in βN to itself ([22, section 6.5]). Thus we have

f̄(p) = lim
p
f(n).

For n ∈ N we denote by Zpn the copy of Z(pn) placed as a subgroup of T and

Xn : Z(p
n) −→ T

designates the canonical isomorphism of Z(pn) onto Zpn .
For all x := (x(n)) ∈ K let fx : N −→ T with fx(n) := Xn(x(n)). We define the function

χp : K −→ T

by

χp[(x(n))] := lim
p
fx(n)

for all (x(n)) ∈ K. This means χp[(x(n))] = fx(p). Now fx(n) + fy(n) = fx+y(n) holds

for all n ∈ N. Since N is dense in βN, we get fx(u) + fy(u) = fx+y(u) for all u ∈ βN.
Hence χp is a character.

Let U := ⊕n∈NZ(p
n). Then χp[U ] = {0} holds. Since U is dense in K, the character

χp is discontinuous.

Lemma 6.22. ([3, Proposition 5, p. 60]) Let u be an ultrafilter on a set X. If A and B
are two subsets of X such that A ∪B ∈ u, then either A ∈ u or B ∈ u.

Lemma 6.23. χp[K] = T.

Proof: Let α ∈ T be arbitrary. Since Zp∞ is dense in T, there is a sequence (kn/p
n)

converging to α (here kn/p
n ∈ Zpn for all n ∈ N). Define x(n) = X−1

n (kn/p
n) for all

n ∈ N. By using Lemma 6.22 we have

χp(x(n)) = lim
p
Xn(x(n)) = lim

p
kn/p

n = α.

Hence α ∈ χp[K]. �
The following assertion is well-known.

Lemma 6.24. There is a copy Qp of Q such that T ∼= Qp ⊕ Lp for some subgroup Lp of
T.

Lemma 6.25. Set Sp := χ−1
p [Lp]. Then Sp is a totally dense subgroup of K.

Proof: By Lemma 6.23 and Lemma 6.24 we have K/Sp
∼= Q. χp[U ] = {0} implies that

Sp is dense in K. Thus it suffices to apply [28, Corollary 3]. �

Lemma 6.26. Sp ̸= Sq if p ̸= q.
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Proof: There is Ap ∈ p with Ap ̸∈ q. Hence Aq := N \ Ap ∈ q by Lemma 6.22. We take
an element (x(n)) ∈ K satisfying the following requirements:
(1) x(n) = 0 for all n ∈ Aq;
(2) Take α ̸= 0 in Qp. Since Zp∞ is dense in T, there is a sequence (kn/p

n) converging to
α (here kn/p

n ∈ Zpn for all n ∈ N). Define x(n) = X−1
n (kn/p

n) for all n ∈ N \ Aq.
We have

χq[(x(n))] = lim
q
Xn(x(n)) = 0.

This implies that (x(n)) ∈ χ−1
q (0) ⊆ Sq. On the other hand Lemma 6.22 implies

χp[((x(n))] = lim
p
Xn(x(n)) = lim

p
kn/p

n = α ∈ Qp.

Hence (x(n)) /∈ χ−1
p (Lp) = Sp. This proves that Sp ̸= Sq. �

Theorem 6.27. K contains 2c-many totally dense subgroups.

Proof: N has 2c-many free ultrafilters by [8, Corollary 7.4]. Then apply Lemma 6.25 and
Lemma 6.26. �

Now Proposition 6.5 yields

Corollary 6.28.
⊕

n∈N Z(p
n) admits exactly 2c-many SC-group topologies.

We obtain

Theorem 6.29. Let G be a torsion group such that G has only finitely many p-components
Gp and is not of bounded order. Then G admits at least 2c-many SC-group topologies.

Proof: There exists p0 ∈ P with |Gp0| ≥ ω such that L := Gp0 is not of bounded order.
By [25, (A.24)] L contains a subgroup B such that

(a) B is isomorphic with a direct sum of cyclic p0-groups;
(b) B is a pure subgroup of L;
(c) the quotient group L/B is divisible.

We consider the following cases:

(1) B is not of bounded order. Then B is isomorphic with a direct sum of cyclic p0-
groups, where infinitely many summands are pairwise different. Hence it contains
a subgroup U being isomorphic with Hp0 :=

⊕
n∈N Z(p

n
0 ). Then Corollary 6.28

implies that Hp0 has 2
c-many SC-group topologies. By Lemma 6.18 the same holds

for G.
(2) B is of bounded order. Thus it is a proper subgroup of L. Since B is a pure

subgroup of L, then [21, Theorem 27.5] implies that B is a direct summand of
L. By (c) it follows that L is not reduced. Thus Proposition 6.21(c) gives that L
admits 2c-many SC-group topologies. Finally apply again Lemma 6.18 to see that
G admits also 2c-many SC-group topologies.

�
Now we can prove one of the main results in this section.

Proof of Theorem C. (a) Apply Theorem 6.11, Theorem 6.13, Theorem 6.29 and
Lemma 6.18. (b) follows from (a). �
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7. Topologically simple groups

We now consider the opposite direction from the section before, namely the exis-
tence of totally bounded group topologies without producing closed non-trivial subgroups.
Topologically simple groups were introduced in Section 1. The following result gives a
characterization of infinite Abelian totally bounded groups which are topologically simple.

Theorem 7.1. Let (G, τ) be an infinite Abelian totally bounded group and let S ≤ Ĝ be
its character group. Then the following assertions are equivalent:

(1) (G, τ) is topologically simple.

(2) L ∩ S = {0} for all proper closed subgroups L of Ĝ.
(3) All group topologies coarser than τ are Hausdorff or anti-discrete.
(4) Let µ be the totally bounded group topology on S induced by the compact group

topology of Ĝ. Then (S, µ) is topologically simple.

Proof: (1)⇒ (2): Let L be a proper closed subgroup of Ĝ. By Lemma 3.7, we have

L = A(Ĝ,A(G,L)), where A(G,L) is not trivial. Since(G, τ) is topologically simple,
A(G,L) is dense in it. By Theorem 3.5 the intersection of L and S is trivial.

(2)⇒ (1): LetH be a non-trivial subgroup ofG. Then A(Ĝ,H) is a proper closed subgroup

of Ĝ by [25] (23.24, Remarks (b) and (c)). Hence (2) implies that the intersection of

A(Ĝ,H) and S is trivial. By Theorem 3.5, H is dense in (G, τ).
(1)⇒ (3) is trivial.
(3)⇒ (1). Let N ( G be a closed subgroup of (G, τ). Since N is closed, the group G/N ,
equipped with the quotient topology τq defined by the canonical map π : G −→ G/N ,
is Hausdorff. Let µ := π−1(τq) be the initial topology on G defined by π. Since N is
µ-closed, it follows that µ is precompact, coarser than τ and not anti-discrete. By (3),
this means that N = {0}.
(2)⇒ (4). Let H be a closed subgroup of (S, µ) with H ̸= S. Let N be the closure of H

in Ĝ. By H ̸= S and H = N ∩ S we have N ̸= Ĝ. Now (2) implies H = {0}.
(4)⇒ (2). Let L be a proper closed subgroup of Ĝ. Then H := L∩S is a closed subgroup

of (S, µ). Assume H = S. Then S ⊆ L and hence L = L = Ĝ, which is impossible. Thus
H is a proper closed subgroup of (S, µ). This implies H = {0}, since (S, µ) is topologically
simple. �
Corollary 7.2. If (G, τ) is an infinite Abelian totally bounded topologically simple group,
then:

(1) It is monothetic and torsion-free,
(2) its character group is monothetic and torsion-free,
(3) algebraically, it is a subgroup of the real numbers R,
(4) its weight is at most c.

Proof: (1) follows directly from the definitions, and (2) from Theorem 7.1. [25] (24.32)
implies that G is isomorphic to a torsion-free subgroup of the (discrete) torus group T.
Thus the torsion-free rank of G is at most c. Considering its divisible hull we get (3). By
Theorem 7.1, the same holds for S. This implies the last assertion. �

Remark 7.3. Let G be the group of integers. Then Ĝ is the compact torus group T. By
Corollary 7.2 we have for every dense subgroup S of T: (G, τS) is topologically simple if
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and only if S (as a subgroup of T) is topologically simple if and only if S is a torsion-
free subgroup of T. Hence, there is a one-to-one correspondence between the totally
bounded group topologies on G which produce topologically simple groups and the (dense)
torsion-free subgroups of T. Therefore, there are exactly 2c-many totally bounded group
topologies on G which produce topologically simple groups. The weight can be chosen to
be c. (See Theorem D and Corollaries 8.3 and 8.4, below.)

Remark 7.4. Let G be a subgroup of the real numbers. Then G can be considered as a
subgroup of the torus T. Since T has only finite proper closed subgroups, the topology
of T induces a metrizable totally bounded group topology τ on G such that (G, τ) is
topologically simple.

Lemma 7.5. Let G be an infinite Abelian group. S is a subgroup of Ĝ such that GS is
topologically simple if and only if every non-zero element of S is injective.

Proof: (⇒) If g1, g2 ∈ G \ {0}, ϕ ∈ S \ {0} with g1 ̸= g2, yet ϕ(g1) = ϕ(g2), then
0 ̸= g1−g2 ∈ H := ϕ−1[{0}] =⇒ H is a non-trivial proper subgroup of GS, a contradiction.

(⇐) Let H be a closed subgroup of GS, different than G. Then GS/H is totally
bounded with character group A(S,H) (Lemma 2.1). Notice that A(S,H) ̸= {0}. If there
were a non-zero element h ∈ H, then ϕ(h) = 0 for every non-zero element ϕ ∈ A(S,H),
contradicting that all non-zero elements of S are injective. It follows that H = {0}, as
required. �

Lemma 7.6. Assume 1 ≤ κ ≤ c and let G :=
⊕

κ Z. Then there is a family F of
homomorphism ϕ : G −→ R such that the following holds: |F| = c and ⟨F⟩ \ {0} consists
of injective functions.

Proof: Let B := {et : t ∈ κ} be a generating independent subset ofG, and B′ := {ut : t ∈ c}
a base of the vector space

⊕
cQ over Q. Since c =

∑
i∈I κi with |I| = c and κi = κ for all

i ∈ I by [29, Proposition 4.4, Chapter III], R is a union of c-many pairwise disjoint subsets
of size κ. Thus we get a family E = {fi : i ∈ I} with the following property (∗): For all
i ∈ I the function fi : κ −→ c is injective with fi[κ] ∩ fj[κ] = ∅ for i ̸= j. It follows that
|E| = c. For each f ∈ E define ϕf : G −→ R by ϕf (et) := uf(t). Now let F := {ϕf : f ∈ E}.
Then |⟨F⟩| = c. ⟨F⟩\{0} consists of injective functions: For, let ψ =

∑
j ajϕfj ∈ ⟨F⟩\{0}

and g =
∑

t btet ∈ G \ {0}. Then ψ(g) = (
∑

j ajϕfj)(
∑

t btet) =
∑

j

∑
t ajbtufj(t) ̸= 0,

since by property (∗) {ufj(t)} is linearly independent with respect to the vector space⊕
cQ over Q. Hence ψ is injective. �

Lemma 7.7. Let G be a non-trivial subgroup of R. Then G admits a totally bounded
group topology τ such that w(G, τ) = c and (G, τ) is topologically simple.

Proof: Let m be the rank of G, and let L :=
⊕

m Z. Since algebraically R ⊂ T, by Lemma
7.6 there is a family F of homomorphisms ϕ : L −→ T such that |F| = c and ⟨F⟩ \ {0}
consists of injective functions. By [25, (A.7)] each ϕ can be extended to a character

ϕ̂ : G −→ T. Let M := {ϕ̂ : ϕ ∈ F}. Let S := ⟨M⟩. Then |M| = c, and S is a subgroup

of Ĝ with |S| = c. Now each ϕ ∈ S \ {0} is injective: For, let g ∈ G \ {0}. Since L is
an essential subgroup of G, we have ⟨g⟩ ∩ L ̸= {0}. Hence, there is n ∈ Z \ {0} with
ng ∈ L \ {0}. Since ⟨F⟩ \ {0} consists of injective functions, we get 0 ̸= ϕ(ng) = nϕ(g).
Hence ϕ(g) ̸= 0. Let τ be the precompact group topology on G with character group S.
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By Lemma 7.5 it is topologically simple, in particular totally bounded. Since |S| = c,
Lemma 4.7 implies w(G, τ) = c. �

Now we are ready for the

Proof of Theorem D. Let (G, τ) be defined as in Lemma 7.7. Then |S| = c holds for
its character group S. By Theorem 7.1, S is torsion-free. Lemma 4.9 implies r(S) = c.
Then

⊕
c Z ⊆ S. c has 2c-many subsets of size c by [5, Proposition 5.2.14]. Thus S has

2c-many subgroups U of cardinality c. Let τU be the precompact group topology on G
with character group U . By Theorem 7.1(3), it is totally bounded. Since τU ⊆ τ , (G, τU)
is also topologically simple. |U | = c implies w(G, τU) = c by Lemma 4.7.

Let µ be any totally bounded group topology on G such that (G,µ) is topologically
simple. By Corollary 7.2(4), w(G,µ) ≤ c. Let S ′ be the character group of (G,µ). Then

S ′ ⊆ Ĝ with |S ′| ≤ c and |Ĝ| = 2|G|. By [5, Proposition 5.2.14], Ĝ has exactly (2|G|)c = 2c

many subsets of size ≤ c. Hence G has at most 2c-many totally bounded group topologies
µ such that (G,µ) is topologically simple. �

Corollary 8.4 below is an example of this Theorem.

Remark 7.8. The proof of Theorem D shows the following: Let P be the power set of c,
and let G be a non-trivial subgroup of R. Let T S(G) be the set of all topologically simple
totally bounded group topologies on G. Then there exists an order-preserving injection
f : P −→ T S(G) such that w(G, f [M ]) = |M | for all M ∈ P . There is τ ∈ T S(G) with
w(G, τ) = c, and there is L ⊆ T S(G) with |L| = 2c such that all µ ∈ L are coarser than
τ .

In [13] the following notation is introduced: Let κ and λ be cardinals, and let P(κ)
be the power set of κ. Then C(κ, λ) means that there is in P(κ) a chain of length λ. By
[13] we have the following:

(1) C(c, c+) holds by [13, Corollary 1.7],
(2) C(c, 2c) is not a theorem of ZFC by [13, Corollary 1.3].

Let G be a non-trivial subgroup of R. Then:
(1) In T S(G) there is a chain of length c+,
(2) The following is not a theorem of ZFC : There is τ ∈ T S(G) with w(G, τ) = c and

a chain C ⊆ T S(G) with |C| = 2c such that all µ ∈ T S(G) are coarser than τ .

8. An Example: The integers

Let us consider the special case when G = Z, the group of the integers. If n ∈ ω,
then nZ is a subgroup of Z, and conversely, if H is a subgroup of Z, there is a unique
n ∈ ω such that H = nZ.

Lemma 8.1. Let S be a subgroup of Ẑ. kZ is τS-closed if and only if 1
k
∈ S.

Proof: (⇐) ( 1
k
)−1[{0}] = kZ.

(⇒) Having finite index in Z, it follows that kZ is τS-open. Hence the map ϕ : ZS −→
ZS/kZ ≃ Zk −→ ⟨ 1

k
⟩ ⊂ Ẑ, 1 7→ 1

k
is τS-continuous since it sends kZ to 0. Since ϕ = 1

k
, it

follows that 1
k
∈ S. �

The following has been noticed in [19, (3.5.4) and (3.5.5)].
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Corollary 8.2. Let S be a subgroup of Ẑ. pkZ is τS-closed for all k ∈ ω if and only if
Z(p∞) ⊆ S.

Corollary 8.3. Let S be a subgroup of Ẑ such that S ∩ tẐ = {0}. Then ZS has no
non-trivial closed subgroups.

Since algebraically T = tT⊕ (⊕cQ) ([25, (A.14)]), we have the following two results.

Corollary 8.4. There exist 2c-many point-separating subgroups S of Ẑ = T such that
every subgroup of ZS is dense.

Proof: If X ⊆ c, set SX := {0} ⊕ (⊕XQ). Obviously, SX is dense in T, hence it is point-
separating. By the above corollary, ZSX

has no non-trivial closed subgroups and X1 ̸= X2

implies SX1 ̸= SX2 . �
The following result is a special case of Theorem 6.13, but we give a short indepen-

dent proof.

Corollary 8.5. There exist 2c-many point-separating subgroups S of Ẑ = T such that
every subgroup of ZS is closed.

Proof: If X ⊆ c, set SX := tT ⊕ (⊕XQ). Obviously, SX is dense in T, hence it is point-
separating. By Corollaries 3.3 or 8.2, every subgroup of ZS is closed, and X1 ̸= X2 =⇒
SX1 ̸= SX2 . �

The acronym lcm stands for least common multiple.

Lemma 8.6. If n1, n2 ∈ N, then n1Z ∩ n2Z = lcm(n1, n2)Z.
Proof: Obviously ⊇ holds. To see ⊆, setM = lcm(n1, n2) and assume that n1Z∩n2Z = tZ.
Then there exist z1, z2 ∈ Z such that n1z1 = t = n2z2 =⇒M |t, as required. �
Lemma 8.7. Let F ′ = {n1, ..., nk} ⊂ N, n ∈ N and F = F ′ ∪ {n}. Then

lcm F = lcm (lcm F ′, n).

Proof: Set M := lcm(lcmF ′, n), N := lcmF , and x := lcmF ′. Then M = lcm(x, n).
Accordingly, x|M and n|M . But x = lcmF ′ =⇒ nj|x (j = 1, ..., k) =⇒ nj|M (j = 1, ..., k).
Hence, N |M . On the other hand, N = lcmF =⇒ nj|N (j = 1, ..., k) =⇒ x|N . Since n|N ,
it follows that M |N , as required. �
Lemma 8.8. Let C be a non-empty subset of N. Then⟨

1

n
: n ∈ C

⟩
=

⟨
1

lcm F
: F ∈ [C]<∞

⟩
,

as subgroups of Ẑ, where [C]<∞ stands for all the finite subsets of C.

Proof: ⊆ Obvious (take F = {n}).
⊇ We prove that 1

lcm F
∈ LHS whenever F := {n1, ..., nk} ⊂ C. This obvi-

ously will prove the required contention. We use induction on k. Obviously true if
k = 1. Assume that 1

lcm F
∈ LHS, whenever F has t elements or less. Assume then

that F = {n1, ..., nt, n}. Set F ′ = {n1, ..., nt}. As in the proof of Lemma 8.7, set
N := lcm(lcmF ′, n) = lcmF , and x := lcmF ′. By the induction hypothesis, 1

x
∈ LHS.

In addition, let d stand for the greatest common divisor of x and n. Recall that there
exists integers a and b such that d = ax+ bn. Since xn = Nd = N(ax+ bn) we have that
1
N

= ax+bn
nx

= a
n
+ b

x
∈ LHS. �
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Remark 8.9. Obviously, if H1 and H2 are closed subgroups of a topological group G, so
is H1 ∩ H2. When G = Z, there are n1, n2 ∈ ω such that H1 = n1Z and H2 = n2Z.
It follows from Lemma 8.6 that H1 ∩ H2 =lcm(n1, n2)Z. If S is a subgroup of Ẑ, set
CS := {n ∈ ω : nZ is τS-closed}. By Lemma 8.8 we have that CS is closed under

taking lcms of finite subsets of CS. Given C ⊆ N, set SC := ⟨ 1
n

: n ∈ C⟩ ⊂ Ẑ. If

C := {n ∈ N : 1
n
∈ SC}, then C ⊆ C, and since SC = SC (Lemma 8.8), we have that

C is closed under taking lcms of its finite subsets. When C ⊆ N is such that C = C we
say that C is lcm-closed. In Theorem B we saw the existence of a greatest subgroup MS
containing S and such that CMS = CS. In the following result, we explicitly build CMS

when G = Z.

Theorem 8.10. Let S be a subgroup of Ẑ. Then there exists a greatest dense subgroup
MS containing S and such that CMS = CS.

Similarly, there exists a smallest subgroup mS contained in S such that CmS = CS.

The group mS is dense in Ẑ if and only if CS is infinite. If not, there are no smallest

dense subgroups D ⊆ Ẑ with CD = CS. Moreover, if S is a torsion group, then mS = S.

Proof: Set mS := ⟨ 1
n
: n ∈ CS⟩ ⊂ Ẑ. By Lemma 8.1 mS ⊆ S, and by Remark 8.9,

CmS = CS, hence mS is as required. Obviously, mS is finite if and only if CS so is.

Hence, mS is dense in Ẑ if and only if CS is infinite. Notice that mS ⊆ tẐ. If Ẑ ∼= tẐ×F

(of course, algebraically, F ∼= R), then MS := mS×F is a maximal dense subgroup of Ẑ
containing S and such that CMS = CS.

Assume CS is finite and suppose D is a dense subgroup of Ẑ such that CD = CS.
Then D/mS is infinite and contains an element x + mS (x ∈ D) of infinite order. It
follows that ⟨x⟩ ∩mS = {0}. Then D′ := ⟨mS ∪ {2x}⟩ is a proper infinite subgroup of D
with CD′ = CS.

Assume that S is a torsion group and let s ∈ S. If s ̸= 0, there are m,n ∈ N
relatively prime such that s = m

n
. But then there is k ∈ N such that 1

n
= ks ∈ S =⇒ n ∈

CS =⇒ 1
n
∈ mS =⇒ s ∈ mS. Hence, mS = S. �

Compare this result with Theorem B.

We can rewrite the above in terms of precompact group topologies:

Corollary 8.11. Let τ be a precompact group topology on Z. Then there exists a greatest
totally bounded group topology Tτ on Z producing precisely the same τ -closed subgroups.

Similarly, there exists a smallest precompact group topology tτ on Z producing pre-
cisely the same τ -closed subgroups. Moreover, tτ is Hausdorff if and only if there exist
infinitely many τ -closed subgroups. If not, then there are no smallest totally bounded group
topologies t with the same τ -closed subgroups.

Proof: By the Comfort-Ross Theorem, there is a subgroup S of Ẑ such that τ = τS.
Applying Theorem 8.10 to S, we obtain the result. �
Remark 8.12. Given C ⊆ N, set SC := ⟨ 1

n
: n ∈ C⟩ ⊂ Ẑ. Then we have CSC

= C
(see Remark 8.9) and mSC = SC = SC (Lemma 8.8). The partially ordered set (under

inclusion) SC := [mSC ,MSC ] := {S ⊆ Ẑ : S is a subgroup of Ẑ with mSC ⊆ S ⊆ MSC}
(see the proof of Theorem B) has cardinality 2c and maximal chains of length c. As
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mentioned before, C is finite if and only ifmSC is finite. Moreover,mSC is the only torsion
group in (the poset) [mSC ,MSC ]. We also notice that S1, S2 ∈ SC , then mSC ⊆ S1 ∩ S2

i.e., SC has the finite intersection property (fip), and S1, S2 ∈ SC =⇒ ⟨S1 ∪ S2⟩ ∈ SC .
We have thus assigned to any collection C of subgroups of Z a subset C of N. C

has fip if and only if C is lcm-closed. If this is the case, we have assigned a poset SC
of subgroups of Ẑ, such that if S ∈ SC, then τS has precisely C as its system of closed
subgroups. The smallest element is a torsion-group which is infinite if and only if C is
infinite. All of the elements in SC, except the smallest one, have torsion-free elements.

Remark 8.13. We can see the above in terms of precompact group topologies. Let τ be

such a topology on Z. By the Comfort-Ross Theorem, there is a subgroup S of Ẑ such that
τ = τS, and τ is Hausdorff if and only if S is infinite. Using the notation in Corollary 8.11,
the poset (under inclusion) Iτ := [tτ, T τ ] := {precompact group topologies on Z between
tτ and Tτ} has cardinality 2c and maximal chains of length c. tτ is the only element in
Iτ that could not be Hausdorff; it is if and only if the system of τ -closed subgroups is
infinite. We also notice that if τ1, τ2 ∈ Iτ , then tτ ⊆ τ1 ∩ τ2.

Remark 8.14. Let S be a subgroup of Ẑ. It should be obvious by now that it is its torsion
part, tS, the one that produces the system of τS-closed subgroups, i.e., kZ is τS-closed if
and only if kZ is τtS-closed. Hence, setting τ = τS in Remark 8.13, there is a poset Iτ
of precompact group topologies on Z producing the same system of τS-closed subgroups.
Again, Iτ has cardinality 2c, maximal chains of length c and τtS is its smallest element
which is Hausdorff if and only if tS is infinite. By now we can see that given subgroups

S1, S2 of Ẑ, they may or may not produce the same system of closed subgroups. They
produce the same system of closed subgroups if and only if tS1 = tS2, i.e., if they have
the same torsion subgroups.

Given a precompact group topology τ , and a subgroup of Z, what is its τ -closure?
The following results are to be compared with Theorem 4.3, Corollary 5.4 and Theorem
3.5.

Lemma 8.15. Let S be a subgroup of Ẑ and let kZ be a subgroup of Z. Then the τS-closure
of kZ equals tZ where t ∈ CS, t|k, and s ∈ CS, s > t =⇒ s does not divide k.

Proof: Assume that the τS-closure of kZ equals tZ. Then t ∈ CS and kZ ⊆ tZ =⇒ t|k. If
s ∈ CS, then sZ is τS-closed, and if s|k, then kZ ⊆ sZ =⇒ tZ ⊆ sZ =⇒ s|t =⇒ s ≤ t, as
required. �

Theorem 8.16. Let S be a subgroup of Ẑ and let kZ be a proper subgroup of Z. Then
kZ is τS-dense in Z if and only if k ̸∈ CS, and if s ∈ CS, s > 1, then s does not divide k.

Proof: (⇒) Obviously k ̸∈ CS. If there is s ∈ CS, s > 1 with s|k, then kZ ⊆ sZ implies
the τS-closure of kZ is contained in sZ ̸= Z, hence kZ wouldn’t be τS-dense in Z.

(⇐) Suppose kZ is not τS-dense in Z, and let sZ be its τS-closure. Then s ∈ CS, s|k,
and s > 1. If s = k, then k ∈ CS, a contradiction. Then s ̸= k, k ̸∈ CS and s|k, a
contradiction. �

Some extreme cases:

Corollary 8.17. Let S be a subgroup of Ẑ. S is a torsion-free subgroup of Ẑ if and only
if every proper subgroup of Z is τS-dense in Z.
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Corollary 8.18. Let S be a subgroup of Ẑ. tẐ ⊆ S if and only if every proper subgroup
of Z is τS-closed in Z.

9. Conclusion

In this paper, we have dealt with the topological structure of totally bounded Abelian

groups via their dual groups. Every Abelian group G has associated a big dual group Ĝ
that consists of the homomorphisms of G into the one-dimensional torus (the unit circle
of the complex plane) in such a way that each totally bounded Abelian group topology
defined on G coincides with the weak or initial topology defined by a separating subgroup

of Ĝ. Thus, each separating subgroup S of Ĝ defines a totally bounded group topology

on G and vice versa. We have exploited this pairing: topology versus subgroup of Ĝ in
order to obtain real progress in the understanding of totally bounded group topologies on
Abelian groups. Among other results, we have calculated the number of totally bounded
group topologies that have a determined family of subgroups as closed subsets, and the
number of totally bounded group topologies that have all its subgroups closed. We have

also proved that the family of subgroups of Ĝ that define the same collection of closed
subgroups ofG always contain a greatest element but in general not a smallest one. Finally
we have calculated the number of topologically simple totally bounded group topologies
for non-trivial subgroups of the real line, the only possible groups having this property.
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