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1. Introduction

1.1. Context

The paper deals with open problems related to positive definite functions defined over compact two-point

homogeneous spaces. In particular, we deal with positive definite functions that are geodesically isotropic

in the sense that they solely depend on the geodesic distance between any pair of points.

Two-point homogeneous spaces have a long history that can be traced back to the Wang’s tour de

force ([39]). Compact two point homogeneous spaces are a rather broad class of manifolds that includes,
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as special cases, the unit hyper-sphere, the real/complex/quaternionic projective space, and the Cayley
projective plane, that is the octonionic projective plane. These spaces have received increasing attention
from the mathematical community, and the reader is referred to [7,16,17,22,26,33,37], to mention a few.
Recently, there has been a renewed interest around these spaces, and we mention [9,8,10,15,32] with the
references therein.

The statistical community has been recently engaged in problems related to these spaces. The book by
[30] contains a comprehensive introduction. Random fields on two-point homogeneous spaces have been
inspected by [28] and [29]. Generalizations have been considered by [19].

Contributions about positive definite functions on d-dimensional spheres embedded in R4+ became
ubiquitous in the last 10 years, most of this literature being inspired by the seminal paper by [24] and the
list of open problems published therein. Some of these problems have been solved by [3,11,31] and by [34].
Spectral representations in more abstract contexts have been discussed in [12].

A compact two-point homogeneous space M? of dimension d > 1 is both a Riemannian d-manifold and
a compact symmetric space of rank 1. Each M¢ has an invariant Riemannian (geodesic) normalized metric
d(-,-) such that all geodesics on M are closed and have length 27. Throughout this paper we will use
the notation 0 := d(x,y) € [0,7]. Moreover, M? can be endowed with the measure doy(x) induced by a
normalized left Haar measure. More details are provided in Section 2.

Let C : M? x M? — R be a continuous function. Since M¢ entails a group of motions, Gy, taking any pair
of points (z,y) to (z,w) when d(z,y) = d(z,w), we say that C is geodesically isotropic when

C(z,y) = C(Az, Ay), z,y € M?, A€ Gy

Equivalently, the function C' above can be written as

C(z,y) = f(cos(d(x,y))), =,y €M, (1)

for some function f : [—1,1] = R, termed here the radial isotropic part of C.
The function C : M4 x M? — R is positive definite on M? if

N N
Z Z cic;C(x;,z5) >0,
i=1 j=1

for any integer N > 1, for any ci,...,cy € R and for any z1,...,zx € M? A positive definite function
C is strictly positive definite if the above inequality is strict when Zjvzl c? # 0. When C' is geodesically
isotropic, we shall abuse of notation when calling the corresponding function f in (1) positive definite.

For the remainder of the paper, pLr) [-1,1] — R denotes the Jacobi polynomial of degree n, and
{Pfla’ﬂ)};’f’io the Jacobi family of orthogonal polynomials associated to the weight w(z) = (1 — z)%(1 + x)”
for v, B > —1. We refer to [38] for details about the Jacobi polynomials and some useful details are provided
in Section 4.1.

Let L7 := L{P([—1,1]) be the space of the measurable functions f : [~1,1] — R that are integrable

with respect to the weight (1 — x)*(1 4 )%, that is,

1

[1swia o0+ oar <o

-1

If fe L?’ﬁ , then it has a formal Fourier-Jacobi series representation given by
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= s P (@)
f(z) = Zan’ﬁT, ze[-1,1], (2)
where the Fourier-Jacobi coefficient

wp_ P01 1 (@,6) o 8
= g [ )PP @)1 014 2) ®)
-1
and h&? is given in (16).
The correspondence between the dimension of the respective space M? and the indices a and f is given
n (12), and the role of these weighted Lebesgue spaces in the context of the positive definite functions on

M is fundamental as the following result shows.

Theorem 1.1. [1/,22] Let C : M4 x M? — R be a continuous function satisfying the identity (1) for some
continuous mapping f : [—1,1] — R. Then, C is positive definite if and only if the mapping f can be
uniquely written as

a,B)
P
Za n’ ocﬁ)(x) z € [_171]7 (4)
n=0 P’” ' (1>
where
a®? >0, forall neZ,, Zaﬁ"@ < 0. (5)
n=0

We shall abuse of notation and refer to the Fourier-Jacobi coefficients a®? in (2) as («, 3)-Schoenberg
coefficients of f, following [20]. This is parenthetical to the fact that the uniquely determined expansion in
(4) was originally provided by [36] for the d-dimensional sphere embedded in R?*1, being a special case of
M (see (12) for details). In this case, the expansion in (4) simplifies into

=S @y (6)
T Lty o

where C; defines the nth Gegenbauer polynomial of order A and the sequence of nonnegative coefficients
{ad}% ; is summable (see [1]). The terminology adopted in [20] defines such a sequence as a d-Schoenberg
sequence.

We denote (M) the class of the continuous functions 1 : [0, 7] — R such that () = f o cos(), where
f:[-1,1] = R is uniquely determined through (4). Theorem 1.1 can then be rephrased by asserting that
a continuous function ¥ : [0, 7] — R belongs to the class ¥(M¢9) if and only if it has a series representation
in the form

(@:8) (cos
Z aa B P ( 9) ’ (7)

(a, 5)(1)
with a2 as (5). Classical Fourier inversion shows that
P(OMB
ah = h”‘iﬁ /w 0) PL?) (cos 0)(1 — cos 0)* (1 + cos 0) sin 6 df , (8)

where h28 is given in (16).
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1.2. Motivations

Our paper has both mathematical and scientific motivations. The former being triggered by some open
problems in [24], related to positive definite functions defined over spheres. This paper proposes a gener-
alized version of these problems for positive definite functions on compact two-point homogeneous spaces.
The scientific motivations are instead coming from the impact of finding solutions to these problems for
more applied branches of science. In particular, solutions to the problem treated here will have an impact
on:

a. simplified spectral representations for positive definite functions in given compact two-points homoge-
neous spaces in terms of spectra defined over spaces that have a lower dimension. This fact is crucial to
implementing simulation techniques for stochastic processes that are defined over these spaces. Reducing
dimensionality is a major challenge in all branches of data science: to make an example, simulation of global
processes (e.g., climate variable) requires a major computational effort. Such a computational burden can
be reduced through dimensionality reduction, and the reader is referred to [35], with the references therein,
for a thorough account.

b. a better understanding of statistical phenomena that are defined over such spaces. For instance, in
atmospheric data assimilation, locally supported isotropic correlation functions are used for the distance-
dependent reduction of global scale covariance estimates in ensemble Kalman filter settings ([18,25]).

1.8. Our contribution

This paper contributes in four main directions:
A. We provide recurrence relations between (a, §)-Schoenberg sequences. Specifically, Theorem 3.1 provides
a recursion of the type

k

atk,f _ E a,f_a,p
ap b= bi,k,n Aptiy T € Z+7
=0

with the sequence {bz % n} specified therein. A similar recursion for a®#** is given in Theorem 3.2. Then,
Theorem 3.3 shows that

atk,B+k _ a,f
apth? ZZ 1z’kk’ Uplriviry T E Ly,

=0 3'=

with the sequence {cff k. yirir SDecified therein.
B. We then focus on series expansions for given (a, §)-Schoenberg sequences. In particular, Theorem 3.4
shows that

o0
B a,f a+l1.8
ag b= Zf],n an+j y nE Z+7

for the sequence {f } ; as specified therein. Also, Theorems 3.5 and 3.6 show that the following identity
is true:

oo

— a,f a,B+1 a+176+1
= G an; Z Z"w n Oniity > €Ly,

7=0 =0 j=0

where the sequences {(}';, 51, and {n™F 1, ; are specified therein.

VAL
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The expansions above together with embeddings M? < M? allow us to obtain results on strict positive
definiteness. Here, the symbol A — B indicates the existence of an isometric embedding from the metric
space A into the metric space B.

In particular, Theorem 3.7 shows that if M4 and M?', d,d’ > 2, belong to the same class (distinct from
16-dimensional Cayleys’s elliptic plane P'¢) and f is a positive definite function on M? and strictly positive
definite on M? | then f is strictly positive definite on M?. Theorems 3.8 and 3.9 deal respectively with the
cases of projective spaces of even dimensions of distinct classes and of P16,

C. We consider the following problem, being a realization of Problem 1 in [23].

Problem 1.2. Find an expression for the («, 8)-Schoenberg coefficients as a linear combination of the (o, Bo)-
Schoenberyg coefficients for some fixred ag < o and [y < 5.

A solution to Problem 1.2 has been provided by [3] for the special case of the d-dimensional sphere. The
solution to this problem in this more general setting is provided in Theorem 3.10.
D. We consider the following

Problem 1.3. For any given ¢ € (0, ], find the minimum curvature at the origin within the set of isotropic
covariance functions vanishing beyond ¢ (such covariances are dubbed locally supported when ¢ < m and
globally supported when ¢ = 7). That is, find

a“(M) = inf{—$"(0) : € TE(M4)}, )
where WE(M?) is the subclass of W(MY) given by
(M) = {¢p € UMY :9p(0) =0, 6 > c}.

This problem is a generalization for the Problem 3 in [23]. The case M¢ = S? was considered in [3], and
we extend their solution to our more general context in Theorem 3.12.

1.4. Plan of the paper

The material required for the proofs, as well as the proofs themselves, is technical and lengthy. Hence,
our narrative starts with a very minimal background in Section 2. The main novel results are reported in
Section 3. Section 4 engages on all the technical background, as well as on the proofs. This organization will
allow any non-expert reader to focus on the main results.

2. A minimal background

Each compact two-point homogeneous space M? can be considered as the orbit of some compact subgroup
H of the orthogonal group G, or, in other words, M? = G /H for certain G and . On any manifold M, there
exists a measure dog(z) induced by the normalized (left) Haar measure on the group G that is invariant
under the action of G (more information can be found in [27] and references therein). In [39,40], Wang
classified compact two-point homogeneous spaces as those belonging to one of the five classes:

o the unit spheres S%, d =1,2,...;

« the real projective spaces P4(R ) d=2,3,...;

« the complex projective spaces P4(C), d = ,6 o
o the quaternion projective spaces P4(H), d = 8,

o 16-dimensional Cayley’s elliptic plane P16,
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The compact two-point homogeneous spaces can be isometrically embedded as follows (see [5, p. 66] and
references therein):

(i) Sd S+l d=1,2,...

(ii) P4YR) — PHYR) d=2,3,...

(iti) PYC) — PH2(C) d=4,6,...

(iv)  PUH) — PH4(H) d=8,12,... (10)
(v) PYR)—P2(C) d=23,...

(vi) P24(C)— PHMH) d=2,3,...

(vii) P8(H) < P16

Let L2(M?) := L?(M9,0,) be the Hilbert space of square integrable functions f : M¢ — C with the
norm || - ||2 induced by the inner product

(f.9 2—/f 9@ doa(x), f.g € L2(M). (11)

Let By be the Laplace-Beltrami operator on M?. The spectrum of By is discrete, real and non-positive.
Indeed, in geodesic polar coordinates we can write By = BZ + B/, where B/, denotes the Laplace-Beltrami
operator on the sphere in M? of radius 6 (for more details, see [17, p. 420]) and BY is its radial part. A
change of variable of the type z = cos(290) shows that the radial part Bfl can be written, up to some
positive multiple, as (see [27, Eq. (5)])

d d
*B—(l — x)Ho‘(l + x)HB—

Bi=(1-2)(1+2) 7 =,

where «, 8 and ¥ depend on the space M? as follows:

M d o B W
Sd d>1 (d—2)/2 (d—2)/2 1/2
PYR) d=2,4,... (d—2)/2 (d—2)/2 1/4 (12)
PYC) d=4,6,... (d—2)/2 0 1/2
PYH) d=8,12,... (d—2)/2 1 1/2
P16 d=16 (d—2)/2=17 3 1/2

The eigenfunctions of B% are the well known Jacobi polynomials ple?) ([1]) and the corresponding
eigenvalues are —n(n+a+ B+1). Therefore, the eigenvalues of A, := —B% can be arranged in an increasing
order, with each eigenvalue being associated to an eigenspace He := H(M?) of A4. These spaces are
mutually orthogonal with respect to the inner product (11) and

(oo}
*(M%) = P H.
n=0
The dimension NZ of each space HZ is given by [27, Eq. (7)]

r+1)2n+a+8+1)I'n+a+1)I'(n+a+5+1)
MNa+DMNa+ 8+ 2)I(n+1)I'(n+ 8+ 1) ’

N? =



V.S. Barbosa et al. / J. Math. Anal. Appl. 516 (2022) 126487 7

for all M? except in the case where M? = P4(R) and n is odd. In the last case, NZ = 0. Call {Y,,; :
j =1,2,...,N2} an orthonormal basis of HZ. Then, the set {V,,; : j = 1,2,...,N&n = 0,1,...} is an
orthonormal basis of L?(M?). This allows to consider Fourier expansions on L?(M¢?) of the type
o Ny
=20 Y )2V,

n=0 j=1

The inclusions L?’ﬁ C L?H’B and Lf’ﬁ C L‘f"ﬁﬂ, a, > —1, (see [9, Lemma 2.1]) guarantee that the
recurrence relations and the series expansions for the («, §)-Schoenberg sequences as described in Section 1.3
make sense.

3. Results
3.1. Recurrence relations involving («, 8)-Schoenberg sequences

The first result provides recurrence relations involving the (a + k, 8)-Schoenberg coefficient for a given
integer k.

Theorem 3.1. Let a, 8> —1 and k€ Zy, k > 1. If f belongs to L?’ﬁ, then

apth = Z Ly (13)

where

o
Q
\

B .(2n+a+5+k+1)1“(04+1)(1)i(k>
bk D(a+k+1) i
F'n+i+1)IT(n+8+i+1)T(n+a+k+1)In+a+B8+k+1)
I'n+1) T(n+pB+1) Tn+a+i+l) T(n+a+p+i+1)
F2n+a+pB+k+i+2) ’

Fr2n+a+p+i+1)

Similarly to the previous theorem, we obtain recurrence formulas involving the (o, 8+ k)- and (a+k, S+
k")-Schoenberg coefficients for given k and k' integers. They are provided respectively in Theorems 3.2 and
3.3 below.

Theorem 3.2. Let o, > —1 and k € Z, k > 1. If f belongs to L’f’ﬁ, then

a2’5+k Zda’B sz ne’zy,

i,k,m

in which

I'n+i+)I'(n+a+B+k+1)
E\ T(n+1) T'n+a+p+i+1)
b= (2 1
@ik (n+a+6+k+)(J F@2n+a+B+i+k+2)
IF2n+a+p+i+1)
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Theorem 3.3. Let o, 8 > —1 and k, k' € Z, k, k' > 1. If [ belongs to L(f’ﬁ, then

KBk _ 3 o
aptho E , § :c?z{kk’ ap iy NE Ly,

1=0 /=
in which
o, o,f+k" a8 _a,pB a+k,B
Ci,i’,k,k’, bz k.n d; i k! n+i bz k,n+1’ d i/ k! n

and bzkﬁ)n and d?f’,z,’n are given in Theorems 5.1 and 3.2 respectively.

3.2. Series expansions for («, 3)-Schoenberg sequences

Theorem 3.4. Let o« > —1/2 and § > —1. If f belongs to L(f’ﬁ, then

o0
a,B __ a,f a+l,B
ap™ = § :gj,n a’n+j
=0

in which

s (a+D)2n+a++1)
on " (n+a+D(n+a+pB+1)

and, for j > 1,

ap__ (@a+1)2n+a+B+1)2n+a+2j+1)
S = Zn+a+p+2j-1
Fn+j+1)T(n+8+j5+1)
" 'n+1) T(n+p8+1)
Fn+a+j+2)Tn+a+B8+j5+2)°
'ln+a+1l) Th+a+p+1)

When we combine Theorem 3.2 (k = 1) to the proof of the previous theorem, we obtain the following
result.

Theorem 3.5. Let o« > —1/2 and § > —1. If f belongs to L?’ﬁ, then

oo
a,B _ a,f a,f+1
ap? = G el neZy,

in which
ap _ Nta+pf+1
on " optatB417
and, for j > 1,
B 2n+2j+a+8)2n+a+5+3) Th+j+1)In+a+F+2)

G = m+j+a+B+1)2n+2j+a+B8+3)T(n+1)(n+j+a+8+2)

Finally, the two results above give support to the theorem below.
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Theorem 3.6. Let o« > —1/2 and § > —1. If f belongs to L?’B, then
o0 o0
+1,8+1
=D > min ety nezy,
i=0 j=0
where

a,f +1,8 _ a,f+1
nz NE O f CanJrz C §z n+j

and 53;? and C;ff are given in Theorems 3.4 and 3.5 respectively.

As an application of the above results together with embeddings M? — Md/, we obtain the following
results concerning to the strictly positive definite functions on M. Theorem 3.7 is related to the embeddings
(i) — (iv) in (10) and the compact two-point homogeneous spaces M?% and M? belong to the same class:
both are either real spheres, real, complex or quaternion projective spaces. Theorems 3.8 and 3.9 are related
to the embeddings (vi) and (vii) and M? and M belong to distinct classes.

Theorem 3.7. Let d,d’ > 2 be integers, M and M compact two-point homogeneous spaces distinct of P10
and belong to the same class. If f is a positive definite function on M? and strictly positive definite on M7,

then f is strictly positive definite on M.

Theorem 3.8. Let d > d' > 2 be integers. If f is a positive definite function on PA(H) and strictly positive
definite on P27 (C), then f is strictly positive definite on P4 (H).

Theorem 3.9. If f is a positive definite kernel on P16 and strictly positive definite on P8(H) or on P*(C),
then f is strictly positive definite on P6.

3.3. Solution to Problem 1.2

Theorem 3.10. Let o, 5 > —1. If f belongs to L?’B, then
an . A C;‘O"'B(n, n)a}l + éaﬂ(n +1, n)a}LJrl
+Z Go‘ﬁj—i-nn) G*P(j —24n,n)]aj,, |,
Jj=2

where G*P is given in (32), h®? in (16) and al are the 1-Schoenberyg coefficients as in (28).
A more general recurrence formula can also be obtained.

Proposition 3.11. Let o, 8,a,b > —1. If f belongs to L(f’ﬁ, then

where gfjf is given in (30) and h% in (16).
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3.4. Solution to Problem 1.3

Theorem 3.12. Let d € Z, d > 1, o, B as in (12) and a®(M?) given in (9).

(i) If ¢ belongs to
a—p
|:arCCOS (m) 77T:| )

oMy > ——
a( )_1—cosc

then

(i) If ¢ belongs to

)

arccos o +2 (o +2)(B+2) arccos (aiﬂ)
(a+p5+4) (a+B8+3)a+p+4))’ a+pB+2

then

. (a+p3+4)
a“(M%) > 2(a+1)(1 —cosc)
y (1—cosc)*(a+B+3)(a+B+2)—4(a+1)(a+2)
20a+2)(a+B8+4+2)— (a+B+3)4(a+2)+ (a+ B+4)(cosc—1)]

4. Useful technical lemmas and proofs
4.1. Some useful properties of Jacobi and Gegenbauer polynomials
Below we list some elementary properties which will be used, we refer to [38] for more details: for

a, B > —1, the set {Pﬁa’ﬂ)};’f’:o form a complete orthogonal system in the interval [—1,1]:

n

1
/PfWR@PWﬁM@Ofxfu+wwd$:5mWﬁ, (15)
-1

where dy,, is the Kronecker delta and

go+h+l nr 1
host = mtat D+ S+ oy (16)
m+a+B+1Tn+)I'(n+a+F+1)
For z € [-1,1],
4 piap)(py - 1 (a+1,8+1)
%Pn (z) = §(n+a+ﬂ+ 1P, (z), (17)
Py () =1, (18)
(6) (z—1)
P (@)=(a+ 1)+ (a+8+2) , (19)

2
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Pl () = (0T D@ 2) 1)2(0‘ T2 (a2t B3) (x; 2
(20)
(a+B8+3)(a+pf+4) (z—1\°
e R
ey = Teret] (1)

Fn+)I'(a+1)
Jacobi polynomials associated to different indexes can be related as follows (see [6, Equation (1.1)]):

a,b s . «@
P (@) =37 g2 (o) PP (), (22)
n

where a,b, o, 5 > —1, and gZ‘f(j7 n) is given by (see [6, Equation (2.5)] and [21]):

F'G+a+1)I'n+a+B+1)I(G+n+a+b+1) B8

B ,
,n) = - - ,n), 23
9ar ™) = B a v DTG +at b+ DT@n +at G+ 0)( —n) e U™ (23)
where
he)(on) =sFa(n—jn+a+1lj+n+atb+lin+tatl,2n+a+p+2:1), (24)

and 3F5 is the generalized hypergeometric function.
It is known (see [6, p. 248]) that

hgf(n,n) =1.

It is clear that ggbﬁ (j,n) = 0 for j < n. Theorems 1 and 2 in [6] provide conditions on «, 5, a and b so
that gz’f(j, n) > 0.

The following fact will be applied to the weight functions w(z) = (1 — z)*(1 + 2)? and wy(z) = (1 —
7)%(1+ ) and to the Jacobi polynomials p,, = Pﬁba’ﬁ) and ¢, = PT(La’b) in order to obtain Lemma 4.2 which
connects Jacobi polynomials with different parameters together with respective weight functions.

Remark 4.1. (See Equations (4)-(5) in [4]) Let w(x) and w1 () be positive functions on a set E. Let {p, ()}
and {g,(z)}, be sequences of orthonormal polynomials associated with w(z) and w1 (z) respectively. Hence,
if

gj(2) =Y cnjpa(x) (25)
then
w(x)pn(z) = Z cn,i 5 (@) w1 (). (26)

The convergence of the series can be taken in the appropriate L? space if [w(x)]?/wi(x) is integrable.

The Gegenbauer polynomials are multiple of the Jacobi polynomials (see [38, Eq. (4.7.1)]):

CMa) = F(?(Z;)/Q) F(i:(:;\rj/\l)p) PO-1/2A-1/2 ) ) > _%7 (27)
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and in particular (see p. 29 and Eq. (4.7.2) in [38])

sin((n + 1)9).

1 _ —
C, (cos0) = Uy, (cosb) = g

Note that when oo = § = (d—2)/2, d > 1, we have that the coefficients in (8) are the classical d-Schoenberg
coefficients aZ, and for d = 1 (see [24, Eq. (14)])

dh = [v)as.
0

al = %/1/}(9) cos(nf)df, n>1.
0

4.2. Some useful lemmas

The results presented here are used in the solution of Problem 1.2: Theorem 3.10 and Proposition 3.11.
Also, Lemma 4.3 can be seen as an extension of [3, Lemma 1] which deals with Gegenbauer polynomials.

Lemma 4.2. For o, 3,a,b > —1,

(1—2)°(1+2)P PP (@) = 3" goP (5. P ()1 — 2)*(1 + o), € [-1,1] (29)
Jj=n
where
2j+a+b+1 i1
~a,B( _ oga+p—a—b J J
=2
Gaiy (1) 2n+a+§+1nl(j —n) (30)
F'n+a+DI'n+p+1)I(j+n+a+b+1) hef ()
Tntat DLG+b+rICntat i1y lab )
and

h;":bﬁ(j,n):3F2(n—j,n—|—a+1,j—|—n—|—a—|—b—|—1;n—|—a—|—1,2n—|—a—|—6—|—2;1).

Proof. It is enough to observe that the Jacobi polynomials are not orthonormal. Then, using Remark 4.1
and the Equations (15), (22)—(24), we obtain (29) where

3L Gm) = Z]f gL Gm),
that coincides with (30). O
As a consequence we have
Lemma 4.3. For o, > —1,
(1 — cos 0)*(1 + cos 0)P P{P) (cos §) = i G*P(j4,n)sin((j +1)0), 6 € [0,7], (31)

j=n
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where
o Q2oL (3549
a,3 _
) = e B D G+ DG — ) (32)
Pn+a+1I(n+ B+ 1 +n+2) heB (5, n)
T(n+3/2)0(G+3/2)T(2n+a+B+1) s
and

P (j,n) = 3Fa(n — jyn+a+1,5+n+2n+3/2,2n+a+ 8+ 2;1).
Proof. Consider a = b =1/2 in (29) and note that letting A = 1 in (27) we obtain

(1/2,1/2) _ @) TG +3/2)
P! 212 (cos ) = T3/2) TG 12 C; (cos )
L2 @+9VF sn((G+1)0)
VTG + DI+ 1)! sin 6

that is,

(27 +2)! sin((G+1)0)

(1/2,1/2) —
Pj (COS 0) = 22j+1(j + 1)'2 sin 6

Thus, by Lemma 4.2, for 6 € (0, 7) we have

sin((j +1)0)

1 — cos2 9)L/2
sin 6 (1= cos”6)

(1 — cos0)*(1 4 cos 0)P PL4P) (cos §) = Z G*P(j,n)

= > G*P(j,n)sin((j + 1)0),

j=n
where
ooy (2TE2DN ap
G (]7”) - 22j+1(j ¥ 1)!291/2,1/2(]777')
_ 2a+5_2j_2 25 +2 (2] + 2)!

2n+a+B+1(G+1)G+ DG —n)
o Ltat+t D+ S+ DI +n+2) 4 ap Gin)
I'(n+3/2)T( +3/2)T(2n+a+ [+ 1) 1/2,1/2\)> ),

for & = 0, 7 the result is trivially true. The proof is complete. O
4.8. Proofs for Section 3.1

We observe that the results of Section 3.1 extend Lemma 2.3 in [9] which gives relationship between the
Fourier-Jacobi coefficients a2*1# and a%* and between a%#*! and a2?. It is used in the following proofs.

Proof of Theorem 3.1. We will prove the statement by mathematical induction on k.
Step k = 1: In [9, Lemma 2.3] was proved that
mtat+)ntatpf+1) .5 +D)0+L+1) 445

1 a+1,8 _ - R el,.
(a+Day Mm+at Bl n Mmt+atprg ontl MEEE
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Thus

oo _ 1[40t Dntat 511 s @ DmEB4D) 0o
" (a+1) (2n+a+B+1) " 2n+a+p+3) "

which fits perfectly in Equation (13) for k = 1.

Induction step: let assume the expression of b2 holds for k, and let us prove it holds for b

i,k,n

We have

i,k,n an+i

k
a%+<k+1)’ﬁ _ agla+1)+k,[3 _ Zba-&-l,ﬂ a+1,8
1=0

k

_ a+l,B8 (1a,B a,p o, a,p

= E :bzkn (bO,l,n+ian+i +b1,1,n+ian+i+1)
i=0

_patlBraB a8 a+1,67a,8 a,p
= bo,k,n bO,l,nan +bk,k,n bl,l,n+kan+k+1

k
a+1l,83a,8 at+l,B8 po.B o,
+ Z (bzkn bo,l,n+i + bifl,k,nbl,l,n%»ifl) Appie
i=1

Thus we just need to prove that:
. bg:,g’lfbg”lﬁ’n = bgf-u,n (it is the case i = 0);

at1,070.6 at1,8 10,8 _ B L .
* ik 007 nti T 01 knbitngicn = biprp fori=1,2,0. k5

+1,8p0,8 _ B T -
o b OV ik = 001 kg1 (it is the case i = k +1).

For ¢ = 0, by well known property al'(a) = I'(a + 1) of the Gamma function, we obtain:

pot Ao _ @Cnta+pB+k+2)0(a+2)
0.k,n 70,1,n I(a+k+2)

'n+a+k+2)T(n+a+B8+k+2)
I'n+a+2) I'n+a+p+2)
'2n+a+p+k+3)
F'2n+a+6+2)

1 (n+a+l)n+a+8+1)
(a+1) Cn+a+pB+1)

2n+a+B+Ek+2)0(a+1)
T(a+k+2)

'n+a+k+2)Tn+a+B8+k+2)
I'n+a+1) I'n+a+p+1)
F'2n+a+p+k+3)
'2n+a+p+1)

)

I

S
So
%

+1,n*

)
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Fori=k+1:
at1gpep  _ 2ntatftk+2)(a+2)
k,kn 71,1,n+k F(Ot T L T 2)

F'n+k+1)T(n+B+k+1)
I'n+1) I'(n+p8+1)
I'2n+ o+ g+ 2k + 3)
F'n+a+p+k+2)
X(_ 1 (n+k+nm+ﬁ+k+n)
(a+1) (Cn+a+B8+2k+3)

x (—1)k

2n+a+B+k+2)(a+1)

Ta+k+2)
T(n+k+2)T(n+B+k+2)
T+l Tm+B8+1)

_1\k+1
x (1) F'2n+a+ 6 +2k+4)
F@n+a+p+k+2)
= beLkH,n-
Finally for i =1,2,...,k, we have:
aHLyad L gatlp jab :@n+a+ﬁ+k+ama+nkﬂik
ik,n “0,1,n47 i—1,kn~1,1,n+i—1 F(OJ + k + 2) i

I'n+i+1)T'(n+B+i+1)T'(n+a+k+2)T(n+a+B+k+2)
I'n+1) T(n+p+1) T'h+a+i+2) T'(n+a+p+i+2)
F@n+a+p+k+i+3)

I'2n+a+p+i+2)

1 (n+a+i+l)(n+a+p+i+1)
X .
(a+1) 2n+a+pB+2i+1)
Cn+a+B+E+2)T(a+2) i1 k
+ T(a+k+2) (=1) Ql)

'n+) Tn+8+i) Tn+a+k+2)T(n+a+8+k+2)
F'n+1)T'(n+p+1) T(n+a+i+1l) Tn+a+8+i+1)
F'Cn+a+p+k+i+2)
F'2n+a+p+i+1)

><<— 1 (n+i)(n+6+1) )
(a+1)2n+a+p+2i+1))"

X

Using the well known property of the Gamma function, after some algebraic manipulation, we obtain

a+1,8 ;a,08 _(2n+a+ﬁ+k+2)F(a+1)(_ )z
i—1,k,n"1,1,n4+i—1 — F(a + k4 2)
F'n+i+1)T(n+8+i+1)T(n+a+k+2)In+a+8+k+2)
I'n+1) T(n+pB+1) Th+a+i+l)T(n+a+p+i+1)
Fr2n+a+pB+k+i+3)
'2n+a+p+i+1)
y k @n+a+ﬁ+i+m_+ E\N@2n+a+B+Ek+i+2)
i)2n+a+pB+2i+1) i—1) 2n+a+p+2i+1)

a+1,87a,8
bi ko Vo1 nyi T0
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Now, it is not difficult to see that:

[(k) Cn+a+pB+i+1) +( k )(2n+a+ﬂ+k+i+2)]
iJ2n+a+pB+2i+1) i—1) Cn+a+p+2i+1)

_ <k+1> |:(ki+1) @n+a+f+i+1)

(k+1) @Cn+a+pB+2i+1)

. i (2n+o¢+ﬂ+k+i+2)]
(k+1) Cn+a+p+2i+1)

()

Therefore,
a+1,87 a8 a+1,8 yo.B _@nt+ta+B+E+2)I(a+1), i (k+1
bi,k,n bO,l,n—&-i + bi—l,k,nbl,l,n+i—1 - F(a +k+ 2) (_1) i

F'n+i+1)n+B+i+)I'(n+a+k+2)T(n+a+B+k+2)
In+1) T(n+B+1) TI'n+ta+i+l) Tn+a+pB+i+1)
Frn+a+pB+k+i+3)
T2n+a+pB+i+1)

o,
biti1n O

Proof of Theorem 3.2. Follows using mathematical induction on k. In [9, Lemma 2.3] was proved that

aaﬁﬂ_n—i—a—&—ﬁ—l—l B n+1 o8

= _— , €7y,
" mtatB+1l™ T tatpygint NSO

which coincides with the statement in the step & = 1. The continuation of the proof is very similar to the
previous one and we will omit the calculations here. O

Proof of Theorem 3.3. Follows by applying sequentially Theorems 3.1 and 3.2. 0O
4.4. Proofs for Section 3.2

Proof of Theorem 3.4. Theorem 3.1 for £k =1 and n > 0 gives

a+1,8 _ .8 a,p o, a,
ap, - bO,l,n an, + bl,l,n an+17
whence we can isolate
aB _ B atl,p a,B a.B
an - ’Yn an + wn a‘n+17 (33)

where

r2n+a+ 5+3)

@8 (B )1 [(a+2) F2n+a+3+1)
Tno = P00 Cn+a+B+2)a+1) T(n+a+2)T(n+a+5+2)
'n+a+1)Tn+a+B+1)
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and
F'n+2)T'(n+5+2)
i O) T DTm+B+1)  (n+a+f+1)
mT W) TFa+2)T(n+a+B+2) 2nta+h+3)
I'n+a+1)Tn+a+B+1)
Now we can use Eq. (33) recursively with anﬂ, azf% coy n+k, for any k > 1, in order to get:

ag”@‘ _ 73, a+1 B Lw ﬁaufl

— A +1, , B +1,8 BB

=Y p an s Wy b vffﬂ z+1 + Z+1az+2]
+1 ,

= 2P ad ™l 4w ﬁ’ﬁ;fl Uit e wge? Z“flaifz

=Yy

B got BB atlp B +1.8 Pal
Pagthl 4w Pyl an iy + wiPwnl) [%Jrz U io” +Wniaay's

B a+13+w a,f B atlp + w? a,B o8 a+1,5+w a,B 8 B oB

_
- P)/n ’Yn+1 anJrl n+1’yn+2 an+2 n+1wn+2an+3

, +1 +1,8
’Yn ou a o + Z (H wn+l> ,77'7.—"-] z—&-] + <H wn+l> n+k+1

Let us analyze the last term for ¥ — oo. On the one hand, limy_, aifkﬂ = 0, because f € L’f’ﬁ, and

(@,8)
then Y200 ja%h I;Z”’B)Eglc; < oo for all z € [—1,1] (in particular > 7 a, < 00).

On the other hand, we shall prove that Hf:o W:fz converges to 0 as k — oo for all fixed n,a > —1/2 and
B> —1.
We have that the product

Fm+2+nrm+ﬂ+2+n
II“ Fn+1+)T(n+B8+1+1) (2n+a+ B+ 1+2I)
= o Lntat24 )Tt a+5+2+10) 2nt+a+p5+3+20)
F(n+a+1+Z)I‘(n+a+B+1+Z)

is a telescoping product and then

Fn+k+2)T(n+B8+k+2)
II“ _ I'(n+1) I'n+p8+1) 2n+a+pF+1
T Tn+a+k+2)T(n+a+B8+k+2) 2n+a+f+2k+1
'n+a+1) Th+a+p+1)

Rearranging the factors

'n+a+1)T(n+a+pB+1)
HW _ I'(n+1) F'n+p+1) m+a+p+1
" Tn+a+k+2)T(n+a+B8+k+2) 2n+a+B+2k+ 1
T(n+k+2) TLn+B+k+2)

I'(k+a)
I'(k+0)
with respect to k, we obtain

Using that ~ k%" when k — oo for a, b fixed (see [2, p. 20]) and omitting constant factors
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b 1
B L p—ap—ap—1 _

Hwn-i-l ~RETRTORT = fl4+2a”

=0

a,B
n+l

o = —1/2, and it diverges to +0o or to —oo, depending on the sign of the factor I'(n + a + 3 + 1) when
-l<a<-1/2.

Therefore, for a > —1/2, we have that limy_, o (Hf:o wﬁfl) af{fkﬂ = 0 and then we can write

o0
Hence we have that the sequence {Hf:o w }k converges to zero when «a > —1/2, it is bounded when
=0

00 J

a,f _ B jatl,B E a,B a8 atl,p

an - ’Yn an + < wn-t,-l_l) ’Yn-t,-j an+j .
j=1 \l=1

Now, using (34) and the definition of ’yz‘fj, if 7 > 1, we obtain

Fn+7+1)T(n+p8+5+1)

ﬁoﬂﬂ of _ I'(n+1) T(n+pB+1)
U nti-1 | Tntj F'n+a+j+2)T(n+a+8+j+2)

'n+a+1) Th+a+p+1)

" (a+1)2n+a+p+1)2n+a+2j+1)
n+a+p+25—-1 ’

The proof is complete. O
Proof of Theorem 3.5. Follows combining Theorem 3.2 (k = 1) to the previous proof. O
Proof of Theorem 3.6. Follows by applying sequentially Theorems 3.4 and 3.5. O

Proof of Theorem 3.7. The case M? = S was proved in [13, Theorem 4.1]. So, we may assume that M¢
and M?" are one of the projective spaces. If d’ > d, the assertion follows from the inclusions in (10). Suppose
that d’ < d, that is, d = d’ + k, for some k > 0. If we consider (a, 8) and (a’, 8") the indexes related with
the dimension d and d’ respectively, then o = o + k. Initially, consider the case k = 1. By Theorem 3.4,
since &, > 0, a®? > 0 if and only if a%ijl»’ﬁ for at least one j > 0. Thus, the set {n € Z, : a®# > 0} is
infinite if and only if {n € Z, : a2*%# > 0} is also infinite. Now Theorems 2 and 3 in [8] show that f is
strictly positive definite on M?. If k > 1, an iterated process completes the proof. O

Note that in the proof of Theorem 3.7 we apply Theorem 3.4, which presents a recurrence formula for
the a index. When applying Theorem 3.6, we get Theorem 3.8:

Proof of Theorem 3.8. If (a,1) and (o, 0) are the indexes related with P4¢(H) and P2% (C) respectively,
there exists k > 0 such that & = o’ + k. Hence, by Theorem 3.6, the same arguments presented in the proof
of Theorem 3.7 guarantee that the set {n € Z : a®° > 0} is infinite if and only if {n € Z, : a2**1 > 0}
is also infinite. Thus, by Theorem 3 in [8], we have that f is strictly positive definite on P24 (C). O

Proof of Theorem 3.9. Follows by similar arguments used in the preview proof applied to the particular
case M4 = P16,
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4.5. Proofs for Section 3.3

Proof of Theorem 3.10. By (3) and Lemma 4.3 we obtain

(a, 5)
ay? = PhT/f (0)P{* (cos 0)(1 — cos#)*(1 + cos )" sin 6 dO
Prgawﬁ) 1 0
- Tﬁ()/ Z )sin((j + 1)0)] f(0)sin O do
n 2 ji=n
(a,B) 0
Py 1 .
- Tﬂ()/ Z )sin((j +1)6) sin 9] £(6) do
n 0 :
Ped1) Tl .
= ho‘iﬁ/ ZGa,B(j +n,n)sin((j+n+1)0)sind| f(0)do.
n 3 _j:O

This implies

n 5 ha’B

n

> G (j+n,n) [cos((j + n)f)

Jj=0

1Py [
aa,ﬁ ()/
0

—cos((j +n+ 2)9)]] f(0)de

P(Oéﬂ)
"2 ha’ﬁ /
0

G*P(n,n) cos(nb) + Z Jj+n,n)cos((j +n)f)

- Z G*P(j+mn,n)cos((j +n+ 2)9)]] f(6)de.

Jj=0

Letting v = j 4 2 in the last sum,

a%’ﬁ 5 ha 6 / n n cos(n@) + Go"ﬁ(n +1 n) COS((TL + 1)9)
0

+ Y GUP(j + n,n) cos((j + n)b)

Jj=2

- Z GP (v —2+n,n)cos((v+n)d)]| f(0)do

19
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1P ) [ - -
=0 A / GP(n,n) cos(nf) + G*P(n + 1,n) cos((n + 1)0)
" 0

+ Z[Go"ﬁ(j +n,n) —GYP(j —2+n,n)]cos((j +n)0)]| £(6)db.

Thus, by (28),

Jj=2 2
P9y [
" 0
(a,8) (,B)
w7 (1) o mPp " (1)
:G()f7ﬁ( ’n) %,5 a,}L—f—G ,ﬂ(n—"_l’n)WagH’l
o] oy o s ﬂpna’ﬁ)(l) 1
+ Z [Gaa (j+n,n)—GP(G—2 —|—n,n)] W%M»

j=2 n

which concludes the proof. 0O

Proof of Proposition 3.11. By (3) and Lemma 4.2 we obtain

1
wp _ P01 (05 8
ay’ ho"ﬁ f )P, z)(1—2)*(1+ 2)” dz

(@8) (1) | &
SENEL / > 30 G P @) f(@)(1 = 2)* (1 + )" da

h%ﬁ Jraet
Hence,
P (1) & 1
a n ~Q, a,b
a? = PSS G [P @) a1 )
n j:n 1

which concludes the proof. 0O
4.6. Proofs for Section 3.4

Let v be a function belongs to the class ¥(M¢9) and its representation in series as in (7). It is not difficult
to see that if Y oo | n®a®f < oo, then



V.S. Barbosa et al. / J. Math. Anal. Appl. 516 (2022) 126487 21

oo

a2f  d? o
7/}”(0) = Z P(TB)(I) W (P'r(L ’ﬂ)(COSQ)> N S [O,ﬂ'].

n=1

In particular,

R @)

Proof of Theorem 3.12. As in [3] in order to find a bound to a®(M%) we consider the more suitable set
TEM) = {v € W(M) s v(c) = 0},
and
(M) = inf{—¢"(0) : ¢ € (M%)}

Since W¢(M4) ¢ We(M?), then a®(M?) > a¢(M<). Moreover, as the sequence {a®?},, form a probability
mass system, then —”(0) shall be smaller for functions ¢» whose mass is concentrated in lower index
coefficients.

Thus we need to solve the system

(aMB)

e
_— P (1
= (1) (36)
W
n=0
where a®# >0 foralln € Z, .
Note that by (18) and (21), we have
Péa’ﬁ) (cosc)
CIIP
Fy (1)
and then the non-null constant function ¢ = ag‘ﬁ (a®P = 0, for n > 1) does not belong to Ue(M?).
Now we first consider a®? = 0, for n > 2. Solving the system below
ad? 48P =1
B o Pl(a’ﬁ) (cosc) (37)
ag” +aj EENCTOVN 0
(1)
we get
ad? =1—a", a? = ( 15) . (38)
) P (cosc)
~ pleh)
()
Using (19) and (21), we obtain
48— (a—pB)—(a+ B +2)cosc B _ 2(a+1) . (39)

O 7 (a+B+2)(1—cosc) “ (a+ B+2)(1—cosc)
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The possible values for o and 8 given in (12) imply a?’ﬁ > 0 for every ¢ € (0,7]. Then the conditions
ag’ﬁ, af’ﬁ > 0 hold true if and only if

ap  (a=pF)—(a+p+2)cosc
O T (at+B+2)(1—cosc)

which is equivalent to

¢ > arccos <a7—6>
- a+B+2)"

In order to find a¢(M9) it is sufficient to calculate —i”(0) given in (35) considering af”’, a%* as in (39)

and ag’ﬂ =0 for n > 2. Thus,

a°(M4) = , for c € [arccos (O‘i_ﬁ> ,71'} . (40)

1—cosc a+f+2

Thus, for ¢ € {O,arccos( B )], there are no functions on @C(Md) with ag*ﬁ = 0, for n > 2. Hence,

Q=P
a+B+2
consider af{’B =0, for n > 3 and

0 < ¢ < arccos <aa%ﬁﬁ+2) . (41)

In order to solve the following system
ag,ﬂ + a‘f’ﬂ + ag,ﬂ -1

«,
ag’ + af

we will consider a coefficient as a parameter, we say ag"’g = . Then, (42) is equivalent to

agﬁ —1_ a?’ﬁ — 7,

—1
@B Pg(aﬁ)(cos c) Pl(a’B)(cos c)
a == 1_T 1_T ‘
Py7(1) PR

Thus, using (38)-(39) and (20)-(21),

a8 2(a+1)
a =
! (a+ B +2)(1—cosc) (43)
3 ((a+6+3)[4(a+2) + (a+ S +4)(cosc— 1)])
7 2 +2)(a+8+2) '
Consequently,
(a+B+2)(1—cosc)—2(a+1)
ap B—a—(a+pB+2)cosc
T T @ T B+ 2)(1 - cosc) (44)

B <2(a+2)(a+ﬁ+2)—(a+5+3)[4(a+2)+(a+5+4)(cosc—1)])
! 2(a +2)(a+ B +2) '
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The condition ag”g > 0 provides

S 2(a+2)
~ 1—cosc
" B—a—(a+p+2)cosc
2@+2)(a+8+2)—(a+8+3)4(a+2)+ (a+ B +4)(cosc—1)]

20+ 2)(a+B+2)— (a+ B+ 3)4d(a+2)+ (a+ B+ 4)(cosc—1)] <0,

which is equivalent to

c<arccos<m>
B+a+3)"

On the other hand, the condition acf’ﬁ > 0 provides

d(a+1)(a+2)
4(a+2)+ (a+ B+4)(cosc—1)](a+ B+3)(1—cosc)’

7<=
[
since
da+2)+ (a+ S +4)(cosc—1) >0,

which is equivalent to

B—3a—4)

c < arccos
<a+ﬁ+4

By (45) and (48) we have:

20@+2)(f—a—(a++2)cosc)
(1—=cosc)2(a+2)(a+B+2) — (a+ [+ 3)4(a+2)+ (a4 S +4)(cosc —1)])
< 4(a+1)(a+2)
~ [4la+2)+ (a+ B +4)(cosc— 1D)](a+ B+ 3)(1 — cosc)

Using (46) and (49), the equation above becomes

dla+1)(a+2)(a+B+2)—8(a+1)(a+B+3)(a+2)
—2(a+1)(a+p+3)(a+p+4)(cosc—1)
<Ula+2)(a+p+3)+ (a+B+3)(a+ B +4)(cosc—1)]
X ((1 =cosc)(a+ B +2)—2(a+1)).

Regrouping the terms of (cosc — 1), (cosc — 1)? and the terms not depending on (cosc — 1), we have:

(a+B+3)a+B+4)(cosc—1)?+4(a+2)(a+ B +3)(cosc—1) +4(a+1)(a+2) 0.

Now the solution of the equation of second degree from (51) is:

23

(45)

(47)

(49)

(50)

(51)
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8-« (a+2)(8+2)

cosc = + .

(a+5+4) (a+B+3)(a+B8+4)

Considering the initial condition (41) of this step and the fact that 8 — a < 0 implies

B-a (a+2)(B+2) B-a _ _a-§

(a+B+4) _2\/(a+6+3)(a+5+4) = (a+B+4) ~ a+pB+2

the solution of (51) is

a-f __. _ B-a CEPICES)
e O FUy Ry Py e M TS (52)

We observe that the conditions (47) and (50) are both satisfied because

a—pf >Bfa71>[3730474
a+p+2" B+a+3 7 a+pB+4’

for all «, 8 as in (12), and by (41).
Therefore the non negativity of the coefficients a2+? turns into the inequalities

e

" f—a—(a+p+2)cosc

20 +2)(a+B+2)— (a+B+3)4(a+2)+ (a+ B +4)(cosc—1)] (53)
v < 4da+1)(a+2)

A(a+2)+ (a+ B +4)(cosc—1)|(a+ B+ 3)(1—cosc)

which leads to a non empty set of values when (see (52))

arccos f-a +2 (ot 2)(5 + 2) < ¢ < arccos <7a — 8 ) .
(a+B8+4) " SlatB+3)(a+pB+4)) — a+pB+2

In order to conclude the proof, we need to find @°(M?) which is attained for

P (cos PP (cos b
0 (0) = a4 gt P00 T lcosd)
Pr(1) Py7(1)

where a$? a%? are given by (44) and (43) respectively and v = a5
To know the value for «, note that by (35):
tat+B+1)
! 0) = TL(TL a,f3
7%( ) nX::l 2(a I 1) an,
B 1 —(a+p+3)(a+5+4)(cosc—1)
~ (1 —cosc) 7 4la+1)(a+2)
—_——
>0 >0

This implies that a°(M?) is attained when ~ assumes the lowest value on (53) that we call 7. After some
algebraic manipulation, we obtain
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a+p+4
(1 —cosc)2(a+1)
(1—cosc)*(a+B+3)(a+B+2)—4(a+1)(a+2)
20+ 2)(a+8+2)—(a+B+3)d(a+2)+ (a+ B+ 4)(cosc—1)]’

X

that completes the proof. O
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