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This paper presents a methodology to deal with the randomness associated to ecolog-
ical modelling. Data variability makes it necessary to analyze the impact of random
perturbations on the fitted model parameters. We conduct such analysis for the logis-
tic growth model with a certain sigmoid functional form of the carrying capacity,
which was proposed in the literature for the study of parasite growth during infection.
We show how the probability distributions of the parameters are set via the maxi-
mum entropy principle. Then the random variable transformation method allows for
computing the density function of the population.
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1 INTRODUCTION

The logistic equation models the growth of human, plants, animal and bacterial populations1. Developed by Pierre-François
Verhulst in 18382, it generalizes the exponential growth model proposed by Thomas Robert Malthus in 17983 (which is con-
sidered as the first law of population dynamics in the field of population ecology4), by taking into account the lack of resources
as the population grows. There is thus a limited capacity in the amount of population.
Classically, the carrying capacity has been considered constant. However, some works started to consider it as a function

of time, under the principle that a changing environment may result in a significant change in the carrying capacity. From the
viewpoint of dynamical systems theory, the logistic equation with time-dependent limiting capacity was studied in5. Some
applications of this equation, with different functional forms for the carrying capacity, can be found in a variety of works:
in6, for the growth of Earth’s human population; in7, for parasite growth during infection; in8, for the population histories of
England and Japan; and in9, for the total microbial biomass under occlusion of healthy human skin. In10, the authors conducted
a mathematical analysis of the model from9 by using an algebraic method.
These types of models, an in general any mathematical model, have three sources of error: model, data and numerical methods

errors. The numerical methods error depends on the algorithms and can always be decreased, at least theoretically; moreover,
when there is an exact solution, this error does not arise. On the contrary, the model error accounting for the incomplete knowl-
edge on the phenomenon under study, and the data error due to incorrect measurements, lack or scarcity of information, etc.
cannot be avoided. Thereby, the process of modelling has associated uncertainty. Accounting for data variability, the parameters
of the model should be regarded as random variables with probability distributions, and the solution becomes a random variable
that evolves with time, that is, a stochastic process11.
The maximum entropy principle infers consistent probability laws for the parameters, by maximizing the ignorance on their

density functions while not violating physical principles. The ignorance on the density function is usually expressed via the
Shannon entropy functional, subject to certain constraints on the statistical moments and the support12,13,14.
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Once the model coefficients follow specific probability distributions, the probability law of the stochastic solution must be
found. When a closed-form solution is available, the random variable transformation method gives the exact probability density
function under mild conditions. This technique has been employed in different settings: Bertalanffy growth model15, SIS-type
epidemiological model16, autonomous logistic equation17,18, and radiative transfer equation19, for instance. When there is no
closed form of the solution, there are hybrid strategies that combine the random variable transformation technique and approx-
imation methods, such as: Monte Carlo simulation, recently applied for the advection linear partial differential equation20;
finite difference numerical schemes, applied to some linear random differential equations21 and to the heat partial differential
equation22; and spectral expansions, such as those of Karhunen-Loève type for the damped pendulum differential equation23

and the logistic differential equation24, and those of polynomial chaos type25. These approaches capture discontinuity and
non-differentiability points of the target density function correctly and are more efficient than non-parametric kernel density esti-
mations. On the other hand, let us mention that Liouville’s equation may be used to validate the densities obtained via the random
variable transformation method. This equation takes the form of a partial differential equation satisfied by the density function,
which, in certain cases, can be explicitly solved by employing the associated Lagrange system26,27. Finally, other strategies that
only focus on statistics estimations, which rely on simulations and expansions, are available, see28,29,30 for instance.
In this paper, we deal with the stochastic version of the logistic model proposed in7, where the carrying capacity varies with

time. The structure of the paper is the following. In Section 2, we study the deterministic logistic equation (no randomness)
with time-dependent carrying capacity: we solve the model by using the theory on Bernoulli ordinary differential equations and
we compare the solution with the cases discussed in7,9,10. In Section 3, we randomize the logistic equation, we prove that the
randomized solution satisfies the equation in the path-wise and the mean-square senses, and we show how to infer consistent
probability distributions for the model parameters via the maximum entropy principle. In Section 4, we derive the probability
density function of the solution proposed in7 by means of a comprehensive application of the random variable transformation
method. In Section 5, we carry out numerical test examples. Finally, in Section 6, we discuss the main results and present the
conclusions.

2 NON-AUTONOMOUS LOGISTIC EQUATION

The autonomous logistic equation has the form

N ′(t) = aN(t)
(

1 −
N(t)
K

)

, t ≥ 0, N(0) = N0, (1)

whereN0 > 0 is the initial condition, a > 0 is the growth rate parameter and K > 0 is the carrying capacity, withN0 < K . The
solution to (1) is well-known:

N(t) =
KN0

Ke−at +N0(1 − e−at)
. (2)

Notice that, as expected, K = limt→∞N(t). As explained in the previous section, we aim at analyzing the non-autonomous
logistic equation driven by a time-varying carrying capacity K(t):

N ′(t) = aN(t)
(

1 −
N(t)
K(t)

)

, t ≥ 0, N(0) = N0. (3)

Different forms of K(t) have been conceived in the existing literature. For instance,7 employed the sigmoid growth

K(t) =
K0Ks

(Ks −K0)e−ct +K0
, (4)

while9 considered the logistic growth

K(t) = Ks

(

1 −
(

1 −
K0
Ks

)

e−ct
)

, (5)

whereK0 = K(0) is the initial limiting capacity,Ks = limt→∞K(t) is the saturation (or equilibrium) level, and c is the saturation
constant. It is assumed N0 < K0 < Ks and c > 0. Other functional forms of K(t), which vary sinusoidally, exponentially or
linearly, can be consulted in8,10.
Equation (3) is a Bernoulli ordinary differential equation. It can be solved via the change of variables M = 1∕N . By

differentiatingM(t), a linear ordinary differential equation is derived forM :

M ′(t) = −
N ′(t)
N(t)2

= −aM(t) + a
K(t)

, M(0) = 1
N0

.
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Then

M(t) = e−at
N0

+ e−ata

t

∫
0

eas
K(s)

ds,

so, after undoing the change of variables, the solution to (3) is

N(t) =
eatN0

1 + aN0 ∫
t
0

eas

K(s)
ds
. (6)

When K(t) is given by (5) and is substituted into (6), we have the solution derived in10:

N(t) =
eatN0

1 + aN0

Ks
∫ t
0

eas

1−be−cs
ds
, b = 1 −

K0
Ks

∈ (0, 1).

To evaluate the integral from the denominator, the authors employed an algebraic trick, by expanding part of the integrand as a
series:

1
1 − be−cs

=
∞
∑

n=0
bne−ncs, s > 0,

so that
t

∫
0

eas
1 − be−cs

ds =

t

∫
0

( ∞
∑

n=0
bne(a−nc)s

)

ds =
∞
∑

n=0

bn

a − nc
(

e(a−nc)t − 1
)

.

In practice, the series is truncated to a finite-term sum. Accurate approximations to the exact solutionN(t) are obtained for small
orders of truncation. Notice that this method is applicable whenever K(t) can be written as K̃(e−ct), where K̃ is a decreasing
function expressed as a power series K̃(u) =

∑∞
n=0 K̃nun.

On the other hand, when K(t) is defined by (4), we have a closed-form solution (without integrals) after some simple
manipulations in (6):

N(t) =
eatN0Ks

Ks + aN0

(

Ks−K0
(a−c)K0

(

e(a−c)t − 1
)

+ eat−1
a

) . (7)

In the development from Section 4, we will focus on the closed-form solution (7).

3 RANDOM NON-AUTONOMOUS LOGISTIC EQUATION

3.1 Randomization
Model (3) is randomized. Mathematically, there is an underlying complete probability space (Ω, ,ℙ), where Ω is the sample
space,  ⊆ 2Ω is the �-algebra of events, and ℙ ∶  → [0, 1] is the probability measure. The parameters a andN0 are random
variables and the carrying capacityK(t) is a stochastic process. In this manner, a(!),N0(!) andK(t, !) depend on the outcome
! ∈ Ω of an experiment. Notice that K(t) is a stochastic process by taking c, K0 and Ks as random variables, which evaluate at
the outcomes of experiments as c(!), K0(!) and Ks(!). The general solution N(t) to (3), given by (6), is a stochastic process
N(t, !). It is assumed that, given a population datum at a certain time t, it is just a possible realization of the model solution over
all possible realizations {N(t, !) ∶ ! ∈ Ω}. The outcome ! will be implicitly assumed without being systematically written.

3.2 Stochastic solution
The stochastic process N(t) defined by (6) is the path-wise solution to (3) on [0,∞)11, Ch. 3. Indeed, N(⋅, !) solves (3) almost
surely.
Let Lp(Ω), 1 ≤ p < ∞, be the Lebesgue space of random variables U ∶ Ω → ℝ satisfying ‖U‖p = (E[|U |p])1∕p < ∞,

where E is the expectation operator. When p = ∞, L∞(Ω) is defined as the Lebesgue space of almost surely bounded random
variables, and ‖ ⋅‖∞ stands for the least upper-bound. The set Lp(Ω), 1 ≤ p ≤∞, is a Banach space, and for p = 2, it is a Hilbert
space with the inner product (U, V ) → E[UV ]. Convergence in L2(Ω) is referred to as mean-square convergence. Convergence
in Lp(Ω) preserves the convergence of the statistical moments up to order p; in particular, mean-square convergence implies
convergence of the expectation and the variance. Mean-square calculus considers the limits from the definitions of continuity,
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differentiability, Riemann integrability, etc. in the mean-square sense. Under this alternative calculus, one may solve differential
equations with random parameters11, Ch. 4,31,32.
It can be proved that the path-wise solutionN(t) is also the mean-square solution on [0,∞), whenever ‖a‖∞ < ∞, K0(!) ≤

K(t, !) ≤ Ks(!) almost surely for all t ≥ 0, ‖Ks‖∞ < ∞, and K0(!) > � > 0 almost surely, for some constant �. Let
F (t,N, !) = a(!)N(1 − N∕K(t, !)) be defined for times t ≥ 0 and numbers 0 ≤ N ≤ ‖Ks‖∞. The map F ∶ [0,∞) ×
[0, ‖Ks‖∞] × Ω → ℝ is Lipschitz: by the triangular inequality,

|

|

F (t,N1, !) − F (t,N2, !)|| ≤ ‖a‖∞|N1 −N2| +
‖a‖∞
�

|N1 +N2||N1 −N2| ≤ ‖a‖∞

(

1 +
2‖Ks‖∞

�

)

|N1 −N2|.

By Tietze extension theorem33, Th. 1, F can be extended to a Lipschitz map F̃ ∶ [0,∞) × ℝ × Ω → ℝ with Lipschitz constant
‖a‖∞(1 + 2‖Ks‖∞∕�). By11, Th. 4.3,32, Th. 5.1.2, the random differential equation problemN ′(t) = F̃ (t,N(t)) has a unique mean-
square solution, for any initial conditionN0 ∈ L2(Ω). Any mean-square solution is equivalent to the path-wise solution34, Th. 3(a).
Suppose that 0 < N0(!) < K0(!) almost surely. Then the path-wise solution to N ′(t) = F̃ (t,N(t)) is the path-wise solution
to N ′(t) = F (t,N(t)) that satisfies 0 ≤ N(t, !) ≤ ‖Ks‖∞ for all t ≥ 0 (more specifically N0 ≤ N(t) ≤ K(t) ≤ Ks). Then the
mean-square solution toN ′(t) = F (t,N(t)) is given by (6), for any initial conditionN0 ∈ L2(Ω), and we are done. Notice that,
in the particular cases of (4) and (5), the parameter c > 0 may be unbounded above.
We point out that, as a consequence of35, pp. 440–441, properties 1–2, the integral from the denominator of (6), ∫ t

0
eas

K(s)
ds, can be

considered in the mean-square sense (the Riemann sums have mean-square convergence), apart from path-wise.

3.3 Inverse parameter estimation
In practice, one must set consistent probability distributions for the parameters. Let us see how the Shannon entropy measure is
useful here12,13. Let � be any random parameter. Its Shannon entropy is expressed via the functional

[f�] = −

�

∫
�

f�(�) logf�(�) d�, (8)

where f� is the probability density function of �, [�, �] denotes its support (of course, it could be � = −∞ and/or � = ∞),
and log is the natural logarithm (in base e). It is understood here that 0 log 0 = 0. Prior information on � is expressed via the
following restrictions:

E[�k] =

�

∫
�

�kf�(�) d� = f k, 0 ≤ k ≤ m. (9)

Here f k denotes the k-th statistical moment of �. For instance, f 0 = 1 by definition of density function, f 1 is the mean of �, f 2
is the variance of � plus its squared mean, etc. The maximum entropy principle maximizes the objective functional (8) subject
to (9). This is usually done in the literature via calculus of variations36. The Lagrange multipliers method says that

�
�f�(�)

∈ ⟨

{

�E[�k]
�f�(�)

∶ k = 0,… , m
}

⟩,

where
�

�f�(�)
= −1 − log f�(�),

�E[�k]
�f�(�)

= �k

are the functional derivatives with respect to f� at �, determined by means of the Euler-Lagrange equation, and ⟨⋅⟩ denotes the
linear span. This gives the solution

f�(�) = 1[�,�](�)exp

(

−�0 −
m
∑

k=1
�k�

k

)

, (10)

for certain Lagrange constants �0, �1,… , �m ∈ ℝ. These constants are determined by solving the nonlinear system of equations
that appears when substituting (10) into (9).
It is worth pointing out that a derivation of (10) using just elementary calculus was proposed in37. The idea is simple.

Let f� be given by (10) and let f̃ be any other non-negative function satisfying the corresponding restrictions (9). From the
inequality log t ≤ t − 1 for t > 0, one derives f̃ (�) − f̃ (�) log f̃ (�) ≤ f�(�) − f̃ (�) logf�(�). By integrating, we have
[f̃ ] ≤ − ∫ �

� f̃ (�) logf�(�)d� =
∑m
k=0 �k ∫

�
� f̃ (�)�

kd� =
∑m
k=0 �kf

k = [f�], and we are done.
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Suppose that no information on � is known, only a bounded support [�, �]. Thenm = 0 and (10) becomes the density function
of a Uniform distribution on [�, �]: f�(�) = 1[�,�](�)

1
�−�

. On the other hand, suppose that � > 0 and its mean �̂ is known. In
this case, m = 1, and � follows the Exponential law, where the rate parameter is 1∕�̂: f�(�) = 1[0,∞)(�)(1∕�̂)e−�∕�̂ . Another
well-known case is when � is defined on the real line, with a certain mean value and standard deviation (m = 2), which leads to
the Gaussian distribution. Other cases were investigated in12. In general, one obtains �0,… , �m numerically.
In practice, determining the prior information of a parameter � is not an easy task. Suppose that we have a single pointwise

deterministic estimator of �, say �1. This value could be used as the mean of � (Exponential distribution for �), or to define a
certain support for � by adding and subtracting a certain variability around �1 (Uniform distribution for �). But, in any case,
the information is vague. A better scenario arises when we have several pointwise deterministic estimators of �, say �1,… , �q ,
q ≥ 2. By employing this sample, the mean and the variance of � can be estimated. Moreover, the support of � can also be
estimated via Markov’s inequality (which states that ℙ[|� − E[�]| > ��[�]] ≤ �−2, � > 0, where �[�] is the standard deviation
of �). In this case, m = 2, and the Lagrange constants �0, �1 and �2 satisfying (9) are calculated numerically.

4 PROBABILISTIC SOLUTION: DENSITY FUNCTION

In this section, we assume that the random parameters of the model (3) with carrying capacity (4) have specific probability
distributions, and we aim at computing the probability density function of the solutionN(t) given by (7). We employ the random
variable transformation method, see38, Th. 2.1.5.

4.1 Random variable transformation method
The random variable transformation technique gives the density function of a response X under the relation output-input X =
g(Y ), where g is a deterministic map called the transformation mapping and Y is a random quantity. It is assumed that the
dimensions of X and Y are equal. When g is smooth on an open set containing (Y ) = {Y (!) ∶ ! ∈ Ω}, one-to-one and with
non-vanishing Jacobian Jg(y) = det( )g

)y
(y)), the density function of X is given by

fX(x) = fY (ℎ(x))|Jℎ(x)|, (11)

where ℎ = g−1 is the inverse of g on its domain. Indeed, for any Borel set B contained in the image of X, we have

ℙ[X ∈ B] = ℙ[g(Y ) ∈ B] = ℙ[Y ∈ ℎ(B)] = ∫
ℎ(B)

fY (y) dy = ∫
B

fY (ℎ(x))|Jℎ(x)| dx.

The requirements may be overcome when the domain of the transformation mapping is divided into sub-domains where the
conditions hold38, Th. 2.1.8.

4.2 Application
Notice that the solution (7) is a closed-form transformation of the random input parameters N0, a, c, K0 and Ks. Then,
using (11), the density function of N(t), fN(t)(N), can be expressed in terms of the joint density function of (N0, a, c, K0, Ks),
f(N0,a,c,K0,Ks)(N0, a, c, K0, Ks).
The transformation mapping g is

g(N0, a, c, K0, Ks) =

⎛

⎜

⎜

⎜

⎝

N0, a, c,
eatN0Ks

Ks + aN0

(

Ks−K0
(a−c)K0

(

e(a−c)t − 1
)

+ eat−1
a

) , Ks

⎞

⎟

⎟

⎟

⎠

.

This manner of proceeding is usual: one of the components of the transformation mapping isN(t), while the rest of components
are fixed; the parameter corresponding to the componentN(t) (in this caseK0) must be easily isolated in the equationN(t) = N .
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The inverse mapping is given by

ℎ(N0, a, c,N,Ks) =

⎛

⎜

⎜

⎜

⎝

N0, a, c,
Ks

1 − (a−c)(N0eat(N−Ks)+N(Ks−N0))
aNN0(et(a−c)−1)

, Ks

⎞

⎟

⎟

⎟

⎠

.

Its Jacobian is given by

Jℎ(N0, a, c,N,Ks) =
)K0
)N

=
aK2

sN
2
0 (a − c)e

at (et(a−c) − 1
)

(

cN0eat(Ks −N) + aNN0
(

eat − et(a−c)
)

+ aKs
(

N −N0eat
)

+ cN(N0 −Ks)
)2
> 0,

where the positivity comes from the fact that t > 0 and (a − c)(et(a−c) − 1) > 0 for all values of a and c (except when a = c,
but this happens with zero probability when a and c are independent and absolutely continuous random variables). By (11) and
marginalizing,

fN(t)(N) = ∫ ∫ ∫ ∫
(N0,a,c,Ks)

f(N0,a,c,K0,Ks)

⎛

⎜

⎜

⎜

⎝

N0, a, c,
Ks

1 − (a−c)(N0eat(N−Ks)+N(Ks−N0))
aNN0(et(a−c)−1)

, Ks

⎞

⎟

⎟

⎟

⎠

×
aK2

sN
2
0 (a − c)e

at (et(a−c) − 1
)

(

cN0eat(Ks −N) + aNN0
(

eat − et(a−c)
)

+ aKs
(

N −N0eat
)

+ cN(N0 −Ks)
)2
dN0 da dc dKs, (12)

where (N0, a, c, Ks) = {(N0(!), a(!), c(!), Ks(!)) ∶ ! ∈ Ω} is the image of (N0, a, c, Ks). To apply the random variable
transformation method, we must have the denominator of Jℎ(N0(!), a(!), c(!), N(t, !), Ks(!)) distinct from 0 almost surely;
this always holds because the solutionN(t) is absolutely continuous.
Notice that, given an equation of the formN(t) = N , the parameters Ks andN0 are also easily isolated. Only a and c cannot

be explicitly isolated, as they appear within and outside an exponential function. Hence (11) is applicable by isolating Ks and
N0, instead of K0.
First, for Ks, the transformation mapping is

g(N0, a, c, K0, Ks) =

⎛

⎜

⎜

⎜

⎝

N0, a, c, K0,
eatN0Ks

Ks + aN0

(

Ks−K0
(a−c)K0

(

e(a−c)t − 1
)

+ eat−1
a

)

⎞

⎟

⎟

⎟

⎠

.

Its inverse is

ℎ(N0, a, c, K0, N) =
⎛

⎜

⎜

⎝

N0, a, c, K0,
NaN0

a−c

(

e(a−c)t − 1
)

−
(

eat − 1
)

NN0

N + NaN0

(a−c)K0

(

e(a−c)t − 1
)

− eatN0

⎞

⎟

⎟

⎠

,

with Jacobian

Jℎ(N0, a, c, K0, N) =
)Ks

)N
=

(

eat − 1 − a
a−c

(

e(a−c)t − 1
)

)

eatN2
0

(

N + NaN0

(a−c)K0

(

e(a−c)t − 1
)

− eatN0

)2
.

Therefore, by (11) and marginalizing,

fN(t)(N) = ∫ ∫ ∫ ∫
(N0,a,c,K0)

f(N0,a,c,K0,Ks)

⎛

⎜

⎜

⎝

N0, a, c, K0,
NaN0

a−c

(

e(a−c)t − 1
)

−
(

eat − 1
)

NN0

N + NaN0

(a−c)K0

(

e(a−c)t − 1
)

− eatN0

⎞

⎟

⎟

⎠

×

(

eat − 1 − a
a−c

(

e(a−c)t − 1
)

)

eatN2
0

(

N + NaN0

(a−c)K0

(

e(a−c)t − 1
)

− eatN0

)2
dN0 da dc dK0. (13)

Now we justify that the term eat − 1 − a
a−c
(e(a−c)t − 1) coming from the numerator of the Jacobian, does not need to be written

with absolute value as indicated in the general formula (11). For this goal, let t > 0 be fixed, and a and c be positive random
variables. Observe that the above-mentioned term can be expressed as

eat − 1 − a
a − c

(

e(a−c)t − 1
)

= at
(

eat − 1
at

− e
(a−c)t − 1
(a − c)t

)

. (14)
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Moreover, the function f (x) = (ex − 1)∕x, defined for all x ∈ ℝ − {0}, satisfies that limx→0 f (x) = 1, f (x) > 0 and f ′(x) > 0
(i.e. f is increasing). Now we distinguish two cases with respect to the two positive random variables a and c: a > c > 0 and
c > a > 0. Notice that other situations have null probability to occur, by absolute continuity. In both cases, we shall show
that expression (14) is positive. Assume that a > c > 0. Then a > a − c and at > (a − c)t for t > 0. Since f is increasing,
f (at) > f ((a − c)t), i.e.

eat − 1
at

− e
(a−c)t − 1
(a − c)t

> 0.

Multiplying this last expression by at > 0, from (14) one gets the stated result. Now, let us assume that 0 < a < c. Then,
a > a − c and at > (a − c)t for t > 0. Now the reasoning follows exactly as before, and we are done.
ForN0, the transformation mapping is defined as

g(N0, a, c, K0, Ks) =

⎛

⎜

⎜

⎜

⎝

eatN0Ks

Ks + aN0

(

Ks−K0
(a−c)K0

(

e(a−c)t − 1
)

+ eat−1
a

) , a, c, K0, Ks

⎞

⎟

⎟

⎟

⎠

.

Its inverse is

ℎ(N, a, c, K0, Ks) =

(

K0KsN(a − c)
a
(

N(K0 −Ks)et(a−c) +K0eat(Ks −N) +KsN
)

− cK0
(

eat(Ks −N) +N
) , a, c, K0, Ks

)

,

with Jacobian

Jℎ(N, a, c, K0, Ks) =
)N0

)N
=

K2
0K

2
s (a − c)

2eat
(

cK0
(

eat(Ks −N) +N
)

− a
(

N(K0 −Ks)et(a−c) +K0eat(Ks −N) +KsN
))2

> 0.

By (11) and marginalizing,

fN(t)(N) = ∫ ∫ ∫ ∫
(a,c,K0,Ks)

f(N0,a,c,K0,Ks)

(

K0KsN(a − c)
a
(

N(K0−Ks)et(a−c)+K0eat(Ks−N)+KsN
)

−cK0
(

eat(Ks−N)+N
) , a, c, K0, Ks

)

×
K2
0K

2
s (a − c)

2eat
(

cK0
(

eat(Ks −N) +N
)

− a
(

N(K0 −Ks)et(a−c) +K0eat(Ks −N) +KsN
))2

da dc dK0 dKs. (15)

Two general considerations must be made here. Firstly, when some input random parameter is independent of the rest, then
the joint density function can be factored as a product. In fact, when applying the maximum entropy principle, the input random
parameters that are distinct are assumed to be independent. Secondly, when some input parameter � is a constant �0, then its
probability density function is a Dirac delta function centred at the constant, f� = ��0 = ∞1{�0}. This generalized function is
defined via the heuristic property ∫ ∞

−∞ F (�)��0(�) d� = F (�0), for any real function F .
In practice, one chooses between (12), (13) and (15) depending on whether K0, Ks and N0 have proper density function,

respectively.
Given the density function fN(t), any statistic of N(t) can be determined by using the relation E[r(N(t))] =

∫ ∞
−∞ r(x)fN(t)(x) dx, where r is any deterministic function. Also, given a probability � ∈ (0, 1), a confidence interval [i� , j�] is
constructed by using � ≈ ∫ j�

i�
fN(t)(x) dx.

An analogous procedure serves to calculate the density function of the carrying capacity K(t) given by (4). Consider the
transformation mapping

g(c, K0, Ks) =
(

c,
K0Ks

(Ks −K0)e−ct +K0
, Ks

)

.

Its inverse mapping, computed by isolating K0 in the equation K(t) = K , is

ℎ(c, K,Ks) =
(

c,
KsK

Ksect −Kect +K
,Ks

)

,

with Jacobian

Jℎ(c, K,Ks) =
)K0
)K

=
K2
s e
ct

(

ect(Ks −K) +K
)2
> 0.
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By (11) and marginalizing, we obtain

fK(t)(K) = ∫ ∫
(c,Ks)

f(c,K0,Ks)

(

c,
KsK

Ksect −Kect +K
,Ks

) K2
s e
ct

(

ect(Ks −K) +K
)2
dc dKs. (16)

We can also consider the transformation mapping

g(c, K0, Ks) =
(

c, K0,
K0Ks

(Ks −K0)e−ct +K0

)

.

This selection corresponds to isolating Ks when computing the inverse of g from the equation K(t) = K . The inverse mapping
is then

ℎ(c, K0, K) =

(

c, K0,
KK0

(

1 − e−ct
)

K0 −Ke−ct

)

,

with Jacobian

Jℎ(c, K0, K) =
)Ks

)K
=

K2
0

(

1 − e−ct
)

(

K0 −Ke−ct
)2
> 0.

By (11) and marginalizing, we arrive at

fK(t)(K) = ∫ ∫
(c,K0)

f(c,K0,Ks)

(

c, K0,
KK0

(

1 − e−ct
)

K0 −Ke−ct

)

K2
0

(

1 − e−ct
)

(

K0 −Ke−ct
)2
dc dK0. (17)

Finally, in contrast to the equationN(t) = N , we can isolate c in the equation K(t) = K; consider

g(c, K0, Ks) =
(

K0Ks

(Ks −K0)e−ct +K0
, K0, Ks

)

,

being

ℎ(K,K0, Ks) =

⎛

⎜

⎜

⎜

⎝

log
(

K(Ks−K0)
K0(Ks−K)

)

t
, K0, Ks

⎞

⎟

⎟

⎟

⎠

and
Jℎ(K,K0, Ks) =

)c
)K

=
Ks

Kt(Ks −K)
> 0.

Then

fK(t)(K) = ∫ ∫
(K0,Ks)

f(c,K0,Ks)

⎛

⎜

⎜

⎜

⎝

log
(

K(Ks−K0)
K0(Ks−K)

)

t
, K0, Ks

⎞

⎟

⎟

⎟

⎠

Ks

Kt(Ks −K)
dK0 dKs. (18)

Let us summarize the formulae derived in this section. Depending on which parameter � we can isolate in the equations
N(t) = N and K(t) = K and on whether the density function f� exists, one chooses the appropriate expression of fN(t)(N)
between (12) (when � = K0), (13) (when � = Ks) and (15) (when � = N0), and the appropriate expression of fK(t)(K)
between (16) (when � = K0), (17) (when � = Ks) and (18) (when � = c). Notice thatN0 does not play any role in formula (18),
since it refers to the carrying capacity. On the other hand, for fN(t)(N), the situations � = a and � = c are not contemplated
because they cannot be isolated in the equationN(t) = N (they appear within and outside an exponential).
All of the integrals that have appeared in this section can be computed via tensorized Gauss quadratures. If the integrand has

significant jump discontinuities, a parametric Monte Carlo method may be employed to estimate the integral, instead39.

5 NUMERICAL EXAMPLES

In this section we undertake numerical test examples for specific input parameters. In Example 1, we will consider a single
pointwise deterministic estimator for each parameter. While in Example 2, we will assume several pointwise deterministic
estimators for each parameter.
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Example 1. Let us consider the parameters values a = 0.15, c = 0.1, K0 = 0.3, Ks = 1 andN0 = 0.2. The coefficients a and c
are measured in time−1, while N0, K0 and Ks represent proportions of counts, being Ks the maximum. The parameters values
may be fitted experimentally or via least-squares minimization procedures. By using the exact deterministic solution (7), we can
forecast the population N(t) for t ≥ 0. The results are reported in Figure 1, where the fat line refers to K(t) defined by (4), the
solid thin line representsN(t) defined by (7), and the dots correspond to the numerical solution employing the classical Runge
Kutta scheme for validation. We observe that, as expected, expression (7) and the numerical solution agree. Also, the solution
N(t) tends to the carrying capacity K(t) as t increases, at the time when the growth of both functions is decelerated. The slope
of the sigmoid trajectory of K(t) depends on the saturation constant c. On the other hand, the slope of the sigmoid trajectory of
N(t) depends on both the saturation constant c and the growth rate a.

10 20 30 40 50 60
t

0.2

0.4

0.6

0.8

1.0

FIGURE 1 Given the parameters values a = 0.15, c = 0.1, K0 = 0.3, Ks = 1 and N0 = 0.2, the fat line refers to K(t)
defined by (4), the solid thin line represents N(t) defined by (7), and the dots correspond to the numerical solution employing
the classical Runge Kutta scheme. This figure corresponds to Example 1.

Next we study the effect of randomness on the model output. Let us suppose that, by some experimental evidence, N0 lies
within [0.19, 0.21], a is bounded on [0.13, 0.17], c > 0 with mean equal to 0.1, and K0 is bounded on [0.26, 0.34]. According to
the maximum entropy principle,N0 has a Uniform distribution on [0.19, 0.21], a follows a Uniform distribution on [0.13, 0.17], c
has an Exponential distribution with rate parameter 1∕0.1 = 10, andK0 is Uniform on [0.26, 0.34]. These distributions maximize
the ignorance on the random behaviour ofN0, a, c andK0, while not violating the restrictions on their supports and statistics, if
any. The random variables are assumed to be independent. We keep Ks with its constant value 1, as it represents the maximum
proportion; its density function may be considered in terms of the Dirac delta function as �1. The saturation level being 1 may
be seen as a general fact, as it can usually be scaled out of the problem for simplicity. The joint density function f(N0,a,c,K0,Ks) is
factorized in terms of the marginal density functions:

f(N0,a,c,K0,Ks) = fN0
× fa × fc × fK0 × �1.

AsKs does not have a proper density function, we must consider (12) or (15) for the density fN(t)(N). We take (12). On the other
hand, for fK(t)(K), wemust consider (16) or (18).We pick (16). Thus, for both density functions, the inverse of the transformation
mapping is defined by isolating K0. The density function (12) is a triple integral in terms of dN0 da dc, while (16) is a one-
dimensional integral with respect to dc. In Figure 2, we plot the density functions (12) and (16) for different times t = 10 (solid
line), 20 (dashed line), 30 (dotted dashed line) and 40 (dotted line). For (16), the plot has been truncated to [0, 8] in the vertical
axis for t = 20, t = 30 and t = 40, otherwise the density functions take too large values near K = 1.
The support ofN(t) is defined from the value of (7) when a = 0.13, c = 0,K0 = 0.26,N0 = 0.19 (these values correspond to

the left endpoints of the domains of their corresponding distributions) and Ks = 1, which is 0.236 for t = 10, 0.253 for t = 20,
0.258 for t = 30, and 0.259 for t = 40. Regarding the support ofK(t), its left endpoint is 0.26 for any t ≥ 0. The upper bound for
the supports is 1. Notice that small dispersions of the parameters give wide supports forN(t) andK(t): this means that, for small
perturbations in the experimental values of the parameters, the response may be sensitive and present large variation. Hence
the need of appropriate tools to understand the random behaviour of the response. For standard probability distributions for the
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t=10

t=20

t=30

t=40

0.2 0.4 0.6 0.8 1.0
N

2

4

6

8

fN (t)(N)

t=10

t=20

t=30

t=40

0.4 0.6 0.8 1.0
K

2

4

6

8

fK (t)(K)

FIGURE 2 Given the probability distributions a ∼ Uniform(0.13, 0.17), c ∼ Exponential(10), K0 ∼ Uniform(0.26, 0.34),
N0 ∼ Uniform(0.19, 0.21) and the total proportion Ks = 1, the first panel plots the density fN(t)(N) given by (12) and the
second panel shows the density fK(t)(K) given by (16), for different times t = 10 (solid line), 20 (dashed line), 30 (dotted dashed
line) and 40 (dotted line). This figure corresponds to Example 1.

input parameters, the density functions ofN(t) and K(t)may present a wide variety of shapes: asymmetry, multimodality, non-
regularity, etc. As t grows, more probability density tends to be concentrated near 1, as the solution and the carrying capacity
approach the limiting population.
The evolution of the density function ofN(t) can be better understood by means of Figure 3. It shows the contour plot of the

densities for locations in [0, 1] and non-negative discretized times. Light colours correspond to large values, being the “outliers”
represented in white colour. From fN0

at t = 0, the densities spread as t increases and, for large t, they tend to �1.

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20
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40

50

60

N

t

1

2

3

4

5

6

7

8

9

FIGURE 3 Given the probability distributions a ∼ Uniform(0.13, 0.17), c ∼ Exponential(10), K0 ∼ Uniform(0.26, 0.34),
N0 ∼ Uniform(0.19, 0.21) and the total proportion Ks = 1, the figure shows the contour plot of the density fN(t)(N) given
by (12), forN ∈ [0, 1] and t ≥ 0. This figure corresponds to Example 1.

In Table 1, we tabulate the deterministic value of N(t) together with its main statistical information (mean value, standard
deviation and 95% confidence range), for times t = 10, 20, 30 and 40.

Example 2. Let us suppose several listed values of the parametersN0 (in proportion of counts), a (in time−1), c (in time−1) and
K0 (in proportion of counts), obtained experimentally or via least-squares minimization procedures from laboratory data that
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deterministic mean standard deviation 95% confidence interval
t = 10 0.344 0.334 0.054 (0.26, 0.47)
t = 20 0.556 0.504 0.15 (0.29, 0.80)
t = 30 0.760 0.642 0.21 (0.29, 0.94)
t = 40 0.892 0.727 0.23 (0.33, 0.99)

TABLE 1 Given a = 0.15, c = 0.1, K0 = 0.3, Ks = 1 and N0 = 0.2, the deterministic value of N(t) is reported for
times t = 10, 20, 30 and 40. On the other hand, given the randomization a ∼ Uniform(0.13, 0.17), c ∼ Exponential(10),
K0 ∼ Uniform(0.26, 0.34) and N0 ∼ Uniform(0.19, 0.21), the main statistical information (mean, standard deviation and 95%
confidence interval) is tabulated for t = 10, 20, 30 and 40. This table corresponds to Example 1.

are replicated at the different time instants of measure:

(0.201139, 0.148054, 0.0991566, 0.293589),

(0.190989, 0.147221, 0.107407, 0.301059),
(0.205488, 0.142062, 0.114978, 0.280932),
(0.188831, 0.139132, 0.112557, 0.312992),
(0.192942, 0.157904, 0.0879763, 0.301962),
(0.199116, 0.139290, 0.105916, 0.299521),
(0.199919, 0.164675, 0.0991728, 0.300021),
(0.210952, 0.156174, 0.0956518, 0.286416),
(0.206444, 0.156298, 0.113180, 0.293593),
(0.198279, 0.131121, 0.101008, 0.314752).

The parameter Ks is set to 1, as it stands for the maximum proportion in any case. Compared to Example 1, now there is much
more information about the parameters, and the conclusions will be robust. The mean and the variance of each parameter are
estimated via the corresponding sample of length ten. The support of each parameter is defined by adding and subtracting three
times the standard deviation to the mean (this is motivated by the 3� rule and the Vysochanskii-Petunin inequality, see40).
When applying the maximum entropy principle, we have m = 2, and the Lagrange constants �0, �1 and �2 satisfying the
complex nonlinear system (9) are determined numerically by employing Newton’s method, with starting value (−1, 1, 1), for
each parameter. In Table 2 we report the results, where the values of �0, �1 and �2 have been stopped at the sixth significant digit.

parameter mean standard deviation support �0 �1 �2
N0 0.199 0.00706 [0.178, 0.221] 384.067 −3892.43 9759.99
a 0.148 0.0105 [0.116, 0.180] 93.9733 −1317.20 4444.05
c 0.104 0.00866 [0.0777, 0.130] 65.8797 −1344.29 6481.91
K0 0.298 0.0105 [0.267, 0.330] 386.901 −2616.60 4382.95

TABLE 2 For each parameter, we tabulate the mean and the standard deviation estimated from the corresponding sample of
length ten. The support of each parameter is defined by adding and subtracting three times the standard deviation to the mean.
The Lagrange constants �0, �1 and �2 are determined numerically. This table corresponds to Example 2.

Figure 4 plots the resulting density functions (10) for N0 (solid line), a (dashed line), c (dotted dashed line) and K0 (dotted
line). As explained in12,41 based on theory and numerical evidence, whenever the mean, the variance and a compact support are
available, the entropy distribution is approximately truncated Gaussian. The density function of Ks is the Dirac delta function
centred at 1, �1. All of these random variables are assumed to be independent, so their joint density function factorizes.
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FIGURE 4 Density functions ofN0 (solid line), a (dashed line), c (dotted dashed line) and K0 (dotted line) determined via the
maximum entropy principle. This figure corresponds to Example 2.

As Ks does not have a proper density function, we must consider (12) or (15) for the density fN(t)(N), and (16) or (18) for
fK(t)(K). We take (12) and (16), which come from isolating K0 when defining the inverse of the transformation mapping. In
Figure 5, we show the density functions (12) and (16) for different times t = 10 (solid line), 20 (dashed line), 30 (dotted dashed
line) and 40 (dotted line). On the other hand, in Figure 6 we can see the contour plot of the densities fN(t)(N) for positions
N ∈ [0, 1] and non-negative discretized times t. Light tones are associated to large values, and the “outliers” are painted in
white colour.
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FIGURE 5 Given the distributions of a, c, K0, N0, and the total proportion Ks = 1, the first panel plots the density fN(t)(N)
given by (12) and the second panel shows the density fK(t)(K) given by (16), for different times t = 10 (solid line), 20 (dashed
line), 30 (dotted dashed line) and 40 (dotted line). This figure corresponds to Example 2.

The left endpoint of the support of N(t) is given by the value of (7) when a = 0.116, c = 0.0777, K0 = 0.267, N0 = 0.178
and Ks = 1, which is 0.273 for t = 10, 0.418 for t = 20, 0.590 for t = 30, and 0.749 for t = 40. The left endpoint of the support
of K(t) is 0.442 when t = 10, 0.633 when t = 20, 0.789 when t = 30, and 0.891 when t = 40. The right endpoint of the support
of N(t) is obtained by substituting a = 0.180, c = 0.130, K0 = 0.330, N0 = 0.221 and Ks = 1 into (7), which gives 0.423 for
t = 10, 0.695 for t = 20, 0.884 for t = 30, and 0.964 for t = 40. The support of K(t) is bounded above by 0.644 when t = 10,
0.869 when t = 20, 0.961 when t = 30, and 0.989 when t = 40. When t increases, the density functions converge to �1.
In Table 3, we document the deterministic value ofN(t) together with its main statistical information (mean value, standard

deviation and 95% confidence range), for times t = 10, 20, 30 and 40.
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FIGURE 6 Given the distributions of a, c, K0, N0, and the total proportion Ks = 1, the figure shows the contour plot of the
density fN(t)(N) given by (12), forN ∈ [0, 1] and t ≥ 0. This figure corresponds to Example 2.

deterministic mean standard deviation 95% confidence interval
t = 10 0.344 0.343 0.013 (0.32, 0.37)
t = 20 0.556 0.558 0.026 (0.50, 0.61)
t = 30 0.760 0.764 0.030 (0.70, 0.82)
t = 40 0.892 0.894 0.022 (0.84, 0.93)

TABLE 3 Given a = 0.15, c = 0.1, K0 = 0.3, Ks = 1 and N0 = 0.2, the deterministic value of N(t) is reported for times
t = 10, 20, 30 and 40. On the other hand, given the randomization of a, c, K0 and N0, the main statistical information (mean,
standard deviation and 95% confidence interval) is tabulated for t = 10, 20, 30 and 40. This table corresponds to Example 2.

6 DISCUSSION AND CONCLUSION

This paper addresses two important issues in ecological modelling: the mathematical analysis of the logistic growth model for
time-varying carrying capacity and the incorporation of randomness into the model formulation. The former is motivated by
the principle that a changing environment may result in a significant change in the limiting capacity, while the latter is justified
accounting for data errors. The study of randomness on the non-autonomous logistic growth model does not seem to have been
explored, at least to our knowledge.
With time-dependent carrying capacity, the deterministic logistic equation belongs to the class of Bernoulli ordinary differ-

ential equations, which can be solved by a change of variables. The constant parameters (growth rate, saturation rate, saturation
level, etc.) can be fitted experimentally or via least-squares minimization procedures. The resulting model can then be used for
forecast. In this paper we focus on the model from7, which described parasite growth during infection.
To analyze the effect of randomness on the model output, first one must set appropriate probability distributions for the input

parameters. This can be done via the maximum entropy principle. Given a parameter, its density function is chosen by maxi-
mizing the Shannon entropy measure, restricted to certain statistical moments and support usually devised from deterministic
fittings and experimental data. For example, if only information on the support of the parameter is available, then the Uniform
distribution is selected; if the parameter is positive and only its mean is known, then the Exponential distribution is chosen. In
general, the selection of the density function is made numerically. The foundation of these selections is the calculus of varia-
tions and Lagrange multipliers. Depending on the amount of data at each time instant of interest, the prior information on the
parameters is either more vague or more complete. When there are replicated data at each time instant, the information on the
parameters is more significant and the entropy distribution is more reliable; this “multi-data” case is the most desirable scenario
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in practice. The density function of the exact model solution can be determined via the random variable transformation method.
This technique is based on the application of a formula when the transformation mapping between the random quantities is injec-
tive (one-to-one) with non-vanishing Jacobian. These requirements may be overcome when the domain of the transformation
mapping is divided into sub-domains where these conditions hold.
In this manner, we have a probabilistic solution to the model. Apart from pointwise estimations, other relevant information

such as confidence intervals, dispersion and statistical moments can be derived. This supplies a more faithful and complete
description of the ecological process.
In the near future, we aim at conducting a similar analysis for the logistic growth model proposed in10, where the carrying

capacity is itself described via a logistic curve. In that paper, the authors modelled the total bacterial biomass during occlusion
of healthy human skin. The solution to that model is expressed algebraically by truncating an infinite series. Thus, when the
input parameters are random variables, the application of the random variable transformation method shall be analyzed.
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