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1  �Introduction

Medicine is an evolving field that updates its applications thanks to recent advances 
from a broad spectrum of sciences such as biology, chemistry, statistics, mathemat-
ics, engineering and life and social sciences. Generally, discoveries in such sciences 
are applied to medicine with three main aims of preventing, diagnosing and treating 
a wide range of medical conditions.

The current approach to diseases can be summarized with the “one-size-fits all” 
statement; although this view of medicine has been used for the past 30 years, appli-
cations of effective treatment, for example, can lack efficacy and have adverse or 
unpredictable reactions in individual patients (Roden 2016).

Precision medicine is the extension and the evolution of the current approach to 
patient’s management (Ramaswami et al. 2018). Unlike “one-size-fits all” approach, 
precision medicine is mainly preventive and proactive rather than reactive (Mathur 
and Sutton 2017) (cfr. Chap. 3). Barak Obama, who claimed the importance of 
“delivering the right treatments, at the right time, every time to the right person”, 
has highlighted the critical impact of this emerging initiative in healthcare practice. 
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The personalized approach has been therefore emerged as a critique to an oversim-
plified and reductive medicine to disease categorization and treatment. Precision 
medicine uses a broad spectrum of data, ranging from biological to social informa-
tion, tailoring diagnosis, prognosis and therapy on patient’s needs and characteris-
tics, in accordance to the P5 approach.

Another crucial element of this initiative is the use of informatics: incorporating 
technology would allow to create a data ecosystem that merges biological informa-
tion and clinical phenotypes, thanks to imaging, laboratory test and health records, 
in order to better identify and treat the disease affecting the individual, reducing 
financial and time efforts and improving the quality of life of the patients.

The present chapter will focus on the potential of predictive precision medicine 
as new approach to health sciences and clinical practice, giving an overview on the 
tools, the methodology and a concrete application of the P5 approach.

2  �Predictive Medicine and Precision Medicine

Among healthcare applications, predictive medicine is a relatively new area, and it 
can be defined as the use of laboratory and genetic tests to predict either the onset of 
a disease in an individual or deterioration or amelioration of current disease, to esti-
mate the risk for a certain outcome and predict which treatment will be the most 
effective on the individual (Jen and Teoli 2019; Jen and Varacallo 2019; Valet and 
Tárnok 2003). In this sense, biomarkers could be used to forecast disease onset, 
prognosis and therapy outcome. Biomarker or biological marker indicates a medical 
sign that can be measured in an objective way, accurately and reproducibly; the 
World Health Organization defined biomarker as “almost any measurement reflect-
ing an interaction between a biological system and a potential hazard, which may be 
chemical, physical, or biological. The measured response may be functional and 
physiological, biochemical at the cellular level, or a molecular interaction” (Strimbu 
and Tavel 2010). Biomarkers are used for drug development and clinical outcome; if 
the current approach to clinical trials is “one-size-fits-all” (i.e. the effect of a treat-
ment is similar for the whole sample), the future of medicine is to provide the “the 
right treatment for the right patient at the right time”, identifying different subgroups 
depending on certain biomarkers that respond to an optimal therapy (Chen et  al. 
2015).

As we have seen in the previous chapters, precision medicine is one of the P5 
approach’s features that tailor healthcare applications on the basis of individual 
genes, environment and lifestyle (Hodson 2016). If personalized medicine takes 
into account patient’s genes but also beliefs, preferences and social context, preci-
sion medicine is a model heavily based on data, analytics and information; thus, the 
latter approach has a wide “ecosystem” that includes patients, clinicians, research-
ers, technologies, genomics and data sharing (Ginsburg and Phillips 2018). In order 
to realize precision medicine, it is crucial to determine biomarkers using either omic 
(i.e. genomic, proteomic, epigenetic and so on) data alone or in combination with 
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environmental and lifestyle information (Wang et al. 2017) with the objective of 
creating prognostic, diagnostic and therapeutic interventions based on patient’s 
needs (Mirnezami et al. 2012).

This new concept of medicine involves the medical institutions that collect every 
day healthcare information, such as biomedical images or signals. New analytical 
methods computed by computer, such as machine learning, prompted the “Big Data 
Revolution”; thus Big Data analysis in predictive medicine (Jen and Teoli 2019; Jen 
and Varacallo 2019), computational psychometrics (Cipresso 2015; Cipresso et al. 
2015; von Davier 2017) and precision medicine (Richard Leff and Yang 2015) may 
soon benefit from huge amount of medical information and computational tech-
niques (Cipresso and Immekus 2017). New technologies such as virtual reality 
enable to extract online quantitative and computational data for each individual to 
deepen the study of cognitive processes (Cipresso 2015; Muratore et al. 2019; Tuena 
et al. 2019). eHealth generally is an accurate instrument in collecting data; further-
more, Big Data differ from conventional analyses in three ways according to Mayer-
Schönberger and Ingelsson (Mayer-Schönberger and Ingelsson 2018): data of the 
phenomenon under question are extracted in a comprehensive manner; machine 
learning such as neural networks are preferred for statistical analyses compared to 
conventional methods; and finally, Big Data do not only answer to questions but 
generate new hypotheses.

Consequently, technologies and informatics will gradually become the future of 
medicine (Regierer et al. 2013). eHealth aims at using biomedical data for scientific 
questions, decision-making (cfr. Chap. 4) and problem-solving (Jen and Teoli 2019; 
Jen and Varacallo 2019) in accordance with the P5 approach. On the one hand, 
informatics is crucial for precision medicine since it manages Big Data, creates 
learning systems, gives access for individual involvement and supports precision 
intervention from translational research (Frey et al. 2016); on the other hand, clini-
cal informatics is crucial for predictive medicine providing clinicians tools that able 
to give information about individual at risk, disease onset and how to intervene (Jen 
and Teoli 2019; Jen and Varacallo 2019). The importance of informatics in the field 
of medicine is confirmed by the fact that in the United States the use of electronic 
health records grew from 11.8% to 39.6% among physicians from 2007 to 2012 
(Hsiao et al. 2014).

Besides the medical and scientific elements of precision medicine, this field has 
an impact also on patient and global population (Ginsburg and Phillips 2018; 
Pritchard et al. 2017). In particular, the precision medicine coalition’s healthcare 
working group defined novel challenges within this field:

•	 Education and awareness: Precision medicine is complex and sometimes con-
fusing; awareness should be improved in potential consumers and healthcare 
providers, and education within the scientific and clinic areas should integrate 
the precision medicine approach.

•	 Patient empowerment: Precision medicine is a way to engage and empower the 
patient. However, consent form needs to clarify the use of molecular informa-
tion, and providers do not properly involve patient in healthcare decision-making, 
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and preferences are not always taken into account; lastly, privacy and security of 
the digital data must be improved and assured.

•	 Value recognition: There are ambivalent sentiments concerning precision medi-
cine, where stakeholders think that precision medicine can be beneficial for 
patients and healthcare system, whereas payers and providers are not sure to 
modify policies and practices without clear positive evidence of clinical and eco-
nomic value.

•	 Infrastructure and information management: In order to pursue, the precision 
medicine approach is needed to effectively manage the massive amount of data 
and the connections among the infrastructures; for instance, processes and poli-
cies should assure clear communications across healthcare providers, genetic 
patients’ data could be gathered with clinical information within electronic 
health records, and medical data need to be standardized across platforms.

•	 Ensuring access to care: This point needs a shift in the perspective of stakehold-
ers that is achieved by covering the aforementioned key points; at the moment, 
insurance companies do not cover high-quality diagnostic procedures, electronic 
health records should be upgraded to integrate complex biological data, some 
physicians avoid to embrace the precision medicine approach due to misleading 
perception (e.g. cost/benefit distortions), there is no guideline that coordinates 
the partners and products, and services cannot be used by population especially 
in rural environments.

Predictive precision medicine in the P5 approach can be defined as the merging 
of these two new fields of medical sciences by means of biomarkers to forecast 
disease onset, progression and its treatment tailored on individual features like 
omic, environmental and lifestyle elements that could lead to significant improve-
ment from patients’ life to global population and healthcare systems.

3  �Imaging Techniques, Artificial Intelligence and Machine 
Learning

3.1  �Imaging Techniques

In the context of predictive medicine and precision medicine, biomedical imaging 
instruments used in radiology are the most promising techniques and methods 
(Herold et al. 2016; Jen and Teoli 2019; Jen and Varacallo 2019). In particular, with 
radiology techniques, it is possible to extract structural, functional and metabolic 
information that can be used for diagnostic, prognostic and therapeutic purposes 
(Herold et al. 2016). Imaging techniques (Jen and Varacallo 2019) acquire a vital 
role not only in applied medicine but also in system biology that attempts to model 
the structure and the dynamics of complex biological systems (Kherlopian et  al. 
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2008). Model imaging techniques enable to visualize multidimensional and multi-
parametrical data, such as concentration, tissue characteristics, surfaces and also 
temporal information (Eils and Athale 2003). According to Kherlopian and col-
leagues (Kherlopian et al. 2008), the most promising imaging instruments will be 
microscopy methods, ultrasound, computed tomography (CT), magnetic resonance 
imaging (MRI) and positron emission tomography (PET); advances in biomedical 
engineering will improve spatial and temporal resolution of such images, but with 
the introduction of contrast agents and molecular probes, biomedical images will 
allow for the visualization of anatomical structures, cells and molecular dynamics, 
and consequently, microCT, microMRI and microPET are going to be at the centre 
of basic and applied research.

Multiphoton microscopy, atomic force microscopy and electron microscopy are 
capable of giving, respectively, cell structure, cell surface and protein structure with 
a spatial resolution of nanometres; enabling ultrasound had a great impact in cardi-
ology, where, for instance, computer is used to interpret echo waveforms bouncing 
back from tissue and create images of the vascular system with a resolution of 
micrometres. CT by means of intrinsic differences in X-ray absorption provided 
imaging with a high spatial resolution (12–50 μm), that is, lung or bone imaging. 
Interestingly, microCT in combination with volumetric decomposition allows to 
represent bone microarchitecture. MRI, thanks to the use of strong magnetic field, 
creates anatomical images with a good spatial resolution; if MRI is combined with 
magnetic resonance spectroscopy, it can provide anatomical and biochemical infor-
mation of a particular region of the organ; if one’s interest is functional activation of 
the brain, then functional MRI detects differences in oxygenated and deoxygenated 
haemoglobin that lead to a change in contrast of the image. MicroMRI is used in 
animal studies at the moment and uses higher magnetic field compared to MRI; with 
such technique, it is possible to track stem cells, monitor the proliferation of immune 
cells and follow embryological development. In PET radioactive tracers, the most 
used is fluorodeoxyglucose (FDG), which is incorporated in molecules to provide 
metabolic information and therapeutic effects on the disease as well. Even if it is 
possible to study a specific metabolic activity of interest, the spatial resolution 
(1–2 mm) is lower compared to the aforementioned techniques; however, microPET 
has a spatial volumetric of 8 mm3, with incoming scanners having higher resolution 
and bigger field of view.

The use of imaging tools such as CT, MRI and PET is growing increasingly, for 
instance, in the United States from 1996 to 2010 in six healthcare systems, the usage 
increased by, respectively, 7.8%, 10% and 57% (Smith-Bindman et  al. 2012). 
However, imaging techniques are several in the present chapter; we only focused on 
the main technologies used in medical field and in particular radiology. This under-
lines the importance of technology and eHealth as opportunity for improving preci-
sion medicine at large.
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3.2  �Artificial Intelligence and Machine Learning

Artificial intelligence (AI) aims at simulating human cognition (Hassabis et  al. 
2017). One of the recent technologies used within the context of AI is machine 
learning (ML); ML enables machine to have a human-like intelligence without prior 
programming (Das et al. 2015). Moreover, ML is the most used method to analyse 
data and make prediction using models and algorithms (Angra and Ahuja 2017). 
Within the context of ML, deep learning (DL) and neural network (NN) assume 
great relevance (Ker et al. 2018; Schmidhuber 2015). The concept of NN was first 
introduced in 1943 by McCulloch and Pitts and found its application in the 
Rosenblat’s Perceptron; an artificial NN consists of a layer of neurons that links 
inputs that perceive a certain stimuli, hidden neurons that get activated via weighted 
connections of active neurons and output that gives the computation made by the 
NN. DL is multiple layers of artificial neural networks, wherein the machine can 
learn details and merge them in high-level features in brain-like manner. DL and NN 
enabled complex computations using supervised, unsupervised and reinforcement 
learning. The algorithms used in ML can be classified as follows (Das et al. 2015; 
Hassabis et al. 2017; Jiang et al. 2017):

•	 Supervised learning: When a comparison between output and expected output 
is made, then error is computed and adjusted to give the wanted output; within 
the context of supervised learning, the most used DL algorithm is convolutional 
neural network (CNN), especially used in image recognition and visual learning 
in 2D and 3D images, enabling the analyses of X-ray and CT or MRI images; 
recurrent neural network (RNN) is used for text analysis task (e.g. machine 
translation, text prediction, image caption) similar to a working memory func-
tion and evolved into the long- and short -term memory networks to avoid van-
ishing gradient problem; indeed, an application of AI in this field is a natural 
language processing that can be used for extracting medical notes and connect-
ing these to medical data. Other supervised learning methods are linear regres-
sion, logistic regression, naïve Bayes, decision tree, nearest neighbour, random 
forest, discriminant analysis, support vector machine (SVM) and NN.

•	 Unsupervised learning: In this case, the machine discovers and adjusts itself 
based on input. For example, an autoencoder input codes the stimuli-gathered 
codings and reconstructs from these the output; in this case, the output must be 
as close as possible to the input information; restricted Boltzmann machines are 
composed of visible and hidden layers that reconstruct the input estimating the 
probability distribution of the original input; in deep belief network, the output 
of a restricted Boltzmann machine is the input of another Boltzmann machine; 
finally, generative adversarial networks are generative models that are composed 
of two competing CNNs: the first CNN generates artificial training images, and 
the second CNN discriminates real training images from artificial ones; the 
desired expectation is that the discriminator cannot tell the difference between 
the two images; this algorithm is very promising for medical image analyses; 
other unsupervised methods are clustering, which can be used to divide data in 
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groups, and principal component analysis that reduces data dimension without 
losing critical information and then creating groups.

•	 Reinforcement learning: In this case, learning is enhanced with a reward when 
the machine executes a “winning” choice; similarly, Q-learning algorithm 
(Rodrigues et al. 2008) allows to compute the future rewards when the machine 
is performing a certain action in a particular state in order to keep on acting in an 
optimal manner.

•	 Recommender system: In this case, the online user customizes a site as what 
happens in e-commerce.

ML problems include pattern classification, regression, control, system identifi-
cation and prediction that can be summarized into two main elements: developing 
algorithms that quantify relations among data and using these to make prediction on 
new data (Wernick et al. 2014).

3.3  �Medical Imaging and Machine Learning

ML and AI find in medical imaging field a concrete application in order to analyse 
images and help physician with particular regard in the field of radiology in decision-
making processes improving patient’s management (Jiang et  al. 2017; Ker et  al. 
2018; Kim et  al. 2018). Indeed, the P5 approach underlines the importance of 
decision-making process and the usage of eHealth in order to improve it. ML tech-
nology is used in the sector of medical imaging for computer-aided diagnosis 
(CADx) and computer-aided detection (CADe); the former can also help to identify 
region properties useful for surgery. In radiology, CADx and CADe usages are, 
respectively, classification and detection although ML techniques can be used for 
anatomy educational purposes (i.e. localization) and to facilitate surgery (i.e. seg-
mentation, registration) (Kim et al. 2018).

According to the review conducted on PubMed from 2013 to 2016 by Jiang and 
co-authors (Jiang et al. 2017), AI applications critical in medical field are cardiol-
ogy, cancer and neurology. In their report, Jiang and colleagues evidenced that the 
fields of medical application of AI are diagnostic imaging, genetic and electrodiag-
nosis, with diagnostic imaging showing the greater impact on research. As concerns 
the disease conditions, the order of impact on research activity are neoplasms, ner-
vous system, cardiovascular, urogenital, pregnancy, digestive, respiratory, skin, 
endocrine and nutritional; finally, the most used algorithms in this field are NN and 
SVM, and in particular, DL technology is applied mostly in diagnostic imaging and 
electrodiagnosis; interestingly, from 2013 to 2016 CNN increased the application in 
literature, whereas RNN diminished, and deep belief network and deep neural net-
work remained stable across the periods.

In particular, CNN, autoencoders and RNN are excellent algorithms for medical 
imaging analysis (Kim et  al. 2018). Convolution that is based on addition and 
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multiplication is suitable for image recognition; the procedure takes into account 
connected information (i.e. voxel or pixel); within convolution layers, there are 
pooling layers that increase the field of view, and then fully connected layers acti-
vate previous layers; autoencoders are composed of multiple perceptrons; encoders 
can be stacked and can be used to de-noise image of input data; and finally RNN 
uses feedback and current data enabling to model sequential data with spatial and 
temporal information. CNN architectures can be used to detect different organ (e.g. 
brain, liver, heart, prostate or retina) lesions or diseases; to predict disease course, 
treatment response and survival; and to classify disease, lesion and cell using CT, 
MRI, PET and other imaging techniques (e.g. retina image, mammography or fluo-
rescent image). Autoencoders have been used in research to detect lesion with 
breast histology images, predict risk for cognitive deficits and classify lung and 
breast lesions, whereas stacked autoencoders have been applied for segmentation 
and image enhancement/generation. Also other algorithms are applied in radiology, 
for instance, reinforcement learning in combination with data mining helps in 
decision-making for physicians in cancer diagnosis, for segmentation tasks and for 
classification of lung nodules (Rodrigues et al. 2008). A critical element of these 
technologies is that before applying AI to medical imaging and more broadly to 
healthcare system, algorithms need to be trained with data derived from clinical 
activities and in different forms; for example, 1.2 million of training data are being 
used to teach DL algorithms on MRI brain imaging; by the way, the quality of DL 
techniques depends on the quality of training data; this issue can be improved by 
adopting multisite, standardized and methodologically adequate acquisition proto-
cols (Jiang et al. 2017).

4  �Predictive Precision Medicine in Neurodegenerative 
Diseases

An increasing lifespan and expectancy with a reduction of mortality result in an 
increment in aged population in our society; consequently, these factors have 
brought the attention of scientific and clinical community to chronic age-related or 
degenerative diseases. Due to the complexity of the aetiology and pathogenesis, 
resulting in interplay among genetic, epigenetic and environment, prevention (pri-
mary, secondary and tertiary) (cfr. Chap. 3) and, in particular, predictive and preci-
sion medicine assume a crucial role as features of the P5 approach, with omic 
approach to biology and computational methods acquiring a relevant position 
(Licastro and Caruso 2010; Reitz 2016). In particular, predictive genetic testing and 
molecular genetic diagnosis have well-established position in clinical practice and 
translational research in the field of neurodegenerative disorders (Paulsen et  al. 
2013). Indeed, neurodegenerative diseases have specific gene profiles (Bertram and 
Tanzi 2005). For instance, symptomatic testing in Alzheimer’s disease (AD) requires 
neurological and neuropsychological examination; then genetic counselling and 
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risk administration are determined: either an autosomal dominant history is present 
or the onset is early or sporadic, or there is a nonautosomal dominant family cluster-
ing; in the first case, genetic testing is offered; if not or in the second case, it is pos-
sible to discuss availability of genetic research and/or DNA banking; always in the 
first case, post-test results are emitted and follow-up/predictive testing for relative is 
provided; conversely for predictive testing, family mutation in relevant genes 
(PSEN1, PSEN2 or APP) is known; genetic and risk counselling is provided; neu-
rological, neuropsychological and psychiatric evaluations are offered; and then 
genetic test and follow-up follow the latter step (Goldman et al. 2011).

Neurological disorders account for 17% of global deaths, and precision medi-
cine gathering genomics, electronic medical records and stem cell models might 
be vital for therapeutic interventions in neurology; in this sense, drugs tap common 
symptoms, but adopting a precision medicine approach, it is useful to create drugs 
that target group of people with similar genetic variation (Gibbs et  al. 2018). 
Besides drug administration, precision medicine can be applied in the context of 
neurodegenerative diseases to evaluate preclinical stages, facilitate differential 
diagnosis and define the better treatment at the right moment taking into account 
genes, epigenetic modifiers and nongenetic factors on neurodegeneration; the 
combination of these elements should be used to create a patient’s omic profile 
(Strafella et al. 2018).

4.1  �Current Application: From Dementias to Parkinson’s 
Disease

As already mentioned, ML approaches could be very useful in the field of brain 
imaging for classification and preventive aims. We will provide some interesting 
studies of ML within the context of preventive precision medicine for neurodegen-
erative disorders in order to highlight the importance of technology, and eHealth 
specifically, into precision medicine.

Katako and colleagues (Katako et al. 2018) used well-known FDG-PET meta-
bolic biomarker (Dubois et  al. 2007) from images from four datasets of the 
Alzheimer’s disease neuroimaging initiative. The researchers compared five 
machine-based classification (i.e. voxel-wise general linear model, subprofile mod-
elling and SVM). Subprofile modelling is a type of PCA used for differential diag-
nosis and prognosis in neurodegeneration, whereas SVM is a form of supervised 
learning used to solve binary classification. Subprofile modelling was utilized with 
two PCA approaches (single principal component and linear combination of princi-
pal components); for SVM iterative single-data algorithm or sequential minimal 
optimization was applied. All five methods discriminated patients and controls, 
when compared with tenfold cross-validation SVA with iterative single-data algo-
rithm gave the best results in terms of sensitivity (0.84) and specificity (0.95). In 
terms of prediction of AD from mild cognitive impairment (MCI), this SVA 
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algorithm had the best performance; interestingly, when comparing PET and single-
photon emission computed tomography (SPECT), the iterative single-data algo-
rithm showed higher sensitivity compared to sequential minimal optimization SVM, 
whereas the latter has higher specificity compared to the former. To test clinical 
application of the method, a retrospective imaging study was conducted with MCI 
and subjective cognitive complaints individuals referred from the local memory 
clinic. All five methods classified as AD the majority of patients later diagnosed 
with this disease; however, patients who later developed dementia with Lewy body 
(DLB) and Parkinson’s disease dementia (PDD) were diagnosed as having AD, 
showing nonspecificity for different types of dementias. Despite that, FDG-PET 
images showed that DLB and PDD brain pathology suggest AD-like biomarker that 
is not present in non-demented Parkinson’s diseases (PDND) individuals when 
using SVM algorithms. Lama and co-authors (Lama et al. 2017) classified structural 
images from the Alzheimer’s disease neuroimaging initiative. Using structural MRI 
(i.e. grey matter tissue volume), the researchers compared brain images from 
patients with AD, MCI and healthy controls using SVM, import vector machine 
(IVM) based on kernel logistic regression and regularized extreme machine learn-
ing (RELM); moreover, to reduce the dimensionality of data, PCA was performed, 
and permutation testing such as 70/30 cross-validation, tenfold cross-validation and 
leave-one-out cross-validation was applied. The best classifiers appeared to be the 
RELM with PCA for feature selection approach; this machine improved classifica-
tion of AD from MCI and controls. In particular, binary classification (AD vs. con-
trols) with PCA revealed that in terms of accuracy, there was no significant 
difference, but RELM is better than others with tenfold cross-validation, whereas 
SVM is better than the latter with leave-one-out cross-validation. Sensitivity was 
77.51% for SVM, and specificity was 90.63% for RELM with tenfold cross-
validation, whereas with leave-one-out cross-validation, IVM has a sensitivity of 
87.10% and RELM a specificity of 83.54%. Multiclass classification (AD vs. MCI 
vs. controls) with PCA showed that RELM with tenfold and leave-one-out cross-
validation has an accuracy of 59.81% and 61.58% and a specificity of 62.25%. 
Another study that used MRI is the one of Donnelly-Kehoe et al. (Donnelly-Kehoe 
et al. 2018). In their research, neuromorphometric features from MRI classify con-
trols, MCI, MCI converted to AD and AD. Participants were divided in three groups 
according to Mini-Mental State Examination (MMSE) scores with the aim of 
searching the main morphologic features; these were used to design a multiclassifier 
system (MCS) composed of three subclassifiers trained on data selected depending 
on MMSE; MCS was compared with three classification algorithms: random forest, 
SVM and Ada-Boost. MCS with three architectures each outperformed single clas-
sifiers in terms of accuracy, and for area under the receiver operating curve (AUC), 
multiclass AUC was 0.83 for controls, 0.76 for MCI converted to AD, 0.65 for MCI 
and 0.95 for AD. Accuracy for neurodegenerative detection (AD + MCI converted 
to AD) was 81%. Random forest and SVM had similar performances, but the former 
was chosen as the best algorithm since it has few parameters. In particular, accuracy 
on neurodegenerative detection for the three random forests was 0.71, 0.63 and 
0.81. The authors claim that MCS based on cognitive scoring can help MRI AD 
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diagnosis compared to well-established algorithms. Interestingly, Guo and col-
leagues (Guo et al. 2017) developed an ML technology that exploits hypernetwork 
able to overcome conventional network methods and fMRI data of AD individuals. 
After data acquisition, they built the hypernetwork’s connectivity and extracted 
brain regions with a nonparametric test method and subgraph features with fre-
quently scoring feature selection algorithm; then, kernel (vector and graph, respec-
tively) matrix classification with multikernel SVM was computed. Findings from 
brain regions and graph features are in line with previous network disruption in AD 
(Buckner et al. 2008). SVM classification was used for classification of the sample 
(AD, early MCI and late MCI), and the hypernetwork enabled to extract interactions 
and topological information. The results of the ML were compared with conven-
tional methods based on partial and Pearson correlations. Findings reveal that the 
method identifies both interactive and representative high-order information; more-
over, AUC for brain region features was 0.831 and 0.762 for graph features but for 
multifeature classification was 0.919. Multifeature classification can therefore ame-
liorate AD diagnosis based on biomarker.

Interestingly, ML can be used also to compute electroencephalography (EEG) 
biomarker in order to identify AD pathology and drug intervention (Simpraga et al. 
2017). Data were used to calculate muscarinic acetylcholine receptor antagonist 
(mAChR) index in healthy participants who received scopolamine to simulate cog-
nitive deficits from 14 EEG biomarkers (spatial and temporal biomarker algorithm); 
the index had cross-validated accuracy, sensitivity, specificity and precision ranging 
from 88% to 92% in classifying performances compared to single biomarkers. The 
mAChR index successfully classified AD patients with accuracy of 62%, 35% sen-
sitivity, 91% specificity and 81% precision; also an AD index was computed from 
12 EEG biomarker with accuracy, sensitivity, specificity and precision ranging from 
87% to 97%. The findings are useful not only for diagnosis between healthy partici-
pants and patients with AD but also for experimental pharmacology because the 
index assesses the well-known AD cholinergic electrophysiology and drug penetra-
tion in this disease.

Frontotemporal dementia (FTD) is one of the most common causes of early 
onset dementia; among FTD profiles, behavioural FTD is the most frequent and is 
characterized by specific biomarker (Piguet et al. 2011). Meyer and co-authors used 
MRI from multicentre cohort to predict diagnosis in each single patient showing the 
potential of precision medicine (Meyer et al. 2017). They calculated brain atrophy 
differences between controls and patients and used SVM to differentiate these 
groups on an individual level. Grey matter density from the conjunction analyses of 
the cohorts evidenced an overlap in the frontal poles bilaterally. When using the 
algorithm to predict diagnosis individually, accuracy ranged from 71.1% to 78.9% 
in the same centre sample (19 behavioural FTD patients vs. 19 controls) and from 
78.8% to 84.6% in the whole sample analyses (52 behavioural FTD patients vs. 52 
controls). The better predictive region was the frontal lobe compared to the tempo-
ral area (80.7% vs. 78.8%); the accuracy increased when accuracy was computed 
for frontal and temporal regions together and furthermore ameliorated when adding 
other relevant brain regions such as insula and basal ganglia. Despite researchers 
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found an intercentre variability, they encourage the use of ML and imaging tech-
niques for predictive purposes based on biomarker for personalized early detection 
of brain degeneration.

Another neurodegenerative disease that represents a social burden is Parkinson’s 
disease (PD). Biomarkers and imaging can improve the diagnosis of neurodegen-
erative diseases such as PD (Pievani et al. 2011). Abós and co-authors used ML to 
define biomarker associated with cognitive status in PD individuals (Abós et  al. 
2017). Functional connectivity was used to assess PD depending on cognitive pro-
file (with MCI or without MCI) with ML methods and resting-state fMRI. In their 
study, supervised SVM algorithm, functional connectomics data, neuropsychologi-
cal profile, leave-one-out cross-validation and independent sample (training group 
vs. validation group) validation for the model were applied. Leave-one-out cross-
validation for subject classification prediction for PD-MCI and PD-nonMCI was for 
both 82.6%; the independent sample validation correctly classified with the trained 
SVM machine the participants with AUC of 0.81. Leave-one-out cross-validation 
and randomized logistic regression were used to select the most relevant edges (21) 
and nodes (34) of the network. There was an alteration of the edges for the PD-MCI 
compared to PD-nonMCI group. For 16 edges, connectivity was reduced in the 
former group, for 13 of these edges, connectivity was impaired also compared to 
controls, but for the remaining 5, the network was stronger in PD-MCI compared to 
PD-nonMCI. For the 16 weakened edges, correlations were found with executive 
functions, visuospatial deficits, levadopa daily dosage and disease duration. This 
methodology proposed by the authors shows that ML and fMRI could be useful for 
PD cognitive diagnosis and assessment.

ML can successfully be applied also to nonimaging data to predict the risk for 
dementia from population-based surveys (de Langavant et al. 2018). Langavant and 
colleagues developed unsupervised ML classification with PCA and hierarchical 
clustering on the Health and Retirement Study (HRS; 2002–2003, N = 18,165 indi-
viduals) and validated the algorithm in the Survey of Health, Ageing and Retirement 
in Europe (SHARE; 2010–2012, N  =  58,202 individuals). The accuracy of this 
method was assessed with a subgroup of the HRS with dementia diagnosis from 
previous study. The machine identified three clusters from HRS: individuals with no 
functional and motor (e.g. walking) impairment, with motor impairment only and 
with both functional and motor deficits. The latter group showed a high likelihood 
for dementia (probability of dementia >0.95; area under the curve [AUC] = 0.91) 
also when removing cognitive/behavioural measures. Similar clusters were found in 
SHARE. After 3.9 years follow-up, survival rate for HRS and SHARE in cluster 3 
were 39.2% and 62.2%; surviving participants in this cluster showed functional and 
motor impairments over the same period. The authors claim that the algorithm is 
able to classify people at risk for dementia and survival and therefore use this clas-
sification for prevention and trial assignment.

In their review, Dallora and colleagues (Dallora et al. 2017) found that for the 
prognosis of dementia, the most applied ML technique is SVM; among ML, neuro-
imaging studies (i.e. MRI and PET) were most frequent compared to cognitive/
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behavioural, genetic, lab tests and demographic data with the main of predicating 
the proportion of MCI individuals that will develop AD. The researchers in terms of 
validation procedure, datasets used, number or records within the same dataset and 
follow-up period found limitations. However, defining biomarkers in the field of 
neurodegenerative diseases could improve diagnosis and treatment and consolidate 
the role of precision medicine and prediction of disease progress (Dallora et  al. 
2017; Reitz 2016; Rosenberg 2017). As we have seen, technologies (and eHealth 
especially) could be a good instrument, also in the context of the P5 approach and 
future medicine.

5  �Conclusion

In this chapter, we elucidated the potential role of predictive precision medicine as 
a feature of the P5 approach with a particular focus on radiological imaging and ML 
algorithms applied in neurology. Despite the benefits of precision medicine, the 
complexity of this approach could be simplified with artificial intelligence methods 
that can reduce the amount of information and target specific biomarker useful for 
diagnosis, prognosis and treatment. We reported excellent evidences that this 
approach could improve the management of neurodegenerative disorders (i.e. AD, 
PD, FTD, MCI, DLB, PDD) from different perspectives: individual and whole sam-
ple and metabolic, structural, functional, electrophysiological and cognitive/behav-
ioural methods. For this reason, we encourage the healthcare system that in this 
sense comprises of researchers, clinicians, institutions, providers and stakeholders 
to embrace this vision of medicine.
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