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ABSTRACT 

 

Due to phylogenetic proximity to the human, zebrafish has been recognized as a 

reliable model to study Alzheimer’s disease (AD) and other central nervous system 

disorders. Furthermore, metabotropic glutamate receptors have been previously 

reported to be impaired in brain from AD patients. Metabotropic glutamate 5 (mGlu5) 

receptors are G-protein coupled receptors proposed as potential targets for therapy of 

different neurodegenerative disorders. Thus, MPEP (2-Methyl-6-

(phenylethynyl)pyridine hydrochloride), a selective non-competitive mGlu5 receptors 

antagonist, has been suggested for pharmacological treatment of AD. The aim of the 

present work was to quantify mGlu5 receptors in brain from zebrafish and to study the 

possible modulation of these receptors by MPEP treatment. To this end, radioligand 

binding assay and open field test were used. Results showed a slightly higher 

presence of mGlu5 receptors in brain from males than in female zebrafish. However, a 

significant increase on mGlu5 receptor on male without variation on female was 

observed after MPEP treatment. This gender specific response was also observed in 

locomotor behavior being significantly decreased only in male zebrafish. These results 

confirm the presence of mGlu5 receptors in brain from zebrafish and their gender 

specific modulation by selective antagonist treatment and suggest a role of these 

receptors on locomotor activity which is affected in many disorders. In addition, our 
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data point to zebrafish as a useful model to study mGlu receptors function in both 

healthy and pathological conditions. 

 

KEYWORDS 

mGlu5, MPEP, Danio rerio, locomotion, up-regulation 

 

 

INTRODUCTION 

The zebrafish (Danio rerio) represents a reliable model for studies dealing with nervous 

system function in health and disease, due to its phylogenetical proximity to the 

human1. Zebrafish has several advantages, including small size, cheap maintenance 

and housing, transparency and high fecundity, which make it a suitable model for the 

study in neuropharmacology and behavior. Furthermore, zebrafish has been also 

postulated as ideal model for studying Alzheimer Disease (AD)2. In this disease, 

several transduction pathways have been showed to be altered as that mediated by 

glutamate receptors. 

 

Glutamate, the most abundant excitatory neurotransmitter in the central nervous 

system, is widely distributed in brain and is involved in learning and memory 

processes. However, at high concentration it results neurotoxic and can promote 

degeneration and neuronal death3. Glutamate acts through ionotropic and 

metabotropic receptors. Ionotropic receptors are ion channels activated by glutamate 

but also by NMDA, AMPA and Kainate and they have been classified following the 

affinity for these agonists. Metabotropic glutamate (mGlu) receptors are G-proteins 

coupled receptors divided into three groups. Group I (mGlu1 and mGlu5) are coupled to 

phospholipase C activity through Gq/11 proteins and promote the generation of inositol 

trisphosphate and diacyl glycerol as second messenger. Group II (mGlu2 and mGlu3) 

and III (mGlu4, mGlu6, mGlu7 and mGlu8) cause a decrease in cAMP level by activating 

Gi/o proteins being directly involved in adenylyl cyclase inhibition4. Glutamate modulates 

neuronal excitability and synaptic transmission through activation of mGlu receptors. 

Therefore, mGlu receptors can be found in many cell types from both peripheral and 

central nervous systems. This wide distribution of mGlu receptors could facilitate the 

development of therapeutic strategies based on the modulation of these receptors, as it 

has been proposed for neurodegenerative disorders5-8. Alfaro and coworkers9 reported 

a similar behavior of kainate receptors in zebrafish and rodent models, where the 

selective non-NMDA antagonist DNQX (6,7-dinitroquinoxaline-2,3-dione) inhibits 

kainite induced seizures. Recently, cloning and phylogenetic characterization of all 
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members of the genes of mGlu receptor family (grm) has been reported in Danio 

rerio10. These authors found a similar group I grm expression in larval and adult 

zebrafish. Moreover, grms’ expression is also similar to that detected in mammals, 

which could support the usefulness of zebrafish model to analyze mGlu receptor 

function through development. 

 

Progress in using zebrafish for modelling human disease has been reviewed 

elsewhere11. Since then, Alzheimer disease12, cancer13 and other pathologies, including 

movement disorders14, have been explored by means of this vertebrate model. We 

have previously reported that mGlu receptors are significantly decreased in the frontal 

cortex from AD brain and the decrease was associated with the progression of 

pathology15. On the other hand, potential of mGlu5 receptor as target for treating AD 

have been recently proposed8. Therefore, the aim of the present work was to study 

mGlu5 receptors and their possible modulation by MPEP, selective non-competitive 

antagonist, in whole brain from zebrafish. 

 

 

RESULTS AND DISCUSSION 

Radioligand binding assays were performed to detect and to quantify mGlu5 receptor 

levels in whole brain membrane preparation from both male and female zebrafish. 

Each sample (membrane preparation) consisted on a pool of two zebrafish brains to 

assure a minimum of protein amount suitable for binding assay. Specific binding of 

[3H]MPEP to mGlu5 receptor was detected in brain membranes and levels in male 

control animals were slightly higher than that detected in female (73% of male). This 

specific binding was significantly increased after 24 hours of MPEP treatment in male 

fish while female levels were not significantly altered, suggesting a gender specific 

response to MPEP treatment (Fig. 1). 

 

Homo sapiens, Mus musculus, Danio rerio and Takifugu rubripes genomes have been 

fully sequenced, which allowed other authors to identify over 180 protein predictions 

belonging to metabotropic glutamate receptors family16. Interestingly, these vertebrate 

genomic databases demonstrate that most of the glutamate receptor subgroups are 

present in both mammals and bony fishes, indicating a common phylogenetically 

ancient origin16-18. Bjarnadottir and coworkers17 postulated from gene sequences that 

eight predicted proteins belonging to mGlu receptor class should be present in 

zebrafish. Moreover, it has been demonstrated a similar operation of kainate receptors 
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in zebrafish and rodents, suggesting zebrafish as suitable model for studying glutamate 

transmission9. 

 

Expression pattern of mGlu receptors gene (grm), including mGlu5 paralogs, was fully 

and deeply analyzed by Haug and coworkers10 in adult zebrafish brain at a 

transcriptional level. A strong expression (presence of transcripts) was detected in 

hypothalamic structures, dorsal telencephalic regions and the nucleus 

interpeduncularis. Interestingly, grm5a and grm5b have no expression and very weak 

expression, respectively, in cerebellum10. 

 

The distribution of mGlu5 receptors immunoreactivity (presence of protein) was 

reported in the synaptic terminal of cones pedicles in the retina of zebrafish19. Other 

members belonging to metabotropic family of glutamate receptors have been identified 

by immunocytochemistry, such as mGlu6b in retina and other parts of the brain20 and 

mGlu2, identified as a synaptic marker of radial glia-derived neurons in adult zebrafish 

telencephalon21. 

 

However, at least to our knowledge, detection and quantitation of mGlu5 receptor 

protein in zebrafish brain by radioligand binding assay have not been published until 

now. Two compounds, MTEP (3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine) and 

MPEP (2-Methyl-6-(phenylethynyl)pyridine) are potent, selective mGlu5 antagonists 

that easily penetrate blood brain barrier22 and behave as non-competitive mGlu5 

antagonists or negative allosteric modulators (NAMs)23. Several radioligands, including 

[3H]MTEP, [3H]M-MPEP and [3H]MPEP, have been used for the characterization of 

mGlu5 NAMs binding in in vivo and in vitro systems24-26. One of them, [3H]MPEP, 

previously utilized as a radioligand by a number of researchers26-28, has been used in 

the present work. 

 

Saturation binding assays by using [3H]MPEP (0.08-35 nM) as radioligand were 

reported in brain membrane homogenates from male Wistar rat29. Interestingly, specific 

[3H]MPEP binding to mGlu5 receptor in hippocampus (Bmax: ca. 230 fmol/mg prot) and 

cerebral cortex (Bmax: ca. 280 fmol/mg prot) reported by these authors is similar to 

level of mGlu5 receptor binding in male zebrafish brain detected in the present work 

(ca. 286 fmol/mg prot) by using 20 nM [3H]MPEP. Also in male Wistar rats, mGlu5 

receptor binding sites were determined with 1 nM [3H]MPEP and 10 µM cold MPEP for 

unspecific binding (similar to our binding assay), and ca. 45 fmol/mg prot where 

detected in hippocampal synaptic membranes from control rats28. 
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Targeting mGlu5 receptor seems to be promising for the development of therapeutic 

agents30 for Fragile X syndrome (FXS)31, Alzheimer’s disease8, Parkinson’s disease32, 

addiction33 and other pathologies as anxiety and depression34, 35. The mGlu receptor 

theory of FXS36 indicate that FMRP (fragile X mental retardation protein) deficit leads to 

potentiated mGlu5 receptor signaling, which, in turn, results in higher protein synthesis 

and defective synaptic plasticity including boosted long-term depression. Therefore, 

mGlu5 receptor blockade could ameliorate the pathology31. Likewise, the 

downregulation or pharmacological blockage of mGlu5 receptor have been reported as 

neuroprotective in Alzheimer’s disease 8. However, in our study we detected an 

increased mGlu5 receptor level after short term MPEP treatment which could be 

considered as a compensatory response to mGlu5 blockade. MPEP extracellular fluid 

concentration in rat brain reached a peak value of 0.15 µM after 40-60 minutes of a 

single injection of MPEP (5 mg/kg, i.p.), while plasma concentrations of MPEP lead to 

2.6 µM levels 15 min after administration37. Such brain concentration generated by the 

dose of 5 mg/kg would be expected to occupy the mGlu5 receptor completely as an in 

vivo ED50 was in a range of 0.7–0.8 mg/kg37. MPEP produces 50% to 80% mGlu5 

occupancy at 2.3 to 3.2 mg/kg i.p. and 100% occupancy at doses of 10 mg/kg or higher 

in rat (reviewed in 33). As MPEP has similar selectivity and potency for rat mGlu5 

receptors in brain tissues as for human recombinant mGlu5 receptors22, 37, we can 

guess the same for zebrafish mGlu5 and, therefore, speculate with a similar receptor 

occupancy. Dose dependency of the effects of MPEP (suppression of addiction-like 

behaviors) in experimental paradigms employing cocaine, ethanol, and nicotine has 

been reviewed elsewhere33 and related to receptor occupancy. 

 

In addition, it has been reported in male Wistar rats that chronic MPEP treatment (3 

mg/kg/day, i.p.) for 2 weeks did not change [3H]MPEP specific binding in the striatum26, 

while after the same period of time another negative allosteric modulator of mGlu5, 

MTEP (1 mg/kg/day, i.p.), significantly increased Bmax of [3H]MPEP binding in cerebral 

cortex (25%) and hippocampus (45%)29. Acute and chronic treatments can elicit 

different effects38. However, it have been reported no differences between acute and 

chronic treatment in the ability of MPEP to induce anxiolytic-like effects in rats after a 

single dose35 or repeated (once daily for 7 days) injections of MPEP39, indicating the 

lack of tolerance to that effect. Apart from this brain structure- and time- dependent 

effect of MPEP, this higher level of mGlu5 after acute or chronic treatment would 

promote the need of also higher levels of antagonist when thinking in a potential 

therapeutic intervention. Therefore, any knowledge about receptors regulation by 
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antagonist (or agonist) ligands should be considered on the way to the development of 

therapeutic strategies targeting these receptors, particularly mGlu5. 

 

Locomotor activity of zebrafish has often been found to be a sensitive measure with 

which the effects of specific stimuli or of other manipulations may be quantified40. 

Moreover, the zebrafish also represents an alternative model to study some locomotor 

disorders14. Beside this, open field tests are well suited for zebrafish locomotor activity 

research since they are relatively simple, painless and unconditioned tests that can 

readily assess spontaneous/natural tendency of an animal to explore a novel 

environment41. The analysis of locomotor activity we studied in the open field is 

presented in Fig 2 (A–D). Vehicle-treated fish (control group) swam a similar distance 

as other control zebrafish described before by other authors40. Analysis of overall 

locomotor activity in the open field tank showed a decrease in total distance travelled 

by the MPEP-treated zebrafish vs vehicle group (figure 2A; 4,153±310 cm vs 

5,127±400 cm). Moreover, when analyses were performed separately for males (n = 

20) and females (n = 20), male zebrafish treated with MPEP swam significantly lesser 

distance than vehicle-treated male zebrafish (figure 2A; 3,761±375 cm vs 5,739±694 

cm; p<0.05) whereas for the female MPEP group distance travelled did not change 

respect vehicle group over the 10 minutes observation period (figure 2A; 4,545±479 cm 

vs 4,514±335 cm). Likewise, MPEP-treated male zebrafish showed a significant lower 

velocity relative to vehicle male zebrafish (figure 2B; p<0.05). Moreover, significant 

differences in swimming speed were detected when fish from both sexes were 

analyzed together (figure 2B; p<0.05). Furthermore, novel environments, such as those 

experienced in the open field test, can induce an anxious behavior in animals. Anxiety 

is a state of constant fear of restlessness caused by anticipation of a real or imagined 

future event42. For example, AB wild-type zebrafish manifest anxiety as a hyperactive 

swimming response43. According to this, two animal behaviors have been reported to 

be a reliable measure of anxiety: Freezing44 and Thigmotaxis45. Freezing was defined 

as the absence of movement, except of the gills and eyes46 and it was measured as 

time spent in immobility (fish velocity < 2 cm/s). On the other hand, thigmotaxis (also 

called “wall-hugging” or “wall-following” behavior) is the propensity to avoid the center 

of an arena and stay or move in close proximity to the boundaries of a novel 

environment, for instance the walls (pheriphery of the tank)45. This behavior has been 

commonly observed in nature but also under laboratory conditions for a wide range of 

species including fish and humans. Thigmotaxis is believed to be adaptive in nature 

and meant to facilitate the search for a shelter, protection and/or escape routes47. 
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Anxiolytic-or antidepressant-like effects of MPEP in several models of anxiety or 

depression in rats and mice were first reported after acute oral48 and intraperitoneal35 

MPEP administration. To test whether the MPEP treatment induced a freezing effect in 

fish, the percentage of time spent in immobility was analyzed (figure 2C). MPEP 

treatment did not alter the time spent in immobility in any of the groups assessed. 

Finally, as a measure of anxiety, the percent of time spent in the periphery of the tank 

(thigmotaxis) was determined for the four groups. As can be seen in figure 2D, the 

MPEP treatment did not induce a global effect over anxiety, however, when fish from 

both sexes were analyzed separately, in the MPEP group were detected significant 

differences (p<0.01), as female fish showed higher % of time in the periphery than 

males. 

 

The activation of mGlu receptors that modulate the properties and connectivity of spinal 

neurons can control locomotor activity in mice49, 50. In the work of Iwagaki and Miles51, it 

was demonstrated that the intensity of locomotor-related motoneuron output can be 

reduced by group I mGlu receptors activation. Moreover, group I mGlu receptor 

agonists and antagonist are convulsant or anticonvulsant, respectively, against 3,5-

dihydroxyphenylglycine-induced seizures and in other mouse models of generalized 

motor seizures, suggesting mGlu receptors as possible targets in the treatment of 

epilepsy. Thus, systemic administration of a noncompetitive antagonist as MPEP could 

block generalized seizures. However, it would be necessary to identify possible acute 

and chronic side effects to assess the clinical usefulness of these ligands52. 

 

Endogenous activation of group I mGlu receptors contributing to spinal cord network 

locomotion regulation has been reported in lampreys53, Xenopus tadpoles54, and 

rats55.There is an endogenous release of glutamate during locomotion in the spinal 

cord of the lamprey which activates mGlu5 receptor, while a receptor blockade by 

MPEP causes an increase in the burst frequency. Thus, endogenous mGlu5 receptor 

activation regulates the activity of locomotor networks through intracellular [Ca2+] 

oscillations56, and antagonism with MPEP would clearly reduce the levels of calcium 

released from internal stores and, in accordance, reduce locomotor activity. We have 

detected that MPEP (i.p. c.a. 0.8 mg/kg) decreases spontaneous locomotor activity in 

male fish during open-field test. Similarly, MPEP (10 mg/kg and 30 mg/kg) 

administered intraperitoneally into mice produced a significant reduction of total 

locomotor activity57. Locomotion and exploration time during exploration of spatial 

environments and object recognition tests were reduced in rats by i.p. (1-10 mg/kg) but 

not by prelimbic (1-10 µg) administration of MPEP58. In agreement, spontaneous and 
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cocaine- or amphetamine-induced locomotor activity were decreased in i.p. MPEP 

treated mice59. 

 

To analyze whether mGlu5 receptor level and locomotor parameters were related, a 

correlation study was performed (Table 1). As binding assay results were obtained in 

brains pooled by pairs, locomotion data were also pooled and averaged in the 

corresponding individuals before correlation analysis was performed. Results suggest a 

very weak negative correlation (Pearson r: -0.1918) between mGlu5 level and swim 

distance in control fishes which is significantly strong (Pearson r: -0.1918, p=0.038) 

after MPEP treatment. A similar significant (p=0.037) increase in the strength of the 

correlation between mGlu5 level and mean velocity in control (Pearson r: -0.2655) and 

MPEP treated fishes (Pearson r: -0.7072) was also observed. Interestingly, the 

correlation between mGlu5 level and swim distance in control zebrafish changed from 

very weak (Pearson r: -0.2655) to moderate (Pearson r: -0.5243) when considering 

only male individuals. Yet MPEP treatment also strengthened this negative correlation 

(Pearson r: -0.6069). On the other hand, negative correlation between mGlu5 level and 

mean velocity in male individuals was also strengthened from moderate (Pearson r: -

0.5670) to strong (Pearson r: -0.701). Thus, the decrease in swim distance and mean 

velocity detected after MPEP treatment seems to be related to the increased level of 

mGlu5. 

 

Our results show that MPEP treatment effect on mGlu5 receptor levels in whole brain 

membranes is gender dependent. Thus, mGlu5 is upregulated in male while no 

changes are observed in female individuals. This differential effect could be related to 

the also different locomotor activity observed in male zebrafish. The higher swimming 

activity detected in the present work has been previously reported in control 

zebrafish60. Interestingly, there is a negative correlation between mGlu5 level and 

locomotor activity in male zebrafish. 

 

More than 500 genes, including those related to neurogenesis, cell differentiation, brain 

and nervous system development, are differentially expressed in males and females, 

even this gene expression varies during aging61. Interestingly, from 15,617 probes 

obtained through BioMart (http://www.biomart.org/biomart/martview) with the Zebrafish 

Genome Built (Danio rerio Zv9) and compared between male and female data, two 

probe set corresponding to ionotropic glutamate receptor N-methyl D-aspartate 

(NMDA) 1a (Dr.12849.1.A1_at) and to Inositol 1,4,5-triphosphate receptor type 3 

(Dr.23369.1.S1_at) had significantly lower expression in female zebrafish (76%, 
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p=0.0097, and 84%, p=0.0481, respectively) (see Additional file 1 in 48). Accordingly, 

higher expression of NMDA receptors in control males could underlie their also higher 

swimming activity detected in the present work and reported by other authors in control 

zebrafish60. These authors reported a slight higher decreased swimming activity in 

males (36%) than in females (29%) during acute (1 hour) blockade of NMDA receptors 

by MK-801 presence (2 µM) in the tank water, even at 200 µM it was observed a slight 

increased swimming activity in females60. 

 

There is supporting evidence from studies on mGlu5 receptor antagonists, which 

demonstrate that motor and cognitive symptoms induced by NMDA receptor 

antagonists can get worse by MPEP and MTEP62. In fact, the ability of MPEP to 

change the behavior of zebrafish in an addiction model has been reported63. Agonist-

mediated mGlu5 receptor activation enhances NMDA receptor sensitivity and activity, 

likely through PKC phosphorylation of the ion channel associated with NMDA 

receptors, leading to an enhanced influx of calcium ions64. On the other hand, it has 

been reported in rats the functional interaction between mGlu5 and NMDA receptor 

antagonists and their effect in locomotion, learning and working memory65. Thus, at 

high dose, MPEP is able to mimic the increase in dopamine release and the cognition 

impairment elicited by the NMDA antagonist MK-801, while at low dose MPEP 

enhanced the hyperlocomotion induced by MK-80165. 

 

In summary, data presented herein show that zebrafish express mGlu5 receptors that 

can be detected by radioligand binding assay and that are modulated by MPEP in a 

gender specific manner. This modulation affects also to locomotor activity. All these 

results in addition with the high resemblance between zebrafish (grm) and mammalian 

(GRM, Grm) transcript expression patterns reinforces the usefulness of zebrafish 

model to study metabotropic glutamate receptor function in both healthy and 

pathological conditions. 

 

 

METHODS 

 

Materials 

MPEP (2-Methyl-6-(phenylethynyl)pyridine hydrochloride) was purchased from Tocris 

(Bristol, UK). The radioligand 2-Methyl-6-([3,5 3H] phenylethynyl)pyridine ([3H]MPEP, 

60 Ci/mmol) was purchased from American Radiolabeled Chemicals (St. Louis, MO, 
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USA). Liquid scintillation solutions were purchased from Perkin Elmer (Boston, MA, 

USA). All other products were of analytical grade. 

 

Animals 

Male and female adult (4 month-old) zebrafish (AB strain) were used. They were 

maintained on a constant (14h light / 10h dark) cycle at 26 ± 1 ºC in a recirculating 

aquarium rack system (Aquaneering, San Diego, CA, USA); water conditioning and 

environmental quality were maintained following manufacturer’s instructions. The 

experimental protocol was approved by the Neuron Bio Ethics Committee for Animal 

Research. Animal care was carried out by qualified technicians supervised by 

veterinarians. Animals were treated in accordance with Spanish and European laws 

(Real Decreto 53/2013 and Directive 2010/63/EU) and the International guidelines for 

ethical conduct in the care and use of experimental animals were applied throughout 

the study. 

 

Treatment 

The selective non-competitive mGlu5 receptor antagonist MPEP was diluted in 

phosphate-buffered saline (PBS) for treatment purposes. Control and treated adult fish 

were anaesthetized by immersion in 160 µg/mL tricaine and then inoculated 

intraperitoneally (i.p.) with 300 µM MPEP or PBS. The injection volume was always 10 

µL, injected i.p. into the left side of the fish. There is not a validated dose conversion 

factor from zebrafish to other species including human66. However, keeping in mind the 

differences in pharmacokinetics and pharmacodynamics among species, allometric 

scaling could be used for such dose extrapolation67, 68. Therefore, this treatment would 

be equivalent to 2,5 mg MPEP/ kg body weight in rat, an animal model were MPEP i.p. 

injections usually ranges from 1 to 10 mg/kg68, 69, and occasionally with maximum 

doses of 30 mg/kg69, 70. Assays were conducted with a minimum of ten fish per group. 

 

Open-Field Test 

The open field apparatus consisted of a cylindrical plastic tank (20 cm diameter, 20 cm 

height) filled with 2.5 L of water, to a height of 8 cm). The bottom of the tank was 

virtually divided in two zones: center and periphery (the area within 3.3 cm from the 

walls). Moreover, 3 light sources were used to indirectly light the maze. 

 

After 24 hours of treatment, four zebrafish (one of each group) were individually placed 

in the center of the open field (one tank per zebrafish) and their behavior was recorded 

for 10 minutes after 1 minute of habituation period. The temperature of the water was 
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maintained at 26 ± 1 ºC throughout the experiment. The order in which animals were 

tested was randomized. Locomotor activity in zebrafish has been shown to exhibit a 

diurnal cycle that is regulated by circadian rhythms71. To minimize the effect of 

circadian rhythms on the experimental outcome, all experiments were carried out 

between 11:00 and 15:00 hours. The experimenter was located outside the testing 

room during the recording to avoid disturbance of behavioral responses. 

 

Each behavioral session was filmed by a single HD video camera placed above the 

center of the 4 open field tanks and analyzed later with the software SMART v2.5. The 

endpoints measured included: (1) total distance moved (cm), (2) average speed (cm/s), 

(3) percentage of time spent in immobility (absence of movement was considered when 

speed <2 cm/s) and (4) global pattern of locomotor activity and zone preference (% 

time in zone). 

 

Whole brain plasma membrane isolation 

Zebrafish brains were extracted and frozen at -80 °C until membrane isolation72. 

Briefly, for each sample (membrane preparation), a pool of two zebrafish brains was 

homogenized on ice-cold isolation buffer (50 mM Tris-HCl pH 7.4, 10 mM MgCl2 

containing protease inhibitors) and centrifuged at 4 °C for 5 min at 1000xg in a 

Beckman JA 21 centrifuge. The supernatant was centrifuged at 4 °C for 20 min at 

27000xg and the pellet was resuspended in isolation buffer. Protein concentration was 

measured by Lowry method, using bovine serum albumin as standard. 

 

 

Radioligand binding assay 

Metabotropic glutamate 5 receptors in plasma membrane were determined by using 

the selective mGlu5 antagonist [3H]MPEP as radioligand, as described previously with 

modifications73. Briefly, membranes (60 µg of protein) were incubated for 60 min at 25 

°C with 20 nM [3H]MPEP in assay buffer (15 mM Tris-HCl, 25 mM MgCl2, 120 mM 

NaCl, 100 mM KCl, 2 mM CaCl2, pH 7.4). Nonspecific binding was obtained in the 

presence of unlabeled MPEP at 20 µM. Binding assay was stopped by rapid filtration 

through Whatman GF/B filters, which were immediately washed and counted in a 

Microbeta Trilux liquid scintillation counter (Wallac). 

 

Statistical and data analysis 

Data are presented as mean ± standard error of the mean (SEM). One-way ANOVA 

followed by Newman-Keuls post-hoc study and Student’s t-test statistical analyses 
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were performed using Prism GraphPad software (version 3.03). Differences between 

mean values were considered statistically significant at p<0.05. 
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Figure 1 

 

 

 

 

Figure 1. Metabotropic glutamate receptor 5 level is increased in brain membrane from 

male MPEP treated zebrafish. Binding assay for specific mGlu5 measurement in 

zebrafish brain membrane by using the radioligand [3H]MPEP. Data from male, female 

or mixed sexes are mean ± SEM values from 9 control and 7 MPEP treated samples 

(two animals each), each measured in duplicated. *p<0.05 significantly different as 

compared with control samples using Student’s t test. 
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Figure 2. Effect of MPEP treatment in locomotor activity in zebrafish. Forty adult 

zebrafish of both sexes were distributed as follows: 10 female treated with Vehicle 

(female control group); 10 male treated with Vehicle (male control group); 10 female 

treated with MPEP (female MPEP group); 10 male treated with MPEP (male MPEP 

group. Vehicle and MPEP (300 µM) were administered via i.p. in 10 µL of volume 

solution. 24 hours after treatment fish were individually placed in the center of the Open 

Field and their swim activity recorded during 10 minutes after a habituation period of 1 

minute. It is shown the mean±SEM of (A) total distance moved (cm), (B) average 

speed (cm/s) (mean velocity when speed > 2 cm/sec), (C) percentage of time spent in 

immobility and (D) percentage of time in periphery (thigmotaxis; % time in periphery). 

Significance was set when*p<0.05; **p<0.01 in student t-test and One-Way ANOVA 

followed by Newman-Keuls post-hoc study. 
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Table 1. Correlation analysis between specific mGlu5 binding and locomotion 

parameters. Binding and locomotion data from each sample preparation were analyzed 

in the different animal groups and the strength of the correlation calculated (Pearson r) 

and defined74 as “very weak” (0.00-0.19), “weak” (0.20-0.39), “moderate” (0.40-0.59), 

“strong�” (0.60-0.79) and “very strong” (0.80-1.00). 
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