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Abstract
The study of wildfire spread and the growth of the area burned is an important
task in ecological studies and in other contexts. In this work we present a model
for fire spread and show the results obtained from simulations of burned areas.
The model is based on probabilities of fire at different locations. Such probabil-
ities are obtained from the intensity function of a spatial point process model
fitted to the observed pattern of fires in the Valencian Community for the years
1993–2015. The models, applied to different wildfires in Spain, including the
different temporal states, combines the features of a network model with those
of a quasi-physical model of the interaction between burning and nonburning
cells, which strongly depends on covariates. The results of the simulated wildfire
burned areas resemble the burned areas observed in real cases, suggesting that
the model proposed, based on a Markov process called Random Spread Process,
works adequately. The model can be extended to simulate other random spread
processes such as epidemics.
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1 INTRODUCTION

Landscape patterns are determined by the frequency, intensity and extent of disturbances. In this regard, wildfires play
an important role because they have the potential to affect severely the forest dynamics and to produce geo-hydrological
changes. At landscape scale, ignition location and burned area by forest fires are the result of a complex interaction
between climatic factors, topography and land use (Moreira et al., 2011). Figure 1 illustrates the effect of a wildfire in the
province of Valencia in 2012. Modeling and simulation of the final shape of the burned area is an important task as this
gives insight on whether or not an ongoing wildfire will pose a potential hazard to human life and property as well as to
how much will it contribute to greenhouse gasses and particulate matter in the atmosphere.

Most fire spread models consider the physics of the burning process and include approaches based on the physics of
fire and in raster spread processes (Bin Suliman et al., 2010; Drissi, 2015; Muzy et al., 2008; Vorob’ov, 1996) Physicists
use concepts and mathematical models based on partial differential equations and ordinary differential equations to
describe fire spread process (Pastor et al., 2003). Parameters of those equations however do not correspond directly to
the parameters intuitively identified as influencing the fire spread. For example, slope, wind speed, biomass, and relative
humidity of the vegetation at the fire front have been found as key factors in fire dynamics in forest ecosystems.
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F I G U R E 1 A wildfire in the Valencian Province, august 2012 (left) and its effect on landscape (right)

Modeling of fire spread in two dimensions can be done using vector and raster-based approaches. For vector based
simulation of fire spread, it is necessary to simulate fire as a continuously expanding polygon (Anderson et al., 1982). This
is the base of the FARSITE model (Fire Area Simulator, Finney & Andrews, 1994), of wide use in the area of fire ecology.
However, the vector approach is highly dependent on the spatial scale used and requires the evaluation of a complex
convex hull, which is computationally expensive.

An alternative approach is to use raster schemes, in which the domain of interest is partitioned in square or hexag-
onal cells that form a lattice covering the domain. Fire spreads to neighboring cells using contact cell methods or using
heath-accumulation methods (Berjak & Hearne, 2014; Clark et al., 1996; Frandsen & Andrews, 1979; Green et al., 1990;
Hargrove et al., 2000; Kourtz & O’Regan, 1971; Yassemi et al., 2008).

Two main approaches to simulate fire spread in a rasterized domain are cell contact and heath accumulation (Green
et al., 1983). The contact cell method has high computation efficiency. It interprets fire spread as a series of ignitions
that span the area of an individual cell. (Frandsen & Andrews, 1979; Green et al., 1990; Kourtz & O’Regan, 1971) used
this approach extensively, but their events are generated considering only the influence of the fastest spreading neighbor,
neglecting that fire spread to a new unburned cell may be based upon the effect of multiple neigh-boring cells or prior
heating (Green et al., 1983).

The heat accumulation approach considers the rate of spread of fire into a cell or pixel at a given time t as the sum of
the contribution of ignited cells in its neighborhood during previous times. Despite its appealing to simulate fire spread,
it is demanding computationally and requires the evaluation of some model parameters empirically (Yassemi et al.,
2008).

In this article, we consider a random spread model, based in a raster contact approach. Fire ignitions are assumed to
ignite at random within the interest domain according to an underlying spatial point process with intensity function
𝜆(x) and density

f (x) = 𝜆(x)
∫

𝜆(u)du

; x ∈ . (1)

The ignition point x lies inside a pixel or cell v whose state changes from “unburned” to “burned”. Note that this is
equivalent to choose a pixel at random inwith probability proportional to f (x). Conditional on an ignition occurring at
pixel v, neighboring pixels burn with probability proportional to the intensity function. We show how the model works
using data from two wildfires occurring in 2016 and compare model performance using receiver’s operation curve (ROC)
and precision-recall (PRC) curve analysis. Simulations to test the model performance and to simulate the Artana and
Catcaixent wildfires spread were done using a program code written in R-language.

The rest of the manuscript is organized as follows: In Section 2 we describe the model and used and provide all the
details needed to clarify the methods used. In Section 3 we describe the data sets of this study. Section 4 presents the
results and discussion with their implications in terms of computing efficiency in model fitting. Finally, Section 5 presents
the conclusions, followed by references.
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2 METHODOLOGY

2.1 Model for fire spread

To model the propagation of wildfires in the study area, we will use a raster approach. Let  ∈ R2 be a geographic area
of interest, partitioned in N sub-areas or pixels vit; i = 1, … ,n, observed at discrete but arbitrary times t0, t1, … ,T. We
will assume that at any time t each pixel belongs to one of the following mutually exclusive categories: Burned (Bt), fire
front (Ft), neighboring the fire front (Vt) and unburned (Ut) (Figure 2). Note thatt = Bt ∪ Ft ∪ Vt ∪ Ut and that for t + 1
some pixels in the complement of Bt ∪ Ft may join Ft+1.

We assume that for each pixel there exist a probability probability of fire ignition pi which depends on local conditions
through a set of covariates Z1, … Zp. This assumption allows to capture the spatial variability of fire probability often
observed in real situations. For example, pixels covered by some vegetation types have higher fire probability compared
to others (Boychuk et al., 2007, 2009; Díaz-Avalos et al., 2001).

Our interest is to model the transitions of pixels from Vt to Ft ∪ Bt+1. We will assume a null probability that pixels in
Vt at any time might caught fire from sources other than sparks and heat from contact with pixels in Bt.

In an analogous way to Markov Random Fields, we assume that each pixel is surrounded by a set of neighboring
pixels Ni. This set of neighbors is defined in our case as the set of nearest neighbors of order k, k = 1, 2. Given that a
fire has ignited at site si ∈ W , it spreads to its neighbors sj ∈ Vi according to their fire probabilities p(sj). We assume that
p(v) = 0, s ∈ B and that once a fire has ignited at a pixel vi at time t, vi becomes a member of B for t + k, k = 1, … ,K. The
p(vj) may be obtained from the intensity function 𝜆(xi) as is described in the next subsection.

2.2 Estimation of the p(vi)

To obtain the fire probabilities at each pixel in , we first estimate the intensity function given the observed pattern
of wildfires in  using methods for point spatial process modeling (Baddeley et al., 2016). Because we are considering
only large sized fires, we fitted an area interaction point process model to the observed fire pattern (Baddeley & van
Lieshout 1995). Area interaction point process models are useful to model spatial point patterns with moderate clustering
to moderate repulsion (Aragó et al., 2016; Baddeley & van Lieshout, 1995). For any point pattern x = {x1, … , xn} ∈ ,
this class of models has a density function of the general form

f (x) = 𝛼𝛽n(x)
𝛾

A(x)
, (2)

F I G U R E 2 Composition of pixels during an ongoing wildfire
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where A(x) = [∪n
i=1B(xi; r)] ∩ is the set formed by the union of discs of radius r centered at the events xi of the point

process; 𝛽, 𝛾 and r are model parameters and 𝛼 is the normalizing constant. The interaction parameter 𝛾 can be any
positive number. If 𝛾 = 1, then the model reduces to a homogeneous Poisson process, if 𝛾 < 1, then the process is regular,
while if 𝛾 > 1 the process is clustered. Two points interact if the distance between them is less than r. For any finite point
process, the Papangelou conditional intensity function is defined as (Coeurjolly et al., 2015)

𝜆
(

u|x
)
=

f (x ∪ {u})
f (x)

(3)

his is, for a given point pattern x, the conditional intensity function for a new event at u ∈  is the conditional density
function of u given the point pattern x. Given a spatial point pattern x = {x1, … .xn with conditional intensity 𝜆

(
u, |x

)
,

parameter estimation and statistical inference for the intensity function is done using the pseudo-likelihood function,

PL(𝜃, x) =

[
∏

xi∈x
𝜆
∗
𝜃

(
xi|x

)
]

exp
[
−
∫


𝜆
∗
𝜃

(
u|x

)
du

]

and therefore, the log pseudo-likelihood is

log[PL(𝜃, x)] =
n(x)∑

i=1
log(𝜆∗

𝜃
(xi|x) −

∫


𝜆
∗
𝜃
(u|x)du.

If the integral in the above equation is approximated by some quadrature rule, the approximated pseudo-likelihood
becomes

log[PL(𝜃, x)] =
n(x)∑

i=1
log(𝜆∗

𝜃
(xi|x) −

∑
𝜆
∗
𝜃
(u, |x)wj, (4)

where uj are quadrature points and wj are quadrature weights. Details on the estimation method are beyond the scope of
this work, but the interested reader may find a detailed technical description in (Diggle, 2021; Diggle et al., 1994).

We included Land Use, elevation, Slope, Aspect and Combustion Index as covariates in our model. Land use is a
categorical variable with the coding shown in Table 1. The covariate values for each pixel and each wildfire were allocated
to the entries of a matrix Z(x). The covariate values for each wildfire in the data base were allocated using GIS software.
The logarithm of the conditional intensity function for the Area-Interaction point process model takes the general form:

log[𝜆(x|x)] = Z(x)𝛽 + Ax(x)𝛾. (5)

T A B L E 1 Land use in Castellón and codes assigned

Code Land use

20 Rainfed cropland

30 Irrigated cropland

70 Sparsely vegetated area

80 Vegetated low-lying areas on regularly flooded soil

90 Bare areas

100 Complex cropland

110 Mosaic cropland/natural vegetation

120 Mosaic of natural (herbaceous, shrub, tree) vegetation

200 Water bodies

Note: The categories represent an aggregation of a more diverse categorization for land use published by Heymann et al., 1994.
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DÍAZ-AVALOS and JUAN 5 of 16

We point out that Z(x) is a matrix with the values of covariates at location x in its columns, 𝛽 is a vector with regression
coefficients (Renner et al., 2015; van Lieshout, 2009). We consider as wildfires those forest fires with final size above 10
ha, which correspond to the 20th percentile of the empirical distribution of the wildfires recorded in the study area.

With the estimates of the intensity function at each pixel vi, i = 1, … ,N probabilities of fire occurrence at each pixel
may be approximated using the standardization

p(vi) =
𝜆(vi)dxdy

∑N
j=1𝜆(vj)dxdy

.

The area-interaction point process model was selected because its flexibility to capture different degrees of clustering
and repulsion. The point process model for wildfires in Valencia included the covariates lithology, combustion index
(Figure 3), land use, orientation, elevation and slope (Figure 4). Important covariates such as rainfall and wind speed and
direction were not available for the study area and were not included in the model.

2.3 Simulation of the fire spread process

We simulated the process of fire propagation using simulated ignitions as follows:

F I G U R E 3 Combustion Index (right) in the Valencian Community. The small green dots show the wildfires occurring in the Valencian
Community between 1993 to 2015.
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6 of 16 DÍAZ-AVALOS and JUAN

F I G U R E 4 Landuse, orientation, elevation and slope for the Valencian Community. The small green dots show the wildfires occurring
in the Valencian Community 1993 to 2015.
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DÍAZ-AVALOS and JUAN 7 of 16

1. Set t = 0 and pick a pixel v at random in, say vit
2. Sample a uniform random number

u ∈ (0, max
{v∶v∈D}

f (v)).

3. If u < f (vi,t) then set t = t + 1 and vi,t+1 → Ft+1
4. Identify the nonburning neighbors of F(t + 1) and repeat steps 2 and 3 for all of them and update the pixels in the fire

front Ft+1
5. Repeat step 4 until no extra pixels burn after K iterations or K = Kmax, where K max is the maximum number of

iterations fixed by the user. In our case, Kmax = 200

The simulation scheme described above corresponds to the so called importance sampling, modified so that only
unburned pixels neighboring the fire front are candidates to become burned. In applications, the point of origin of a
wildfire is known so step 1 above may be switched to pick the wildfire origin. In most cases, fire spread is also asso-
ciated to ground wind speed, which induces some degree of anisotropy in the spread process. Such anisotropy may
be incorporated in the simulation algorithm by giving more weight to pixels of Vt in the downwind direction of the
burning area Bt ∪ Ft (Boychuk et al., 2009). The above described algorithm was implemented using a code written in
R-language.

To asses model performance we simulated random polygons using the following scheme:

1. Select 100 points of an ellipse centered at the origin pixel v in the previous simulation process with fixed main and
second axes and orientation. The orientation of the resulting ellipse will be considered the anisotropy direction.

2. Add a random noise to the coordinates of the selected 100 points of the previous step and take a sample of 15 of the
those points. This number of points provided a nonregular polygon that resembled the shape of the burned area caused
by wildfires.

3. Close the resulting polygon and use it as the simulated burned area.
4. Locate the pixel of origin of the simulated fire near the major axis of the random polygon, upwind to the wind direction

to be simulated.

Note that the way we simulated the fires is independent of the fire spread model. We simulated four random polygons
corresponding to the orientations SW-NE, S-N, SE-NW, and E-W, all using the same random centroid. For each polygon,
we simulated 49 realizations of the fire spread model for the two possible wind directions (e.g., N and S for the S-N polygon,
and so on) with maximum time t = 200. For each t ∈ {1, … , 200} the proportion of times a given pixel was classified as
“burned” estimates of the probability of fire spreading to it from its neighbors. A detailed description of the simulation
scheme is shown in Table 2.

T A B L E 2 Origin coordinates, anisotropy weights and wind directions selected for the simulations of the random spread model
proposed, in a random polygons within the Valencian Community, Spain

Origin Anisotropic weights

Simulation No. Long Lat N W S E NW SW NE SE Wind direction

1 678,200 4,244,600 0.35 0.2 0.2 0.35 0.15 0.15 1.602 0.15 SW→ NE

2 686,000 4,250,000 0.2 0.35 0.35 0.2 0.15 1.602 0.15 0.15 NE→ SW

3 683,600 4,242,800 0.33 0.33 1.69 0.33 0.25 0.25 0.25 0.25 S→ N

4 681,800 4,251,800 1.69 0.33 0.33 0.33 0.25 0.25 0.25 0.25 N→ S

5 679,400 4,250,600 0.15 0.15 0.35 0.35 0.15 0.15 0.15 1.602 NW→ SE

6 686,600 4,246,400 0.15 0.15 0.35 0.35 1.602 0.15 0.15 0.15 SE→ NW

7 678,200 4,246,400 0.15 0.15 0.15 1.602 0.15 0.15 0.35 0.35 W→ E

8 686,000 4,248,200 0.15 1.602 0.15 0.15 0.15 0.15 0.35 0.35 E→ W

Note: The eight random polygons shared the same centroid.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2774 by U

niversitat Jaum
e I de C

astellon, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 16 DÍAZ-AVALOS and JUAN

T A B L E 3 Classification matrix obtained for a fixed probability threshold value used to classify pixels as burned or unburned after 49
simulations of the fire spread model with t = 200

Classified as

Burned Unburned

True Burned True positive (C11) False negative (C10)

State Unburned False positive (C01) True negative (C00)

Using the estimated burning probabilities for each pixel, for a given threshold value, a pixel may be classified as burned
if 𝜋i > 𝜏 and unburned otherwise. For the N pixels in the area of interest, the classification process may be summarized
in a classification or confusion matrix (Fawcett & Tom, 2006; Table 3):

With the fixed threshold the True Positive and False Positive rates (TPR or recall, and FPR, respectively) defined as
(Egan, 1975)

TPR = C11

C11 + C10
, FPR = C01

C01 + C00
.

Using those quantities we computed ROC curves and the area under the curve (AUC) statistic (Egan, 1975). We also
computed the precision and recall statistics, defined as

Precision = TP
TP + FP

and Recall = TP
TP + FN

,

where TP is the number of true positive (burned) pixels, FP is the number of pixels that were incorrectly classified as
burned when they were not and FN is the number of pixels classified as nonburned when they actually burned. Precision
is a measure of the proportion of burning pixels correctly identified, while recall is a measure of how many truly burning
pixels are returned by the model. Precision-recall is useful to measure of success of binary prediction when there exists
imbalance between the two classes. We present the results of this statistics in the form of precision-recall curves (PRC).

3 RESULTS AND DISCUSSION

To estimate the probability of fire ignition in the whole Valencian Community we used the methods described in
Section 2.2. The results of the Area-Interaction point process model fitted to the point pattern of fires occurring in the
Valencian Community between 2006 and 2015 are shown in Table 4. Except for the coefficients associated to sparsely
vegetated area and slope, the rest of the linear term coefficients in the model for the conditional intensity function were
asymptotically significant. Compared to the base category (urban areas) where fires in vegetated areas are rare, the values
for the conditional intensity function and hence the probability of a wildfire ignition, is high in the rest of the land use
categories. The highest probability of ignition occurs in areas covered by vegetated low-lying areas on regularly flooded
soil. Elevation and aspect have a small negative effect on the conditional intensity function. The combustion index on the
other hand has a positive effect. The resulting probability of wildfire ignition for the Valencian Community is shown in
Figure 5.

To compare how the model behaves under isotropy with spatial variation in the fire probabilities against constant
fire probability, we carried out 49 simulations with the same pixel of origin, using the fire probabilities obtained from
the intensity function fitted to the observed point pattern a 67 × 67 pixel size square within the Valencian Community.
The time interval for the spreading simulation was 200. The results are shown in Figure 6, where it may be seen that the
shape of the burning probabilities under isotropy and spatial variation in the fire probabilities behave different when
fire spreads in an environment with uniform fire probabilities. Thus, when the same anisotropic weights are used in
the simulation process, fire spreads following the spatial pattern of the fire probabilities, as one would expect under the
hypothesis that fire spreads depending on the fire risk of the pixels neighboring the fire front.

Figure 7 shows the results of the simulation of wildfire spreading on a random polygon within the Valencian Com-
munity using the anisotropy weights shown in Table 2. The time interval is [0, 200] and the number of realizations was
49. The figures represent the proportion of times a pixel was classified as burned at t = 200, which is equivalent to the
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DÍAZ-AVALOS and JUAN 9 of 16

T A B L E 4 Point estimates and confidence intervals for the parameters of the Area-Interaction point process model fitted to the
observed wildfires occurring in the Valencian Community between 2006 and 2015

Term Estimate S.E. CI95.lo CI95.hi Ztest Zval

Intercept −17.900 0.088 −0.181 −17.756 *** −203.329

Rainfed cropland −1.120 0.100 −1.320 −0.927 *** −11.232

Irrigated cropland −0.478 0.163 −0.798 −0.157 ** −2.923

Forest −0.598 0.113 −0.820 −0.376 *** −5.293

Sparsely vegetated area −0.805 0.711 −2.200 0.587 −1.1329

Vegetated low-lying areas on regularly flooded soil 0.451 0.143 0.171 0.731 ** 3.151

Bare areas −0.629 0.264 −1150 −0.112 * −2.385

Complex cropland −0.231 0.111 −0.449 −0.012 * −2.073

Mosaic cropland/natural vegetation −0.156 0.075 −305 −0.007 * −2.060

Mosaic of natural (herbaceous, shrub, tree) vegetation −0.382 0.076 −0.533 −0.231 *** −4.977

Water bodies −3.120 0.249 −3.610 −2.632 *** −12.5441

Elevation −5.67E−04 5.67E−05 −6.78E−04 −4.55E−04 *** −9.998

Slope 1.72E−03 2.10E−03 −2.39E−03 0.005 0.820

Aspect 2.30E−03 1.78E−04 1.95E−03 0.002 *** 12.886

Combustion index 0.111 6.98E−03 0.097 0.124 *** 15.854

Interaction 3.560 0.0631 3.440 3.685 *** 56.468

Note: *, ** and *** means: significance at the 10, 5 and 1%.
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F I G U R E 5 Spatial distribution for the probability of wildfire ignition in the Valencian Community, Spain. The values in the map were
obtained from an Area-Interaction spatial point process model, fitted to the wildfire occurrence pattern observed between 2006 and 2016.
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F I G U R E 6 Spread patterns of simulated wildfires in a 67 × 67 pixel square in the Valentian Community using the same pixel of origin
for the fire. The upper panel shows how fire would spread when fire probabilities are completely random in the square. The lower panel
shows the pattern of fire spread under isotropy and constant fire probabilities in the square. In both cases the images show the burning
probabilities obtained from 49 realizations of the fire spread model for a time interval from 1 to 200.

number of times the fire reached a given pixel. The different shapes and sizes of the simulated wildfires highlight the
spatial variability of the burning probabilities in the Valencian Community, consequence of the spatial variation of the
covariates incorporated in the model to estimate the intensity function of the point pattern of fires in the study area.
The burned areas resulting from the simulations are irregularly shaped and different amongst them, following patterns
similar to those observed for the burned areas by real wildfires.

The simulated fire spread patterns do not necessarily matched the anisotropy angle selected, because some of the
pixels in the fire front become neighbors with a zone where fire risk is low, this is, where the intensity function of the
point pattern used to compute the fire risk is very low. In those cases the fire spreading in the anisotropy direction slowed
and the result was a burned area different to the polygon simulated as the fire shape.

In Figure 8 we show the ROC curves and the AUC statistic for the eight images shown in Figure 7 In all cases the
empirical ROC curves are well above the 1:1 line, showing that the fire spread model proposed in this works acts well as
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F I G U R E 7 Random polygons representing the burned area by wildfires (black lines) and burning probabilities obtained with 49
realizations of the fire spread model using the probabilities of fire obtained from the intensity function of the fire pattern observed in the
Valencian Community between 2006 and 2016.
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F I G U R E 8 ROC curves corresponding to the burning probabilities obtained with 49 realizations of the fire spread model using the
probabilities of fire obtained from the intensity function of the fire pattern observed in the Valencian Community between 2006 and 2016.

a classifier of burned-nonburned pixels in the study area which corresponds random classification. In the context of the
fire spread prediction the ROC curves as well as the AUC statistics show that the proposed fire spread model has a good
classificatory performance and is a reliable predicting tool under the conditions of the simulation analysis.

ROC curves have been used widely to test the quality of binary classifiers in medicine and machine learning problems.
Despite their usefulness, ROC curves are not the best option to assess the quality of binary classifiers when data show
imbalance, as is our case given that we have a high proportion of unburned pixels in the study area. In Figure 9 we show the
PRC curves for the 8 simulations used to test the model. The PRC curves show that if one is willing to accept a sensitivity
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F I G U R E 9 PRC curves corresponding to the burning probabilities obtained with 49 realizations of the fire spread model using the
probabilities of fire obtained from the intensity function of the fire pattern observed in the Valencian Community between 2006 and 2016.
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F I G U R E 10 Close up for the zone of the Valencian Community where the wildfire of Carcaixent occurred in 2016. The left plot shows
the estimated fire probabilities obtained by fitting an area interaction point process model to wildfires between 2006 and 2016, as well as the
squares used in the simulation process and the actual shape of the Artana (Northern square) and Carcaixent wildfires (Southern square).
Center plot: close up of the square for the Artana region, showing probabilities of fire and the actual polygon of the 2016 wildfire. Right plot:
close up of the square for the Carcaixent region, showing probabilities of fire and the actual polygon of the 2016 Carcaixent wildfire.

level of say, 80%, then the precision of the model we propose is above 80% in all cases. Thus, we may consider that the
model shown here may be considered in the range of good to excellent classifier. This classification is consistent in terms
of early retrieval, this is, the area under the curve the right quarter of the ROC curves (Saito & Rehmsmeier, 2015).

4 CASE STUDY: APPLICATION TO TWO WILDFIRES IN THE VALENCIAN
COMMUNITY, SPAIN

During the last four decades, wildfires have become more frequent in the Mediterranean area of Europe (Moreira
et al., 2011). The spatial pattern for wildfire occurrences in forests around the world has been related to external variables
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F I G U R E 11 Close up for the zone of the Valencian Community where the wildfire of Artana (left) and Carcaixent (right) wildfires that
occurred in 2016. The upper plots correspond to the probabilities of fire for each pixel in the area after t = 200, using 49 simulations of the fire
spread process and anisotropy in the main axis of the final polygon. The lower plots show the ROC curves and the AUC statistics for the
corresponding upper image.

such as vegetation types, NDVI, local topography among others (Barros & Pereira, 2014; Carmo et al., 2011; Díaz-Avalos
et al., 2016). Once a forest fire has been detected, it is of social interest to have a clue about the direction of its spreading
and to have an estimate of the potential burned area produced by the wildfire. In this section we apply the fire spread
model presented in Section 2 to a couple of large wildfires that occurred near Artana and Carcaixent, two small towns in
the Valencian Community during 2016. There were more wildfire occurrences in 2016, but we choose these two because
of the devastating effects they had in a relatively large area.

The Valencian Community (Figure 10, left), is a region particularly susceptible to wildland fires. Between the years
1986 to 2015, a total of 12,657 wildfires occurred in the region, burning 402,531 hectares (information from Prevención
de Incendios Forestales, Valencian Government). During the mid-twentieth century, land use/cover change has been the
main driver of the increase in the number of wildfires and the area affected by them.

In Figure 10 we show the resulting probabilities of fire (left), as well as the polygons of the Artana (in the north side)
and Carcaixent (in the south) wildfires. The squares are the subsets of the Valencian Community used for the simulation
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F I G U R E 12 Precision-recall plots for the wildfires of Artana and Carcaixent in 2016. The plots show that for sensibilities greater than
80%, the precision of the model proposed is well above 80%.

of the two wildfires and the estimated probabilities of fire inside each square. The plots at the center and right of Figure 10
are close ups of the squares around the Artana and Carcaixent 2016 wildfires. The true limits of the burned area for
each wildfire are also shown with black lines. In the figure we may see that wildfires spread over areas with locally high
probability of fire. The actual shape of the burned area however does not follow a circular-shaped pattern perhaps as a
consequence of firefighting activities and factors such as winds and presence of fuel materials and different combustion
index at each pixel.

In Figure 10 the upper panel of plots presents the burning probabilities obtained after 49 simulations of the fire spread
model with t = 200. The corresponding ROC curves and AUC statistics are shown in the lower panel of the Figure 11. It
can be seen that part of the predicted burned area (green) lies outside the actual perimeter of the Artana and Carcaixent
wild fires. As mentioned earlier, this result in part due to the firefighting activities that block the limitless spread of a
wildfire. However, notice that the final size of the simulated wildfires is bounded in all cases. The ROC curves for the
simulated fire spread in Artana and Carcaixent show that the model has a good classificatory performance for the real
data and we may say that the model proposed is adequate to describe the spreading pattern of these particular wildfires.
This observation is also consistent with the PRC curves for the two wildfires shown in Figure 12. This process is similar
to the one developed by (Boychuk et al., 2009), (Johnston et al., 2006), but in our case we do not rely on an autologistic
approach.

The model proposed in this work has the advantage of being simple and easy to use. Incorporating factors that control
fire spreading can be done by assigning appropriate weights for each direction. So if for instance wind speed increases
in one direction at some section of the fire front, then that weight can be increased and run the model with the new
weights. Also, if firefighting has been successful in some sections of the fire front, weights pointing to those direction can
be modified accordingly.

The model has limitations as it does not include covariates explicitly. However, relevant covariates can be incorpo-
rated in the point process model fitted to obtain the fire risk at the pixel level, so covariate influence on fire spread is
implicitly incorporated in the spatial fire risk estimation process. Although limited, the model is useful to obtain quick
estimates of the potential burned area and to highlight areas where fire control efforts may decrease the rate of spreading of
wildfires.

5 CONCLUSIONS

We have presented a simple model and an algorithm to simulate wildfire growth and spread using spatial point process
methods to obtain probabilities of ignition in different locations at a pixel level. The fire spread model can be seen as a
Markov transition process in the sense that there is a state space (burned, unburned, fire front) and transition probabilities.
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Albeit simplistic, the model provides a good approximation to the burned area and shape of the wildfires. In addition,
the inclusion of covariates in the model improves the quality of the estimated intensity function used to obtain the local
probabilities of fire used in the simulation and the detection of fire growth.

Finally, analysis and development of the random spread process methodology can be carried out in other fields in
which the variables to be studied have a spatial growth in certain areas. The clearest example of the usefulness of this
methodology presented here would be the study of epidemic spread in a geographic area. The inclusion of the variation in
the study area of different covariates such as elevation, distance to fixed elements such as pollution sources, may improve
the prediction of the epidemic spread.
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